Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / tty / serial / zs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * zs.c: Serial port driver for IOASIC DECstations.
4  *
5  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
6  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
7  *
8  * DECstation changes
9  * Copyright (C) 1998-2000 Harald Koerfgen
10  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
11  *
12  * For the rest of the code the original Copyright applies:
13  * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
14  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
15  *
16  *
17  * Note: for IOASIC systems the wiring is as follows:
18  *
19  * mouse/keyboard:
20  * DIN-7 MJ-4  signal        SCC
21  * 2     1     TxD       <-  A.TxD
22  * 3     4     RxD       ->  A.RxD
23  *
24  * EIA-232/EIA-423:
25  * DB-25 MMJ-6 signal        SCC
26  * 2     2     TxD       <-  B.TxD
27  * 3     5     RxD       ->  B.RxD
28  * 4           RTS       <- ~A.RTS
29  * 5           CTS       -> ~B.CTS
30  * 6     6     DSR       -> ~A.SYNC
31  * 8           CD        -> ~B.DCD
32  * 12          DSRS(DCE) -> ~A.CTS  (*)
33  * 15          TxC       ->  B.TxC
34  * 17          RxC       ->  B.RxC
35  * 20    1     DTR       <- ~A.DTR
36  * 22          RI        -> ~A.DCD
37  * 23          DSRS(DTE) <- ~B.RTS
38  *
39  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
40  *     is shared with DSRS(DTE) at pin 23.
41  *
42  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
43  * is a bit odd.  This makes the handling of port B unnecessarily
44  * complicated and prevents the use of some automatic modes of operation.
45  */
46
47 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
48 #define SUPPORT_SYSRQ
49 #endif
50
51 #include <linux/bug.h>
52 #include <linux/console.h>
53 #include <linux/delay.h>
54 #include <linux/errno.h>
55 #include <linux/init.h>
56 #include <linux/interrupt.h>
57 #include <linux/io.h>
58 #include <linux/ioport.h>
59 #include <linux/irqflags.h>
60 #include <linux/kernel.h>
61 #include <linux/module.h>
62 #include <linux/major.h>
63 #include <linux/serial.h>
64 #include <linux/serial_core.h>
65 #include <linux/spinlock.h>
66 #include <linux/sysrq.h>
67 #include <linux/tty.h>
68 #include <linux/tty_flip.h>
69 #include <linux/types.h>
70
71 #include <linux/atomic.h>
72
73 #include <asm/dec/interrupts.h>
74 #include <asm/dec/ioasic_addrs.h>
75 #include <asm/dec/system.h>
76
77 #include "zs.h"
78
79
80 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
81 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
82 MODULE_LICENSE("GPL");
83
84
85 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
86 static char zs_version[] __initdata = "0.10";
87
88 /*
89  * It would be nice to dynamically allocate everything that
90  * depends on ZS_NUM_SCCS, so we could support any number of
91  * Z85C30s, but for now...
92  */
93 #define ZS_NUM_SCCS     2               /* Max # of ZS chips supported.  */
94 #define ZS_NUM_CHAN     2               /* 2 channels per chip.  */
95 #define ZS_CHAN_A       0               /* Index of the channel A.  */
96 #define ZS_CHAN_B       1               /* Index of the channel B.  */
97 #define ZS_CHAN_IO_SIZE 8               /* IOMEM space size.  */
98 #define ZS_CHAN_IO_STRIDE 4             /* Register alignment.  */
99 #define ZS_CHAN_IO_OFFSET 1             /* The SCC resides on the high byte
100                                            of the 16-bit IOBUS.  */
101 #define ZS_CLOCK        7372800         /* Z85C30 PCLK input clock rate.  */
102
103 #define to_zport(uport) container_of(uport, struct zs_port, port)
104
105 struct zs_parms {
106         resource_size_t scc[ZS_NUM_SCCS];
107         int irq[ZS_NUM_SCCS];
108 };
109
110 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
111
112 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
113         0,                              /* write 0 */
114         PAR_SPEC,                       /* write 1 */
115         0,                              /* write 2 */
116         0,                              /* write 3 */
117         X16CLK | SB1,                   /* write 4 */
118         0,                              /* write 5 */
119         0, 0, 0,                        /* write 6, 7, 8 */
120         MIE | DLC | NV,                 /* write 9 */
121         NRZ,                            /* write 10 */
122         TCBR | RCBR,                    /* write 11 */
123         0, 0,                           /* BRG time constant, write 12 + 13 */
124         BRSRC | BRENABL,                /* write 14 */
125         0,                              /* write 15 */
126 };
127
128 /*
129  * Debugging.
130  */
131 #undef ZS_DEBUG_REGS
132
133
134 /*
135  * Reading and writing Z85C30 registers.
