Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW      = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS   = (1 << 1),
50 };
51
52 /*
53  * Lock for manipulating VMD IRQ lists.
54  */
55 static DEFINE_RAW_SPINLOCK(list_lock);
56
57 /**
58  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59  * @node:       list item for parent traversal.
60  * @irq:        back pointer to parent.
61  * @enabled:    true if driver enabled IRQ
62  * @virq:       the virtual IRQ value provided to the requesting driver.
63  *
64  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65  * a VMD IRQ using this structure.
66  */
67 struct vmd_irq {
68         struct list_head        node;
69         struct vmd_irq_list     *irq;
70         bool                    enabled;
71         unsigned int            virq;
72 };
73
74 /**
75  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76  * @irq_list:   the list of irq's the VMD one demuxes to.
77  * @srcu:       SRCU struct for local synchronization.
78  * @count:      number of child IRQs assigned to this vector; used to track
79  *              sharing.
80  */
81 struct vmd_irq_list {
82         struct list_head        irq_list;
83         struct srcu_struct      srcu;
84         unsigned int            count;
85 };
86
87 struct vmd_dev {
88         struct pci_dev          *dev;
89
90         spinlock_t              cfg_lock;
91         char __iomem            *cfgbar;
92
93         int msix_count;
94         struct vmd_irq_list     *irqs;
95
96         struct pci_sysdata      sysdata;
97         struct resource         resources[3];
98         struct irq_domain       *irq_domain;
99         struct pci_bus          *bus;
100         u8                      busn_start;
101
102         struct dma_map_ops      dma_ops;
103         struct dma_domain       dma_domain;
104 };
105
106 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
107 {
108         return container_of(bus->sysdata, struct vmd_dev, sysdata);
109 }
110
111 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
112                                            struct vmd_irq_list *irqs)
113 {
114         return irqs - vmd->irqs;
115 }
116
117 /*
118  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
119  * but the MSI entry for the hardware it's driving will be programmed with a
120  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
121  * domain into one of its own, and the VMD driver de-muxes these for the
122  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
123  * and irq_chip to set this up.
124  */
125 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
126 {
127         struct vmd_irq *vmdirq = data->chip_data;
128         struct vmd_irq_list *irq = vmdirq->irq;
129         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
130
131         msg->address_hi = MSI_ADDR_BASE_HI;
132         msg->address_lo = MSI_ADDR_BASE_LO |
133                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
134         msg->data = 0;
135 }
136
137 /*
138  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
139  */
140 static void vmd_irq_enable(struct irq_data *data)
141 {
142         struct vmd_irq *vmdirq = data->chip_data;
143         unsigned long flags;
144
145         raw_spin_lock_irqsave(&list_lock, flags);
146         WARN_ON(vmdirq->enabled);
147         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
148         vmdirq->enabled = true;
149         raw_spin_unlock_irqrestore(&list_lock, flags);
150
151         data->chip->irq_unmask(data);
152 }
153
154 static void vmd_irq_disable(struct irq_data *data)
155 {
156         struct vmd_irq *vmdirq = data->chip_data;
157         unsigned long flags;
158
159         data->chip->irq_mask(data);
160
161         raw_spin_lock_irqsave(&list_lock, flags);
162         if (vmdirq->enabled) {
163                 list_del_rcu(&vmdirq->node);
164                 vmdirq->enabled = false;
165         }
166         raw_spin_unlock_irqrestore(&list_lock, flags);
167 }
168
169 /*
170  * XXX: Stubbed until we develop acceptable way to not create conflicts with
171  * other devices sharing the same vector.
172  */
173 static int vmd_irq_set_affinity(struct irq_data *data,
174                                 const struct cpumask *dest, bool force)
175 {
176         return -EINVAL;
177 }
178
179 static struct irq_chip vmd_msi_controller = {
180         .name                   = "VMD-MSI",
181         .irq_enable             = vmd_irq_enable,
182         .irq_disable            = vmd_irq_disable,
183         .irq_compose_msi_msg    = vmd_compose_msi_msg,
184         .irq_set_affinity       = vmd_irq_set_affinity,
185 };
186
187 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
188                                      msi_alloc_info_t *arg)
189 {
190         return 0;
191 }
192
193 /*
194  * XXX: We can be even smarter selecting the best IRQ once we solve the
195  * affinity problem.
