Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / thermal / tegra / soctherm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *      Mikko Perttunen <mperttunen@nvidia.com>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0                          0
40 #define SENSOR_CONFIG0_STOP                     BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
42 #define SENSOR_CONFIG0_OVER                     BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT               8
46
47 #define SENSOR_CONFIG1                          4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
54 #define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
55
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60
61 #define SENSOR_STATUS0                          0xc
62 #define SENSOR_STATUS0_VALID_MASK               BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK             0xffff
64
65 #define SENSOR_STATUS1                          0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK                0xffff
68
69 #define READBACK_VALUE_MASK                     0xff00
70 #define READBACK_VALUE_SHIFT                    8
71 #define READBACK_ADD_HALF                       BIT(7)
72 #define READBACK_NEGATE                         BIT(0)
73
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
87
88 #define THERMCTL_LVL0_UP_STATS                  0x10
89 #define THERMCTL_LVL0_DN_STATS                  0x14
90
91 #define THERMCTL_INTR_STATUS                    0x84
92
93 #define TH_INTR_MD0_MASK                        BIT(25)
94 #define TH_INTR_MU0_MASK                        BIT(24)
95 #define TH_INTR_GD0_MASK                        BIT(17)
96 #define TH_INTR_GU0_MASK                        BIT(16)
97 #define TH_INTR_CD0_MASK                        BIT(9)
98 #define TH_INTR_CU0_MASK                        BIT(8)
99 #define TH_INTR_PD0_MASK                        BIT(1)
100 #define TH_INTR_PU0_MASK                        BIT(0)
101 #define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL                      0x94
104 #define STATS_CTL_CLR_DN                        0x8
105 #define STATS_CTL_EN_DN                         0x4
106 #define STATS_CTL_CLR_UP                        0x2
107 #define STATS_CTL_EN_UP                         0x1
108
109 #define OC1_CFG                                 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
116
117 #define OC1_CNT_THRESHOLD                       0x314
118 #define OC1_THROTTLE_PERIOD                     0x318
119 #define OC1_ALARM_COUNT                         0x31c
120 #define OC1_FILTER                              0x320
121 #define OC1_STATS                               0x3a8
122
123 #define OC_INTR_STATUS                          0x39c
124 #define OC_INTR_ENABLE                          0x3a0
125 #define OC_INTR_DISABLE                         0x3a4
126 #define OC_STATS_CTL                            0x3c4
127 #define OC_STATS_CTL_CLR_ALL                    0x2
128 #define OC_STATS_CTL_EN_ALL                     0x1
129
130 #define OC_INTR_OC1_MASK                        BIT(0)
131 #define OC_INTR_OC2_MASK                        BIT(1)
132 #define OC_INTR_OC3_MASK                        BIT(2)
133 #define OC_INTR_OC4_MASK                        BIT(3)
134 #define OC_INTR_OC5_MASK                        BIT(4)
135
136 #define THROT_GLOBAL_CFG                        0x400
137 #define THROT_GLOBAL_ENB_MASK                   BIT(0)
138
139 #define CPU_PSKIP_STATUS                        0x418
140 #define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
144
145 #define THROT_PRIORITY_LOCK                     0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
147
148 #define THROT_STATUS                            0x428
149 #define THROT_STATUS_BREACH_MASK                BIT(12)
150 #define THROT_STATUS_STATE_MASK                 (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK               BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU               0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161 #define THROT_VECT_NONE                         0x0 /* 3'b000 */
162 #define THROT_VECT_LOW                          0x1 /* 3'b001 */
163 #define THROT_VECT_MED                          0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH                         0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU               0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK              0xff
170
171 #define THROT_PRIORITY_LITE                     0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK           0xff
173
174 #define THROT_DELAY_LITE                        0x448
175 #define THROT_DELAY_LITE_DELAY_MASK             0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER                 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER               0x024
183
184 #define CCROC_GLOBAL_CFG                        0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU              0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU              0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
200                                  (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-sochterm.h
206  * level        vector
207  * NONE         3'b000
208  * LOW          3'b001
209  * MED          3'b011
210  * HIGH         3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET                    0x30
216 #define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
217                                         (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
219                                         (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
223                                         (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
225                                         (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET                    0x14
228 #define ALARM_CFG(throt)                (OC1_CFG + \
229                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
232                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
235                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
238                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt)             (OC1_FILTER + \
241                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt)              (OC1_STATS + \
244                                         (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET                      0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249                                                 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251                                                 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE          0x20
255 #define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED       0
258 #define OC_THROTTLE_MODE_BRIEF          2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264         THROTTLE_LIGHT = 0,
265         THROTTLE_HEAVY,
266         THROTTLE_OC1,
267         THROTTLE_OC2,
268         THROTTLE_OC3,
269         THROTTLE_OC4,
270         THROTTLE_OC5, /* OC5 is reserved */
271         THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275         TEGRA_SOC_OC_IRQ_1,
276         TEGRA_SOC_OC_IRQ_2,
277         TEGRA_SOC_OC_IRQ_3,
278         TEGRA_SOC_OC_IRQ_4,
279         TEGRA_SOC_OC_IRQ_5,
280         TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284         THROTTLE_DEV_CPU = 0,
285         THROTTLE_DEV_GPU,
286         THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290         [THROTTLE_LIGHT] = "light",
291         [THROTTLE_HEAVY] = "heavy",
292         [THROTTLE_OC1]   = "oc1",
293         [THROTTLE_OC2]   = "oc2",
294         [THROTTLE_OC3]   = "oc3",
295         [THROTTLE_OC4]   = "oc4",
296         [THROTTLE_OC5]   = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301         void __iomem *reg;
302         struct device *dev;
303         struct tegra_soctherm *ts;
304         struct thermal_zone_device *tz;
305         const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309         u32 active_low;
310         u32 throt_period;
311         u32 alarm_cnt_thresh;
312         u32 alarm_filter;
313         u32 mode;
314         bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318         const char *name;
319         unsigned int id;
320         u8 priority;
321         u8 cpu_throt_level;
322         u32 cpu_throt_depth;
323         u32 gpu_throt_level;
324         struct soctherm_oc_cfg oc_cfg;
325         struct thermal_cooling_device *cdev;
326         bool init;
327 };
328
329 struct tegra_soctherm {
330         struct reset_control *reset;
331         struct clk *clock_tsensor;
332         struct clk *clock_soctherm;
333         void __iomem *regs;
334         void __iomem *clk_regs;
335         void __iomem *ccroc_regs;
336
337         int thermal_irq;
338         int edp_irq;
339
340         u32 *calib;
341         struct thermal_zone_device **thermctl_tzs;
342         struct tegra_soctherm_soc *soc;
343
344         struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346         struct dentry *debugfs_dir;
347
348         struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352         struct mutex            irq_lock; /* serialize OC IRQs */
353         struct irq_chip         irq_chip;
354         struct irq_domain       *domain;
355         int                     irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @v: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370         writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382         return readl(ts->ccroc_regs + reg);
383 }
384
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387         const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388         void __iomem *base = tegra->regs + sensor->base;
389         unsigned int val;
390
391         val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392         writel(val, base + SENSOR_CONFIG0);
393
394         val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395         val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396         val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397         val |= SENSOR_CONFIG1_TEMP_ENABLE;
398         writel(val, base + SENSOR_CONFIG1);
399
400         writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413         int t;
414
415         t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416         if (val & READBACK_ADD_HALF)
417                 t += 500;
418         if (val & READBACK_NEGATE)
419                 t *= -1;
420
421         return t;
422 }
423
424 static int tegra_thermctl_get_temp(void *data, int *out_temp)
425 {
426         struct tegra_thermctl_zone *zone = data;
427         u32 val;
428
429         val = readl(zone->reg);
430         val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431         *out_temp = translate_temp(val);
432
433         return 0;
434 }
435
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @trip_temp: the trip temperature to check
439  *
440  * Checks and enforces the permitted temperature range that SOC_THERM
441  * HW can support This is
442  * done while taking care of precision.