136  */
137 static void recovery_delay(void)
138 {
139         udelay(2);
140 }
141
142 static u8 read_zsreg(struct zs_port *zport, int reg)
143 {
144         void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
145         u8 retval;
146
147         if (reg != 0) {
148                 writeb(reg & 0xf, control);
149                 fast_iob();
150                 recovery_delay();
151         }
152         retval = readb(control);
153         recovery_delay();
154         return retval;
155 }
156
157 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
158 {
159         void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
160
161         if (reg != 0) {
162                 writeb(reg & 0xf, control);
163                 fast_iob(); recovery_delay();
164         }
165         writeb(value, control);
166         fast_iob();
167         recovery_delay();
168         return;
169 }
170
171 static u8 read_zsdata(struct zs_port *zport)
172 {
173         void __iomem *data = zport->port.membase +
174                              ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
175         u8 retval;
176
177         retval = readb(data);
178         recovery_delay();
179         return retval;
180 }
181
182 static void write_zsdata(struct zs_port *zport, u8 value)
183 {
184         void __iomem *data = zport->port.membase +
185                              ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
186
187         writeb(value, data);
188         fast_iob();
189         recovery_delay();
190         return;
191 }
192
193 #ifdef ZS_DEBUG_REGS
194 void zs_dump(void)
195 {
196         struct zs_port *zport;
197         int i, j;
198
199         for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
200                 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
201
202                 if (!zport->scc)
203                         continue;
204
205                 for (j = 0; j < 16; j++)
206                         printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
207                 printk("\n");
208                 for (j = 0; j < 16; j++)
209                         printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
210                 printk("\n\n");
211         }
212 }
213 #endif
214
215
216 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
217 {
218         if (irq)
219                 spin_lock_irq(lock);
220         else
221                 spin_lock(lock);
222 }
223
224 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
225 {
226         if (irq)
227                 spin_unlock_irq(lock);
228         else
229                 spin_unlock(lock);
230 }
231
232 static int zs_receive_drain(struct zs_port *zport)
233 {
234         int loops = 10000;
235
236         while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
237                 read_zsdata(zport);
238         return loops;
239 }
240
241 static int zs_transmit_drain(struct zs_port *zport, int irq)
242 {
243         struct zs_scc *scc = zport->scc;
244         int loops = 10000;
245
246         while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
247                 zs_spin_unlock_cond_irq(&scc->zlock, irq);
248                 udelay(2);
249                 zs_spin_lock_cond_irq(&scc->zlock, irq);
250         }
251         return loops;
252 }
253
254 static int zs_line_drain(struct zs_port *zport, int irq)
255 {
256         struct zs_scc *scc = zport->scc;
257         int loops = 10000;
258
259         while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
260                 zs_spin_unlock_cond_irq(&scc->zlock, irq);
261                 udelay(2);
262                 zs_spin_lock_cond_irq(&scc->zlock, irq);
263         }
264         return loops;
265 }
266
267
268 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
269 {
270         /* Let the current transmission finish.  */
271         zs_line_drain(zport, irq);
272         /* Load 'em up.  */
273         write_zsreg(zport, R3, regs[3] & ~RxENABLE);
274         write_zsreg(zport, R5, regs[5] & ~TxENAB);
275         write_zsreg(zport, R4, regs[4]);
276         write_zsreg(zport, R9, regs[9]);
277         write_zsreg(zport, R1, regs[1]);
278         write_zsreg(zport, R2, regs[2]);
279         write_zsreg(zport, R10, regs[10]);
280         write_zsreg(zport, R14, regs[14] & ~BRENABL);
281         write_zsreg(zport, R11, regs[11]);
282         write_zsreg(zport, R12, regs[12]);
283         write_zsreg(zport, R13, regs[13]);
284         write_zsreg(zport, R14, regs[14]);
285         write_zsreg(zport, R15, regs[15]);
286         if (regs[3] & RxENABLE)
287                 write_zsreg(zport, R3, regs[3]);
288         if (regs[5] & TxENAB)
289                 write_zsreg(zport, R5, regs[5]);
290         return;
291 }
292
293
294 /*
295  * Status handling routines.
296  */
297
298 /*
299  * zs_tx_empty() -- get the transmitter empty status
300  *
301  * Purpose: Let user call ioctl() to get info when the UART physically
302  *          is emptied.  On bus types like RS485, the transmitter must
303  *          release the bus after transmitting.  This must be done when
304  *          the transmit shift register is empty, not be done when the
305  *          transmit holding register is empty.  This functionality
306  *          allows an RS485 driver to be written in user space.
