Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / power / supply / sc27xx_fuel_gauge.c
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3
4 #include <linux/gpio/consumer.h>
5 #include <linux/iio/consumer.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/nvmem-consumer.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/power_supply.h>
13 #include <linux/regmap.h>
14 #include <linux/slab.h>
15
16 /* PMIC global control registers definition */
17 #define SC27XX_MODULE_EN0               0xc08
18 #define SC27XX_CLK_EN0                  0xc18
19 #define SC27XX_FGU_EN                   BIT(7)
20 #define SC27XX_FGU_RTC_EN               BIT(6)
21
22 /* FGU registers definition */
23 #define SC27XX_FGU_START                0x0
24 #define SC27XX_FGU_CONFIG               0x4
25 #define SC27XX_FGU_ADC_CONFIG           0x8
26 #define SC27XX_FGU_STATUS               0xc
27 #define SC27XX_FGU_INT_EN               0x10
28 #define SC27XX_FGU_INT_CLR              0x14
29 #define SC27XX_FGU_INT_STS              0x1c
30 #define SC27XX_FGU_VOLTAGE              0x20
31 #define SC27XX_FGU_OCV                  0x24
32 #define SC27XX_FGU_POCV                 0x28
33 #define SC27XX_FGU_CURRENT              0x2c
34 #define SC27XX_FGU_LOW_OVERLOAD         0x34
35 #define SC27XX_FGU_CLBCNT_SETH          0x50
36 #define SC27XX_FGU_CLBCNT_SETL          0x54
37 #define SC27XX_FGU_CLBCNT_DELTH         0x58
38 #define SC27XX_FGU_CLBCNT_DELTL         0x5c
39 #define SC27XX_FGU_CLBCNT_VALH          0x68
40 #define SC27XX_FGU_CLBCNT_VALL          0x6c
41 #define SC27XX_FGU_CLBCNT_QMAXL         0x74
42 #define SC27XX_FGU_USER_AREA_SET        0xa0
43 #define SC27XX_FGU_USER_AREA_CLEAR      0xa4
44 #define SC27XX_FGU_USER_AREA_STATUS     0xa8
45
46 #define SC27XX_WRITE_SELCLB_EN          BIT(0)
47 #define SC27XX_FGU_CLBCNT_MASK          GENMASK(15, 0)
48 #define SC27XX_FGU_CLBCNT_SHIFT         16
49 #define SC27XX_FGU_LOW_OVERLOAD_MASK    GENMASK(12, 0)
50
51 #define SC27XX_FGU_INT_MASK             GENMASK(9, 0)
52 #define SC27XX_FGU_LOW_OVERLOAD_INT     BIT(0)
53 #define SC27XX_FGU_CLBCNT_DELTA_INT     BIT(2)
54
55 #define SC27XX_FGU_MODE_AREA_MASK       GENMASK(15, 12)
56 #define SC27XX_FGU_CAP_AREA_MASK        GENMASK(11, 0)
57 #define SC27XX_FGU_MODE_AREA_SHIFT      12
58
59 #define SC27XX_FGU_FIRST_POWERTON       GENMASK(3, 0)
60 #define SC27XX_FGU_DEFAULT_CAP          GENMASK(11, 0)
61 #define SC27XX_FGU_NORMAIL_POWERTON     0x5
62
63 #define SC27XX_FGU_CUR_BASIC_ADC        8192
64 #define SC27XX_FGU_SAMPLE_HZ            2
65
66 /*
67  * struct sc27xx_fgu_data: describe the FGU device
68  * @regmap: regmap for register access
69  * @dev: platform device
70  * @battery: battery power supply
71  * @base: the base offset for the controller
72  * @lock: protect the structure
73  * @gpiod: GPIO for battery detection
74  * @channel: IIO channel to get battery temperature
75  * @charge_chan: IIO channel to get charge voltage
76  * @internal_resist: the battery internal resistance in mOhm
77  * @total_cap: the total capacity of the battery in mAh
78  * @init_cap: the initial capacity of the battery in mAh
79  * @alarm_cap: the alarm capacity
80  * @init_clbcnt: the initial coulomb counter
81  * @max_volt: the maximum constant input voltage in millivolt
82  * @min_volt: the minimum drained battery voltage in microvolt
83  * @table_len: the capacity table length
84  * @cur_1000ma_adc: ADC value corresponding to 1000 mA
85  * @vol_1000mv_adc: ADC value corresponding to 1000 mV
86  * @cap_table: capacity table with corresponding ocv
87  */
88 struct sc27xx_fgu_data {
89         struct regmap *regmap;
90         struct device *dev;
91         struct power_supply *battery;
92         u32 base;
93         struct mutex lock;
94         struct gpio_desc *gpiod;
95         struct iio_channel *channel;
96         struct iio_channel *charge_chan;
97         bool bat_present;
98         int internal_resist;
99         int total_cap;
100         int init_cap;
101         int alarm_cap;
102         int init_clbcnt;
103         int max_volt;
104         int min_volt;
105         int table_len;
106         int cur_1000ma_adc;
107         int vol_1000mv_adc;
108         struct power_supply_battery_ocv_table *cap_table;
109 };
110
111 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
112
113 static const char * const sc27xx_charger_supply_name[] = {
114         "sc2731_charger",
115         "sc2720_charger",
116         "sc2721_charger",
117         "sc2723_charger",
118 };
119
120 static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, int adc)
121 {
122         return DIV_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
123 }
124