443  *
444  * Return: The precision adjusted capped temperature in millicelsius.
445  */
446 static int enforce_temp_range(struct device *dev, int trip_temp)
447 {
448         int temp;
449
450         temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
451         if (temp != trip_temp)
452                 dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
453                          trip_temp, temp);
454         return temp;
455 }
456
457 /**
458  * thermtrip_program() - Configures the hardware to shut down the
459  * system if a given sensor group reaches a given temperature
460  * @dev: ptr to the struct device for the SOC_THERM IP block
461  * @sg: pointer to the sensor group to set the thermtrip temperature for
462  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
463  *
464  * Sets the thermal trip threshold of the given sensor group to be the
465  * @trip_temp.  If this threshold is crossed, the hardware will shut
466  * down.
467  *
468  * Note that, although @trip_temp is specified in millicelsius, the
469  * hardware is programmed in degrees Celsius.
470  *
471  * Return: 0 upon success, or %-EINVAL upon failure.
472  */
473 static int thermtrip_program(struct device *dev,
474                              const struct tegra_tsensor_group *sg,
475                              int trip_temp)
476 {
477         struct tegra_soctherm *ts = dev_get_drvdata(dev);
478         int temp;
479         u32 r;
480
481         if (!sg || !sg->thermtrip_threshold_mask)
482                 return -EINVAL;
483
484         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
485
486         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
487         r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
488         r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
489         r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
490         writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
491
492         return 0;
493 }
494
495 /**
496  * throttrip_program() - Configures the hardware to throttle the
497  * pulse if a given sensor group reaches a given temperature
498  * @dev: ptr to the struct device for the SOC_THERM IP block
499  * @sg: pointer to the sensor group to set the thermtrip temperature for
500  * @stc: pointer to the throttle need to be triggered
501  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
502  *
503  * Sets the thermal trip threshold and throttle event of the given sensor
504  * group. If this threshold is crossed, the hardware will trigger the
505  * throttle.
506  *
507  * Note that, although @trip_temp is specified in millicelsius, the
508  * hardware is programmed in degrees Celsius.
509  *
510  * Return: 0 upon success, or %-EINVAL upon failure.
511  */
512 static int throttrip_program(struct device *dev,
513                              const struct tegra_tsensor_group *sg,
514                              struct soctherm_throt_cfg *stc,
515                              int trip_temp)
516 {
517         struct tegra_soctherm *ts = dev_get_drvdata(dev);
518         int temp, cpu_throt, gpu_throt;
519         unsigned int throt;
520         u32 r, reg_off;
521
522         if (!sg || !stc || !stc->init)
523                 return -EINVAL;
524
525         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
526
527         /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
528         throt = stc->id;
529         reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
530
531         if (throt == THROTTLE_LIGHT) {
532                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
533                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
534         } else {
535                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
536                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
537                 if (throt != THROTTLE_HEAVY)
538                         dev_warn(dev,
539                                  "invalid throt id %d - assuming HEAVY",
540                                  throt);
541         }
542
543         r = readl(ts->regs + reg_off);
544         r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
545         r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
546         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
547         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
548         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
549         writel(r, ts->regs + reg_off);
550
551         return 0;
552 }
553
554 static struct soctherm_throt_cfg *
555 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
556 {
557         unsigned int i;
558
559         for (i = 0; ts->throt_cfgs[i].name; i++)
560                 if (!strcmp(ts->throt_cfgs[i].name, name))
561                         return &ts->throt_cfgs[i];
562
563         return NULL;
564 }
565
566 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
567 {
568         int i, temp = min_low_temp;
569         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
570
571         if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
572                 return temp;
573
574         if (tt) {
575                 for (i = 0; i < ts->soc->num_ttgs; i++) {
576                         if (tt[i].id == id)
577                                 return tt[i].temp;
578                 }
579         }
580
581         return temp;
582 }
583
584 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
585 {
586         struct tegra_thermctl_zone *zone = data;
587         struct thermal_zone_device *tz = zone->tz;
588         struct tegra_soctherm *ts = zone->ts;
589         const struct tegra_tsensor_group *sg = zone->sg;
590         struct device *dev = zone->dev;
591         enum thermal_trip_type type;
592         int ret;
593
594         if (!tz)
595                 return -EINVAL;
596
597         ret = tz->ops->get_trip_type(tz, trip, &type);
598         if (ret)
599                 return ret;
600
601         if (type == THERMAL_TRIP_CRITICAL) {
602                 /*
603                  * If thermtrips property is set in DT,
604                  * doesn't need to program critical type trip to HW,
605                  * if not, program critical trip to HW.
606                  */
607                 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608                         return thermtrip_program(dev, sg, temp);
609                 else
610                         return 0;
611
612         } else if (type == THERMAL_TRIP_HOT) {
613                 int i;
614
615                 for (i = 0; i < THROTTLE_SIZE; i++) {
616                         struct thermal_cooling_device *cdev;
617                         struct soctherm_throt_cfg *stc;
618
619                         if (!ts->throt_cfgs[i].init)
620                                 continue;
621
622                         cdev = ts->throt_cfgs[i].cdev;
623                         if (get_thermal_instance(tz, cdev, trip))
624                                 stc = find_throttle_cfg_by_name(ts, cdev->type);
625                         else
626                                 continue;
627
628                         return throttrip_program(dev, sg, stc, temp);
629                 }
630         }
631
632         return 0;
633 }
634
635 static int tegra_thermctl_get_trend(void *data, int trip,
636                                     enum thermal_trend *trend)
637 {
638         struct tegra_thermctl_zone *zone = data;
639         struct thermal_zone_device *tz = zone->tz;
640         int trip_temp, temp, last_temp, ret;
641
642         if (!tz)
643                 return -EINVAL;
644
645         ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
646         if (ret)
647                 return ret;
648
649         temp = READ_ONCE(tz->temperature);
650         last_temp = READ_ONCE(tz->last_temperature);
651
652         if (temp > trip_temp) {
653                 if (temp >= last_temp)
654                         *trend = THERMAL_TREND_RAISING;
655                 else
656                         *trend = THERMAL_TREND_STABLE;
657         } else if (temp < trip_temp) {
658                 *trend = THERMAL_TREND_DROPPING;
659         } else {
660                 *trend = THERMAL_TREND_STABLE;
661         }
662
663         return 0;
664 }
665
666 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
667 {
668         u32 r;
669
670         /* multiple zones could be handling and setting trips at once */
671         mutex_lock(&zn->ts->thermctl_lock);
672         r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
673         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
674         writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
675         mutex_unlock(&zn->ts->thermctl_lock);
676 }
677
678 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
679 {
680         u32 r;
681
682         /* multiple zones could be handling and setting trips at once */
683         mutex_lock(&zn->ts->thermctl_lock);
684         r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
685         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
686         writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
687         mutex_unlock(&zn->ts->thermctl_lock);
688 }
689
690 static int tegra_thermctl_set_trips(void *data, int lo, int hi)
691 {
692         struct tegra_thermctl_zone *zone = data;
693         u32 r;
694
695         thermal_irq_disable(zone);
696
697         r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
698         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
699         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
700
701         lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
702         hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
703         dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
704
705         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
706         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
707         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
708         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
709
710         thermal_irq_enable(zone);
711
712         return 0;
713 }
714
715 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
716         .get_temp = tegra_thermctl_get_temp,
717         .set_trip_temp = tegra_thermctl_set_trip_temp,
718         .get_trend = tegra_thermctl_get_trend,
719         .set_trips = tegra_thermctl_set_trips,
720 };
721
722 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
723 {
724         int ntrips, i, ret;
725         enum thermal_trip_type type;
726
727         ntrips = of_thermal_get_ntrips(tz);
728         if (ntrips <= 0)
729                 return -EINVAL;
730
731         for (i = 0; i < ntrips; i++) {
732                 ret = tz->ops->get_trip_type(tz, i, &type);
733                 if (ret)
734                         return -EINVAL;
735                 if (type == THERMAL_TRIP_HOT) {
736                         ret = tz->ops->get_trip_temp(tz, i, temp);
737                         if (!ret)
738                                 *trip = i;
739
740                         return ret;
741                 }
742         }
743
744         return -EINVAL;
745 }
746
747 /**
748  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
749  * @dev: struct device * of the SOC_THERM instance
750  *
751  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
752  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
753  * type trip_temp
754  * from thermal zone.
