Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / scsi / aacraid / commsup.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Adaptec AAC series RAID controller driver
4  *      (c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38
39 #include "aacraid.h"
40
41 /**
42  *      fib_map_alloc           -       allocate the fib objects
43  *      @dev: Adapter to allocate for
44  *
45  *      Allocate and map the shared PCI space for the FIB blocks used to
46  *      talk to the Adaptec firmware.
47  */
48
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53         else
54                 dev->max_cmd_size = dev->max_fib_size;
55         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57         } else {
58                 dev->max_cmd_size = dev->max_fib_size;
59         }
60
61         dprintk((KERN_INFO
62           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68                 &dev->hw_fib_pa, GFP_KERNEL);
69         if (dev->hw_fib_va == NULL)
70                 return -ENOMEM;
71         return 0;
72 }
73
74 /**
75  *      aac_fib_map_free                -       free the fib objects
76  *      @dev: Adapter to free
77  *
78  *      Free the PCI mappings and the memory allocated for FIB blocks
79  *      on this adapter.
80  */
81
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84         size_t alloc_size;
85         size_t fib_size;
86         int num_fibs;
87
88         if(!dev->hw_fib_va || !dev->max_cmd_size)
89                 return;
90
91         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94
95         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96                           dev->hw_fib_pa);
97
98         dev->hw_fib_va = NULL;
99         dev->hw_fib_pa = 0;
100 }
101
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104         u32 i = 0;
105         u32 vector = 1;
106         struct fib *fibptr = NULL;
107
108         for (i = 0, fibptr = &dev->fibs[i];
109                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110                 i++, fibptr++) {
111                 if ((dev->max_msix == 1) ||
112                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113                         - dev->vector_cap))) {
114                         fibptr->vector_no = 0;
115                 } else {
116                         fibptr->vector_no = vector;
117                         vector++;
118                         if (vector == dev->max_msix)
119                                 vector = 1;
120                 }
121         }
122 }
123
124 /**
125  *      aac_fib_setup   -       setup the fibs
126  *      @dev: Adapter to set up
127  *
128  *      Allocate the PCI space for the fibs, map it and then initialise the
129  *      fib area, the unmapped fib data and also the free list
130  */
131
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134         struct fib *fibptr;
135         struct hw_fib *hw_fib;
136         dma_addr_t hw_fib_pa;
137         int i;
138         u32 max_cmds;
139
140         while (((i = fib_map_alloc(dev)) == -ENOMEM)
141          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146         }
147         if (i<0)
148                 return -ENOMEM;
149
150         memset(dev->hw_fib_va, 0,
151                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153
154         /* 32 byte alignment for PMC */
155         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157                                         (hw_fib_pa - dev->hw_fib_pa));
158
159         /* add Xport header */
160         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161                 sizeof(struct aac_fib_xporthdr));
162         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163
164         /*
165          *      Initialise the fibs
166          */
167         for (i = 0, fibptr = &dev->fibs[i];
168                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169                 i++, fibptr++)
170         {
171                 fibptr->flags = 0;
172                 fibptr->size = sizeof(struct fib);
173                 fibptr->dev = dev;
174                 fibptr->hw_fib_va = hw_fib;
175                 fibptr->data = (void *) fibptr->hw_fib_va->data;
176                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
177                 init_completion(&fibptr->event_wait);
178                 spin_lock_init(&fibptr->event_lock);
179                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180                 hw_fib->header.SenderSize =
181                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
182                 fibptr->hw_fib_pa = hw_fib_pa;
183                 fibptr->hw_sgl_pa = hw_fib_pa +
184                         offsetof(struct aac_hba_cmd_req, sge[2]);
185                 /*
186                  * one element is for the ptr to the separate sg list,
187                  * second element for 32 byte alignment
188                  */
189                 fibptr->hw_error_pa = hw_fib_pa +
190                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191
192                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194                 hw_fib_pa = hw_fib_pa +
195                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196         }
197
198         /*
199          *Assign vector numbers to fibs
200          */
201         aac_fib_vector_assign(dev);
202
203         /*
204          *      Add the fib chain to the free list
205          */
206         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207         /*
208         *       Set 8 fibs aside for management tools
209         */
210         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211         return 0;
212 }
213
214 /**
215  *      aac_fib_alloc_tag-allocate a fib using tags
216  *      @dev: Adapter to allocate the fib for
217  *
218  *      Allocate a fib from the adapter fib pool using tags
219  *      from the blk layer.
220  */
221
222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
223 {
224         struct fib *fibptr;
225
226         fibptr = &dev->fibs[scmd->request->tag];
227         /*
228          *      Null out fields that depend on being zero at the start of
229          *      each I/O
230          */
231         fibptr->hw_fib_va->header.XferState = 0;
232         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233         fibptr->callback_data = NULL;
234         fibptr->callback = NULL;
235
236         return fibptr;
237 }
238
239 /**
240  *      aac_fib_alloc   -       allocate a fib
241  *      @dev: Adapter to allocate the fib for
242  *
243  *      Allocate a fib from the adapter fib pool. If the pool is empty we
244  *      return NULL.
245  */
246
247 struct fib *aac_fib_alloc(struct aac_dev *dev)
248 {
249         struct fib * fibptr;
250         unsigned long flags;
251         spin_lock_irqsave(&dev->fib_lock, flags);
252         fibptr = dev->free_fib;
253         if(!fibptr){
254                 spin_unlock_irqrestore(&dev->fib_lock, flags);
255                 return fibptr;
256         }
257         dev->free_fib = fibptr->next;
258         spin_unlock_irqrestore(&dev->fib_lock, flags);
259         /*
260          *      Set the proper node type code and node byte size
261          */
262         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
263         fibptr->size = sizeof(struct fib);
264         /*
265          *      Null out fields that depend on being zero at the start of
266          *      each I/O
267          */
268         fibptr->hw_fib_va->header.XferState = 0;
269         fibptr->flags = 0;
270         fibptr->callback = NULL;
271         fibptr->callback_data = NULL;
272
273         return fibptr;
274 }
275
276 /**
277  *      aac_fib_free    -       free a fib
278  *      @fibptr: fib to free up
279  *
280  *      Frees up a fib and places it on the appropriate queue
281  */
282
283 void aac_fib_free(struct fib *fibptr)
284 {
285         unsigned long flags;
286
287         if (fibptr->done == 2)
288                 return;
289
290         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
291         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
292                 aac_config.fib_timeouts++;
293         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
294                 fibptr->hw_fib_va->header.XferState != 0) {
295                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
296                          (void*)fibptr,
297                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
298         }
299         fibptr->next = fibptr->dev->free_fib;
300         fibptr->dev->free_fib = fibptr;
301         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
302 }
303
304 /**
305  *      aac_fib_init    -       initialise a fib
306  *      @fibptr: The fib to initialize
307  *
308  *      Set up the generic fib fields ready for use
309  */
310
311 void aac_fib_init(struct fib *fibptr)
312 {
313         struct hw_fib *hw_fib = fibptr->hw_fib_va;
314
315         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
316         hw_fib->header.StructType = FIB_MAGIC;
317         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
318         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
319         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
320         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
321 }
322
323 /**
324  *      fib_deallocate          -       deallocate a fib
325  *      @fibptr: fib to deallocate
326  *
327  *      Will deallocate and return to the free pool the FIB pointed to by the
328  *      caller.
329  */
330
331 static void fib_dealloc(struct fib * fibptr)
332 {
333         struct hw_fib *hw_fib = fibptr->hw_fib_va;
334         hw_fib->header.XferState = 0;
335 }
336
337 /*
338  *      Commuication primitives define and support the queuing method we use to
339  *      support host to adapter commuication. All queue accesses happen through
340  *      these routines and are the only routines which have a knowledge of the
341  *       how these queues are implemented.
342  */
343
344 /**
345  *      aac_get_entry           -       get a queue entry
346  *      @dev: Adapter
347  *      @qid: Queue Number
348  *      @entry: Entry return
349  *      @index: Index return
350  *      @nonotify: notification control
351  *
352  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
353  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
354  *      returned.
355  */
356
357 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
358 {
359         struct aac_queue * q;
360         unsigned long idx;
361
362         /*
363          *      All of the queues wrap when they reach the end, so we check
364          *      to see if they have reached the end and if they have we just
365          *      set the index back to zero. This is a wrap. You could or off
366          *      the high bits in all updates but this is a bit faster I think.
367          */
368
369         q = &dev->queues->queue[qid];
370
371         idx = *index = le32_to_cpu(*(q->headers.producer));
372         /* Interrupt Moderation, only interrupt for first two entries */
373         if (idx != le32_to_cpu(*(q->headers.consumer))) {
374                 if (--idx == 0) {
375                         if (qid == AdapNormCmdQueue)
376                                 idx = ADAP_NORM_CMD_ENTRIES;
377                         else
378                                 idx = ADAP_NORM_RESP_ENTRIES;
379                 }
380                 if (idx != le32_to_cpu(*(q->headers.consumer)))
381                         *nonotify = 1;
382         }
383
384         if (qid == AdapNormCmdQueue) {
385                 if (*index >= ADAP_NORM_CMD_ENTRIES)
386                         *index = 0; /* Wrap to front of the Producer Queue. */
387         } else {
388                 if (*index >= ADAP_NORM_RESP_ENTRIES)
389                         *index = 0; /* Wrap to front of the Producer Queue. */
390         }
391
392         /* Queue is full */
393         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
394                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
395                                 qid, atomic_read(&q->numpending));
396                 return 0;
397         } else {
398                 *entry = q->base + *index;
399                 return 1;
400         }
401 }
402
403 /**
404  *      aac_queue_get           -       get the next free QE
405  *      @dev: Adapter
406  *      @index: Returned index
407  *      @priority: Priority of fib
408  *      @fib: Fib to associate with the queue entry
409  *      @wait: Wait if queue full
410  *      @fibptr: Driver fib object to go with fib
411  *      @nonotify: Don't notify the adapter
412  *
413  *      Gets the next free QE off the requested priorty adapter command
414  *      queue and associates the Fib with the QE. The QE represented by
415  *      index is ready to insert on the queue when this routine returns
416  *      success.