125 static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, int adc)
126 {
127         return DIV_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
128 }
129
130 static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
131 {
132         return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
133 }
134
135 static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
136 {
137         int ret, status, cap, mode;
138
139         ret = regmap_read(data->regmap,
140                           data->base + SC27XX_FGU_USER_AREA_STATUS, &status);
141         if (ret)
142                 return false;
143
144         /*
145          * We use low 4 bits to save the last battery capacity and high 12 bits
146          * to save the system boot mode.
147          */
148         mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
149         cap = status & SC27XX_FGU_CAP_AREA_MASK;
150
151         /*
152          * When FGU has been powered down, the user area registers became
153          * default value (0xffff), which can be used to valid if the system is
154          * first power on or not.
155          */
156         if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
157                 return true;
158
159         return false;
160 }
161
162 static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
163                                      int boot_mode)
164 {
165         int ret;
166
167         ret = regmap_update_bits(data->regmap,
168                                  data->base + SC27XX_FGU_USER_AREA_CLEAR,
169                                  SC27XX_FGU_MODE_AREA_MASK,
170                                  SC27XX_FGU_MODE_AREA_MASK);
171         if (ret)
172                 return ret;
173
174         /*
175          * Since the user area registers are put on power always-on region,
176          * then these registers changing time will be a little long. Thus
177          * here we should delay 200us to wait until values are updated
178          * successfully according to the datasheet.
179          */
180         udelay(200);
181
182         ret = regmap_update_bits(data->regmap,
183                                  data->base + SC27XX_FGU_USER_AREA_SET,
184                                  SC27XX_FGU_MODE_AREA_MASK,
185                                  boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
186         if (ret)
187                 return ret;
188
189         /*
190          * Since the user area registers are put on power always-on region,
191          * then these registers changing time will be a little long. Thus
192          * here we should delay 200us to wait until values are updated
193          * successfully according to the datasheet.
194          */
195         udelay(200);
196
197         /*
198          * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
199          * make the user area data available, otherwise we can not save the user
200          * area data.
201          */
202         return regmap_update_bits(data->regmap,
203                                   data->base + SC27XX_FGU_USER_AREA_CLEAR,
204                                   SC27XX_FGU_MODE_AREA_MASK, 0);
205 }
206
207 static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
208 {
209         int ret;
210
211         ret = regmap_update_bits(data->regmap,
212                                  data->base + SC27XX_FGU_USER_AREA_CLEAR,
213                                  SC27XX_FGU_CAP_AREA_MASK,
214                                  SC27XX_FGU_CAP_AREA_MASK);
215         if (ret)
216                 return ret;
217
218         /*
219          * Since the user area registers are put on power always-on region,
220          * then these registers changing time will be a little long. Thus
221          * here we should delay 200us to wait until values are updated
222          * successfully according to the datasheet.
223          */
224         udelay(200);
225
226         ret = regmap_update_bits(data->regmap,
227                                  data->base + SC27XX_FGU_USER_AREA_SET,
228                                  SC27XX_FGU_CAP_AREA_MASK, cap);
229         if (ret)
230                 return ret;
231
232         /*
233          * Since the user area registers are put on power always-on region,
234          * then these registers changing time will be a little long. Thus
235          * here we should delay 200us to wait until values are updated
236          * successfully according to the datasheet.
237          */
238         udelay(200);
239
240         /*
241          * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
242          * make the user area data available, otherwise we can not save the user
243          * area data.