755  * After they have been configured, THERMTRIP or THROTTLE will take
756  * action when the configured SoC thermal sensor group reaches a
757  * certain temperature.
758  *
759  * Return: 0 upon success, or a negative error code on failure.
760  * "Success" does not mean that trips was enabled; it could also
761  * mean that no node was found in DT.
762  * THERMTRIP has been enabled successfully when a message similar to
763  * this one appears on the serial console:
764  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
765  * THROTTLE has been enabled successfully when a message similar to
766  * this one appears on the serial console:
767  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
768  */
769 static int tegra_soctherm_set_hwtrips(struct device *dev,
770                                       const struct tegra_tsensor_group *sg,
771                                       struct thermal_zone_device *tz)
772 {
773         struct tegra_soctherm *ts = dev_get_drvdata(dev);
774         struct soctherm_throt_cfg *stc;
775         int i, trip, temperature, ret;
776
777         /* Get thermtrips. If missing, try to get critical trips. */
778         temperature = tsensor_group_thermtrip_get(ts, sg->id);
779         if (min_low_temp == temperature)
780                 if (tz->ops->get_crit_temp(tz, &temperature))
781                         temperature = max_high_temp;
782
783         ret = thermtrip_program(dev, sg, temperature);
784         if (ret) {
785                 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
786                 return ret;
787         }
788
789         dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
790                  sg->name, temperature);
791
792         ret = get_hot_temp(tz, &trip, &temperature);
793         if (ret) {
794                 dev_info(dev, "throttrip: %s: missing hot temperature\n",
795                          sg->name);
796                 return 0;
797         }
798
799         for (i = 0; i < THROTTLE_OC1; i++) {
800                 struct thermal_cooling_device *cdev;
801
802                 if (!ts->throt_cfgs[i].init)
803                         continue;
804
805                 cdev = ts->throt_cfgs[i].cdev;
806                 if (get_thermal_instance(tz, cdev, trip))
807                         stc = find_throttle_cfg_by_name(ts, cdev->type);
808                 else
809                         continue;
810
811                 ret = throttrip_program(dev, sg, stc, temperature);
812                 if (ret) {
813                         dev_err(dev, "throttrip: %s: error during enable\n",
814                                 sg->name);
815                         return ret;
816                 }
817
818                 dev_info(dev,
819                          "throttrip: will throttle when %s reaches %d mC\n",
820                          sg->name, temperature);
821                 break;
822         }
823
824         if (i == THROTTLE_SIZE)
825                 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
826                          sg->name);
827
828         return 0;
829 }
830
831 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
832 {
833         struct tegra_soctherm *ts = dev_id;
834         u32 r;
835
836         /* Case for no lock:
837          * Although interrupts are enabled in set_trips, there is still no need
838          * to lock here because the interrupts are disabled before programming
839          * new trip points. Hence there cant be a interrupt on the same sensor.
840          * An interrupt can however occur on a sensor while trips are being
841          * programmed on a different one. This beign a LEVEL interrupt won't
842          * cause a new interrupt but this is taken care of by the re-reading of
843          * the STATUS register in the thread function.
844          */
845         r = readl(ts->regs + THERMCTL_INTR_STATUS);
846         writel(r, ts->regs + THERMCTL_INTR_DISABLE);
847
848         return IRQ_WAKE_THREAD;
849 }
850
851 /**
852  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
853  * @irq:       The interrupt number being requested; not used
854  * @dev_id:    Opaque pointer to tegra_soctherm;
855  *
856  * Clears the interrupt status register if there are expected
857  * interrupt bits set.
858  * The interrupt(s) are then handled by updating the corresponding
859  * thermal zones.
860  *
861  * An error is logged if any unexpected interrupt bits are set.
862  *
863  * Disabled interrupts are re-enabled.
864  *
865  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
866  * is needed.
867  */
868 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
869 {
870         struct tegra_soctherm *ts = dev_id;
871         struct thermal_zone_device *tz;
872         u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
873
874         st = readl(ts->regs + THERMCTL_INTR_STATUS);
875
876         /* deliberately clear expected interrupts handled in SW */
877         cp |= st & TH_INTR_CD0_MASK;
878         cp |= st & TH_INTR_CU0_MASK;
879
880         gp |= st & TH_INTR_GD0_MASK;
881         gp |= st & TH_INTR_GU0_MASK;
882
883         pl |= st & TH_INTR_PD0_MASK;
884         pl |= st & TH_INTR_PU0_MASK;
885
886         me |= st & TH_INTR_MD0_MASK;
887         me |= st & TH_INTR_MU0_MASK;
888
889         ex |= cp | gp | pl | me;
890         if (ex) {
891                 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
892                 st &= ~ex;
893
894                 if (cp) {
895                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
896                         thermal_zone_device_update(tz,
897                                                    THERMAL_EVENT_UNSPECIFIED);
898                 }
899
900                 if (gp) {
901                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
902                         thermal_zone_device_update(tz,
903                                                    THERMAL_EVENT_UNSPECIFIED);
904                 }
905
906                 if (pl) {
907                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
908                         thermal_zone_device_update(tz,
909                                                    THERMAL_EVENT_UNSPECIFIED);
910                 }
911
912                 if (me) {
913                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
914                         thermal_zone_device_update(tz,
915                                                    THERMAL_EVENT_UNSPECIFIED);
916                 }
917         }
918
919         /* deliberately ignore expected interrupts NOT handled in SW */
920         ex |= TH_INTR_IGNORE_MASK;
921         st &= ~ex;
922
923         if (st) {
924                 /* Whine about any other unexpected INTR bits still set */
925                 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
926                 writel(st, ts->regs + THERMCTL_INTR_STATUS);
927         }
928
929         return IRQ_HANDLED;
930 }
931
932 /**
933  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
934  * @alarm:              The soctherm throttle id
935  * @enable:             Flag indicating enable the soctherm over-current
936  *                      interrupt or disable it
937  *
938  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
939  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
940  */
941 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
942                                     enum soctherm_throttle_id alarm,
943                                     bool enable)
944 {
945         u32 r;
946
947         if (!enable)
948                 return;
949
950         r = readl(ts->regs + OC_INTR_ENABLE);
951         switch (alarm) {
952         case THROTTLE_OC1:
953                 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
954                 break;
955         case THROTTLE_OC2:
956                 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
957                 break;
958         case THROTTLE_OC3:
959                 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
960                 break;
961         case THROTTLE_OC4:
962                 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
963                 break;
964         default:
965                 r = 0;
966                 break;
967         }
968         writel(r, ts->regs + OC_INTR_ENABLE);
969 }
970
971 /**
972  * soctherm_handle_alarm() - Handles soctherm alarms
973  * @alarm:              The soctherm throttle id
974  *
975  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
976  * a warning or informative message.