307  */
308 static unsigned int zs_tx_empty(struct uart_port *uport)
309 {
310         struct zs_port *zport = to_zport(uport);
311         struct zs_scc *scc = zport->scc;
312         unsigned long flags;
313         u8 status;
314
315         spin_lock_irqsave(&scc->zlock, flags);
316         status = read_zsreg(zport, R1);
317         spin_unlock_irqrestore(&scc->zlock, flags);
318
319         return status & ALL_SNT ? TIOCSER_TEMT : 0;
320 }
321
322 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
323                                         struct zs_port *zport_b)
324 {
325         u8 status_a, status_b;
326         unsigned int mctrl;
327
328         status_a = read_zsreg(zport_a, R0);
329         status_b = read_zsreg(zport_b, R0);
330
331         mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
332                 ((status_b & DCD) ? TIOCM_CAR : 0) |
333                 ((status_a & DCD) ? TIOCM_RNG : 0) |
334                 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
335
336         return mctrl;
337 }
338
339 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
340 {
341         struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
342
343         return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
344 }
345
346 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
347 {
348         struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
349         unsigned int mmask, mctrl, delta;
350         u8 mask_a, mask_b;
351
352         if (zport == zport_a)
353                 return 0;
354
355         mask_a = zport_a->regs[15];
356         mask_b = zport->regs[15];
357
358         mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
359                 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
360                 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
361                 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
362
363         mctrl = zport->mctrl;
364         if (mmask) {
365                 mctrl &= ~mmask;
366                 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
367         }
368
369         delta = mctrl ^ zport->mctrl;
370         if (delta)
371                 zport->mctrl = mctrl;
372
373         return delta;
374 }
375
376 static unsigned int zs_get_mctrl(struct uart_port *uport)
377 {
378         struct zs_port *zport = to_zport(uport);
379         struct zs_scc *scc = zport->scc;
380         unsigned int mctrl;
381
382         spin_lock(&scc->zlock);
383         mctrl = zs_raw_get_mctrl(zport);
384         spin_unlock(&scc->zlock);
385
386         return mctrl;
387 }
388
389 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
390 {
391         struct zs_port *zport = to_zport(uport);
392         struct zs_scc *scc = zport->scc;
393         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
394         u8 oldloop, newloop;
395
396         spin_lock(&scc->zlock);
397         if (zport != zport_a) {
398                 if (mctrl & TIOCM_DTR)
399                         zport_a->regs[5] |= DTR;
400                 else
401                         zport_a->regs[5] &= ~DTR;
402                 if (mctrl & TIOCM_RTS)
403                         zport_a->regs[5] |= RTS;
404                 else
405                         zport_a->regs[5] &= ~RTS;
406                 write_zsreg(zport_a, R5, zport_a->regs[5]);
407         }
408
409         /* Rarely modified, so don't poke at hardware unless necessary. */
410         oldloop = zport->regs[14];
411         newloop = oldloop;
412         if (mctrl & TIOCM_LOOP)
413                 newloop |= LOOPBAK;
414         else
415                 newloop &= ~LOOPBAK;
416         if (newloop != oldloop) {
417                 zport->regs[14] = newloop;
418                 write_zsreg(zport, R14, zport->regs[14]);
419         }
420         spin_unlock(&scc->zlock);
421 }
422
423 static void zs_raw_stop_tx(struct zs_port *zport)
424 {
425         write_zsreg(zport, R0, RES_Tx_P);
426         zport->tx_stopped = 1;
427 }
428
429 static void zs_stop_tx(struct uart_port *uport)
430 {
431         struct zs_port *zport = to_zport(uport);
432         struct zs_scc *scc = zport->scc;
433
434         spin_lock(&scc->zlock);
435         zs_raw_stop_tx(zport);
436         spin_unlock(&scc->zlock);
437 }
438
439 static void zs_raw_transmit_chars(struct zs_port *);
440
441 static void zs_start_tx(struct uart_port *uport)
442 {
443         struct zs_port *zport = to_zport(uport);
444         struct zs_scc *scc = zport->scc;
445
446         spin_lock(&scc->zlock);
447         if (zport->tx_stopped) {
448                 zs_transmit_drain(zport, 0);
449                 zport->tx_stopped = 0;
450                 zs_raw_transmit_chars(zport);
451         }
452         spin_unlock(&scc->zlock);
453 }
454
455 static void zs_stop_rx(struct uart_port *uport)
456 {
457         struct zs_port *zport = to_zport(uport);
458         struct zs_scc *scc = zport->scc;
459         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
460
461         spin_lock(&scc->zlock);
462         zport->regs[15] &= ~BRKIE;
463         zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
464         zport->regs[1] |= RxINT_DISAB;
465
466         if (zport != zport_a) {
467                 /* A-side DCD tracks RI and SYNC tracks DSR.  */
468                 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
469                 write_zsreg(zport_a, R15, zport_a->regs[15]);
470                 if (!(zport_a->regs[15] & BRKIE)) {
471                         zport_a->regs[1] &= ~EXT_INT_ENAB;
472                         write_zsreg(zport_a, R1, zport_a->regs[1]);
473                 }
474
475                 /* This-side DCD tracks DCD and CTS tracks CTS.  */
476                 zport->regs[15] &= ~(DCDIE | CTSIE);
477                 zport->regs[1] &= ~EXT_INT_ENAB;
478         } else {
479                 /* DCD tracks RI and SYNC tracks DSR for the B side.  */
480                 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
481                         zport->regs[1] &= ~EXT_INT_ENAB;
482         }
483
484         write_zsreg(zport, R15, zport->regs[15]);
485         write_zsreg(zport, R1, zport->regs[1]);
486         spin_unlock(&scc->zlock);
487 }
488
489 static void zs_enable_ms(struct uart_port *uport)
490 {
491         struct zs_port *zport = to_zport(uport);
492         struct zs_scc *scc = zport->scc;
493         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
494
495         if (zport == zport_a)
496                 return;
497
498         spin_lock(&scc->zlock);
499
500         /* Clear Ext interrupts if not being handled already.  */
501         if (!(zport_a->regs[1] & EXT_INT_ENAB))
502                 write_zsreg(zport_a, R0, RES_EXT_INT);
503
504         /* A-side DCD tracks RI and SYNC tracks DSR.  */
505         zport_a->regs[1] |= EXT_INT_ENAB;
506         zport_a->regs[15] |= DCDIE | SYNCIE;
507
508         /* This-side DCD tracks DCD and CTS tracks CTS.  */
509         zport->regs[15] |= DCDIE | CTSIE;
510
511         zs_raw_xor_mctrl(zport);
512
513         write_zsreg(zport_a, R1, zport_a->regs[1]);
514         write_zsreg(zport_a, R15, zport_a->regs[15]);
515         write_zsreg(zport, R15, zport->regs[15]);
516         spin_unlock(&scc->zlock);
517 }
518
519 static void zs_break_ctl(struct uart_port *uport, int break_state)
520 {
521         struct zs_port *zport = to_zport(uport);
522         struct zs_scc *scc = zport->scc;
523         unsigned long flags;
524
525         spin_lock_irqsave(&scc->zlock, flags);
526         if (break_state == -1)
527                 zport->regs[5] |= SND_BRK;
528         else
529                 zport->regs[5] &= ~SND_BRK;
530         write_zsreg(zport, R5, zport->regs[5]);
531         spin_unlock_irqrestore(&scc->zlock, flags);
532 }
533
534
535 /*
536  * Interrupt handling routines.
