f08f117cf8d6108c2720edfcbeee771829a5606f
[oweals/u-boot.git] / drivers / video / tegra124 / display.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2014 Google Inc.
4  *
5  * Extracted from Chromium coreboot commit 3f59b13d
6  */
7
8 #include <common.h>
9 #include <dm.h>
10 #include <edid.h>
11 #include <errno.h>
12 #include <display.h>
13 #include <edid.h>
14 #include <lcd.h>
15 #include <video.h>
16 #include <asm/gpio.h>
17 #include <asm/io.h>
18 #include <asm/arch/clock.h>
19 #include <asm/arch/pwm.h>
20 #include <asm/arch-tegra/dc.h>
21 #include <dm/uclass-internal.h>
22 #include "displayport.h"
23
24 /* return in 1000ths of a Hertz */
25 static int tegra_dc_calc_refresh(const struct display_timing *timing)
26 {
27         int h_total, v_total, refresh;
28         int pclk = timing->pixelclock.typ;
29
30         h_total = timing->hactive.typ + timing->hfront_porch.typ +
31                         timing->hback_porch.typ + timing->hsync_len.typ;
32         v_total = timing->vactive.typ + timing->vfront_porch.typ +
33                         timing->vback_porch.typ + timing->vsync_len.typ;
34         if (!pclk || !h_total || !v_total)
35                 return 0;
36         refresh = pclk / h_total;
37         refresh *= 1000;
38         refresh /= v_total;
39
40         return refresh;
41 }
42
43 static void print_mode(const struct display_timing *timing)
44 {
45         int refresh = tegra_dc_calc_refresh(timing);
46
47         debug("MODE:%dx%d@%d.%03uHz pclk=%d\n",
48               timing->hactive.typ, timing->vactive.typ, refresh / 1000,
49               refresh % 1000, timing->pixelclock.typ);
50 }
51
52 static int update_display_mode(struct dc_ctlr *disp_ctrl,
53                                const struct display_timing *timing,
54                                int href_to_sync, int vref_to_sync)
55 {
56         print_mode(timing);
57
58         writel(0x1, &disp_ctrl->disp.disp_timing_opt);
59
60         writel(vref_to_sync << 16 | href_to_sync,
61                &disp_ctrl->disp.ref_to_sync);
62
63         writel(timing->vsync_len.typ << 16 | timing->hsync_len.typ,
64                &disp_ctrl->disp.sync_width);
65
66         writel(((timing->vback_porch.typ - vref_to_sync) << 16) |
67                 timing->hback_porch.typ, &disp_ctrl->disp.back_porch);
68
69         writel(((timing->vfront_porch.typ + vref_to_sync) << 16) |
70                 timing->hfront_porch.typ, &disp_ctrl->disp.front_porch);
71
72         writel(timing->hactive.typ | (timing->vactive.typ << 16),
73                &disp_ctrl->disp.disp_active);
74
75         /**
76          * We want to use PLLD_out0, which is PLLD / 2:
77          *   PixelClock = (PLLD / 2) / ShiftClockDiv / PixelClockDiv.
78          *
79          * Currently most panels work inside clock range 50MHz~100MHz, and PLLD
80          * has some requirements to have VCO in range 500MHz~1000MHz (see
81          * clock.c for more detail). To simplify calculation, we set
82          * PixelClockDiv to 1 and ShiftClockDiv to 1. In future these values
83          * may be calculated by clock_display, to allow wider frequency range.
84          *
85          * Note ShiftClockDiv is a 7.1 format value.