977  *
978  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
979  */
980 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
981 {
982         int rv = -EINVAL;
983
984         switch (alarm) {
985         case THROTTLE_OC1:
986                 pr_debug("soctherm: Successfully handled OC1 alarm\n");
987                 rv = 0;
988                 break;
989
990         case THROTTLE_OC2:
991                 pr_debug("soctherm: Successfully handled OC2 alarm\n");
992                 rv = 0;
993                 break;
994
995         case THROTTLE_OC3:
996                 pr_debug("soctherm: Successfully handled OC3 alarm\n");
997                 rv = 0;
998                 break;
999
1000         case THROTTLE_OC4:
1001                 pr_debug("soctherm: Successfully handled OC4 alarm\n");
1002                 rv = 0;
1003                 break;
1004
1005         default:
1006                 break;
1007         }
1008
1009         if (rv)
1010                 pr_err("soctherm: ERROR in handling %s alarm\n",
1011                        throt_names[alarm]);
1012
1013         return rv;
1014 }
1015
1016 /**
1017  * soctherm_edp_isr_thread() - log an over-current interrupt request
1018  * @irq:        OC irq number. Currently not being used. See description
1019  * @arg:        a void pointer for callback, currently not being used
1020  *
1021  * Over-current events are handled in hardware. This function is called to log
1022  * and handle any OC events that happened. Additionally, it checks every
1023  * over-current interrupt registers for registers are set but
1024  * was not expected (i.e. any discrepancy in interrupt status) by the function,
1025  * the discrepancy will logged.
1026  *
1027  * Return: %IRQ_HANDLED
1028  */
1029 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1030 {
1031         struct tegra_soctherm *ts = arg;
1032         u32 st, ex, oc1, oc2, oc3, oc4;
1033
1034         st = readl(ts->regs + OC_INTR_STATUS);
1035
1036         /* deliberately clear expected interrupts handled in SW */
1037         oc1 = st & OC_INTR_OC1_MASK;
1038         oc2 = st & OC_INTR_OC2_MASK;
1039         oc3 = st & OC_INTR_OC3_MASK;
1040         oc4 = st & OC_INTR_OC4_MASK;
1041         ex = oc1 | oc2 | oc3 | oc4;
1042
1043         pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1044         if (ex) {
1045                 writel(st, ts->regs + OC_INTR_STATUS);
1046                 st &= ~ex;
1047
1048                 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1049                         soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1050
1051                 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1052                         soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1053
1054                 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1055                         soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1056
1057                 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1058                         soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1059
1060                 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1061                         handle_nested_irq(
1062                                 irq_find_mapping(soc_irq_cdata.domain, 0));
1063
1064                 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1065                         handle_nested_irq(
1066                                 irq_find_mapping(soc_irq_cdata.domain, 1));
1067
1068                 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1069                         handle_nested_irq(
1070                                 irq_find_mapping(soc_irq_cdata.domain, 2));
1071
1072                 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1073                         handle_nested_irq(
1074                                 irq_find_mapping(soc_irq_cdata.domain, 3));
1075         }
1076
1077         if (st) {
1078                 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1079                 writel(st, ts->regs + OC_INTR_STATUS);
1080         }
1081
1082         return IRQ_HANDLED;
1083 }
1084
1085 /**
1086  * soctherm_edp_isr() - Disables any active interrupts
1087  * @irq:        The interrupt request number
1088  * @arg:        Opaque pointer to an argument
1089  *
1090  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1091  * masking any asserted interrupts. Doing this prevents the same interrupts
1092  * from triggering this isr repeatedly. The thread woken by this isr will
1093  * handle asserted interrupts and subsequently unmask/re-enable them.
1094  *
1095  * The OC_INTR_DISABLE register indicates which OC interrupts
1096  * have been disabled.
1097  *
1098  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1099  */
1100 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1101 {
1102         struct tegra_soctherm *ts = arg;
1103         u32 r;
1104
1105         if (!ts)
1106                 return IRQ_NONE;
1107
1108         r = readl(ts->regs + OC_INTR_STATUS);
1109         writel(r, ts->regs + OC_INTR_DISABLE);
1110
1111         return IRQ_WAKE_THREAD;
1112 }
1113
1114 /**
1115  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1116  * @data:       Interrupt request data
1117  *
1118  * Looks up the chip data from @data and locks the mutex associated with
1119  * a particular over-current interrupt request.
1120  */
1121 static void soctherm_oc_irq_lock(struct irq_data *data)
1122 {
1123         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1124
1125         mutex_lock(&d->irq_lock);
1126 }
1127
1128 /**
1129  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1130  * @data:               Interrupt request data
1131  *
1132  * Looks up the interrupt request data @data and unlocks the mutex associated
1133  * with a particular over-current interrupt request.
1134  */
1135 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1136 {
1137         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1138
1139         mutex_unlock(&d->irq_lock);
1140 }
1141
1142 /**
1143  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1144  * @data:       irq_data structure of the chip
1145  *
1146  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1147  * to respond to over-current interrupts.
1148  *
1149  */
1150 static void soctherm_oc_irq_enable(struct irq_data *data)
1151 {
1152         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1153
1154         d->irq_enable |= BIT(data->hwirq);
1155 }
1156
1157 /**
1158  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1159  * @irq_data:   The interrupt request information
1160  *
1161  * Clears the interrupt request enable bit of the overcurrent
1162  * interrupt request chip data.
1163  *
1164  * Return: Nothing is returned (void)
1165  */
1166 static void soctherm_oc_irq_disable(struct irq_data *data)
1167 {
1168         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1169
1170         d->irq_enable &= ~BIT(data->hwirq);
1171 }
1172
1173 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1174 {
1175         return 0;
1176 }
1177
1178 /**
1179  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1180  * @h:          Interrupt request domain
1181  * @virq:       Virtual interrupt request number
1182  * @hw:         Hardware interrupt request number
1183  *
1184  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1185  * interrupt request is called, the irq_domain takes the request's virtual
1186  * request number (much like a virtual memory address) and maps it to a
1187  * physical hardware request number.
1188  *
1189  * When a mapping doesn't already exist for a virtual request number, the
1190  * irq_domain calls this function to associate the virtual request number with
1191  * a hardware request number.
1192  *
1193  * Return: 0
1194  */
1195 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1196                 irq_hw_number_t hw)
1197 {
1198         struct soctherm_oc_irq_chip_data *data = h->host_data;
1199
1200         irq_set_chip_data(virq, data);
1201         irq_set_chip(virq, &data->irq_chip);
1202         irq_set_nested_thread(virq, 1);
1203         return 0;
1204 }
1205
1206 /**
1207  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1208  * @d:      Interrupt request domain
1209  * @intspec:    Array of u32s from DTs "interrupt" property
1210  * @intsize:    Number of values inside the intspec array
1211  * @out_hwirq:  HW IRQ value associated with this interrupt
1212  * @out_type:   The IRQ SENSE type for this interrupt.
1213  *
1214  * This Device Tree IRQ specifier translation function will translate a
1215  * specific "interrupt" as defined by 2 DT values where the cell values map
1216  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1217  * number, this function will subtract 1 from the value listed in DT.
1218  *
1219  * Return: 0
1220  */
1221 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1222         struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1223         irq_hw_number_t *out_hwirq, unsigned int *out_type)
1224 {
1225         if (WARN_ON(intsize < 2))
1226                 return -EINVAL;
1227
1228         /*
1229          * The HW value is 1 index less than the DT IRQ values.
1230          * i.e. OC4 goes to HW index 3.