537  */
538 #define Rx_BRK 0x0100                   /* BREAK event software flag.  */
539 #define Rx_SYS 0x0200                   /* SysRq event software flag.  */
540
541 static void zs_receive_chars(struct zs_port *zport)
542 {
543         struct uart_port *uport = &zport->port;
544         struct zs_scc *scc = zport->scc;
545         struct uart_icount *icount;
546         unsigned int avail, status, ch, flag;
547         int count;
548
549         for (count = 16; count; count--) {
550                 spin_lock(&scc->zlock);
551                 avail = read_zsreg(zport, R0) & Rx_CH_AV;
552                 spin_unlock(&scc->zlock);
553                 if (!avail)
554                         break;
555
556                 spin_lock(&scc->zlock);
557                 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
558                 ch = read_zsdata(zport);
559                 spin_unlock(&scc->zlock);
560
561                 flag = TTY_NORMAL;
562
563                 icount = &uport->icount;
564                 icount->rx++;
565
566                 /* Handle the null char got when BREAK is removed.  */
567                 if (!ch)
568                         status |= zport->tty_break;
569                 if (unlikely(status &
570                              (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
571                         zport->tty_break = 0;
572
573                         /* Reset the error indication.  */
574                         if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
575                                 spin_lock(&scc->zlock);
576                                 write_zsreg(zport, R0, ERR_RES);
577                                 spin_unlock(&scc->zlock);
578                         }
579
580                         if (status & (Rx_SYS | Rx_BRK)) {
581                                 icount->brk++;
582                                 /* SysRq discards the null char.  */
583                                 if (status & Rx_SYS)
584                                         continue;
585                         } else if (status & FRM_ERR)
586                                 icount->frame++;
587                         else if (status & PAR_ERR)
588                                 icount->parity++;
589                         if (status & Rx_OVR)
590                                 icount->overrun++;
591
592                         status &= uport->read_status_mask;
593                         if (status & Rx_BRK)
594                                 flag = TTY_BREAK;
595                         else if (status & FRM_ERR)
596                                 flag = TTY_FRAME;
597                         else if (status & PAR_ERR)
598                                 flag = TTY_PARITY;
599                 }
600
601                 if (uart_handle_sysrq_char(uport, ch))
602                         continue;
603
604                 uart_insert_char(uport, status, Rx_OVR, ch, flag);
605         }
606
607         tty_flip_buffer_push(&uport->state->port);
608 }
609
610 static void zs_raw_transmit_chars(struct zs_port *zport)
611 {
612         struct circ_buf *xmit = &zport->port.state->xmit;
613
614         /* XON/XOFF chars.  */
615         if (zport->port.x_char) {
616                 write_zsdata(zport, zport->port.x_char);
617                 zport->port.icount.tx++;
618                 zport->port.x_char = 0;
619                 return;
620         }
621
622         /* If nothing to do or stopped or hardware stopped.  */
623         if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
624                 zs_raw_stop_tx(zport);
625                 return;
626         }
627
628         /* Send char.  */
629         write_zsdata(zport, xmit->buf[xmit->tail]);
630         xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
631         zport->port.icount.tx++;
632
633         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
634                 uart_write_wakeup(&zport->port);
635
636         /* Are we are done?  */
637         if (uart_circ_empty(xmit))
638                 zs_raw_stop_tx(zport);
639 }
640
641 static void zs_transmit_chars(struct zs_port *zport)
642 {
643         struct zs_scc *scc = zport->scc;
644
645         spin_lock(&scc->zlock);
646         zs_raw_transmit_chars(zport);
647         spin_unlock(&scc->zlock);
648 }
649
650 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
651 {
652         struct uart_port *uport = &zport->port;
653         struct zs_scc *scc = zport->scc;
654         unsigned int delta;
655         u8 status, brk;
656
657         spin_lock(&scc->zlock);
658
659         /* Get status from Read Register 0.  */
660         status = read_zsreg(zport, R0);
661
662         if (zport->regs[15] & BRKIE) {
663                 brk = status & BRK_ABRT;
664                 if (brk && !zport->brk) {
665                         spin_unlock(&scc->zlock);
666                         if (uart_handle_break(uport))
667                                 zport->tty_break = Rx_SYS;
668                         else
669                                 zport->tty_break = Rx_BRK;
670                         spin_lock(&scc->zlock);
671                 }
672                 zport->brk = brk;
673         }
674
675         if (zport != zport_a) {
676                 delta = zs_raw_xor_mctrl(zport);
677                 spin_unlock(&scc->zlock);
678
679                 if (delta & TIOCM_CTS)
680                         uart_handle_cts_change(uport,
681                                                zport->mctrl & TIOCM_CTS);
682                 if (delta & TIOCM_CAR)
683                         uart_handle_dcd_change(uport,
684                                                zport->mctrl & TIOCM_CAR);
685                 if (delta & TIOCM_RNG)
686                         uport->icount.dsr++;
687                 if (delta & TIOCM_DSR)
688                         uport->icount.rng++;
689
690                 if (delta)
691                         wake_up_interruptible(&uport->state->port.delta_msr_wait);
692
693                 spin_lock(&scc->zlock);
694         }
695
696         /* Clear the status condition...  */
697         write_zsreg(zport, R0, RES_EXT_INT);
698
699         spin_unlock(&scc->zlock);
700 }
701
702 /*
703  * This is the Z85C30 driver's generic interrupt routine.