86          */
87         const u32 shift_clock_div = 1;
88         writel((PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT) |
89                ((shift_clock_div - 1) * 2) << SHIFT_CLK_DIVIDER_SHIFT,
90                &disp_ctrl->disp.disp_clk_ctrl);
91         debug("%s: PixelClock=%u, ShiftClockDiv=%u\n", __func__,
92               timing->pixelclock.typ, shift_clock_div);
93         return 0;
94 }
95
96 static u32 tegra_dc_poll_register(void *reg,
97         u32 mask, u32 exp_val, u32 poll_interval_us, u32 timeout_us)
98 {
99         u32 temp = timeout_us;
100         u32 reg_val = 0;
101
102         do {
103                 udelay(poll_interval_us);
104                 reg_val = readl(reg);
105                 if (timeout_us > poll_interval_us)
106                         timeout_us -= poll_interval_us;
107                 else
108                         break;
109         } while ((reg_val & mask) != exp_val);
110
111         if ((reg_val & mask) == exp_val)
112                 return 0;       /* success */
113
114         return temp;
115 }
116
117 int tegra_dc_sor_general_act(struct dc_ctlr *disp_ctrl)
118 {
119         writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
120
121         if (tegra_dc_poll_register(&disp_ctrl->cmd.state_ctrl,
122                                    GENERAL_ACT_REQ, 0, 100,
123                                    DC_POLL_TIMEOUT_MS * 1000)) {
124                 debug("dc timeout waiting for DC to stop\n");
125                 return -ETIMEDOUT;
126         }
127
128         return 0;
129 }
130
131 static struct display_timing min_mode = {
132         .hsync_len = { .typ = 1 },
133         .vsync_len = { .typ = 1 },
134         .hback_porch = { .typ = 20 },
135         .vback_porch = { .typ = 0 },
136         .hactive = { .typ = 16 },
137         .vactive = { .typ = 16 },
138         .hfront_porch = { .typ = 1 },
139         .vfront_porch = { .typ = 2 },
140 };
141
142 /* Disable windows and set minimum raster timings */
143 void tegra_dc_sor_disable_win_short_raster(struct dc_ctlr *disp_ctrl,
144                                            int *dc_reg_ctx)
145 {
146         const int href_to_sync = 0, vref_to_sync = 1;
147         int selected_windows, i;
148
149         selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
150
151         /* Store and clear window options */
152         for (i = 0; i < DC_N_WINDOWS; ++i) {
153                 writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
154                 dc_reg_ctx[i] = readl(&disp_ctrl->win.win_opt);
155                 writel(0, &disp_ctrl->win.win_opt);
156                 writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
157         }
158
159         writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
160
161         /* Store current raster timings and set minimum timings */
162         dc_reg_ctx[i++] = readl(&disp_ctrl->disp.ref_to_sync);
163         writel(href_to_sync | (vref_to_sync << 16),
164                &disp_ctrl->disp.ref_to_sync);
165
166         dc_reg_ctx[i++] = readl(&disp_ctrl->disp.sync_width);
167         writel(min_mode.hsync_len.typ | (min_mode.vsync_len.typ << 16),
168                &disp_ctrl->disp.sync_width);
169
170         dc_reg_ctx[i++] = readl(&disp_ctrl->disp.back_porch);
171         writel(min_mode.hback_porch.typ | (min_mode.vback_porch.typ << 16),
172                &disp_ctrl->disp.back_porch);
173
174         dc_reg_ctx[i++] = readl(&disp_ctrl->disp.front_porch);
175         writel(min_mode.hfront_porch.typ | (min_mode.vfront_porch.typ << 16),
176                &disp_ctrl->disp.front_porch);
177
178         dc_reg_ctx[i++] = readl(&disp_ctrl->disp.disp_active);
179         writel(min_mode.hactive.typ | (min_mode.vactive.typ << 16),
180                &disp_ctrl->disp.disp_active);
181
182         writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
183 }
184
185 /* Restore previous windows status and raster timings */
186 void tegra_dc_sor_restore_win_and_raster(struct dc_ctlr *disp_ctrl,