1231          */
1232         *out_hwirq = intspec[0] - 1;
1233         *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1234         return 0;
1235 }
1236
1237 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1238         .map    = soctherm_oc_irq_map,
1239         .xlate  = soctherm_irq_domain_xlate_twocell,
1240 };
1241
1242 /**
1243  * soctherm_oc_int_init() - Initial enabling of the over
1244  * current interrupts
1245  * @np: The devicetree node for soctherm
1246  * @num_irqs:   The number of new interrupt requests
1247  *
1248  * Sets the over current interrupt request chip data
1249  *
1250  * Return: 0 on success or if overcurrent interrupts are not enabled,
1251  * -ENOMEM (out of memory), or irq_base if the function failed to
1252  * allocate the irqs
1253  */
1254 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1255 {
1256         if (!num_irqs) {
1257                 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1258                 return 0;
1259         }
1260
1261         mutex_init(&soc_irq_cdata.irq_lock);
1262         soc_irq_cdata.irq_enable = 0;
1263
1264         soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1265         soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1266         soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1267                 soctherm_oc_irq_sync_unlock;
1268         soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1269         soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1270         soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1271         soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1272
1273         soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1274                                                      &soctherm_oc_domain_ops,
1275                                                      &soc_irq_cdata);
1276
1277         if (!soc_irq_cdata.domain) {
1278                 pr_err("%s: Failed to create IRQ domain\n", __func__);
1279                 return -ENOMEM;
1280         }
1281
1282         pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1283         return 0;
1284 }
1285
1286 #ifdef CONFIG_DEBUG_FS
1287 static int regs_show(struct seq_file *s, void *data)
1288 {
1289         struct platform_device *pdev = s->private;
1290         struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1291         const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1292         const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1293         u32 r, state;
1294         int i, level;
1295
1296         seq_puts(s, "-----TSENSE (convert HW)-----\n");
1297
1298         for (i = 0; i < ts->soc->num_tsensors; i++) {
1299                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1300                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1301
1302                 seq_printf(s, "%s: ", tsensors[i].name);
1303                 seq_printf(s, "En(%d) ", state);
1304
1305                 if (!state) {
1306                         seq_puts(s, "\n");
1307                         continue;
1308                 }
1309
1310                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1311                 seq_printf(s, "tiddq(%d) ", state);
1312                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1313                 seq_printf(s, "ten_count(%d) ", state);
1314                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1315                 seq_printf(s, "tsample(%d) ", state + 1);
1316
1317                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1318                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1319                 seq_printf(s, "Temp(%d/", state);
1320                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1321                 seq_printf(s, "%d) ", translate_temp(state));
1322
1323                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1324                 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1325                 seq_printf(s, "Capture(%d/", state);
1326                 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1327                 seq_printf(s, "%d) ", state);
1328
1329                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1330                 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1331                 seq_printf(s, "Stop(%d) ", state);
1332                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1333                 seq_printf(s, "Tall(%d) ", state);
1334                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1335                 seq_printf(s, "Over(%d/", state);
1336                 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1337                 seq_printf(s, "%d/", state);
1338                 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1339                 seq_printf(s, "%d) ", state);
1340
1341                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1342                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1343                 seq_printf(s, "Therm_A/B(%d/", state);
1344                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1345                 seq_printf(s, "%d)\n", (s16)state);
1346         }
1347
1348         r = readl(ts->regs + SENSOR_PDIV);
1349         seq_printf(s, "PDIV: 0x%x\n", r);
1350
1351         r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1352         seq_printf(s, "HOTSPOT: 0x%x\n", r);
1353
1354         seq_puts(s, "\n");
1355         seq_puts(s, "-----SOC_THERM-----\n");
1356
1357         r = readl(ts->regs + SENSOR_TEMP1);
1358         state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1359         seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1360         state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1361         seq_printf(s, " GPU(%d) ", translate_temp(state));
1362         r = readl(ts->regs + SENSOR_TEMP2);
1363         state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1364         seq_printf(s, " PLLX(%d) ", translate_temp(state));
1365         state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1366         seq_printf(s, " MEM(%d)\n", translate_temp(state));
1367
1368         for (i = 0; i < ts->soc->num_ttgs; i++) {
1369                 seq_printf(s, "%s:\n", ttgs[i]->name);
1370                 for (level = 0; level < 4; level++) {
1371                         s32 v;
1372                         u32 mask;
1373                         u16 off = ttgs[i]->thermctl_lvl0_offset;
1374
1375                         r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1376
1377                         mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1378                         state = REG_GET_MASK(r, mask);
1379                         v = sign_extend32(state, ts->soc->bptt - 1);
1380                         v *= ts->soc->thresh_grain;
1381                         seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1382
1383                         mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1384                         state = REG_GET_MASK(r, mask);
1385                         v = sign_extend32(state, ts->soc->bptt - 1);
1386                         v *= ts->soc->thresh_grain;
1387                         seq_printf(s, "%d ) ", v);
1388
1389                         mask = THERMCTL_LVL0_CPU0_EN_MASK;
1390                         state = REG_GET_MASK(r, mask);
1391                         seq_printf(s, "En(%d) ", state);
1392
1393                         mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1394                         state = REG_GET_MASK(r, mask);
1395                         seq_puts(s, "CPU Throt");
1396                         if (!state)
1397                                 seq_printf(s, "(%s) ", "none");
1398                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1399                                 seq_printf(s, "(%s) ", "L");
1400                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1401                                 seq_printf(s, "(%s) ", "H");
1402                         else
1403                                 seq_printf(s, "(%s) ", "H+L");
1404
1405                         mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1406                         state = REG_GET_MASK(r, mask);
1407                         seq_puts(s, "GPU Throt");
1408                         if (!state)
1409                                 seq_printf(s, "(%s) ", "none");
1410                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1411                                 seq_printf(s, "(%s) ", "L");
1412                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1413                                 seq_printf(s, "(%s) ", "H");
1414                         else
1415                                 seq_printf(s, "(%s) ", "H+L");
1416
1417                         mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1418                         state = REG_GET_MASK(r, mask);
1419                         seq_printf(s, "Status(%s)\n",
1420                                    state == 0 ? "LO" :
1421                                    state == 1 ? "In" :
1422                                    state == 2 ? "Res" : "HI");
1423                 }
1424         }
1425
1426         r = readl(ts->regs + THERMCTL_STATS_CTL);
1427         seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1428                    r & STATS_CTL_EN_UP ? "En" : "--",
1429                    r & STATS_CTL_EN_DN ? "En" : "--");
1430
1431         for (level = 0; level < 4; level++) {
1432                 u16 off;
1433
1434                 off = THERMCTL_LVL0_UP_STATS;
1435                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1436                 seq_printf(s, "  Level_%d Up(%d) ", level, r);
1437
1438                 off = THERMCTL_LVL0_DN_STATS;
1439                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1440                 seq_printf(s, "Dn(%d)\n", r);
1441         }
1442
1443         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1444         state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1445         seq_printf(s, "Thermtrip Any En(%d)\n", state);
1446         for (i = 0; i < ts->soc->num_ttgs; i++) {
1447                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1448                 seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1449                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1450                 state *= ts->soc->thresh_grain;
1451                 seq_printf(s, "Thresh(%d)\n", state);
1452         }
1453
1454         r = readl(ts->regs + THROT_GLOBAL_CFG);
1455         seq_puts(s, "\n");
1456         seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1457
1458         seq_puts(s, "---------------------------------------------------\n");
1459         r = readl(ts->regs + THROT_STATUS);