704  */
705 static irqreturn_t zs_interrupt(int irq, void *dev_id)
706 {
707         struct zs_scc *scc = dev_id;
708         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
709         struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
710         irqreturn_t status = IRQ_NONE;
711         u8 zs_intreg;
712         int count;
713
714         /*
715          * NOTE: The read register 3, which holds the irq status,
716          *       does so for both channels on each chip.  Although
717          *       the status value itself must be read from the A
718          *       channel and is only valid when read from channel A.
719          *       Yes... broken hardware...
720          */
721         for (count = 16; count; count--) {
722                 spin_lock(&scc->zlock);
723                 zs_intreg = read_zsreg(zport_a, R3);
724                 spin_unlock(&scc->zlock);
725                 if (!zs_intreg)
726                         break;
727
728                 /*
729                  * We do not like losing characters, so we prioritise
730                  * interrupt sources a little bit differently than
731                  * the SCC would, was it allowed to.
732                  */
733                 if (zs_intreg & CHBRxIP)
734                         zs_receive_chars(zport_b);
735                 if (zs_intreg & CHARxIP)
736                         zs_receive_chars(zport_a);
737                 if (zs_intreg & CHBEXT)
738                         zs_status_handle(zport_b, zport_a);
739                 if (zs_intreg & CHAEXT)
740                         zs_status_handle(zport_a, zport_a);
741                 if (zs_intreg & CHBTxIP)
742                         zs_transmit_chars(zport_b);
743                 if (zs_intreg & CHATxIP)
744                         zs_transmit_chars(zport_a);
745
746                 status = IRQ_HANDLED;
747         }
748
749         return status;
750 }
751
752
753 /*
754  * Finally, routines used to initialize the serial port.
755  */
756 static int zs_startup(struct uart_port *uport)
757 {
758         struct zs_port *zport = to_zport(uport);
759         struct zs_scc *scc = zport->scc;
760         unsigned long flags;
761         int irq_guard;
762         int ret;
763
764         irq_guard = atomic_add_return(1, &scc->irq_guard);
765         if (irq_guard == 1) {
766                 ret = request_irq(zport->port.irq, zs_interrupt,
767                                   IRQF_SHARED, "scc", scc);
768                 if (ret) {
769                         atomic_add(-1, &scc->irq_guard);
770                         printk(KERN_ERR "zs: can't get irq %d\n",
771                                zport->port.irq);
772                         return ret;
773                 }
774         }
775
776         spin_lock_irqsave(&scc->zlock, flags);
777
778         /* Clear the receive FIFO.  */
779         zs_receive_drain(zport);
780
781         /* Clear the interrupt registers.  */
782         write_zsreg(zport, R0, ERR_RES);
783         write_zsreg(zport, R0, RES_Tx_P);
784         /* But Ext only if not being handled already.  */
785         if (!(zport->regs[1] & EXT_INT_ENAB))
786                 write_zsreg(zport, R0, RES_EXT_INT);
787
788         /* Finally, enable sequencing and interrupts.  */
789         zport->regs[1] &= ~RxINT_MASK;
790         zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
791         zport->regs[3] |= RxENABLE;
792         zport->regs[15] |= BRKIE;
793         write_zsreg(zport, R1, zport->regs[1]);
794         write_zsreg(zport, R3, zport->regs[3]);
795         write_zsreg(zport, R5, zport->regs[5]);
796         write_zsreg(zport, R15, zport->regs[15]);
797
798         /* Record the current state of RR0.  */
799         zport->mctrl = zs_raw_get_mctrl(zport);
800         zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
801
802         zport->tx_stopped = 1;
803
804         spin_unlock_irqrestore(&scc->zlock, flags);
805
806         return 0;
807 }
808
809 static void zs_shutdown(struct uart_port *uport)
810 {
811         struct zs_port *zport = to_zport(uport);
812         struct zs_scc *scc = zport->scc;
813         unsigned long flags;
814         int irq_guard;
815
816         spin_lock_irqsave(&scc->zlock, flags);
817
818         zport->regs[3] &= ~RxENABLE;
819         write_zsreg(zport, R5, zport->regs[5]);
820         write_zsreg(zport, R3, zport->regs[3]);
821
822         spin_unlock_irqrestore(&scc->zlock, flags);
823
824         irq_guard = atomic_add_return(-1, &scc->irq_guard);
825         if (!irq_guard)
826                 free_irq(zport->port.irq, scc);
827 }
828
829
830 static void zs_reset(struct zs_port *zport)
831 {
832         struct zs_scc *scc = zport->scc;
833         int irq;
834         unsigned long flags;
835