417  */
418
419 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
420 {
421         struct aac_entry * entry = NULL;
422         int map = 0;
423
424         if (qid == AdapNormCmdQueue) {
425                 /*  if no entries wait for some if caller wants to */
426                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
427                         printk(KERN_ERR "GetEntries failed\n");
428                 }
429                 /*
430                  *      Setup queue entry with a command, status and fib mapped
431                  */
432                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
433                 map = 1;
434         } else {
435                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
436                         /* if no entries wait for some if caller wants to */
437                 }
438                 /*
439                  *      Setup queue entry with command, status and fib mapped
440                  */
441                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
442                 entry->addr = hw_fib->header.SenderFibAddress;
443                         /* Restore adapters pointer to the FIB */
444                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
445                 map = 0;
446         }
447         /*
448          *      If MapFib is true than we need to map the Fib and put pointers
449          *      in the queue entry.
450          */
451         if (map)
452                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
453         return 0;
454 }
455
456 /*
457  *      Define the highest level of host to adapter communication routines.
458  *      These routines will support host to adapter FS commuication. These
459  *      routines have no knowledge of the commuication method used. This level
460  *      sends and receives FIBs. This level has no knowledge of how these FIBs
461  *      get passed back and forth.
462  */
463
464 /**
465  *      aac_fib_send    -       send a fib to the adapter
466  *      @command: Command to send
467  *      @fibptr: The fib
468  *      @size: Size of fib data area
469  *      @priority: Priority of Fib
470  *      @wait: Async/sync select
471  *      @reply: True if a reply is wanted
472  *      @callback: Called with reply
473  *      @callback_data: Passed to callback
474  *
475  *      Sends the requested FIB to the adapter and optionally will wait for a
476  *      response FIB. If the caller does not wish to wait for a response than
477  *      an event to wait on must be supplied. This event will be set when a
478  *      response FIB is received from the adapter.
479  */
480
481 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
482                 int priority, int wait, int reply, fib_callback callback,
483                 void *callback_data)
484 {
485         struct aac_dev * dev = fibptr->dev;
486         struct hw_fib * hw_fib = fibptr->hw_fib_va;
487         unsigned long flags = 0;
488         unsigned long mflags = 0;
489         unsigned long sflags = 0;
490
491         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
492                 return -EBUSY;
493
494         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
495                 return -EINVAL;
496
497         /*
498          *      There are 5 cases with the wait and response requested flags.
499          *      The only invalid cases are if the caller requests to wait and
500          *      does not request a response and if the caller does not want a
501          *      response and the Fib is not allocated from pool. If a response
502          *      is not requested the Fib will just be deallocaed by the DPC
503          *      routine when the response comes back from the adapter. No
504          *      further processing will be done besides deleting the Fib. We
505          *      will have a debug mode where the adapter can notify the host
506          *      it had a problem and the host can log that fact.
507          */
508         fibptr->flags = 0;
509         if (wait && !reply) {
510                 return -EINVAL;
511         } else if (!wait && reply) {
512                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
513                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
514         } else if (!wait && !reply) {
515                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
516                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
517         } else if (wait && reply) {
518                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
519                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
520         }
521         /*
522          *      Map the fib into 32bits by using the fib number
523          */
524
525         hw_fib->header.SenderFibAddress =
526                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
527
528         /* use the same shifted value for handle to be compatible
529          * with the new native hba command handle
530          */
531         hw_fib->header.Handle =
532                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
533
534         /*
535          *      Set FIB state to indicate where it came from and if we want a
536          *      response from the adapter. Also load the command from the
537          *      caller.
538          *
539          *      Map the hw fib pointer as a 32bit value
540          */
541         hw_fib->header.Command = cpu_to_le16(command);
542         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
543         /*
544          *      Set the size of the Fib we want to send to the adapter
545          */
546         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
547         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
548                 return -EMSGSIZE;
549         }
550         /*
551          *      Get a queue entry connect the FIB to it and send an notify
552          *      the adapter a command is ready.
553          */
554         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
555
556         /*
557          *      Fill in the Callback and CallbackContext if we are not
558          *      going to wait.
559          */
560         if (!wait) {
561                 fibptr->callback = callback;
562                 fibptr->callback_data = callback_data;
563                 fibptr->flags = FIB_CONTEXT_FLAG;
564         }
565
566         fibptr->done = 0;
567
568         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
569
570         dprintk((KERN_DEBUG "Fib contents:.\n"));
571         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
572         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
573         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
574         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
575         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
576         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
577
578         if (!dev->queues)
579                 return -EBUSY;
580
581         if (wait) {
582
583                 spin_lock_irqsave(&dev->manage_lock, mflags);
584                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
585                         printk(KERN_INFO "No management Fibs Available:%d\n",
586                                                 dev->management_fib_count);
587                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
588                         return -EBUSY;
589                 }
590                 dev->management_fib_count++;
591                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
592                 spin_lock_irqsave(&fibptr->event_lock, flags);
593         }
594
595         if (dev->sync_mode) {
596                 if (wait)
597                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
598                 spin_lock_irqsave(&dev->sync_lock, sflags);
599                 if (dev->sync_fib) {
600                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
601                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
602                 } else {
603                         dev->sync_fib = fibptr;
604                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
605                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
606                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
607                                 NULL, NULL, NULL, NULL, NULL);
608                 }
609                 if (wait) {
610                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
611                         if (wait_for_completion_interruptible(&fibptr->event_wait)) {
612                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
613                                 return -EFAULT;
614                         }
615                         return 0;
616                 }
617                 return -EINPROGRESS;
618         }
619
620         if (aac_adapter_deliver(fibptr) != 0) {
621                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
622                 if (wait) {
623                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
624                         spin_lock_irqsave(&dev->manage_lock, mflags);
625                         dev->management_fib_count--;
626                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
627                 }
628                 return -EBUSY;
629         }
630
631
632         /*
633          *      If the caller wanted us to wait for response wait now.
634          */
635
636         if (wait) {
637                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
638                 /* Only set for first known interruptable command */
639                 if (wait < 0) {
640                         /*
641                          * *VERY* Dangerous to time out a command, the
642                          * assumption is made that we have no hope of
643                          * functioning because an interrupt routing or other
644                          * hardware failure has occurred.
645                          */
646                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
647                         while (!try_wait_for_completion(&fibptr->event_wait)) {
648                                 int blink;
649                                 if (time_is_before_eq_jiffies(timeout)) {
650                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
651                                         atomic_dec(&q->numpending);
652                                         if (wait == -1) {
653                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
654                                                   "Usually a result of a PCI interrupt routing problem;\n"
655                                                   "update mother board BIOS or consider utilizing one of\n"
656                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
657                                         }
658                                         return -ETIMEDOUT;
659                                 }
660
661                                 if (unlikely(aac_pci_offline(dev)))
662                                         return -EFAULT;
663
664                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
665                                         if (wait == -1) {
666                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
667                                                   "Usually a result of a serious unrecoverable hardware problem\n",
668                                                   blink);
669                                         }
670                                         return -EFAULT;
671                                 }
672                                 /*
673                                  * Allow other processes / CPUS to use core
674                                  */
675                                 schedule();
676                         }
677                 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
678                         /* Do nothing ... satisfy
679                          * wait_for_completion_interruptible must_check */
680                 }
681
682                 spin_lock_irqsave(&fibptr->event_lock, flags);
683                 if (fibptr->done == 0) {
684                         fibptr->done = 2; /* Tell interrupt we aborted */
685                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
686                         return -ERESTARTSYS;
687                 }
688                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
689                 BUG_ON(fibptr->done == 0);
690
691                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
692                         return -ETIMEDOUT;
693                 return 0;
694         }
695         /*
696          *      If the user does not want a response than return success otherwise
697          *      return pending
698          */
699         if (reply)
700                 return -EINPROGRESS;
701         else
702                 return 0;
703 }
704
705 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
706                 void *callback_data)
707 {
708         struct aac_dev *dev = fibptr->dev;
709         int wait;
710         unsigned long flags = 0;
711         unsigned long mflags = 0;
712         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
713                         fibptr->hw_fib_va;
714
715         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
716         if (callback) {
717                 wait = 0;
718                 fibptr->callback = callback;
719                 fibptr->callback_data = callback_data;
720         } else
721                 wait = 1;
722
723
724         hbacmd->iu_type = command;
725
726         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
727                 /* bit1 of request_id must be 0 */
728                 hbacmd->request_id =
729                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
730                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
731         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
732                 return -EINVAL;
733
734
735         if (wait) {
736                 spin_lock_irqsave(&dev->manage_lock, mflags);
737                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
738                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
739                         return -EBUSY;
740                 }
741                 dev->management_fib_count++;
742                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
743                 spin_lock_irqsave(&fibptr->event_lock, flags);
744         }
745
746         if (aac_adapter_deliver(fibptr) != 0) {
747                 if (wait) {
748                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
749                         spin_lock_irqsave(&dev->manage_lock, mflags);
750                         dev->management_fib_count--;
751                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
752                 }
753                 return -EBUSY;
754         }
755         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
756
757         if (wait) {
758
759                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
760
761                 if (unlikely(aac_pci_offline(dev)))
762                         return -EFAULT;
763
764                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
765                 if (wait_for_completion_interruptible(&fibptr->event_wait))
766                         fibptr->done = 2;
767                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
768
769                 spin_lock_irqsave(&fibptr->event_lock, flags);
770                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
771                         fibptr->done = 2; /* Tell interrupt we aborted */
772                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
773                         return -ERESTARTSYS;
774                 }
775                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
776                 WARN_ON(fibptr->done == 0);
777
778                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
779                         return -ETIMEDOUT;
780
781                 return 0;
782         }
783
784         return -EINPROGRESS;
785 }
786
787 /**
788  *      aac_consumer_get        -       get the top of the queue
789  *      @dev: Adapter
790  *      @q: Queue
791  *      @entry: Return entry
792  *
793  *      Will return a pointer to the entry on the top of the queue requested that
794  *      we are a consumer of, and return the address of the queue entry. It does
795  *      not change the state of the queue.