244          */
245         return regmap_update_bits(data->regmap,
246                                   data->base + SC27XX_FGU_USER_AREA_CLEAR,
247                                   SC27XX_FGU_CAP_AREA_MASK, 0);
248 }
249
250 static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
251 {
252         int ret, value;
253
254         ret = regmap_read(data->regmap,
255                           data->base + SC27XX_FGU_USER_AREA_STATUS, &value);
256         if (ret)
257                 return ret;
258
259         *cap = value & SC27XX_FGU_CAP_AREA_MASK;
260         return 0;
261 }
262
263 /*
264  * When system boots on, we can not read battery capacity from coulomb
265  * registers, since now the coulomb registers are invalid. So we should
266  * calculate the battery open circuit voltage, and get current battery
267  * capacity according to the capacity table.
268  */
269 static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
270 {
271         int volt, cur, oci, ocv, ret;
272         bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
273
274         /*
275          * If system is not the first power on, we should use the last saved
276          * battery capacity as the initial battery capacity. Otherwise we should
277          * re-calculate the initial battery capacity.
278          */
279         if (!is_first_poweron) {
280                 ret = sc27xx_fgu_read_last_cap(data, cap);
281                 if (ret)
282                         return ret;
283
284                 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
285         }
286
287         /*
288          * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
289          * the first sampled open circuit current.
290          */
291         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL,
292                           &cur);
293         if (ret)
294                 return ret;
295
296         cur <<= 1;
297         oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
298
299         /*
300          * Should get the OCV from SC27XX_FGU_POCV register at the system
301          * beginning. It is ADC values reading from registers which need to
302          * convert the corresponding voltage.
303          */
304         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt);
305         if (ret)
306                 return ret;
307
308         volt = sc27xx_fgu_adc_to_voltage(data, volt);
309         ocv = volt * 1000 - oci * data->internal_resist;
310
311         /*
312          * Parse the capacity table to look up the correct capacity percent
313          * according to current battery's corresponding OCV values.
314          */
315         *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len,
316                                            ocv);
317
318         ret = sc27xx_fgu_save_last_cap(data, *cap);
319         if (ret)
320                 return ret;
321
322         return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
323 }
324
325 static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
326 {
327         int ret;
328
329         clbcnt *= SC27XX_FGU_SAMPLE_HZ;
330
331         ret = regmap_update_bits(data->regmap,
332                                  data->base + SC27XX_FGU_CLBCNT_SETL,
333                                  SC27XX_FGU_CLBCNT_MASK, clbcnt);
334         if (ret)
335                 return ret;
336
337         ret = regmap_update_bits(data->regmap,
338                                  data->base + SC27XX_FGU_CLBCNT_SETH,
339                                  SC27XX_FGU_CLBCNT_MASK,
340                                  clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
341         if (ret)
342                 return ret;
343
344         return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START,
345                                  SC27XX_WRITE_SELCLB_EN,
346                                  SC27XX_WRITE_SELCLB_EN);
347 }
348
349 static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
350 {
351         int ccl, cch, ret;
352
353         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL,
354                           &ccl);
355         if (ret)
356                 return ret;
357
358         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH,
359                           &cch);
360         if (ret)
361                 return ret;
362
363         *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
364         *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
365         *clb_cnt /= SC27XX_FGU_SAMPLE_HZ;
366
367         return 0;
368 }
369
370 static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
371 {
372         int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
373
374         /* Get current coulomb counters firstly */
375         ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt);
376         if (ret)
377                 return ret;
378
379         delta_clbcnt = cur_clbcnt - data->init_clbcnt;
380
381         /*
382          * Convert coulomb counter to delta capacity (mAh), and set multiplier
383          * as 100 to improve the precision.
384          */
385         temp = DIV_ROUND_CLOSEST(delta_clbcnt, 360);
386         temp = sc27xx_fgu_adc_to_current(data, temp);
387
388         /*
389          * Convert to capacity percent of the battery total capacity,
390          * and multiplier is 100 too.
391          */
392         delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
393         *cap = delta_cap + data->init_cap;
394
395         return 0;
396 }
397
398 static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
399 {
400         int ret, vol;
401
402         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol);
403         if (ret)
404                 return ret;
405
406         /*
407          * It is ADC values reading from registers which need to convert to
408          * corresponding voltage values.
409          */
410         *val = sc27xx_fgu_adc_to_voltage(data, vol);
411
412         return 0;
413 }
414
415 static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
416 {
417         int ret, cur;
418
419         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur);
420         if (ret)
421                 return ret;
422
423         /*
424          * It is ADC values reading from registers which need to convert to
425          * corresponding current values.