187                                          int *dc_reg_ctx)
188 {
189         int selected_windows, i;
190
191         selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
192
193         for (i = 0; i < DC_N_WINDOWS; ++i) {
194                 writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
195                 writel(dc_reg_ctx[i], &disp_ctrl->win.win_opt);
196                 writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
197         }
198
199         writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
200
201         writel(dc_reg_ctx[i++], &disp_ctrl->disp.ref_to_sync);
202         writel(dc_reg_ctx[i++], &disp_ctrl->disp.sync_width);
203         writel(dc_reg_ctx[i++], &disp_ctrl->disp.back_porch);
204         writel(dc_reg_ctx[i++], &disp_ctrl->disp.front_porch);
205         writel(dc_reg_ctx[i++], &disp_ctrl->disp.disp_active);
206
207         writel(GENERAL_UPDATE, &disp_ctrl->cmd.state_ctrl);
208 }
209
210 static int tegra_depth_for_bpp(int bpp)
211 {
212         switch (bpp) {
213         case 32:
214                 return COLOR_DEPTH_R8G8B8A8;
215         case 16:
216                 return COLOR_DEPTH_B5G6R5;
217         default:
218                 debug("Unsupported LCD bit depth");
219                 return -1;
220         }
221 }
222
223 static int update_window(struct dc_ctlr *disp_ctrl,
224                          u32 frame_buffer, int fb_bits_per_pixel,
225                          const struct display_timing *timing)
226 {
227         const u32 colour_white = 0xffffff;
228         int colour_depth;
229         u32 val;
230
231         writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
232
233         writel(((timing->vactive.typ << 16) | timing->hactive.typ),
234                &disp_ctrl->win.size);
235         writel(((timing->vactive.typ << 16) |
236                 (timing->hactive.typ * fb_bits_per_pixel / 8)),
237                 &disp_ctrl->win.prescaled_size);
238         writel(((timing->hactive.typ * fb_bits_per_pixel / 8 + 31) /
239                 32 * 32), &disp_ctrl->win.line_stride);
240
241         colour_depth = tegra_depth_for_bpp(fb_bits_per_pixel);
242         if (colour_depth == -1)
243                 return -EINVAL;
244
245         writel(colour_depth, &disp_ctrl->win.color_depth);
246
247         writel(frame_buffer, &disp_ctrl->winbuf.start_addr);
248         writel(0x1000 << V_DDA_INC_SHIFT | 0x1000 << H_DDA_INC_SHIFT,
249                &disp_ctrl->win.dda_increment);
250
251         writel(colour_white, &disp_ctrl->disp.blend_background_color);
252         writel(CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT,
253                &disp_ctrl->cmd.disp_cmd);
254
255         writel(WRITE_MUX_ACTIVE, &disp_ctrl->cmd.state_access);
256
257         val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
258         val |= GENERAL_UPDATE | WIN_A_UPDATE;
259         writel(val, &disp_ctrl->cmd.state_ctrl);
260
261         /* Enable win_a */
262         val = readl(&disp_ctrl->win.win_opt);
263         writel(val | WIN_ENABLE, &disp_ctrl->win.win_opt);
264
265         return 0;
266 }
267
268 static int tegra_dc_init(struct dc_ctlr *disp_ctrl)
269 {
270         /* do not accept interrupts during initialization */
271         writel(0x00000000, &disp_ctrl->cmd.int_mask);
272         writel(WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
273                &disp_ctrl->cmd.state_access);
274         writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
275         writel(0x00000000, &disp_ctrl->win.win_opt);
276         writel(0x00000000, &disp_ctrl->win.byte_swap);
277         writel(0x00000000, &disp_ctrl->win.buffer_ctrl);
278
279         writel(0x00000000, &disp_ctrl->win.pos);
280         writel(0x00000000, &disp_ctrl->win.h_initial_dda);
281         writel(0x00000000, &disp_ctrl->win.v_initial_dda);
282         writel(0x00000000, &disp_ctrl->win.dda_increment);
283         writel(0x00000000, &disp_ctrl->win.dv_ctrl);
284
285         writel(0x01000000, &disp_ctrl->win.blend_layer_ctrl);