1460         state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1461         seq_printf(s, "THROT STATUS: breach(%d) ", state);
1462         state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1463         seq_printf(s, "state(%d) ", state);
1464         state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1465         seq_printf(s, "enabled(%d)\n", state);
1466
1467         r = readl(ts->regs + CPU_PSKIP_STATUS);
1468         if (ts->soc->use_ccroc) {
1469                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1470                 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1471         } else {
1472                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1473                 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1474                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1475                 seq_printf(s, "N(%d) ", state);
1476                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1477                 seq_printf(s, "enabled(%d)\n", state);
1478         }
1479
1480         return 0;
1481 }
1482
1483 DEFINE_SHOW_ATTRIBUTE(regs);
1484
1485 static void soctherm_debug_init(struct platform_device *pdev)
1486 {
1487         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1488         struct dentry *root;
1489
1490         root = debugfs_create_dir("soctherm", NULL);
1491
1492         tegra->debugfs_dir = root;
1493
1494         debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1495 }
1496 #else
1497 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1498 #endif
1499
1500 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1501 {
1502         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1503         int err;
1504
1505         if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1506                 return -EINVAL;
1507
1508         reset_control_assert(tegra->reset);
1509
1510         if (enable) {
1511                 err = clk_prepare_enable(tegra->clock_soctherm);
1512                 if (err) {
1513                         reset_control_deassert(tegra->reset);
1514                         return err;
1515                 }
1516
1517                 err = clk_prepare_enable(tegra->clock_tsensor);
1518                 if (err) {
1519                         clk_disable_unprepare(tegra->clock_soctherm);
1520                         reset_control_deassert(tegra->reset);
1521                         return err;
1522                 }
1523         } else {
1524                 clk_disable_unprepare(tegra->clock_tsensor);
1525                 clk_disable_unprepare(tegra->clock_soctherm);
1526         }
1527
1528         reset_control_deassert(tegra->reset);
1529
1530         return 0;
1531 }
1532
1533 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1534                                     unsigned long *max_state)
1535 {
1536         *max_state = 1;
1537         return 0;
1538 }
1539
1540 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1541                                     unsigned long *cur_state)
1542 {
1543         struct tegra_soctherm *ts = cdev->devdata;
1544         u32 r;
1545
1546         r = readl(ts->regs + THROT_STATUS);
1547         if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1548                 *cur_state = 1;
1549         else
1550                 *cur_state = 0;
1551
1552         return 0;
1553 }
1554
1555 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1556                                 unsigned long cur_state)
1557 {
1558         return 0;
1559 }
1560
1561 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1562         .get_max_state = throt_get_cdev_max_state,
1563         .get_cur_state = throt_get_cdev_cur_state,
1564         .set_cur_state = throt_set_cdev_state,
1565 };
1566
1567 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1568 {
1569         struct device *dev = &pdev->dev;
1570         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1571         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1572         const int max_num_prop = ts->soc->num_ttgs * 2;
1573         u32 *tlb;
1574         int i, j, n, ret;
1575
1576         if (!tt)
1577                 return -ENOMEM;
1578
1579         n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1580         if (n <= 0) {
1581                 dev_info(dev,
1582                          "missing thermtrips, will use critical trips as shut down temp\n");
1583                 return n;
1584         }
1585
1586         n = min(max_num_prop, n);
1587
1588         tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1589         if (!tlb)
1590                 return -ENOMEM;
1591         ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1592                                          tlb, n);
1593         if (ret) {
1594                 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1595                 return ret;
1596         }
1597
1598         i = 0;
1599         for (j = 0; j < n; j = j + 2) {
1600                 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1601                         continue;
1602
1603                 tt[i].id = tlb[j];
1604                 tt[i].temp = tlb[j + 1];
1605                 i++;
1606         }
1607
1608         return 0;
1609 }
1610
1611 static void soctherm_oc_cfg_parse(struct device *dev,
1612                                 struct device_node *np_oc,
1613                                 struct soctherm_throt_cfg *stc)
1614 {
1615         u32 val;
1616
1617         if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1618                 stc->oc_cfg.active_low = 1;
1619         else
1620                 stc->oc_cfg.active_low = 0;
1621
1622         if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1623                 stc->oc_cfg.intr_en = 1;
1624                 stc->oc_cfg.alarm_cnt_thresh = val;
1625         }
1626
1627         if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1628                 stc->oc_cfg.throt_period = val;
1629
1630         if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1631                 stc->oc_cfg.alarm_filter = val;
1632
1633         /* BRIEF throttling by default, do not support STICKY */
1634         stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1635 }
1636
1637 static int soctherm_throt_cfg_parse(struct device *dev,
1638                                     struct device_node *np,
1639                                     struct soctherm_throt_cfg *stc)
1640 {
1641         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1642         int ret;
1643         u32 val;
1644
1645         ret = of_property_read_u32(np, "nvidia,priority", &val);
1646         if (ret) {
1647                 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1648                 return -EINVAL;
1649         }
1650         stc->priority = val;
1651
1652         ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1653                                    "nvidia,cpu-throt-level" :
1654                                    "nvidia,cpu-throt-percent", &val);
1655         if (!ret) {
1656                 if (ts->soc->use_ccroc &&
1657                     val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1658                         stc->cpu_throt_level = val;
1659                 else if (!ts->soc->use_ccroc && val <= 100)
1660                         stc->cpu_throt_depth = val;
1661                 else
1662                         goto err;
1663         } else {
1664                 goto err;
1665         }
1666
1667         ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1668         if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1669                 stc->gpu_throt_level = val;
1670         else
1671                 goto err;
1672
1673         return 0;
1674
1675 err:
1676         dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1677                 stc->name);
1678         return -EINVAL;
1679 }
1680
1681 /**
1682  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1683  * and register them as cooling devices.
1684  */
1685 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1686 {
1687         struct device *dev = &pdev->dev;
1688         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1689         struct device_node *np_stc, *np_stcc;
1690         const char *name;
1691         int i;
1692
1693         for (i = 0; i < THROTTLE_SIZE; i++) {
1694                 ts->throt_cfgs[i].name = throt_names[i];
1695                 ts->throt_cfgs[i].id = i;
1696                 ts->throt_cfgs[i].init = false;
1697         }
1698
1699         np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1700         if (!np_stc) {
1701                 dev_info(dev,
1702                          "throttle-cfg: no throttle-cfgs - not enabling\n");
1703                 return;
1704         }
1705
1706         for_each_child_of_node(np_stc, np_stcc) {
1707                 struct soctherm_throt_cfg *stc;
1708                 struct thermal_cooling_device *tcd;
1709                 int err;
1710
1711                 name = np_stcc->name;
1712                 stc = find_throttle_cfg_by_name(ts, name);
1713                 if (!stc) {
1714                         dev_err(dev,
1715                                 "throttle-cfg: could not find %s\n", name);
1716                         continue;
1717                 }
1718
1719                 if (stc->init) {
1720                         dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1721                         of_node_put(np_stcc);
1722                         break;
1723                 }
1724
1725                 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1726                 if (err)
1727                         continue;
1728
1729                 if (stc->id >= THROTTLE_OC1) {
1730                         soctherm_oc_cfg_parse(dev, np_stcc, stc);
1731                         stc->init = true;
1732                 } else {
1733
1734                         tcd = thermal_of_cooling_device_register(np_stcc,
1735                                                          (char *)name, ts,
1736                                                          &throt_cooling_ops);
1737                         if (IS_ERR_OR_NULL(tcd)) {
1738                                 dev_err(dev,
1739                                         "throttle-cfg: %s: failed to register cooling device\n",
1740                                         name);
1741                                 continue;
1742                         }
1743                         stc->cdev = tcd;
1744                         stc->init = true;
1745                 }
1746
1747         }
1748
1749         of_node_put(np_stc);
1750 }
1751
1752 /**
1753  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1754  * @level: describing the level LOW/MED/HIGH of throttling
1755  *
1756  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1757  * the M/N values desired for each level. This function does this.