426          */
427         *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC);
428
429         return 0;
430 }
431
432 static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
433 {
434         int vol, cur, ret;
435
436         ret = sc27xx_fgu_get_vbat_vol(data, &vol);
437         if (ret)
438                 return ret;
439
440         ret = sc27xx_fgu_get_current(data, &cur);
441         if (ret)
442                 return ret;
443
444         /* Return the battery OCV in micro volts. */
445         *val = vol * 1000 - cur * data->internal_resist;
446
447         return 0;
448 }
449
450 static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
451 {
452         int ret, vol;
453
454         ret = iio_read_channel_processed(data->charge_chan, &vol);
455         if (ret < 0)
456                 return ret;
457
458         *val = vol * 1000;
459         return 0;
460 }
461
462 static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
463 {
464         return iio_read_channel_processed(data->channel, temp);
465 }
466
467 static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
468 {
469         int ret, vol;
470
471         ret = sc27xx_fgu_get_vbat_vol(data, &vol);
472         if (ret)
473                 return ret;
474
475         if (vol > data->max_volt)
476                 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
477         else
478                 *health = POWER_SUPPLY_HEALTH_GOOD;
479
480         return 0;
481 }
482
483 static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
484 {
485         union power_supply_propval val;
486         struct power_supply *psy;
487         int i, ret = -EINVAL;
488
489         for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
490                 psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]);
491                 if (!psy)
492                         continue;
493
494                 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS,
495                                                 &val);
496                 power_supply_put(psy);
497                 if (ret)
498                         return ret;
499
500                 *status = val.intval;
501         }
502
503         return ret;
504 }
505
506 static int sc27xx_fgu_get_property(struct power_supply *psy,
507                                    enum power_supply_property psp,
508                                    union power_supply_propval *val)
509 {
510         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
511         int ret = 0;
512         int value;
513
514         mutex_lock(&data->lock);
515
516         switch (psp) {
517         case POWER_SUPPLY_PROP_STATUS:
518                 ret = sc27xx_fgu_get_status(data, &value);
519                 if (ret)
520                         goto error;
521
522                 val->intval = value;
523                 break;
524
525         case POWER_SUPPLY_PROP_HEALTH:
526                 ret = sc27xx_fgu_get_health(data, &value);
527                 if (ret)
528                         goto error;
529
530                 val->intval = value;
531                 break;
532
533         case POWER_SUPPLY_PROP_PRESENT:
534                 val->intval = data->bat_present;
535                 break;
536
537         case POWER_SUPPLY_PROP_TEMP:
538                 ret = sc27xx_fgu_get_temp(data, &value);
539                 if (ret)
540                         goto error;
541
542                 val->intval = value;
543                 break;
544
545         case POWER_SUPPLY_PROP_TECHNOLOGY:
546                 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
547                 break;
548
549         case POWER_SUPPLY_PROP_CAPACITY:
550                 ret = sc27xx_fgu_get_capacity(data, &value);
551                 if (ret)
552                         goto error;
553
554                 val->intval = value;
555                 break;
556
557         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
558                 ret = sc27xx_fgu_get_vbat_vol(data, &value);
559                 if (ret)
560                         goto error;
561
562                 val->intval = value * 1000;
563                 break;
564
565         case POWER_SUPPLY_PROP_VOLTAGE_OCV:
566                 ret = sc27xx_fgu_get_vbat_ocv(data, &value);
567                 if (ret)
568                         goto error;
569
570                 val->intval = value;
571                 break;
572
573         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
574                 ret = sc27xx_fgu_get_charge_vol(data, &value);
575                 if (ret)
576                         goto error;
577
578                 val->intval = value;
579                 break;
580
581         case POWER_SUPPLY_PROP_CURRENT_NOW:
582         case POWER_SUPPLY_PROP_CURRENT_AVG:
583                 ret = sc27xx_fgu_get_current(data, &value);
584                 if (ret)
585                         goto error;
586
587                 val->intval = value * 1000;
588                 break;
589
590         default:
591                 ret = -EINVAL;
592                 break;
593         }
594
595 error:
596         mutex_unlock(&data->lock);
597         return ret;
598 }
599