796  */
797
798 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
799 {
800         u32 index;
801         int status;
802         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
803                 status = 0;
804         } else {
805                 /*
806                  *      The consumer index must be wrapped if we have reached
807                  *      the end of the queue, else we just use the entry
808                  *      pointed to by the header index
809                  */
810                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
811                         index = 0;
812                 else
813                         index = le32_to_cpu(*q->headers.consumer);
814                 *entry = q->base + index;
815                 status = 1;
816         }
817         return(status);
818 }
819
820 /**
821  *      aac_consumer_free       -       free consumer entry
822  *      @dev: Adapter
823  *      @q: Queue
824  *      @qid: Queue ident
825  *
826  *      Frees up the current top of the queue we are a consumer of. If the
827  *      queue was full notify the producer that the queue is no longer full.
828  */
829
830 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
831 {
832         int wasfull = 0;
833         u32 notify;
834
835         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
836                 wasfull = 1;
837
838         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
839                 *q->headers.consumer = cpu_to_le32(1);
840         else
841                 le32_add_cpu(q->headers.consumer, 1);
842
843         if (wasfull) {
844                 switch (qid) {
845
846                 case HostNormCmdQueue:
847                         notify = HostNormCmdNotFull;
848                         break;
849                 case HostNormRespQueue:
850                         notify = HostNormRespNotFull;
851                         break;
852                 default:
853                         BUG();
854                         return;
855                 }
856                 aac_adapter_notify(dev, notify);
857         }
858 }
859
860 /**
861  *      aac_fib_adapter_complete        -       complete adapter issued fib
862  *      @fibptr: fib to complete
863  *      @size: size of fib
864  *
865  *      Will do all necessary work to complete a FIB that was sent from
866  *      the adapter.
867  */
868
869 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
870 {
871         struct hw_fib * hw_fib = fibptr->hw_fib_va;
872         struct aac_dev * dev = fibptr->dev;
873         struct aac_queue * q;
874         unsigned long nointr = 0;
875         unsigned long qflags;
876
877         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
878                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
879                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
880                 kfree(hw_fib);
881                 return 0;
882         }
883
884         if (hw_fib->header.XferState == 0) {
885                 if (dev->comm_interface == AAC_COMM_MESSAGE)
886                         kfree(hw_fib);
887                 return 0;
888         }
889         /*
890          *      If we plan to do anything check the structure type first.
891          */
892         if (hw_fib->header.StructType != FIB_MAGIC &&
893             hw_fib->header.StructType != FIB_MAGIC2 &&
894             hw_fib->header.StructType != FIB_MAGIC2_64) {
895                 if (dev->comm_interface == AAC_COMM_MESSAGE)
896                         kfree(hw_fib);
897                 return -EINVAL;
898         }
899         /*
900          *      This block handles the case where the adapter had sent us a
901          *      command and we have finished processing the command. We
902          *      call completeFib when we are done processing the command
903          *      and want to send a response back to the adapter. This will
904          *      send the completed cdb to the adapter.
905          */
906         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
907                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
908                         kfree (hw_fib);
909                 } else {
910                         u32 index;
911                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
912                         if (size) {
913                                 size += sizeof(struct aac_fibhdr);
914                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
915                                         return -EMSGSIZE;
916                                 hw_fib->header.Size = cpu_to_le16(size);
917                         }
918                         q = &dev->queues->queue[AdapNormRespQueue];
919                         spin_lock_irqsave(q->lock, qflags);
920                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
921                         *(q->headers.producer) = cpu_to_le32(index + 1);
922                         spin_unlock_irqrestore(q->lock, qflags);
923                         if (!(nointr & (int)aac_config.irq_mod))
924                                 aac_adapter_notify(dev, AdapNormRespQueue);
925                 }
926         } else {
927                 printk(KERN_WARNING "aac_fib_adapter_complete: "
928                         "Unknown xferstate detected.\n");
929                 BUG();
930         }
931         return 0;
932 }
933
934 /**
935  *      aac_fib_complete        -       fib completion handler
936  *      @fib: FIB to complete
937  *
938  *      Will do all necessary work to complete a FIB.
939  */
940
941 int aac_fib_complete(struct fib *fibptr)
942 {
943         struct hw_fib * hw_fib = fibptr->hw_fib_va;
944
945         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
946                 fib_dealloc(fibptr);
947                 return 0;
948         }
949
950         /*
951          *      Check for a fib which has already been completed or with a
952          *      status wait timeout
953          */
954
955         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
956                 return 0;
957         /*
958          *      If we plan to do anything check the structure type first.
959          */
960
961         if (hw_fib->header.StructType != FIB_MAGIC &&
962             hw_fib->header.StructType != FIB_MAGIC2 &&
963             hw_fib->header.StructType != FIB_MAGIC2_64)
964                 return -EINVAL;
965         /*
966          *      This block completes a cdb which orginated on the host and we
967          *      just need to deallocate the cdb or reinit it. At this point the
968          *      command is complete that we had sent to the adapter and this
969          *      cdb could be reused.
970          */
971
972         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
973                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
974         {
975                 fib_dealloc(fibptr);
976         }
977         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
978         {
979                 /*
980                  *      This handles the case when the host has aborted the I/O
981                  *      to the adapter because the adapter is not responding
982                  */
983                 fib_dealloc(fibptr);
984         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
985                 fib_dealloc(fibptr);
986         } else {
987                 BUG();
988         }
989         return 0;
990 }
991
992 /**
993  *      aac_printf      -       handle printf from firmware
994  *      @dev: Adapter
995  *      @val: Message info
996  *
997  *      Print a message passed to us by the controller firmware on the
998  *      Adaptec board
999  */
1000
1001 void aac_printf(struct aac_dev *dev, u32 val)
1002 {
1003         char *cp = dev->printfbuf;
1004         if (dev->printf_enabled)
1005         {
1006                 int length = val & 0xffff;
1007                 int level = (val >> 16) & 0xffff;
1008
1009                 /*
1010                  *      The size of the printfbuf is set in port.c
1011                  *      There is no variable or define for it
1012                  */
1013                 if (length > 255)
1014                         length = 255;
1015                 if (cp[length] != 0)
1016                         cp[length] = 0;
1017                 if (level == LOG_AAC_HIGH_ERROR)
1018                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1019                 else
1020                         printk(KERN_INFO "%s:%s", dev->name, cp);
1021         }
1022         memset(cp, 0, 256);
1023 }
1024
1025 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1026 {
1027         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1028 }
1029
1030
1031 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1032 {
1033         switch (aac_aif_data(aifcmd, 1)) {
1034         case AifBuCacheDataLoss:
1035                 if (aac_aif_data(aifcmd, 2))
1036                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1037                         aac_aif_data(aifcmd, 2));
1038                 else
1039                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1040                 break;
1041         case AifBuCacheDataRecover:
1042                 if (aac_aif_data(aifcmd, 2))
1043                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1044                         aac_aif_data(aifcmd, 2));
1045                 else
1046                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1047                 break;
1048         }
1049 }
1050
1051 /**
1052  *      aac_handle_aif          -       Handle a message from the firmware
1053  *      @dev: Which adapter this fib is from
1054  *      @fibptr: Pointer to fibptr from adapter
1055  *
1056  *      This routine handles a driver notify fib from the adapter and
1057  *      dispatches it to the appropriate routine for handling.