836         spin_lock_irqsave(&scc->zlock, flags);
837         irq = !irqs_disabled_flags(flags);
838         if (!scc->initialised) {
839                 /* Reset the pointer first, just in case...  */
840                 read_zsreg(zport, R0);
841                 /* And let the current transmission finish.  */
842                 zs_line_drain(zport, irq);
843                 write_zsreg(zport, R9, FHWRES);
844                 udelay(10);
845                 write_zsreg(zport, R9, 0);
846                 scc->initialised = 1;
847         }
848         load_zsregs(zport, zport->regs, irq);
849         spin_unlock_irqrestore(&scc->zlock, flags);
850 }
851
852 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
853                            struct ktermios *old_termios)
854 {
855         struct zs_port *zport = to_zport(uport);
856         struct zs_scc *scc = zport->scc;
857         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
858         int irq;
859         unsigned int baud, brg;
860         unsigned long flags;
861
862         spin_lock_irqsave(&scc->zlock, flags);
863         irq = !irqs_disabled_flags(flags);
864
865         /* Byte size.  */
866         zport->regs[3] &= ~RxNBITS_MASK;
867         zport->regs[5] &= ~TxNBITS_MASK;
868         switch (termios->c_cflag & CSIZE) {
869         case CS5:
870                 zport->regs[3] |= Rx5;
871                 zport->regs[5] |= Tx5;
872                 break;
873         case CS6:
874                 zport->regs[3] |= Rx6;
875                 zport->regs[5] |= Tx6;
876                 break;
877         case CS7:
878                 zport->regs[3] |= Rx7;
879                 zport->regs[5] |= Tx7;
880                 break;
881         case CS8:
882         default:
883                 zport->regs[3] |= Rx8;
884                 zport->regs[5] |= Tx8;
885                 break;
886         }
887
888         /* Parity and stop bits.  */
889         zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
890         if (termios->c_cflag & CSTOPB)
891                 zport->regs[4] |= SB2;
892         else
893                 zport->regs[4] |= SB1;
894         if (termios->c_cflag & PARENB)
895                 zport->regs[4] |= PAR_ENA;
896         if (!(termios->c_cflag & PARODD))
897                 zport->regs[4] |= PAR_EVEN;
898         switch (zport->clk_mode) {
899         case 64:
900                 zport->regs[4] |= X64CLK;
901                 break;
902         case 32:
903                 zport->regs[4] |= X32CLK;
904                 break;
905         case 16:
906                 zport->regs[4] |= X16CLK;
907                 break;
908         case 1:
909                 zport->regs[4] |= X1CLK;
910                 break;
911         default:
912                 BUG();
913         }
914
915         baud = uart_get_baud_rate(uport, termios, old_termios, 0,
916                                   uport->uartclk / zport->clk_mode / 4);
917
918         brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
919         zport->regs[12] = brg & 0xff;
920         zport->regs[13] = (brg >> 8) & 0xff;
921
922         uart_update_timeout(uport, termios->c_cflag, baud);
923
924         uport->read_status_mask = Rx_OVR;
925         if (termios->c_iflag & INPCK)
926                 uport->read_status_mask |= FRM_ERR | PAR_ERR;
927         if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
928                 uport->read_status_mask |= Rx_BRK;
929
930         uport->ignore_status_mask = 0;
931         if (termios->c_iflag & IGNPAR)
932                 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
933         if (termios->c_iflag & IGNBRK) {
934                 uport->ignore_status_mask |= Rx_BRK;
935                 if (termios->c_iflag & IGNPAR)
936                         uport->ignore_status_mask |= Rx_OVR;
937         }
938
939         if (termios->c_cflag & CREAD)
940                 zport->regs[3] |= RxENABLE;
941         else
942                 zport->regs[3] &= ~RxENABLE;
943
944         if (zport != zport_a) {
945                 if (!(termios->c_cflag & CLOCAL)) {
946                         zport->regs[15] |= DCDIE;
947                 } else
948                         zport->regs[15] &= ~DCDIE;
949                 if (termios->c_cflag & CRTSCTS) {
950                         zport->regs[15] |= CTSIE;
951                 } else
952                         zport->regs[15] &= ~CTSIE;
953                 zs_raw_xor_mctrl(zport);
954         }
955
956         /* Load up the new values.  */
957         load_zsregs(zport, zport->regs, irq);
958
959         spin_unlock_irqrestore(&scc->zlock, flags);
960 }
961
962 /*
963  * Hack alert!
964  * Required solely so that the initial PROM-based console
965  * works undisturbed in parallel with this one.