600 static int sc27xx_fgu_set_property(struct power_supply *psy,
601                                    enum power_supply_property psp,
602                                    const union power_supply_propval *val)
603 {
604         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
605         int ret;
606
607         if (psp != POWER_SUPPLY_PROP_CAPACITY)
608                 return -EINVAL;
609
610         mutex_lock(&data->lock);
611
612         ret = sc27xx_fgu_save_last_cap(data, val->intval);
613
614         mutex_unlock(&data->lock);
615
616         if (ret < 0)
617                 dev_err(data->dev, "failed to save battery capacity\n");
618
619         return ret;
620 }
621
622 static void sc27xx_fgu_external_power_changed(struct power_supply *psy)
623 {
624         struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
625
626         power_supply_changed(data->battery);
627 }
628
629 static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
630                                             enum power_supply_property psp)
631 {
632         return psp == POWER_SUPPLY_PROP_CAPACITY;
633 }
634
635 static enum power_supply_property sc27xx_fgu_props[] = {
636         POWER_SUPPLY_PROP_STATUS,
637         POWER_SUPPLY_PROP_HEALTH,
638         POWER_SUPPLY_PROP_PRESENT,
639         POWER_SUPPLY_PROP_TEMP,
640         POWER_SUPPLY_PROP_TECHNOLOGY,
641         POWER_SUPPLY_PROP_CAPACITY,
642         POWER_SUPPLY_PROP_VOLTAGE_NOW,
643         POWER_SUPPLY_PROP_VOLTAGE_OCV,
644         POWER_SUPPLY_PROP_CURRENT_NOW,
645         POWER_SUPPLY_PROP_CURRENT_AVG,
646         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
647 };
648
649 static const struct power_supply_desc sc27xx_fgu_desc = {
650         .name                   = "sc27xx-fgu",
651         .type                   = POWER_SUPPLY_TYPE_BATTERY,
652         .properties             = sc27xx_fgu_props,
653         .num_properties         = ARRAY_SIZE(sc27xx_fgu_props),
654         .get_property           = sc27xx_fgu_get_property,
655         .set_property           = sc27xx_fgu_set_property,
656         .external_power_changed = sc27xx_fgu_external_power_changed,
657         .property_is_writeable  = sc27xx_fgu_property_is_writeable,
658 };
659
660 static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
661 {
662         data->init_cap = cap;
663         data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
664 }
665
666 static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
667 {
668         struct sc27xx_fgu_data *data = dev_id;
669         int ret, cap, ocv, adc;
670         u32 status;
671
672         mutex_lock(&data->lock);
673
674         ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS,
675                           &status);
676         if (ret)
677                 goto out;
678
679         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
680                                  status, status);
681         if (ret)
682                 goto out;
683
684         /*
685          * When low overload voltage interrupt happens, we should calibrate the
686          * battery capacity in lower voltage stage.
687          */
688         if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
689                 goto out;
690
691         ret = sc27xx_fgu_get_capacity(data, &cap);
692         if (ret)
693                 goto out;
694
695         ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
696         if (ret)
697                 goto out;
698
699         /*
700          * If current OCV value is less than the minimum OCV value in OCV table,
701          * which means now battery capacity is 0%, and we should adjust the
702          * inititial capacity to 0.
703          */
704         if (ocv <= data->cap_table[data->table_len - 1].ocv) {
705                 sc27xx_fgu_adjust_cap(data, 0);
706         } else if (ocv <= data->min_volt) {
707                 /*
708                  * If current OCV value is less than the low alarm voltage, but
709                  * current capacity is larger than the alarm capacity, we should
710                  * adjust the inititial capacity to alarm capacity.
711                  */
712                 if (cap > data->alarm_cap) {
713                         sc27xx_fgu_adjust_cap(data, data->alarm_cap);
714                 } else if (cap <= 0) {
715                         int cur_cap;
716
717                         /*
718                          * If current capacity is equal with 0 or less than 0
719                          * (some error occurs), we should adjust inititial
720                          * capacity to the capacity corresponding to current OCV
721                          * value.
722                          */
723                         cur_cap = power_supply_ocv2cap_simple(data->cap_table,
724                                                               data->table_len,
725                                                               ocv);
726                         sc27xx_fgu_adjust_cap(data, cur_cap);
727                 }
728
729                 /*
730                  * After adjusting the battery capacity, we should set the
731                  * lowest alarm voltage instead.