1058  */
1059
1060 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1061 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1062 {
1063         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1064         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1065         u32 channel, id, lun, container;
1066         struct scsi_device *device;
1067         enum {
1068                 NOTHING,
1069                 DELETE,
1070                 ADD,
1071                 CHANGE
1072         } device_config_needed = NOTHING;
1073
1074         /* Sniff for container changes */
1075
1076         if (!dev || !dev->fsa_dev)
1077                 return;
1078         container = channel = id = lun = (u32)-1;
1079
1080         /*
1081          *      We have set this up to try and minimize the number of
1082          * re-configures that take place. As a result of this when
1083          * certain AIF's come in we will set a flag waiting for another
1084          * type of AIF before setting the re-config flag.
1085          */
1086         switch (le32_to_cpu(aifcmd->command)) {
1087         case AifCmdDriverNotify:
1088                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1089                 case AifRawDeviceRemove:
1090                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1091                         if ((container >> 28)) {
1092                                 container = (u32)-1;
1093                                 break;
1094                         }
1095                         channel = (container >> 24) & 0xF;
1096                         if (channel >= dev->maximum_num_channels) {
1097                                 container = (u32)-1;
1098                                 break;
1099                         }
1100                         id = container & 0xFFFF;
1101                         if (id >= dev->maximum_num_physicals) {
1102                                 container = (u32)-1;
1103                                 break;
1104                         }
1105                         lun = (container >> 16) & 0xFF;
1106                         container = (u32)-1;
1107                         channel = aac_phys_to_logical(channel);
1108                         device_config_needed = DELETE;
1109                         break;
1110
1111                 /*
1112                  *      Morph or Expand complete
1113                  */
1114                 case AifDenMorphComplete:
1115                 case AifDenVolumeExtendComplete:
1116                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1117                         if (container >= dev->maximum_num_containers)
1118                                 break;
1119
1120                         /*
1121                          *      Find the scsi_device associated with the SCSI
1122                          * address. Make sure we have the right array, and if
1123                          * so set the flag to initiate a new re-config once we
1124                          * see an AifEnConfigChange AIF come through.
1125                          */
1126
1127                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1128                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1129                                         CONTAINER_TO_CHANNEL(container),
1130                                         CONTAINER_TO_ID(container),
1131                                         CONTAINER_TO_LUN(container));
1132                                 if (device) {
1133                                         dev->fsa_dev[container].config_needed = CHANGE;
1134                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1135                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1136                                         scsi_device_put(device);
1137                                 }
1138                         }
1139                 }
1140
1141                 /*
1142                  *      If we are waiting on something and this happens to be
1143                  * that thing then set the re-configure flag.
1144                  */
1145                 if (container != (u32)-1) {
1146                         if (container >= dev->maximum_num_containers)
1147                                 break;
1148                         if ((dev->fsa_dev[container].config_waiting_on ==
1149                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1150                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1151                                 dev->fsa_dev[container].config_waiting_on = 0;
1152                 } else for (container = 0;
1153                     container < dev->maximum_num_containers; ++container) {
1154                         if ((dev->fsa_dev[container].config_waiting_on ==
1155                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1156                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1157                                 dev->fsa_dev[container].config_waiting_on = 0;
1158                 }
1159                 break;
1160
1161         case AifCmdEventNotify:
1162                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1163                 case AifEnBatteryEvent:
1164                         dev->cache_protected =
1165                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1166                         break;
1167                 /*
1168                  *      Add an Array.
1169                  */
1170                 case AifEnAddContainer:
1171                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1172                         if (container >= dev->maximum_num_containers)
1173                                 break;
1174                         dev->fsa_dev[container].config_needed = ADD;
1175                         dev->fsa_dev[container].config_waiting_on =
1176                                 AifEnConfigChange;
1177                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1178                         break;
1179
1180                 /*
1181                  *      Delete an Array.
1182                  */
1183                 case AifEnDeleteContainer:
1184                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1185                         if (container >= dev->maximum_num_containers)
1186                                 break;
1187                         dev->fsa_dev[container].config_needed = DELETE;
1188                         dev->fsa_dev[container].config_waiting_on =
1189                                 AifEnConfigChange;
1190                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1191                         break;
1192
1193                 /*
1194                  *      Container change detected. If we currently are not
1195                  * waiting on something else, setup to wait on a Config Change.
1196                  */
1197                 case AifEnContainerChange:
1198                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199                         if (container >= dev->maximum_num_containers)
1200                                 break;
1201                         if (dev->fsa_dev[container].config_waiting_on &&
1202                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203                                 break;
1204                         dev->fsa_dev[container].config_needed = CHANGE;
1205                         dev->fsa_dev[container].config_waiting_on =
1206                                 AifEnConfigChange;
1207                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1208                         break;
1209
1210                 case AifEnConfigChange:
1211                         break;
1212
1213                 case AifEnAddJBOD:
1214                 case AifEnDeleteJBOD:
1215                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1216                         if ((container >> 28)) {
1217                                 container = (u32)-1;
1218                                 break;
1219                         }
1220                         channel = (container >> 24) & 0xF;
1221                         if (channel >= dev->maximum_num_channels) {
1222                                 container = (u32)-1;
1223                                 break;
1224                         }
1225                         id = container & 0xFFFF;
1226                         if (id >= dev->maximum_num_physicals) {
1227                                 container = (u32)-1;
1228                                 break;
1229                         }
1230                         lun = (container >> 16) & 0xFF;
1231                         container = (u32)-1;
1232                         channel = aac_phys_to_logical(channel);
1233                         device_config_needed =
1234                           (((__le32 *)aifcmd->data)[0] ==
1235                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1236                         if (device_config_needed == ADD) {
1237                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1238                                         channel,
1239                                         id,
1240                                         lun);
1241                                 if (device) {
1242                                         scsi_remove_device(device);
1243                                         scsi_device_put(device);
1244                                 }
1245                         }
1246                         break;
1247
1248                 case AifEnEnclosureManagement:
1249                         /*
1250                          * If in JBOD mode, automatic exposure of new
1251                          * physical target to be suppressed until configured.
1252                          */
1253                         if (dev->jbod)
1254                                 break;
1255                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1256                         case EM_DRIVE_INSERTION:
1257                         case EM_DRIVE_REMOVAL:
1258                         case EM_SES_DRIVE_INSERTION:
1259                         case EM_SES_DRIVE_REMOVAL:
1260                                 container = le32_to_cpu(
1261                                         ((__le32 *)aifcmd->data)[2]);
1262                                 if ((container >> 28)) {
1263                                         container = (u32)-1;
1264                                         break;
1265                                 }
1266                                 channel = (container >> 24) & 0xF;
1267                                 if (channel >= dev->maximum_num_channels) {
1268                                         container = (u32)-1;
1269                                         break;
1270                                 }
1271                                 id = container & 0xFFFF;
1272                                 lun = (container >> 16) & 0xFF;
1273                                 container = (u32)-1;
1274                                 if (id >= dev->maximum_num_physicals) {
1275                                         /* legacy dev_t ? */
1276                                         if ((0x2000 <= id) || lun || channel ||
1277                                           ((channel = (id >> 7) & 0x3F) >=
1278                                           dev->maximum_num_channels))
1279                                                 break;
1280                                         lun = (id >> 4) & 7;
1281                                         id &= 0xF;
1282                                 }
1283                                 channel = aac_phys_to_logical(channel);
1284                                 device_config_needed =
1285                                   ((((__le32 *)aifcmd->data)[3]
1286                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1287                                     (((__le32 *)aifcmd->data)[3]
1288                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1289                                   ADD : DELETE;
1290                                 break;
1291                         }
1292                         break;
1293                 case AifBuManagerEvent:
1294                         aac_handle_aif_bu(dev, aifcmd);
1295                         break;
1296                 }
1297
1298                 /*
1299                  *      If we are waiting on something and this happens to be
1300                  * that thing then set the re-configure flag.
1301                  */
1302                 if (container != (u32)-1) {
1303                         if (container >= dev->maximum_num_containers)
1304                                 break;
1305                         if ((dev->fsa_dev[container].config_waiting_on ==
1306                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1307                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1308                                 dev->fsa_dev[container].config_waiting_on = 0;
1309                 } else for (container = 0;
1310                     container < dev->maximum_num_containers; ++container) {
1311                         if ((dev->fsa_dev[container].config_waiting_on ==
1312                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1313                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1314                                 dev->fsa_dev[container].config_waiting_on = 0;
1315                 }
1316                 break;
1317
1318         case AifCmdJobProgress:
1319                 /*
1320                  *      These are job progress AIF's. When a Clear is being
1321                  * done on a container it is initially created then hidden from
1322                  * the OS. When the clear completes we don't get a config
1323                  * change so we monitor the job status complete on a clear then
1324                  * wait for a container change.
1325                  */
1326
1327                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1328                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1329                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1330                         for (container = 0;
1331                             container < dev->maximum_num_containers;
1332                             ++container) {
1333                                 /*
1334                                  * Stomp on all config sequencing for all
1335                                  * containers?
1336                                  */
1337                                 dev->fsa_dev[container].config_waiting_on =
1338                                         AifEnContainerChange;
1339                                 dev->fsa_dev[container].config_needed = ADD;
1340                                 dev->fsa_dev[container].config_waiting_stamp =
1341                                         jiffies;
1342                         }
1343                 }
1344                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1345                     ((__le32 *)aifcmd->data)[6] == 0 &&
1346                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1347                         for (container = 0;
1348                             container < dev->maximum_num_containers;
1349                             ++container) {
1350                                 /*
1351                                  * Stomp on all config sequencing for all
1352                                  * containers?