966  */
967 static void zs_pm(struct uart_port *uport, unsigned int state,
968                   unsigned int oldstate)
969 {
970         struct zs_port *zport = to_zport(uport);
971
972         if (state < 3)
973                 zport->regs[5] |= TxENAB;
974         else
975                 zport->regs[5] &= ~TxENAB;
976         write_zsreg(zport, R5, zport->regs[5]);
977 }
978
979
980 static const char *zs_type(struct uart_port *uport)
981 {
982         return "Z85C30 SCC";
983 }
984
985 static void zs_release_port(struct uart_port *uport)
986 {
987         iounmap(uport->membase);
988         uport->membase = 0;
989         release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
990 }
991
992 static int zs_map_port(struct uart_port *uport)
993 {
994         if (!uport->membase)
995                 uport->membase = ioremap_nocache(uport->mapbase,
996                                                  ZS_CHAN_IO_SIZE);
997         if (!uport->membase) {
998                 printk(KERN_ERR "zs: Cannot map MMIO\n");
999                 return -ENOMEM;
1000         }
1001         return 0;
1002 }
1003
1004 static int zs_request_port(struct uart_port *uport)
1005 {
1006         int ret;
1007
1008         if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1009                 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1010                 return -EBUSY;
1011         }
1012         ret = zs_map_port(uport);
1013         if (ret) {
1014                 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1015                 return ret;
1016         }
1017         return 0;
1018 }
1019
1020 static void zs_config_port(struct uart_port *uport, int flags)
1021 {
1022         struct zs_port *zport = to_zport(uport);
1023
1024         if (flags & UART_CONFIG_TYPE) {
1025                 if (zs_request_port(uport))
1026                         return;
1027
1028                 uport->type = PORT_ZS;
1029
1030                 zs_reset(zport);
1031         }
1032 }
1033
1034 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1035 {
1036         struct zs_port *zport = to_zport(uport);
1037         int ret = 0;
1038
1039         if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1040                 ret = -EINVAL;
1041         if (ser->irq != uport->irq)
1042                 ret = -EINVAL;
1043         if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1044                 ret = -EINVAL;
1045         return ret;
1046 }
1047
1048
1049 static const struct uart_ops zs_ops = {
1050         .tx_empty       = zs_tx_empty,
1051         .set_mctrl      = zs_set_mctrl,
1052         .get_mctrl      = zs_get_mctrl,
1053         .stop_tx        = zs_stop_tx,
1054         .start_tx       = zs_start_tx,
1055         .stop_rx        = zs_stop_rx,
1056         .enable_ms      = zs_enable_ms,
1057         .break_ctl      = zs_break_ctl,
1058         .startup        = zs_startup,
1059         .shutdown       = zs_shutdown,
1060         .set_termios    = zs_set_termios,
1061         .pm             = zs_pm,
1062         .type           = zs_type,
1063         .release_port   = zs_release_port,
1064         .request_port   = zs_request_port,
1065         .config_port    = zs_config_port,
1066         .verify_port    = zs_verify_port,
1067 };
1068
1069 /*
1070  * Initialize Z85C30 port structures.
1071  */
1072 static int __init zs_probe_sccs(void)
1073 {
1074         static int probed;
1075         struct zs_parms zs_parms;
1076         int chip, side, irq;
1077         int n_chips = 0;
1078         int i;
1079
1080         if (probed)
1081                 return 0;
1082
1083         irq = dec_interrupt[DEC_IRQ_SCC0];
1084         if (irq >= 0) {
1085                 zs_parms.scc[n_chips] = IOASIC_SCC0;
1086                 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1087                 n_chips++;
1088         }
1089         irq = dec_interrupt[DEC_IRQ_SCC1];
1090         if (irq >= 0) {
1091                 zs_parms.scc[n_chips] = IOASIC_SCC1;
1092                 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1093                 n_chips++;
1094         }
1095         if (!n_chips)
1096                 return -ENXIO;
1097
1098         probed = 1;
1099
1100         for (chip = 0; chip < n_chips; chip++) {
1101                 spin_lock_init(&zs_sccs[chip].zlock);
1102                 for (side = 0; side < ZS_NUM_CHAN; side++) {
1103                         struct zs_port *zport = &zs_sccs[chip].zport[side];
1104                         struct uart_port *uport = &zport->port;
1105
1106                         zport->scc      = &zs_sccs[chip];
1107                         zport->clk_mode = 16;
1108
1109                         uport->irq      = zs_parms.irq[chip];
1110                         uport->uartclk  = ZS_CLOCK;
1111                         uport->fifosize = 1;
1112                         uport->iotype   = UPIO_MEM;
1113                         uport->flags    = UPF_BOOT_AUTOCONF;
1114                         uport->ops      = &zs_ops;
1115                         uport->line     = chip * ZS_NUM_CHAN + side;
1116                         uport->mapbase  = dec_kn_slot_base +
1117                                           zs_parms.scc[chip] +
1118                                           (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1119
1120                         for (i = 0; i < ZS_NUM_REGS; i++)
1121                                 zport->regs[i] = zs_init_regs[i];
1122                 }
1123         }
1124
1125         return 0;
1126 }
1127
1128
1129 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1130 static void zs_console_putchar(struct uart_port *uport, int ch)
1131 {
1132         struct zs_port *zport = to_zport(uport);
1133         struct zs_scc *scc = zport->scc;
1134         int irq;
1135         unsigned long flags;
1136
1137         spin_lock_irqsave(&scc->zlock, flags);
1138         irq = !irqs_disabled_flags(flags);
1139         if (zs_transmit_drain(zport, irq))
1140                 write_zsdata(zport, ch);
1141         spin_unlock_irqrestore(&scc->zlock, flags);
1142 }
1143
1144 /*
1145  * Print a string to the serial port trying not to disturb
1146  * any possible real use of the port...