1758  *
1759  * This function pre-programs the CCROC NV_THERM levels in terms of
1760  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1761  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1762  */
1763 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1764 {
1765         u8 depth, dividend;
1766         u32 r;
1767
1768         switch (level) {
1769         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1770                 depth = 50;
1771                 break;
1772         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1773                 depth = 75;
1774                 break;
1775         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1776                 depth = 80;
1777                 break;
1778         case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1779                 return;
1780         default:
1781                 return;
1782         }
1783
1784         dividend = THROT_DEPTH_DIVIDEND(depth);
1785
1786         /* setup PSKIP in ccroc nv_therm registers */
1787         r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1788         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1789         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1790         ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1791
1792         r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1793         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1794         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1795         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1796         ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1797 }
1798
1799 /**
1800  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1801  * @throt: the LIGHT/HEAVY of throttle event id
1802  *
1803  * Pulse skippers are used to throttle clock frequencies.  This
1804  * function programs the pulse skippers based on @throt and platform
1805  * data.  This function is used on SoCs which have CPU-local pulse
1806  * skipper control, such as T13x. It programs soctherm's interface to
1807  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1808  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1809  */
1810 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1811                                          enum soctherm_throttle_id throt)
1812 {
1813         u32 r, throt_vect;
1814
1815         /* Denver:CCROC NV_THERM interface N:3 Mapping */
1816         switch (ts->throt_cfgs[throt].cpu_throt_level) {
1817         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1818                 throt_vect = THROT_VECT_LOW;
1819                 break;
1820         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1821                 throt_vect = THROT_VECT_MED;
1822                 break;
1823         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1824                 throt_vect = THROT_VECT_HIGH;
1825                 break;
1826         default:
1827                 throt_vect = THROT_VECT_NONE;
1828                 break;
1829         }
1830
1831         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1832         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1833         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1834         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1835         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1836
1837         /* bypass sequencer in soc_therm as it is programmed in ccroc */
1838         r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1839         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1840 }
1841
1842 /**
1843  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1844  * @throt: the LIGHT/HEAVY of throttle event id
1845  *
1846  * Pulse skippers are used to throttle clock frequencies.  This
1847  * function programs the pulse skippers based on @throt and platform
1848  * data.  This function is used for CPUs that have "remote" pulse
1849  * skipper control, e.g., the CPU pulse skipper is controlled by the
1850  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1851  * complex.)
1852  */
1853 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1854                                enum soctherm_throttle_id throt)
1855 {
1856         u32 r;
1857         int depth;
1858         u8 dividend;
1859
1860         depth = ts->throt_cfgs[throt].cpu_throt_depth;
1861         dividend = THROT_DEPTH_DIVIDEND(depth);
1862
1863         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1864         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1865         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1866         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1867         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1868
1869         r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1870         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1871         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1872         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1873 }
1874
1875 /**
1876  * throttlectl_gpu_level_select() - selects throttling level for GPU
1877  * @throt: the LIGHT/HEAVY of throttle event id
1878  *
1879  * This function programs soctherm's interface to GK20a NV_THERM to select
1880  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1881  *
1882  * Return: boolean true if HW was programmed
1883  */
1884 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1885                                          enum soctherm_throttle_id throt)
1886 {
1887         u32 r, level, throt_vect;
1888
1889         level = ts->throt_cfgs[throt].gpu_throt_level;
1890         throt_vect = THROT_LEVEL_TO_DEPTH(level);
1891         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1892         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1893         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1894         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1895 }
1896
1897 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1898                                       enum soctherm_throttle_id throt)
1899 {
1900         u32 r;
1901         struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1902
1903         if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1904                 return -EINVAL;
1905
1906         r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1907         r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1908         r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1909         r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1910         writel(r, ts->regs + ALARM_CFG(throt));
1911         writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1912         writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1913         writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1914         soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1915
1916         return 0;
1917 }
1918
1919 /**
1920  * soctherm_throttle_program() - programs pulse skippers' configuration
1921  * @throt: the LIGHT/HEAVY of the throttle event id.
1922  *
1923  * Pulse skippers are used to throttle clock frequencies.
1924  * This function programs the pulse skippers.
1925  */
1926 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1927                                       enum soctherm_throttle_id throt)
1928 {
1929         u32 r;
1930         struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1931
1932         if (!stc.init)
1933                 return;
1934
1935         if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1936                 return;
1937
1938         /* Setup PSKIP parameters */
1939         if (ts->soc->use_ccroc)
1940                 throttlectl_cpu_level_select(ts, throt);
1941         else
1942                 throttlectl_cpu_mn(ts, throt);
1943
1944         throttlectl_gpu_level_select(ts, throt);
1945
1946         r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1947         writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1948
1949         r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1950         writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1951
1952         r = readl(ts->regs + THROT_PRIORITY_LOCK);
1953         r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1954         if (r >= stc.priority)
1955                 return;
1956         r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1957                          stc.priority);
1958         writel(r, ts->regs + THROT_PRIORITY_LOCK);
1959 }
1960
1961 static void tegra_soctherm_throttle(struct device *dev)
1962 {
1963         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1964         u32 v;
1965         int i;
1966
1967         /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1968         if (ts->soc->use_ccroc) {
1969                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1970                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1971                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1972         }
1973
1974         /* Thermal HW throttle programming */
1975         for (i = 0; i < THROTTLE_SIZE; i++)
1976                 soctherm_throttle_program(ts, i);
1977
1978         v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1979         if (ts->soc->use_ccroc) {
1980                 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1981
1982                 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1983                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1984                 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1985         } else {
1986                 writel(v, ts->regs + THROT_GLOBAL_CFG);
1987
1988                 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1989                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1990                 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1991         }
1992
1993         /* initialize stats collection */
1994         v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1995             STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1996         writel(v, ts->regs + THERMCTL_STATS_CTL);
1997 }
1998
1999 static int soctherm_interrupts_init(struct platform_device *pdev,
2000                                     struct tegra_soctherm *tegra)
2001 {
2002         struct device_node *np = pdev->dev.of_node;
2003         int ret;
2004
2005         ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2006         if (ret < 0) {
2007                 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2008                 return ret;
2009         }
2010
2011         tegra->thermal_irq = platform_get_irq(pdev, 0);
2012         if (tegra->thermal_irq < 0) {
2013                 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2014                 return 0;
2015         }
2016
2017         tegra->edp_irq = platform_get_irq(pdev, 1);
2018         if (tegra->edp_irq < 0) {
2019                 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2020                 return 0;
2021         }
2022
2023         ret = devm_request_threaded_irq(&pdev->dev,
2024                                         tegra->thermal_irq,
2025                                         soctherm_thermal_isr,
2026                                         soctherm_thermal_isr_thread,
2027                                         IRQF_ONESHOT,
2028                                         dev_name(&pdev->dev),