1353                                  */
1354                                 dev->fsa_dev[container].config_waiting_on =
1355                                         AifEnContainerChange;
1356                                 dev->fsa_dev[container].config_needed = DELETE;
1357                                 dev->fsa_dev[container].config_waiting_stamp =
1358                                         jiffies;
1359                         }
1360                 }
1361                 break;
1362         }
1363
1364         container = 0;
1365 retry_next:
1366         if (device_config_needed == NOTHING) {
1367                 for (; container < dev->maximum_num_containers; ++container) {
1368                         if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1369                             (dev->fsa_dev[container].config_needed != NOTHING) &&
1370                             time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1371                                 device_config_needed =
1372                                         dev->fsa_dev[container].config_needed;
1373                                 dev->fsa_dev[container].config_needed = NOTHING;
1374                                 channel = CONTAINER_TO_CHANNEL(container);
1375                                 id = CONTAINER_TO_ID(container);
1376                                 lun = CONTAINER_TO_LUN(container);
1377                                 break;
1378                         }
1379                 }
1380         }
1381         if (device_config_needed == NOTHING)
1382                 return;
1383
1384         /*
1385          *      If we decided that a re-configuration needs to be done,
1386          * schedule it here on the way out the door, please close the door
1387          * behind you.
1388          */
1389
1390         /*
1391          *      Find the scsi_device associated with the SCSI address,
1392          * and mark it as changed, invalidating the cache. This deals
1393          * with changes to existing device IDs.
1394          */
1395
1396         if (!dev || !dev->scsi_host_ptr)
1397                 return;
1398         /*
1399          * force reload of disk info via aac_probe_container
1400          */
1401         if ((channel == CONTAINER_CHANNEL) &&
1402           (device_config_needed != NOTHING)) {
1403                 if (dev->fsa_dev[container].valid == 1)
1404                         dev->fsa_dev[container].valid = 2;
1405                 aac_probe_container(dev, container);
1406         }
1407         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1408         if (device) {
1409                 switch (device_config_needed) {
1410                 case DELETE:
1411 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1412                         scsi_remove_device(device);
1413 #else
1414                         if (scsi_device_online(device)) {
1415                                 scsi_device_set_state(device, SDEV_OFFLINE);
1416                                 sdev_printk(KERN_INFO, device,
1417                                         "Device offlined - %s\n",
1418                                         (channel == CONTAINER_CHANNEL) ?
1419                                                 "array deleted" :
1420                                                 "enclosure services event");
1421                         }
1422 #endif
1423                         break;
1424                 case ADD:
1425                         if (!scsi_device_online(device)) {
1426                                 sdev_printk(KERN_INFO, device,
1427                                         "Device online - %s\n",
1428                                         (channel == CONTAINER_CHANNEL) ?
1429                                                 "array created" :
1430                                                 "enclosure services event");
1431                                 scsi_device_set_state(device, SDEV_RUNNING);
1432                         }
1433                         /* FALLTHRU */
1434                 case CHANGE:
1435                         if ((channel == CONTAINER_CHANNEL)
1436                          && (!dev->fsa_dev[container].valid)) {
1437 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1438                                 scsi_remove_device(device);
1439 #else
1440                                 if (!scsi_device_online(device))
1441                                         break;
1442                                 scsi_device_set_state(device, SDEV_OFFLINE);
1443                                 sdev_printk(KERN_INFO, device,
1444                                         "Device offlined - %s\n",
1445                                         "array failed");
1446 #endif
1447                                 break;
1448                         }
1449                         scsi_rescan_device(&device->sdev_gendev);
1450
1451                 default:
1452                         break;
1453                 }
1454                 scsi_device_put(device);
1455                 device_config_needed = NOTHING;
1456         }
1457         if (device_config_needed == ADD)
1458                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1459         if (channel == CONTAINER_CHANNEL) {
1460                 container++;
1461                 device_config_needed = NOTHING;
1462                 goto retry_next;
1463         }
1464 }
1465
1466 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1467 {
1468         int index, quirks;
1469         int retval;
1470         struct Scsi_Host *host;
1471         struct scsi_device *dev;
1472         struct scsi_cmnd *command;
1473         struct scsi_cmnd *command_list;
1474         int jafo = 0;
1475         int bled;
1476         u64 dmamask;
1477         int num_of_fibs = 0;
1478
1479         /*
1480          * Assumptions:
1481          *      - host is locked, unless called by the aacraid thread.
1482          *        (a matter of convenience, due to legacy issues surrounding
1483          *        eh_host_adapter_reset).
1484          *      - in_reset is asserted, so no new i/o is getting to the
1485          *        card.
1486          *      - The card is dead, or will be very shortly ;-/ so no new
1487          *        commands are completing in the interrupt service.
1488          */
1489         host = aac->scsi_host_ptr;
1490         scsi_block_requests(host);
1491         aac_adapter_disable_int(aac);
1492         if (aac->thread && aac->thread->pid != current->pid) {
1493                 spin_unlock_irq(host->host_lock);
1494                 kthread_stop(aac->thread);
1495                 aac->thread = NULL;
1496                 jafo = 1;
1497         }
1498
1499         /*
1500          *      If a positive health, means in a known DEAD PANIC
1501          * state and the adapter could be reset to `try again'.
1502          */
1503         bled = forced ? 0 : aac_adapter_check_health(aac);
1504         retval = aac_adapter_restart(aac, bled, reset_type);
1505
1506         if (retval)
1507                 goto out;
1508
1509         /*
1510          *      Loop through the fibs, close the synchronous FIBS
1511          */
1512         retval = 1;
1513         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1514         for (index = 0; index <  num_of_fibs; index++) {
1515
1516                 struct fib *fib = &aac->fibs[index];
1517                 __le32 XferState = fib->hw_fib_va->header.XferState;
1518                 bool is_response_expected = false;
1519
1520                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1521                    (XferState & cpu_to_le32(ResponseExpected)))
1522                         is_response_expected = true;
1523
1524                 if (is_response_expected
1525                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1526                         unsigned long flagv;
1527                         spin_lock_irqsave(&fib->event_lock, flagv);
1528                         complete(&fib->event_wait);
1529                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1530                         schedule();
1531                         retval = 0;
1532                 }
1533         }
1534         /* Give some extra time for ioctls to complete. */
1535         if (retval == 0)
1536                 ssleep(2);
1537         index = aac->cardtype;
1538
1539         /*
1540          * Re-initialize the adapter, first free resources, then carefully
1541          * apply the initialization sequence to come back again. Only risk
1542          * is a change in Firmware dropping cache, it is assumed the caller
1543          * will ensure that i/o is queisced and the card is flushed in that
1544          * case.
1545          */
1546         aac_free_irq(aac);
1547         aac_fib_map_free(aac);
1548         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1549                           aac->comm_phys);
1550         aac->comm_addr = NULL;
1551         aac->comm_phys = 0;
1552         kfree(aac->queues);
1553         aac->queues = NULL;
1554         kfree(aac->fsa_dev);
1555         aac->fsa_dev = NULL;
1556
1557         dmamask = DMA_BIT_MASK(32);
1558         quirks = aac_get_driver_ident(index)->quirks;
1559         if (quirks & AAC_QUIRK_31BIT)
1560                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1561         else if (!(quirks & AAC_QUIRK_SRC))
1562                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1563         else
1564                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1565
1566         if (quirks & AAC_QUIRK_31BIT && !retval) {
1567                 dmamask = DMA_BIT_MASK(31);
1568                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569         }
1570
1571         if (retval)
1572                 goto out;
1573
1574         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1575                 goto out;
1576
1577         if (jafo) {
1578                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1579                                           aac->name);
1580                 if (IS_ERR(aac->thread)) {
1581                         retval = PTR_ERR(aac->thread);
1582                         aac->thread = NULL;
1583                         goto out;
1584                 }
1585         }
1586         (void)aac_get_adapter_info(aac);
1587         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1588                 host->sg_tablesize = 34;
1589                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1590         }
1591         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1592                 host->sg_tablesize = 17;
1593                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1594         }
1595         aac_get_config_status(aac, 1);
1596         aac_get_containers(aac);
1597         /*
1598          * This is where the assumption that the Adapter is quiesced
1599          * is important.