732                  */
733                 data->min_volt = data->cap_table[data->table_len - 1].ocv;
734                 adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
735                 regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
736                                    SC27XX_FGU_LOW_OVERLOAD_MASK, adc);
737         }
738
739 out:
740         mutex_unlock(&data->lock);
741
742         power_supply_changed(data->battery);
743         return IRQ_HANDLED;
744 }
745
746 static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
747 {
748         struct sc27xx_fgu_data *data = dev_id;
749         int state;
750
751         mutex_lock(&data->lock);
752
753         state = gpiod_get_value_cansleep(data->gpiod);
754         if (state < 0) {
755                 dev_err(data->dev, "failed to get gpio state\n");
756                 mutex_unlock(&data->lock);
757                 return IRQ_RETVAL(state);
758         }
759
760         data->bat_present = !!state;
761
762         mutex_unlock(&data->lock);
763
764         power_supply_changed(data->battery);
765         return IRQ_HANDLED;
766 }
767
768 static void sc27xx_fgu_disable(void *_data)
769 {
770         struct sc27xx_fgu_data *data = _data;
771
772         regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
773         regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
774 }
775
776 static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
777 {
778         /*
779          * Get current capacity (mAh) = battery total capacity (mAh) *
780          * current capacity percent (capacity / 100).
781          */
782         int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
783
784         /*
785          * Convert current capacity (mAh) to coulomb counter according to the
786          * formula: 1 mAh =3.6 coulomb.
787          */
788         return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc, 10);
789 }
790
791 static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
792 {
793         struct nvmem_cell *cell;
794         int calib_data, cal_4200mv;
795         void *buf;
796         size_t len;
797
798         cell = nvmem_cell_get(data->dev, "fgu_calib");
799         if (IS_ERR(cell))
800                 return PTR_ERR(cell);
801
802         buf = nvmem_cell_read(cell, &len);
803         nvmem_cell_put(cell);
804
805         if (IS_ERR(buf))
806                 return PTR_ERR(buf);
807
808         memcpy(&calib_data, buf, min(len, sizeof(u32)));
809
810         /*
811          * Get the ADC value corresponding to 4200 mV from eFuse controller
812          * according to below formula. Then convert to ADC values corresponding
813          * to 1000 mV and 1000 mA.
814          */
815         cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
816         data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
817         data->cur_1000ma_adc = data->vol_1000mv_adc * 4;
818
819         kfree(buf);
820         return 0;
821 }
822
823 static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
824 {
825         struct power_supply_battery_info info = { };
826         struct power_supply_battery_ocv_table *table;
827         int ret, delta_clbcnt, alarm_adc;
828
829         ret = power_supply_get_battery_info(data->battery, &info);
830         if (ret) {
831                 dev_err(data->dev, "failed to get battery information\n");
832                 return ret;
833         }
834
835         data->total_cap = info.charge_full_design_uah / 1000;
836         data->max_volt = info.constant_charge_voltage_max_uv / 1000;
837         data->internal_resist = info.factory_internal_resistance_uohm / 1000;
838         data->min_volt = info.voltage_min_design_uv;
839
840         /*
841          * For SC27XX fuel gauge device, we only use one ocv-capacity
842          * table in normal temperature 20 Celsius.
843          */
844         table = power_supply_find_ocv2cap_table(&info, 20, &data->table_len);
845         if (!table)
846                 return -EINVAL;
847
848         data->cap_table = devm_kmemdup(data->dev, table,
849                                        data->table_len * sizeof(*table),
850                                        GFP_KERNEL);
851         if (!data->cap_table) {
852                 power_supply_put_battery_info(data->battery, &info);
853                 return -ENOMEM;
854         }
855
856         data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table,
857                                                       data->table_len,
858                                                       data->min_volt);
859
860         power_supply_put_battery_info(data->battery, &info);
861
862         ret = sc27xx_fgu_calibration(data);
863         if (ret)
864                 return ret;
865
866         /* Enable the FGU module */
867         ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0,
868                                  SC27XX_FGU_EN, SC27XX_FGU_EN);
869         if (ret) {
870                 dev_err(data->dev, "failed to enable fgu\n");
871                 return ret;
872         }
873
874         /* Enable the FGU RTC clock to make it work */
875         ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0,
876                                  SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
877         if (ret) {
878                 dev_err(data->dev, "failed to enable fgu RTC clock\n");
879                 goto disable_fgu;
880         }
881
882         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR,
883                                  SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
884         if (ret) {
885                 dev_err(data->dev, "failed to clear interrupt status\n");
886                 goto disable_clk;
887         }
888
889         /*
890          * Set the voltage low overload threshold, which means when the battery
891          * voltage is lower than this threshold, the controller will generate
892          * one interrupt to notify.