286         writel(0x00000000, &disp_ctrl->win.blend_match_select);
287         writel(0x00000000, &disp_ctrl->win.blend_nomatch_select);
288         writel(0x00000000, &disp_ctrl->win.blend_alpha_1bit);
289
290         writel(0x00000000, &disp_ctrl->winbuf.start_addr_hi);
291         writel(0x00000000, &disp_ctrl->winbuf.addr_h_offset);
292         writel(0x00000000, &disp_ctrl->winbuf.addr_v_offset);
293
294         writel(0x00000000, &disp_ctrl->com.crc_checksum);
295         writel(0x00000000, &disp_ctrl->com.pin_output_enb[0]);
296         writel(0x00000000, &disp_ctrl->com.pin_output_enb[1]);
297         writel(0x00000000, &disp_ctrl->com.pin_output_enb[2]);
298         writel(0x00000000, &disp_ctrl->com.pin_output_enb[3]);
299         writel(0x00000000, &disp_ctrl->disp.disp_signal_opt0);
300
301         return 0;
302 }
303
304 static void dump_config(int panel_bpp, struct display_timing *timing)
305 {
306         printf("timing->hactive.typ = %d\n", timing->hactive.typ);
307         printf("timing->vactive.typ = %d\n", timing->vactive.typ);
308         printf("timing->pixelclock.typ = %d\n", timing->pixelclock.typ);
309
310         printf("timing->hfront_porch.typ = %d\n", timing->hfront_porch.typ);
311         printf("timing->hsync_len.typ = %d\n", timing->hsync_len.typ);
312         printf("timing->hback_porch.typ = %d\n", timing->hback_porch.typ);
313
314         printf("timing->vfront_porch.typ  %d\n", timing->vfront_porch.typ);
315         printf("timing->vsync_len.typ = %d\n", timing->vsync_len.typ);
316         printf("timing->vback_porch.typ = %d\n", timing->vback_porch.typ);
317
318         printf("panel_bits_per_pixel = %d\n", panel_bpp);
319 }
320
321 static int display_update_config_from_edid(struct udevice *dp_dev,
322                                            int *panel_bppp,
323                                            struct display_timing *timing)
324 {
325         return display_read_timing(dp_dev, timing);
326 }
327
328 static int display_init(struct udevice *dev, void *lcdbase,
329                         int fb_bits_per_pixel, struct display_timing *timing)
330 {
331         struct display_plat *disp_uc_plat;
332         struct dc_ctlr *dc_ctlr;
333         struct udevice *dp_dev;
334         const int href_to_sync = 1, vref_to_sync = 1;
335         int panel_bpp = 18;     /* default 18 bits per pixel */
336         u32 plld_rate;
337         int ret;
338
339         /*
340          * Before we probe the display device (eDP), tell it that this device
341          * is the source of the display data.
342          */
343         ret = uclass_find_first_device(UCLASS_DISPLAY, &dp_dev);
344         if (ret) {
345                 debug("%s: device '%s' display not found (ret=%d)\n", __func__,
346                       dev->name, ret);
347                 return ret;
348         }
349
350         disp_uc_plat = dev_get_uclass_platdata(dp_dev);
351         debug("Found device '%s', disp_uc_priv=%p\n", dp_dev->name,
352               disp_uc_plat);
353         disp_uc_plat->src_dev = dev;
354
355         ret = uclass_get_device(UCLASS_DISPLAY, 0, &dp_dev);
356         if (ret) {
357                 debug("%s: Failed to probe eDP, ret=%d\n", __func__, ret);
358                 return ret;
359         }
360
361         dc_ctlr = (struct dc_ctlr *)dev_read_addr(dev);
362         if (ofnode_decode_display_timing(dev_ofnode(dev), 0, timing)) {
363                 debug("%s: Failed to decode display timing\n", __func__);
364                 return -EINVAL;
365         }
366
367         ret = display_update_config_from_edid(dp_dev, &panel_bpp, timing);
368         if (ret) {
369                 debug("%s: Failed to decode EDID, using defaults\n", __func__);
370                 dump_config(panel_bpp, timing);
371         }
372
373         /*
374          * The plld is programmed with the assumption of the SHIFT_CLK_DIVIDER
375          * and PIXEL_CLK_DIVIDER are zero (divide by 1). See the
376          * update_display_mode() for detail.