1600          */
1601         command_list = NULL;
1602         __shost_for_each_device(dev, host) {
1603                 unsigned long flags;
1604                 spin_lock_irqsave(&dev->list_lock, flags);
1605                 list_for_each_entry(command, &dev->cmd_list, list)
1606                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1607                                 command->SCp.buffer = (struct scatterlist *)command_list;
1608                                 command_list = command;
1609                         }
1610                 spin_unlock_irqrestore(&dev->list_lock, flags);
1611         }
1612         while ((command = command_list)) {
1613                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1614                 command->SCp.buffer = NULL;
1615                 command->result = DID_OK << 16
1616                   | COMMAND_COMPLETE << 8
1617                   | SAM_STAT_TASK_SET_FULL;
1618                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1619                 command->scsi_done(command);
1620         }
1621         /*
1622          * Any Device that was already marked offline needs to be marked
1623          * running
1624          */
1625         __shost_for_each_device(dev, host) {
1626                 if (!scsi_device_online(dev))
1627                         scsi_device_set_state(dev, SDEV_RUNNING);
1628         }
1629         retval = 0;
1630
1631 out:
1632         aac->in_reset = 0;
1633         scsi_unblock_requests(host);
1634
1635         /*
1636          * Issue bus rescan to catch any configuration that might have
1637          * occurred
1638          */
1639         if (!retval && !is_kdump_kernel()) {
1640                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1641                 aac_schedule_safw_scan_worker(aac);
1642         }
1643
1644         if (jafo) {
1645                 spin_lock_irq(host->host_lock);
1646         }
1647         return retval;
1648 }
1649
1650 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1651 {
1652         unsigned long flagv = 0;
1653         int retval;
1654         struct Scsi_Host * host;
1655         int bled;
1656
1657         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1658                 return -EBUSY;
1659
1660         if (aac->in_reset) {
1661                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1662                 return -EBUSY;
1663         }
1664         aac->in_reset = 1;
1665         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1666
1667         /*
1668          * Wait for all commands to complete to this specific
1669          * target (block maximum 60 seconds). Although not necessary,
1670          * it does make us a good storage citizen.
1671          */
1672         host = aac->scsi_host_ptr;
1673         scsi_block_requests(host);
1674
1675         /* Quiesce build, flush cache, write through mode */
1676         if (forced < 2)
1677                 aac_send_shutdown(aac);
1678         spin_lock_irqsave(host->host_lock, flagv);
1679         bled = forced ? forced :
1680                         (aac_check_reset != 0 && aac_check_reset != 1);
1681         retval = _aac_reset_adapter(aac, bled, reset_type);
1682         spin_unlock_irqrestore(host->host_lock, flagv);
1683
1684         if ((forced < 2) && (retval == -ENODEV)) {
1685                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1686                 struct fib * fibctx = aac_fib_alloc(aac);
1687                 if (fibctx) {
1688                         struct aac_pause *cmd;
1689                         int status;
1690
1691                         aac_fib_init(fibctx);
1692
1693                         cmd = (struct aac_pause *) fib_data(fibctx);
1694
1695                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1696                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1697                         cmd->timeout = cpu_to_le32(1);
1698                         cmd->min = cpu_to_le32(1);
1699                         cmd->noRescan = cpu_to_le32(1);
1700                         cmd->count = cpu_to_le32(0);
1701
1702                         status = aac_fib_send(ContainerCommand,
1703                           fibctx,
1704                           sizeof(struct aac_pause),
1705                           FsaNormal,
1706                           -2 /* Timeout silently */, 1,
1707                           NULL, NULL);
1708
1709                         if (status >= 0)
1710                                 aac_fib_complete(fibctx);
1711                         /* FIB should be freed only after getting
1712                          * the response from the F/W */
1713                         if (status != -ERESTARTSYS)
1714                                 aac_fib_free(fibctx);
1715                 }
1716         }
1717
1718         return retval;
1719 }
1720
1721 int aac_check_health(struct aac_dev * aac)
1722 {
1723         int BlinkLED;
1724         unsigned long time_now, flagv = 0;
1725         struct list_head * entry;
1726
1727         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1728         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1729                 return 0;
1730
1731         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1732                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1733                 return 0; /* OK */
1734         }
1735
1736         aac->in_reset = 1;
1737
1738         /* Fake up an AIF:
1739          *      aac_aifcmd.command = AifCmdEventNotify = 1
1740          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1741          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1742          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1743          *      aac.aifcmd.data[2] = AifHighPriority = 3
1744          *      aac.aifcmd.data[3] = BlinkLED
1745          */
1746
1747         time_now = jiffies/HZ;
1748         entry = aac->fib_list.next;
1749
1750         /*
1751          * For each Context that is on the
1752          * fibctxList, make a copy of the
1753          * fib, and then set the event to wake up the
1754          * thread that is waiting for it.
1755          */
1756         while (entry != &aac->fib_list) {
1757                 /*
1758                  * Extract the fibctx
1759                  */
1760                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1761                 struct hw_fib * hw_fib;
1762                 struct fib * fib;
1763                 /*
1764                  * Check if the queue is getting
1765                  * backlogged
1766                  */
1767                 if (fibctx->count > 20) {
1768                         /*
1769                          * It's *not* jiffies folks,
1770                          * but jiffies / HZ, so do not
1771                          * panic ...
1772                          */
1773                         u32 time_last = fibctx->jiffies;
1774                         /*
1775                          * Has it been > 2 minutes
1776                          * since the last read off
1777                          * the queue?
1778                          */
1779                         if ((time_now - time_last) > aif_timeout) {
1780                                 entry = entry->next;
1781                                 aac_close_fib_context(aac, fibctx);
1782                                 continue;
1783                         }
1784                 }
1785                 /*
1786                  * Warning: no sleep allowed while
1787                  * holding spinlock
1788                  */
1789                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1790                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1791                 if (fib && hw_fib) {
1792                         struct aac_aifcmd * aif;
1793
1794                         fib->hw_fib_va = hw_fib;
1795                         fib->dev = aac;
1796                         aac_fib_init(fib);
1797                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1798                         fib->size = sizeof (struct fib);
1799                         fib->data = hw_fib->data;
1800                         aif = (struct aac_aifcmd *)hw_fib->data;
1801                         aif->command = cpu_to_le32(AifCmdEventNotify);
1802                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1803                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1804                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1805                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1806                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1807
1808                         /*
1809                          * Put the FIB onto the
1810                          * fibctx's fibs
1811                          */
1812                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1813                         fibctx->count++;
1814                         /*
1815                          * Set the event to wake up the
1816                          * thread that will waiting.
1817                          */
1818                         complete(&fibctx->completion);
1819                 } else {
1820                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1821                         kfree(fib);
1822                         kfree(hw_fib);
1823                 }
1824                 entry = entry->next;
1825         }
1826
1827         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1828
1829         if (BlinkLED < 0) {
1830                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1831                                 aac->name, BlinkLED);
1832                 goto out;
1833         }
1834
1835         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1836
1837 out:
1838         aac->in_reset = 0;
1839         return BlinkLED;
1840 }
1841
1842 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1843 {
1844         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1845 }
1846
1847 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1848                                                                 int bus,
1849                                                                 int target)
1850 {
1851         if (bus != CONTAINER_CHANNEL)
1852                 bus = aac_phys_to_logical(bus);
1853
1854         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1855 }
1856
1857 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1858 {
1859         if (bus != CONTAINER_CHANNEL)
1860                 bus = aac_phys_to_logical(bus);
1861
1862         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1863 }
1864
1865 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1866 {
1867         if (sdev)
1868                 scsi_device_put(sdev);
1869 }
1870
1871 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873         struct scsi_device *sdev;
1874
1875         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1876         scsi_remove_device(sdev);
1877         aac_put_safw_scsi_device(sdev);
1878 }
1879
1880 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1881         int bus, int target)
1882 {
1883         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1884 }
1885
1886 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1887 {
1888         if (is_safw_raid_volume(dev, bus, target))
1889                 return dev->fsa_dev[target].valid;
1890         else
1891                 return aac_is_safw_scan_count_equal(dev, bus, target);
1892 }
1893
1894 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1895 {
1896         int is_exposed = 0;
1897         struct scsi_device *sdev;
1898
1899         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1900         if (sdev)
1901                 is_exposed = 1;
1902         aac_put_safw_scsi_device(sdev);
1903
1904         return is_exposed;
1905 }
1906
1907 static int aac_update_safw_host_devices(struct aac_dev *dev)
1908 {
1909         int i;
1910         int bus;
1911         int target;
1912         int is_exposed = 0;
1913         int rcode = 0;
1914
1915         rcode = aac_setup_safw_adapter(dev);
1916         if (unlikely(rcode < 0)) {
1917                 goto out;
1918         }
1919
1920         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1921
1922                 bus = get_bus_number(i);
1923                 target = get_target_number(i);
1924
1925                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1926
1927                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1928                         aac_add_safw_device(dev, bus, target);
1929                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1930                                                                 is_exposed)
1931                         aac_remove_safw_device(dev, bus, target);
1932         }
1933 out:
1934         return rcode;
1935 }
1936
1937 static int aac_scan_safw_host(struct aac_dev *dev)
1938 {
1939         int rcode = 0;
1940
1941         rcode = aac_update_safw_host_devices(dev);
1942         if (rcode)
1943                 aac_schedule_safw_scan_worker(dev);
1944
1945         return rcode;
1946 }
1947
1948 int aac_scan_host(struct aac_dev *dev)
1949 {
1950         int rcode = 0;
1951
1952         mutex_lock(&dev->scan_mutex);
1953         if (dev->sa_firmware)
1954                 rcode = aac_scan_safw_host(dev);
1955         else
1956                 scsi_scan_host(dev->scsi_host_ptr);
1957         mutex_unlock(&dev->scan_mutex);
1958
1959         return rcode;
1960 }
1961
1962 /**
1963  *      aac_handle_sa_aif       Handle a message from the firmware
1964  *      @dev: Which adapter this fib is from
1965  *      @fibptr: Pointer to fibptr from adapter
1966  *
1967  *      This routine handles a driver notify fib from the adapter and
1968  *      dispatches it to the appropriate routine for handling.