893          */
894         alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000);
895         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD,
896                                  SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc);
897         if (ret) {
898                 dev_err(data->dev, "failed to set fgu low overload\n");
899                 goto disable_clk;
900         }
901
902         /*
903          * Set the coulomb counter delta threshold, that means when the coulomb
904          * counter change is multiples of the delta threshold, the controller
905          * will generate one interrupt to notify the users to update the battery
906          * capacity. Now we set the delta threshold as a counter value of 1%
907          * capacity.
908          */
909         delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1);
910
911         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL,
912                                  SC27XX_FGU_CLBCNT_MASK, delta_clbcnt);
913         if (ret) {
914                 dev_err(data->dev, "failed to set low delta coulomb counter\n");
915                 goto disable_clk;
916         }
917
918         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH,
919                                  SC27XX_FGU_CLBCNT_MASK,
920                                  delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
921         if (ret) {
922                 dev_err(data->dev, "failed to set high delta coulomb counter\n");
923                 goto disable_clk;
924         }
925
926         /*
927          * Get the boot battery capacity when system powers on, which is used to
928          * initialize the coulomb counter. After that, we can read the coulomb
929          * counter to measure the battery capacity.
930          */
931         ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap);
932         if (ret) {
933                 dev_err(data->dev, "failed to get boot capacity\n");
934                 goto disable_clk;
935         }
936
937         /*
938          * Convert battery capacity to the corresponding initial coulomb counter
939          * and set into coulomb counter registers.
940          */
941         data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap);
942         ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt);
943         if (ret) {
944                 dev_err(data->dev, "failed to initialize coulomb counter\n");
945                 goto disable_clk;
946         }
947
948         return 0;
949
950 disable_clk:
951         regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0);
952 disable_fgu:
953         regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0);
954
955         return ret;
956 }
957
958 static int sc27xx_fgu_probe(struct platform_device *pdev)
959 {
960         struct device_node *np = pdev->dev.of_node;
961         struct power_supply_config fgu_cfg = { };
962         struct sc27xx_fgu_data *data;
963         int ret, irq;
964
965         data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
966         if (!data)
967                 return -ENOMEM;
968
969         data->regmap = dev_get_regmap(pdev->dev.parent, NULL);
970         if (!data->regmap) {
971                 dev_err(&pdev->dev, "failed to get regmap\n");
972                 return -ENODEV;
973         }
974
975         ret = device_property_read_u32(&pdev->dev, "reg", &data->base);
976         if (ret) {
977                 dev_err(&pdev->dev, "failed to get fgu address\n");
978                 return ret;
979         }
980
981         data->channel = devm_iio_channel_get(&pdev->dev, "bat-temp");
982         if (IS_ERR(data->channel)) {
983                 dev_err(&pdev->dev, "failed to get IIO channel\n");
984                 return PTR_ERR(data->channel);
985         }
986
987         data->charge_chan = devm_iio_channel_get(&pdev->dev, "charge-vol");
988         if (IS_ERR(data->charge_chan)) {
989                 dev_err(&pdev->dev, "failed to get charge IIO channel\n");
990                 return PTR_ERR(data->charge_chan);
991         }
992
993         data->gpiod = devm_gpiod_get(&pdev->dev, "bat-detect", GPIOD_IN);
994         if (IS_ERR(data->gpiod)) {
995                 dev_err(&pdev->dev, "failed to get battery detection GPIO\n");
996                 return PTR_ERR(data->gpiod);
997         }
998
999         ret = gpiod_get_value_cansleep(data->gpiod);
1000         if (ret < 0) {
1001                 dev_err(&pdev->dev, "failed to get gpio state\n");
1002                 return ret;
1003         }
1004
1005         data->bat_present = !!ret;
1006         mutex_init(&data->lock);
1007         data->dev = &pdev->dev;
1008         platform_set_drvdata(pdev, data);
1009
1010         fgu_cfg.drv_data = data;
1011         fgu_cfg.of_node = np;
1012         data->battery = devm_power_supply_register(&pdev->dev, &sc27xx_fgu_desc,
1013                                                    &fgu_cfg);
1014         if (IS_ERR(data->battery)) {
1015                 dev_err(&pdev->dev, "failed to register power supply\n");
1016                 return PTR_ERR(data->battery);
1017         }
1018
1019         ret = sc27xx_fgu_hw_init(data);