377          */
378         plld_rate = clock_set_display_rate(timing->pixelclock.typ * 2);
379         if (plld_rate == 0) {
380                 printf("dc: clock init failed\n");
381                 return -EIO;
382         } else if (plld_rate != timing->pixelclock.typ * 2) {
383                 debug("dc: plld rounded to %u\n", plld_rate);
384                 timing->pixelclock.typ = plld_rate / 2;
385         }
386
387         /* Init dc */
388         ret = tegra_dc_init(dc_ctlr);
389         if (ret) {
390                 debug("dc: init failed\n");
391                 return ret;
392         }
393
394         /* Configure dc mode */
395         ret = update_display_mode(dc_ctlr, timing, href_to_sync, vref_to_sync);
396         if (ret) {
397                 debug("dc: failed to configure display mode\n");
398                 return ret;
399         }
400
401         /* Enable dp */
402         ret = display_enable(dp_dev, panel_bpp, timing);
403         if (ret) {
404                 debug("dc: failed to enable display: ret=%d\n", ret);
405                 return ret;
406         }
407
408         ret = update_window(dc_ctlr, (ulong)lcdbase, fb_bits_per_pixel, timing);
409         if (ret) {
410                 debug("dc: failed to update window\n");
411                 return ret;
412         }
413         debug("%s: ready\n", __func__);
414
415         return 0;
416 }
417
418 enum {
419         /* Maximum LCD size we support */
420         LCD_MAX_WIDTH           = 1920,
421         LCD_MAX_HEIGHT          = 1200,
422         LCD_MAX_LOG2_BPP        = 4,            /* 2^4 = 16 bpp */
423 };
424
425 static int tegra124_lcd_init(struct udevice *dev, void *lcdbase,
426                              enum video_log2_bpp l2bpp)
427 {
428         struct video_priv *uc_priv = dev_get_uclass_priv(dev);
429         struct display_timing timing;
430         int ret;
431
432         clock_set_up_plldp();
433         clock_start_periph_pll(PERIPH_ID_HOST1X, CLOCK_ID_PERIPH, 408000000);
434
435         clock_enable(PERIPH_ID_HOST1X);
436         clock_enable(PERIPH_ID_DISP1);
437         clock_enable(PERIPH_ID_PWM);
438         clock_enable(PERIPH_ID_DPAUX);
439         clock_enable(PERIPH_ID_SOR0);
440         udelay(2);
441
442         reset_set_enable(PERIPH_ID_HOST1X, 0);
443         reset_set_enable(PERIPH_ID_DISP1, 0);
444         reset_set_enable(PERIPH_ID_PWM, 0);
445         reset_set_enable(PERIPH_ID_DPAUX, 0);
446         reset_set_enable(PERIPH_ID_SOR0, 0);
447
448         ret = display_init(dev, lcdbase, 1 << l2bpp, &timing);
449         if (ret)
450                 return ret;
451
452         uc_priv->xsize = roundup(timing.hactive.typ, 16);
453         uc_priv->ysize = timing.vactive.typ;
454         uc_priv->bpix = l2bpp;
455
456         video_set_flush_dcache(dev, 1);
457         debug("%s: done\n", __func__);
458
459         return 0;
460 }
461
462 static int tegra124_lcd_probe(struct udevice *dev)
463 {
464         struct video_uc_platdata *plat = dev_get_uclass_platdata(dev);
465         ulong start;
466         int ret;
467
468         start = get_timer(0);
469         bootstage_start(BOOTSTAGE_ID_ACCUM_LCD, "lcd");
470         ret = tegra124_lcd_init(dev, (void *)plat->base, VIDEO_BPP16);
471         bootstage_accum(BOOTSTAGE_ID_ACCUM_LCD);
472         debug("LCD init took %lu ms\n", get_timer(start));
473         if (ret)
474                 printf("%s: Error %d\n", __func__, ret);
475
476         return 0;
477 }
478
479 static int tegra124_lcd_bind(struct udevice *dev)
480 {
481         struct video_uc_platdata *uc_plat = dev_get_uclass_platdata(dev);
482
483         uc_plat->size = LCD_MAX_WIDTH * LCD_MAX_HEIGHT *
484                         (1 << VIDEO_BPP16) / 8;
485         debug("%s: Frame buffer size %x\n", __func__, uc_plat->size);
486
487         return 0;
488 }
489
490 static const struct udevice_id tegra124_lcd_ids[] = {
491         { .compatible = "nvidia,tegra124-dc" },
492         { }
493 };
494
495 U_BOOT_DRIVER(tegra124_dc) = {
496         .name   = "tegra124-dc",
497         .id     = UCLASS_VIDEO,
498         .of_match = tegra124_lcd_ids,
499         .bind   = tegra124_lcd_bind,
500         .probe  = tegra124_lcd_probe,
501 };