1969  */
1970 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1971 {
1972         int i;
1973         u32 events = 0;
1974
1975         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1976                 events = SA_AIF_HOTPLUG;
1977         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1978                 events = SA_AIF_HARDWARE;
1979         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1980                 events = SA_AIF_PDEV_CHANGE;
1981         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1982                 events = SA_AIF_LDEV_CHANGE;
1983         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1984                 events = SA_AIF_BPSTAT_CHANGE;
1985         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1986                 events = SA_AIF_BPCFG_CHANGE;
1987
1988         switch (events) {
1989         case SA_AIF_HOTPLUG:
1990         case SA_AIF_HARDWARE:
1991         case SA_AIF_PDEV_CHANGE:
1992         case SA_AIF_LDEV_CHANGE:
1993         case SA_AIF_BPCFG_CHANGE:
1994
1995                 aac_scan_host(dev);
1996
1997                 break;
1998
1999         case SA_AIF_BPSTAT_CHANGE:
2000                 /* currently do nothing */
2001                 break;
2002         }
2003
2004         for (i = 1; i <= 10; ++i) {
2005                 events = src_readl(dev, MUnit.IDR);
2006                 if (events & (1<<23)) {
2007                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2008                                 i, 10);
2009                         ssleep(1);
2010                 }
2011         }
2012 }
2013
2014 static int get_fib_count(struct aac_dev *dev)
2015 {
2016         unsigned int num = 0;
2017         struct list_head *entry;
2018         unsigned long flagv;
2019
2020         /*
2021          * Warning: no sleep allowed while
2022          * holding spinlock. We take the estimate
2023          * and pre-allocate a set of fibs outside the
2024          * lock.
2025          */
2026         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2027                         / sizeof(struct hw_fib); /* some extra */
2028         spin_lock_irqsave(&dev->fib_lock, flagv);
2029         entry = dev->fib_list.next;
2030         while (entry != &dev->fib_list) {
2031                 entry = entry->next;
2032                 ++num;
2033         }
2034         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2035
2036         return num;
2037 }
2038
2039 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2040                                                 struct fib **fib_pool,
2041                                                 unsigned int num)
2042 {
2043         struct hw_fib **hw_fib_p;
2044         struct fib **fib_p;
2045
2046         hw_fib_p = hw_fib_pool;
2047         fib_p = fib_pool;
2048         while (hw_fib_p < &hw_fib_pool[num]) {
2049                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2050                 if (!(*(hw_fib_p++))) {
2051                         --hw_fib_p;
2052                         break;
2053                 }
2054
2055                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2056                 if (!(*(fib_p++))) {
2057                         kfree(*(--hw_fib_p));
2058                         break;
2059                 }
2060         }
2061
2062         /*
2063          * Get the actual number of allocated fibs
2064          */
2065         num = hw_fib_p - hw_fib_pool;
2066         return num;
2067 }
2068
2069 static void wakeup_fibctx_threads(struct aac_dev *dev,
2070                                                 struct hw_fib **hw_fib_pool,
2071                                                 struct fib **fib_pool,
2072                                                 struct fib *fib,
2073                                                 struct hw_fib *hw_fib,
2074                                                 unsigned int num)
2075 {
2076         unsigned long flagv;
2077         struct list_head *entry;
2078         struct hw_fib **hw_fib_p;
2079         struct fib **fib_p;
2080         u32 time_now, time_last;
2081         struct hw_fib *hw_newfib;
2082         struct fib *newfib;
2083         struct aac_fib_context *fibctx;
2084
2085         time_now = jiffies/HZ;
2086         spin_lock_irqsave(&dev->fib_lock, flagv);
2087         entry = dev->fib_list.next;
2088         /*
2089          * For each Context that is on the
2090          * fibctxList, make a copy of the
2091          * fib, and then set the event to wake up the
2092          * thread that is waiting for it.
2093          */
2094
2095         hw_fib_p = hw_fib_pool;
2096         fib_p = fib_pool;
2097         while (entry != &dev->fib_list) {
2098                 /*
2099                  * Extract the fibctx
2100                  */
2101                 fibctx = list_entry(entry, struct aac_fib_context,
2102                                 next);
2103                 /*
2104                  * Check if the queue is getting
2105                  * backlogged
2106                  */
2107                 if (fibctx->count > 20) {
2108                         /*
2109                          * It's *not* jiffies folks,
2110                          * but jiffies / HZ so do not
2111                          * panic ...
2112                          */
2113                         time_last = fibctx->jiffies;
2114                         /*
2115                          * Has it been > 2 minutes
2116                          * since the last read off
2117                          * the queue?
2118                          */
2119                         if ((time_now - time_last) > aif_timeout) {
2120                                 entry = entry->next;
2121                                 aac_close_fib_context(dev, fibctx);
2122                                 continue;
2123                         }
2124                 }
2125                 /*
2126                  * Warning: no sleep allowed while
2127                  * holding spinlock
2128                  */
2129                 if (hw_fib_p >= &hw_fib_pool[num]) {
2130                         pr_warn("aifd: didn't allocate NewFib\n");
2131                         entry = entry->next;
2132                         continue;
2133                 }
2134
2135                 hw_newfib = *hw_fib_p;
2136                 *(hw_fib_p++) = NULL;
2137                 newfib = *fib_p;
2138                 *(fib_p++) = NULL;
2139                 /*
2140                  * Make the copy of the FIB
2141                  */
2142                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2143                 memcpy(newfib, fib, sizeof(struct fib));
2144                 newfib->hw_fib_va = hw_newfib;
2145                 /*
2146                  * Put the FIB onto the
2147                  * fibctx's fibs
2148                  */
2149                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2150                 fibctx->count++;
2151                 /*
2152                  * Set the event to wake up the
2153                  * thread that is waiting.
2154                  */
2155                 complete(&fibctx->completion);
2156
2157                 entry = entry->next;
2158         }
2159         /*
2160          *      Set the status of this FIB
2161          */
2162         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2163         aac_fib_adapter_complete(fib, sizeof(u32));
2164         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2165
2166 }
2167
2168 static void aac_process_events(struct aac_dev *dev)
2169 {
2170         struct hw_fib *hw_fib;
2171         struct fib *fib;
2172         unsigned long flags;
2173         spinlock_t *t_lock;
2174
2175         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2176         spin_lock_irqsave(t_lock, flags);
2177
2178         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2179                 struct list_head *entry;
2180                 struct aac_aifcmd *aifcmd;
2181                 unsigned int  num;
2182                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2183                 struct fib **fib_pool, **fib_p;
2184
2185                 set_current_state(TASK_RUNNING);
2186
2187                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2188                 list_del(entry);
2189
2190                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2191                 spin_unlock_irqrestore(t_lock, flags);
2192
2193                 fib = list_entry(entry, struct fib, fiblink);
2194                 hw_fib = fib->hw_fib_va;
2195                 if (dev->sa_firmware) {
2196                         /* Thor AIF */
2197                         aac_handle_sa_aif(dev, fib);
2198                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2199                         goto free_fib;
2200                 }
2201                 /*
2202                  *      We will process the FIB here or pass it to a
2203                  *      worker thread that is TBD. We Really can't
2204                  *      do anything at this point since we don't have
2205                  *      anything defined for this thread to do.
2206                  */
2207                 memset(fib, 0, sizeof(struct fib));
2208                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2209                 fib->size = sizeof(struct fib);
2210                 fib->hw_fib_va = hw_fib;
2211                 fib->data = hw_fib->data;
2212                 fib->dev = dev;
2213                 /*
2214                  *      We only handle AifRequest fibs from the adapter.