1020         if (ret) {
1021                 dev_err(&pdev->dev, "failed to initialize fgu hardware\n");
1022                 return ret;
1023         }
1024
1025         ret = devm_add_action(&pdev->dev, sc27xx_fgu_disable, data);
1026         if (ret) {
1027                 sc27xx_fgu_disable(data);
1028                 dev_err(&pdev->dev, "failed to add fgu disable action\n");
1029                 return ret;
1030         }
1031
1032         irq = platform_get_irq(pdev, 0);
1033         if (irq < 0) {
1034                 dev_err(&pdev->dev, "no irq resource specified\n");
1035                 return irq;
1036         }
1037
1038         ret = devm_request_threaded_irq(data->dev, irq, NULL,
1039                                         sc27xx_fgu_interrupt,
1040                                         IRQF_NO_SUSPEND | IRQF_ONESHOT,
1041                                         pdev->name, data);
1042         if (ret) {
1043                 dev_err(data->dev, "failed to request fgu IRQ\n");
1044                 return ret;
1045         }
1046
1047         irq = gpiod_to_irq(data->gpiod);
1048         if (irq < 0) {
1049                 dev_err(&pdev->dev, "failed to translate GPIO to IRQ\n");
1050                 return irq;
1051         }
1052
1053         ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
1054                                         sc27xx_fgu_bat_detection,
1055                                         IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1056                                         IRQF_TRIGGER_FALLING,
1057                                         pdev->name, data);
1058         if (ret) {
1059                 dev_err(&pdev->dev, "failed to request IRQ\n");
1060                 return ret;
1061         }
1062
1063         return 0;
1064 }
1065
1066 #ifdef CONFIG_PM_SLEEP
1067 static int sc27xx_fgu_resume(struct device *dev)
1068 {
1069         struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1070         int ret;
1071
1072         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1073                                  SC27XX_FGU_LOW_OVERLOAD_INT |
1074                                  SC27XX_FGU_CLBCNT_DELTA_INT, 0);
1075         if (ret) {
1076                 dev_err(data->dev, "failed to disable fgu interrupts\n");
1077                 return ret;
1078         }
1079
1080         return 0;
1081 }
1082
1083 static int sc27xx_fgu_suspend(struct device *dev)
1084 {
1085         struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1086         int ret, status, ocv;
1087
1088         ret = sc27xx_fgu_get_status(data, &status);
1089         if (ret)
1090                 return ret;
1091
1092         /*
1093          * If we are charging, then no need to enable the FGU interrupts to
1094          * adjust the battery capacity.
1095          */
1096         if (status != POWER_SUPPLY_STATUS_NOT_CHARGING)
1097                 return 0;
1098
1099         ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1100                                  SC27XX_FGU_LOW_OVERLOAD_INT,
1101                                  SC27XX_FGU_LOW_OVERLOAD_INT);
1102         if (ret) {
1103                 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1104                 return ret;
1105         }
1106
1107         ret = sc27xx_fgu_get_vbat_ocv(data, &ocv);
1108         if (ret)
1109                 goto disable_int;
1110
1111         /*
1112          * If current OCV is less than the minimum voltage, we should enable the
1113          * coulomb counter threshold interrupt to notify events to adjust the
1114          * battery capacity.
1115          */
1116         if (ocv < data->min_volt) {
1117                 ret = regmap_update_bits(data->regmap,
1118                                          data->base + SC27XX_FGU_INT_EN,
1119                                          SC27XX_FGU_CLBCNT_DELTA_INT,
1120                                          SC27XX_FGU_CLBCNT_DELTA_INT);
1121                 if (ret) {
1122                         dev_err(data->dev,
1123                                 "failed to enable coulomb threshold int\n");
1124                         goto disable_int;
1125                 }
1126         }
1127
1128         return 0;
1129
1130 disable_int:
1131         regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN,
1132                            SC27XX_FGU_LOW_OVERLOAD_INT, 0);
1133         return ret;
1134 }
1135 #endif
1136
1137 static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1138         SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1139 };
1140
1141 static const struct of_device_id sc27xx_fgu_of_match[] = {
1142         { .compatible = "sprd,sc2731-fgu", },
1143         { }
1144 };
1145
1146 static struct platform_driver sc27xx_fgu_driver = {
1147         .probe = sc27xx_fgu_probe,
1148         .driver = {
1149                 .name = "sc27xx-fgu",
1150                 .of_match_table = sc27xx_fgu_of_match,
1151                 .pm = &sc27xx_fgu_pm_ops,
1152         }
1153 };
1154
1155 module_platform_driver(sc27xx_fgu_driver);
1156
1157 MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1158 MODULE_LICENSE("GPL v2");