2029                                         tegra);
2030         if (ret < 0) {
2031                 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2032                 return ret;
2033         }
2034
2035         ret = devm_request_threaded_irq(&pdev->dev,
2036                                         tegra->edp_irq,
2037                                         soctherm_edp_isr,
2038                                         soctherm_edp_isr_thread,
2039                                         IRQF_ONESHOT,
2040                                         "soctherm_edp",
2041                                         tegra);
2042         if (ret < 0) {
2043                 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2044                 return ret;
2045         }
2046
2047         return 0;
2048 }
2049
2050 static void soctherm_init(struct platform_device *pdev)
2051 {
2052         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2053         const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2054         int i;
2055         u32 pdiv, hotspot;
2056
2057         /* Initialize raw sensors */
2058         for (i = 0; i < tegra->soc->num_tsensors; ++i)
2059                 enable_tsensor(tegra, i);
2060
2061         /* program pdiv and hotspot offsets per THERM */
2062         pdiv = readl(tegra->regs + SENSOR_PDIV);
2063         hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2064         for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2065                 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2066                                     ttgs[i]->pdiv);
2067                 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2068                 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2069                         continue;
2070                 hotspot =  REG_SET_MASK(hotspot,
2071                                         ttgs[i]->pllx_hotspot_mask,
2072                                         ttgs[i]->pllx_hotspot_diff);
2073         }
2074         writel(pdiv, tegra->regs + SENSOR_PDIV);
2075         writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2076
2077         /* Configure hw throttle */
2078         tegra_soctherm_throttle(&pdev->dev);
2079 }
2080
2081 static const struct of_device_id tegra_soctherm_of_match[] = {
2082 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2083         {
2084                 .compatible = "nvidia,tegra124-soctherm",
2085                 .data = &tegra124_soctherm,
2086         },
2087 #endif
2088 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2089         {
2090                 .compatible = "nvidia,tegra132-soctherm",
2091                 .data = &tegra132_soctherm,
2092         },
2093 #endif
2094 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2095         {
2096                 .compatible = "nvidia,tegra210-soctherm",
2097                 .data = &tegra210_soctherm,
2098         },
2099 #endif
2100         { },
2101 };
2102 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2103
2104 static int tegra_soctherm_probe(struct platform_device *pdev)
2105 {
2106         const struct of_device_id *match;
2107         struct tegra_soctherm *tegra;
2108         struct thermal_zone_device *z;
2109         struct tsensor_shared_calib shared_calib;
2110         struct resource *res;
2111         struct tegra_soctherm_soc *soc;
2112         unsigned int i;
2113         int err;
2114
2115         match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2116         if (!match)
2117                 return -ENODEV;
2118
2119         soc = (struct tegra_soctherm_soc *)match->data;
2120         if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2121                 return -EINVAL;
2122
2123         tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2124         if (!tegra)
2125                 return -ENOMEM;
2126
2127         mutex_init(&tegra->thermctl_lock);
2128         dev_set_drvdata(&pdev->dev, tegra);
2129
2130         tegra->soc = soc;
2131
2132         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2133                                            "soctherm-reg");
2134         tegra->regs = devm_ioremap_resource(&pdev->dev, res);
2135         if (IS_ERR(tegra->regs)) {
2136                 dev_err(&pdev->dev, "can't get soctherm registers");
2137                 return PTR_ERR(tegra->regs);
2138         }
2139
2140         if (!tegra->soc->use_ccroc) {
2141                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2142                                                    "car-reg");
2143                 tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
2144                 if (IS_ERR(tegra->clk_regs)) {
2145                         dev_err(&pdev->dev, "can't get car clk registers");
2146                         return PTR_ERR(tegra->clk_regs);
2147                 }
2148         } else {
2149                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2150                                                    "ccroc-reg");
2151                 tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
2152                 if (IS_ERR(tegra->ccroc_regs)) {
2153                         dev_err(&pdev->dev, "can't get ccroc registers");
2154                         return PTR_ERR(tegra->ccroc_regs);
2155                 }
2156         }
2157
2158         tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2159         if (IS_ERR(tegra->reset)) {
2160                 dev_err(&pdev->dev, "can't get soctherm reset\n");
2161                 return PTR_ERR(tegra->reset);
2162         }
2163
2164         tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2165         if (IS_ERR(tegra->clock_tsensor)) {
2166                 dev_err(&pdev->dev, "can't get tsensor clock\n");
2167                 return PTR_ERR(tegra->clock_tsensor);
2168         }
2169
2170         tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2171         if (IS_ERR(tegra->clock_soctherm)) {
2172                 dev_err(&pdev->dev, "can't get soctherm clock\n");
2173                 return PTR_ERR(tegra->clock_soctherm);
2174         }
2175
2176         tegra->calib = devm_kcalloc(&pdev->dev,
2177                                     soc->num_tsensors, sizeof(u32),
2178                                     GFP_KERNEL);
2179         if (!tegra->calib)
2180                 return -ENOMEM;
2181
2182         /* calculate shared calibration data */
2183         err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2184         if (err)
2185                 return err;
2186
2187         /* calculate tsensor calibaration data */
2188         for (i = 0; i < soc->num_tsensors; ++i) {
2189                 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2190                                                &shared_calib,
2191                                                &tegra->calib[i]);
2192                 if (err)
2193                         return err;
2194         }
2195
2196         tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2197                                            soc->num_ttgs, sizeof(z),
2198                                            GFP_KERNEL);
2199         if (!tegra->thermctl_tzs)
2200                 return -ENOMEM;
2201
2202         err = soctherm_clk_enable(pdev, true);
2203         if (err)
2204                 return err;
2205
2206         soctherm_thermtrips_parse(pdev);
2207
2208         soctherm_init_hw_throt_cdev(pdev);
2209
2210         soctherm_init(pdev);
2211
2212         for (i = 0; i < soc->num_ttgs; ++i) {
2213                 struct tegra_thermctl_zone *zone =
2214                         devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2215                 if (!zone) {
2216                         err = -ENOMEM;
2217                         goto disable_clocks;
2218                 }
2219
2220                 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2221                 zone->dev = &pdev->dev;
2222                 zone->sg = soc->ttgs[i];
2223                 zone->ts = tegra;
2224
2225                 z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2226                                                          soc->ttgs[i]->id, zone,
2227                                                          &tegra_of_thermal_ops);
2228                 if (IS_ERR(z)) {
2229                         err = PTR_ERR(z);
2230                         dev_err(&pdev->dev, "failed to register sensor: %d\n",
2231                                 err);
2232                         goto disable_clocks;
2233                 }
2234
2235                 zone->tz = z;
2236                 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2237
2238                 /* Configure hw trip points */
2239                 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2240                 if (err)
2241                         goto disable_clocks;
2242         }
2243
2244         err = soctherm_interrupts_init(pdev, tegra);
2245
2246         soctherm_debug_init(pdev);
2247
2248         return 0;
2249
2250 disable_clocks:
2251         soctherm_clk_enable(pdev, false);
2252
2253         return err;
2254 }
2255
2256 static int tegra_soctherm_remove(struct platform_device *pdev)
2257 {
2258         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2259
2260         debugfs_remove_recursive(tegra->debugfs_dir);
2261
2262         soctherm_clk_enable(pdev, false);
2263
2264         return 0;
2265 }
2266
2267 static int __maybe_unused soctherm_suspend(struct device *dev)
2268 {
2269         struct platform_device *pdev = to_platform_device(dev);
2270
2271         soctherm_clk_enable(pdev, false);
2272
2273         return 0;
2274 }
2275
2276 static int __maybe_unused soctherm_resume(struct device *dev)
2277 {
2278         struct platform_device *pdev = to_platform_device(dev);
2279         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2280         struct tegra_soctherm_soc *soc = tegra->soc;
2281         int err, i;
2282
2283         err = soctherm_clk_enable(pdev, true);
2284         if (err) {
2285                 dev_err(&pdev->dev,
2286                         "Resume failed: enable clocks failed\n");
2287                 return err;
2288         }
2289
2290         soctherm_init(pdev);
2291
2292         for (i = 0; i < soc->num_ttgs; ++i) {
2293                 struct thermal_zone_device *tz;
2294
2295                 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2296                 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2297                 if (err) {
2298                         dev_err(&pdev->dev,
2299                                 "Resume failed: set hwtrips failed\n");
2300                         return err;
2301                 }
2302         }
2303
2304         return 0;
2305 }
2306
2307 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2308
2309 static struct platform_driver tegra_soctherm_driver = {
2310         .probe = tegra_soctherm_probe,
2311         .remove = tegra_soctherm_remove,
2312         .driver = {
2313                 .name = "tegra_soctherm",
2314                 .pm = &tegra_soctherm_pm,
2315                 .of_match_table = tegra_soctherm_of_match,
2316         },
2317 };
2318 module_platform_driver(tegra_soctherm_driver);
2319
2320 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2321 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2322 MODULE_LICENSE("GPL v2");