2215                  */
2216
2217                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2218                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2219                         /* Handle Driver Notify Events */
2220                         aac_handle_aif(dev, fib);
2221                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2222                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2223                         goto free_fib;
2224                 }
2225                 /*
2226                  * The u32 here is important and intended. We are using
2227                  * 32bit wrapping time to fit the adapter field
2228                  */
2229
2230                 /* Sniff events */
2231                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2232                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2233                         aac_handle_aif(dev, fib);
2234                 }
2235
2236                 /*
2237                  * get number of fibs to process
2238                  */
2239                 num = get_fib_count(dev);
2240                 if (!num)
2241                         goto free_fib;
2242
2243                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2244                                                 GFP_KERNEL);
2245                 if (!hw_fib_pool)
2246                         goto free_fib;
2247
2248                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2249                 if (!fib_pool)
2250                         goto free_hw_fib_pool;
2251
2252                 /*
2253                  * Fill up fib pointer pools with actual fibs
2254                  * and hw_fibs
2255                  */
2256                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2257                 if (!num)
2258                         goto free_mem;
2259
2260                 /*
2261                  * wakeup the thread that is waiting for
2262                  * the response from fw (ioctl)
2263                  */
2264                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2265                                                             fib, hw_fib, num);
2266
2267 free_mem:
2268                 /* Free up the remaining resources */
2269                 hw_fib_p = hw_fib_pool;
2270                 fib_p = fib_pool;
2271                 while (hw_fib_p < &hw_fib_pool[num]) {
2272                         kfree(*hw_fib_p);
2273                         kfree(*fib_p);
2274                         ++fib_p;
2275                         ++hw_fib_p;
2276                 }
2277                 kfree(fib_pool);
2278 free_hw_fib_pool:
2279                 kfree(hw_fib_pool);
2280 free_fib:
2281                 kfree(fib);
2282                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2283                 spin_lock_irqsave(t_lock, flags);
2284         }
2285         /*
2286          *      There are no more AIF's
2287          */
2288         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2289         spin_unlock_irqrestore(t_lock, flags);
2290 }
2291
2292 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2293                                                         u32 datasize)
2294 {
2295         struct aac_srb *srbcmd;
2296         struct sgmap64 *sg64;
2297         dma_addr_t addr;
2298         char *dma_buf;
2299         struct fib *fibptr;
2300         int ret = -ENOMEM;
2301         u32 vbus, vid;
2302
2303         fibptr = aac_fib_alloc(dev);
2304         if (!fibptr)
2305                 goto out;
2306
2307         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2308                                      GFP_KERNEL);
2309         if (!dma_buf)
2310                 goto fib_free_out;
2311
2312         aac_fib_init(fibptr);
2313
2314         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2315         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2316
2317         srbcmd = (struct aac_srb *)fib_data(fibptr);
2318
2319         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2320         srbcmd->channel = cpu_to_le32(vbus);
2321         srbcmd->id = cpu_to_le32(vid);
2322         srbcmd->lun = 0;
2323         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2324         srbcmd->timeout = cpu_to_le32(10);
2325         srbcmd->retry_limit = 0;
2326         srbcmd->cdb_size = cpu_to_le32(12);
2327         srbcmd->count = cpu_to_le32(datasize);
2328
2329         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2330         srbcmd->cdb[0] = BMIC_OUT;
2331         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2332         memcpy(dma_buf, (char *)wellness_str, datasize);
2333
2334         sg64 = (struct sgmap64 *)&srbcmd->sg;
2335         sg64->count = cpu_to_le32(1);
2336         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2337         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2338         sg64->sg[0].count = cpu_to_le32(datasize);
2339
2340         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2341                                 FsaNormal, 1, 1, NULL, NULL);
2342
2343         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2344
2345         /*
2346          * Do not set XferState to zero unless
2347          * receives a response from F/W
2348          */
2349         if (ret >= 0)
2350                 aac_fib_complete(fibptr);
2351
2352         /*
2353          * FIB should be freed only after
2354          * getting the response from the F/W
2355          */
2356         if (ret != -ERESTARTSYS)
2357                 goto fib_free_out;
2358
2359 out:
2360         return ret;
2361 fib_free_out:
2362         aac_fib_free(fibptr);
2363         goto out;
2364 }
2365
2366 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2367 {
2368         struct tm cur_tm;
2369         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2370         u32 datasize = sizeof(wellness_str);
2371         time64_t local_time;
2372         int ret = -ENODEV;
2373
2374         if (!dev->sa_firmware)
2375                 goto out;
2376
2377         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2378         time64_to_tm(local_time, 0, &cur_tm);
2379         cur_tm.tm_mon += 1;
2380         cur_tm.tm_year += 1900;
2381         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2382         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2383         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2384         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2385         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2386         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2387         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2388
2389         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2390
2391 out:
2392         return ret;
2393 }
2394
2395 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2396 {
2397         int ret = -ENOMEM;
2398         struct fib *fibptr;
2399         __le32 *info;
2400
2401         fibptr = aac_fib_alloc(dev);
2402         if (!fibptr)
2403                 goto out;
2404
2405         aac_fib_init(fibptr);
2406         info = (__le32 *)fib_data(fibptr);
2407         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2408         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2409                                         1, 1, NULL, NULL);
2410
2411         /*
2412          * Do not set XferState to zero unless
2413          * receives a response from F/W
2414          */
2415         if (ret >= 0)
2416                 aac_fib_complete(fibptr);
2417
2418         /*
2419          * FIB should be freed only after
2420          * getting the response from the F/W
2421          */
2422         if (ret != -ERESTARTSYS)
2423                 aac_fib_free(fibptr);
2424
2425 out:
2426         return ret;
2427 }
2428
2429 /**
2430  *      aac_command_thread      -       command processing thread
2431  *      @dev: Adapter to monitor
2432  *
2433  *      Waits on the commandready event in it's queue. When the event gets set
2434  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2435  *      until the queue is empty. When the queue is empty it will wait for
2436  *      more FIBs.
2437  */
2438
2439 int aac_command_thread(void *data)
2440 {
2441         struct aac_dev *dev = data;
2442         DECLARE_WAITQUEUE(wait, current);
2443         unsigned long next_jiffies = jiffies + HZ;
2444         unsigned long next_check_jiffies = next_jiffies;
2445         long difference = HZ;
2446
2447         /*
2448          *      We can only have one thread per adapter for AIF's.
2449          */
2450         if (dev->aif_thread)
2451                 return -EINVAL;
2452
2453         /*
2454          *      Let the DPC know it has a place to send the AIF's to.
2455          */
2456         dev->aif_thread = 1;
2457         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2458         set_current_state(TASK_INTERRUPTIBLE);
2459         dprintk ((KERN_INFO "aac_command_thread start\n"));
2460         while (1) {
2461
2462                 aac_process_events(dev);
2463
2464                 /*
2465                  *      Background activity
2466                  */
2467                 if ((time_before(next_check_jiffies,next_jiffies))
2468                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2469                         next_check_jiffies = next_jiffies;
2470                         if (aac_adapter_check_health(dev) == 0) {
2471                                 difference = ((long)(unsigned)check_interval)
2472                                            * HZ;
2473                                 next_check_jiffies = jiffies + difference;
2474                         } else if (!dev->queues)
2475                                 break;
2476                 }
2477                 if (!time_before(next_check_jiffies,next_jiffies)
2478                  && ((difference = next_jiffies - jiffies) <= 0)) {
2479                         struct timespec64 now;
2480                         int ret;
2481
2482                         /* Don't even try to talk to adapter if its sick */
2483                         ret = aac_adapter_check_health(dev);
2484                         if (ret || !dev->queues)
2485                                 break;
2486                         next_check_jiffies = jiffies
2487                                            + ((long)(unsigned)check_interval)
2488                                            * HZ;
2489                         ktime_get_real_ts64(&now);
2490
2491                         /* Synchronize our watches */
2492                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2493                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2494                                 difference = HZ + HZ / 2 -
2495                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2496                         else {
2497                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2498                                         ++now.tv_sec;
2499
2500                                 if (dev->sa_firmware)
2501                                         ret =
2502                                         aac_send_safw_hostttime(dev, &now);
2503                                 else
2504                                         ret = aac_send_hosttime(dev, &now);
2505
2506                                 difference = (long)(unsigned)update_interval*HZ;
2507                         }
2508                         next_jiffies = jiffies + difference;
2509                         if (time_before(next_check_jiffies,next_jiffies))
2510                                 difference = next_check_jiffies - jiffies;
2511                 }
2512                 if (difference <= 0)
2513                         difference = 1;
2514                 set_current_state(TASK_INTERRUPTIBLE);
2515
2516                 if (kthread_should_stop())
2517                         break;
2518
2519                 /*
2520                  * we probably want usleep_range() here instead of the
2521                  * jiffies computation
2522                  */
2523                 schedule_timeout(difference);
2524
2525                 if (kthread_should_stop())
2526                         break;
2527         }
2528         if (dev->queues)
2529                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2530         dev->aif_thread = 0;
2531         return 0;
2532 }
2533
2534 int aac_acquire_irq(struct aac_dev *dev)
2535 {
2536         int i;
2537         int j;
2538         int ret = 0;
2539
2540         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2541                 for (i = 0; i < dev->max_msix; i++) {
2542                         dev->aac_msix[i].vector_no = i;
2543                         dev->aac_msix[i].dev = dev;
2544                         if (request_irq(pci_irq_vector(dev->pdev, i),
2545                                         dev->a_ops.adapter_intr,
2546                                         0, "aacraid", &(dev->aac_msix[i]))) {
2547                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2548                                                 dev->name, dev->id, i);
2549                                 for (j = 0 ; j < i ; j++)
2550                                         free_irq(pci_irq_vector(dev->pdev, j),
2551                                                  &(dev->aac_msix[j]));
2552                                 pci_disable_msix(dev->pdev);
2553                                 ret = -1;
2554                         }
2555                 }
2556         } else {
2557                 dev->aac_msix[0].vector_no = 0;
2558                 dev->aac_msix[0].dev = dev;
2559
2560                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2561                         IRQF_SHARED, "aacraid",
2562                         &(dev->aac_msix[0])) < 0) {
2563                         if (dev->msi)
2564                                 pci_disable_msi(dev->pdev);
2565                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2566                                         dev->name, dev->id);
2567                         ret = -1;
2568                 }
2569         }
2570         return ret;
2571 }
2572
2573 void aac_free_irq(struct aac_dev *dev)
2574 {
2575         int i;
2576
2577         if (aac_is_src(dev)) {
2578                 if (dev->max_msix > 1) {
2579                         for (i = 0; i < dev->max_msix; i++)
2580                                 free_irq(pci_irq_vector(dev->pdev, i),
2581                                          &(dev->aac_msix[i]));
2582                 } else {
2583                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2584                 }
2585         } else {
2586                 free_irq(dev->pdev->irq, dev);
2587         }
2588         if (dev->msi)
2589                 pci_disable_msi(dev->pdev);
2590         else if (dev->max_msix > 1)
2591                 pci_disable_msix(dev->pdev);
2592 }