1147  */
1148 static void zs_console_write(struct console *co, const char *s,
1149                              unsigned int count)
1150 {
1151         int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1152         struct zs_port *zport = &zs_sccs[chip].zport[side];
1153         struct zs_scc *scc = zport->scc;
1154         unsigned long flags;
1155         u8 txint, txenb;
1156         int irq;
1157
1158         /* Disable transmit interrupts and enable the transmitter. */
1159         spin_lock_irqsave(&scc->zlock, flags);
1160         txint = zport->regs[1];
1161         txenb = zport->regs[5];
1162         if (txint & TxINT_ENAB) {
1163                 zport->regs[1] = txint & ~TxINT_ENAB;
1164                 write_zsreg(zport, R1, zport->regs[1]);
1165         }
1166         if (!(txenb & TxENAB)) {
1167                 zport->regs[5] = txenb | TxENAB;
1168                 write_zsreg(zport, R5, zport->regs[5]);
1169         }
1170         spin_unlock_irqrestore(&scc->zlock, flags);
1171
1172         uart_console_write(&zport->port, s, count, zs_console_putchar);
1173
1174         /* Restore transmit interrupts and the transmitter enable. */
1175         spin_lock_irqsave(&scc->zlock, flags);
1176         irq = !irqs_disabled_flags(flags);
1177         zs_line_drain(zport, irq);
1178         if (!(txenb & TxENAB)) {
1179                 zport->regs[5] &= ~TxENAB;
1180                 write_zsreg(zport, R5, zport->regs[5]);
1181         }
1182         if (txint & TxINT_ENAB) {
1183                 zport->regs[1] |= TxINT_ENAB;
1184                 write_zsreg(zport, R1, zport->regs[1]);
1185
1186                 /* Resume any transmission as the TxIP bit won't be set.  */
1187                 if (!zport->tx_stopped)
1188                         zs_raw_transmit_chars(zport);
1189         }
1190         spin_unlock_irqrestore(&scc->zlock, flags);
1191 }
1192
1193 /*
1194  * Setup serial console baud/bits/parity.  We do two things here:
1195  * - construct a cflag setting for the first uart_open()
1196  * - initialise the serial port
1197  * Return non-zero if we didn't find a serial port.
1198  */
1199 static int __init zs_console_setup(struct console *co, char *options)
1200 {
1201         int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1202         struct zs_port *zport = &zs_sccs[chip].zport[side];
1203         struct uart_port *uport = &zport->port;
1204         int baud = 9600;
1205         int bits = 8;
1206         int parity = 'n';
1207         int flow = 'n';
1208         int ret;
1209
1210         ret = zs_map_port(uport);
1211         if (ret)
1212                 return ret;
1213
1214         zs_reset(zport);
1215         zs_pm(uport, 0, -1);
1216
1217         if (options)
1218                 uart_parse_options(options, &baud, &parity, &bits, &flow);
1219         return uart_set_options(uport, co, baud, parity, bits, flow);
1220 }
1221
1222 static struct uart_driver zs_reg;
1223 static struct console zs_console = {
1224         .name   = "ttyS",
1225         .write  = zs_console_write,
1226         .device = uart_console_device,
1227         .setup  = zs_console_setup,
1228         .flags  = CON_PRINTBUFFER,
1229         .index  = -1,
1230         .data   = &zs_reg,
1231 };
1232
1233 /*
1234  *      Register console.
1235  */
1236 static int __init zs_serial_console_init(void)
1237 {
1238         int ret;
1239
1240         ret = zs_probe_sccs();
1241         if (ret)
1242                 return ret;
1243         register_console(&zs_console);
1244
1245         return 0;
1246 }
1247
1248 console_initcall(zs_serial_console_init);
1249
1250 #define SERIAL_ZS_CONSOLE       &zs_console
1251 #else
1252 #define SERIAL_ZS_CONSOLE       NULL
1253 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1254
1255 static struct uart_driver zs_reg = {
1256         .owner                  = THIS_MODULE,
1257         .driver_name            = "serial",
1258         .dev_name               = "ttyS",
1259         .major                  = TTY_MAJOR,
1260         .minor                  = 64,
1261         .nr                     = ZS_NUM_SCCS * ZS_NUM_CHAN,
1262         .cons                   = SERIAL_ZS_CONSOLE,
1263 };
1264
1265 /* zs_init inits the driver. */
1266 static int __init zs_init(void)
1267 {
1268         int i, ret;
1269
1270         pr_info("%s%s\n", zs_name, zs_version);
1271
1272         /* Find out how many Z85C30 SCCs we have.  */
1273         ret = zs_probe_sccs();
1274         if (ret)
1275                 return ret;
1276
1277         ret = uart_register_driver(&zs_reg);
1278         if (ret)
1279                 return ret;
1280
1281         for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1282                 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1283                 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1284                 struct uart_port *uport = &zport->port;
1285
1286                 if (zport->scc)
1287                         uart_add_one_port(&zs_reg, uport);
1288         }
1289
1290         return 0;
1291 }
1292
1293 static void __exit zs_exit(void)
1294 {
1295         int i;
1296
1297         for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1298                 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1299                 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1300                 struct uart_port *uport = &zport->port;
1301
1302                 if (zport->scc)
1303                         uart_remove_one_port(&zs_reg, uport);
1304         }
1305
1306         uart_unregister_driver(&zs_reg);
1307 }
1308
1309 module_init(zs_init);
1310 module_exit(zs_exit);