196  */
197 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
198 {
199         int i, best = 1;
200         unsigned long flags;
201
202         if (vmd->msix_count == 1)
203                 return &vmd->irqs[0];
204
205         /*
206          * White list for fast-interrupt handlers. All others will share the
207          * "slow" interrupt vector.
208          */
209         switch (msi_desc_to_pci_dev(desc)->class) {
210         case PCI_CLASS_STORAGE_EXPRESS:
211                 break;
212         default:
213                 return &vmd->irqs[0];
214         }
215
216         raw_spin_lock_irqsave(&list_lock, flags);
217         for (i = 1; i < vmd->msix_count; i++)
218                 if (vmd->irqs[i].count < vmd->irqs[best].count)
219                         best = i;
220         vmd->irqs[best].count++;
221         raw_spin_unlock_irqrestore(&list_lock, flags);
222
223         return &vmd->irqs[best];
224 }
225
226 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
227                         unsigned int virq, irq_hw_number_t hwirq,
228                         msi_alloc_info_t *arg)
229 {
230         struct msi_desc *desc = arg->desc;
231         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
232         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
233         unsigned int index, vector;
234
235         if (!vmdirq)
236                 return -ENOMEM;
237
238         INIT_LIST_HEAD(&vmdirq->node);
239         vmdirq->irq = vmd_next_irq(vmd, desc);
240         vmdirq->virq = virq;
241         index = index_from_irqs(vmd, vmdirq->irq);
242         vector = pci_irq_vector(vmd->dev, index);
243
244         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
245                             handle_untracked_irq, vmd, NULL);
246         return 0;
247 }
248
249 static void vmd_msi_free(struct irq_domain *domain,
250                         struct msi_domain_info *info, unsigned int virq)
251 {
252         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
253         unsigned long flags;
254
255         synchronize_srcu(&vmdirq->irq->srcu);
256
257         /* XXX: Potential optimization to rebalance */
258         raw_spin_lock_irqsave(&list_lock, flags);
259         vmdirq->irq->count--;
260         raw_spin_unlock_irqrestore(&list_lock, flags);
261
262         kfree(vmdirq);
263 }
264
265 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
266                            int nvec, msi_alloc_info_t *arg)
267 {
268         struct pci_dev *pdev = to_pci_dev(dev);
269         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
270
271         if (nvec > vmd->msix_count)
272                 return vmd->msix_count;
273
274         memset(arg, 0, sizeof(*arg));
275         return 0;
276 }
277
278 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
279 {
280         arg->desc = desc;
281 }
282
283 static struct msi_domain_ops vmd_msi_domain_ops = {
284         .get_hwirq      = vmd_get_hwirq,
285         .msi_init       = vmd_msi_init,
286         .msi_free       = vmd_msi_free,
287         .msi_prepare    = vmd_msi_prepare,
288         .set_desc       = vmd_set_desc,
289 };
290
291 static struct msi_domain_info vmd_msi_domain_info = {
292         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
293                           MSI_FLAG_PCI_MSIX,
294         .ops            = &vmd_msi_domain_ops,
295         .chip           = &vmd_msi_controller,
296 };
297
298 /*
299  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
300  * VMD domain need to be mapped for the VMD, not the device requiring
301  * the mapping.
302  */
303 static struct device *to_vmd_dev(struct device *dev)
304 {
305         struct pci_dev *pdev = to_pci_dev(dev);
306         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
307
308         return &vmd->dev->dev;
309 }
310
311 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
312                        gfp_t flag, unsigned long attrs)
313 {
314         return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
315 }
316
317 static void vmd_free(struct device *dev, size_t size, void *vaddr,
318                      dma_addr_t addr, unsigned long attrs)
319 {
320         return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
321 }
322
323 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
324                     void *cpu_addr, dma_addr_t addr, size_t size,
325                     unsigned long attrs)
326 {
327         return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
328                         attrs);
329 }
330
331 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
332                            void *cpu_addr, dma_addr_t addr, size_t size,
333                            unsigned long attrs)
334 {
335         return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
336                         attrs);
337 }
338
339 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
340                                unsigned long offset, size_t size,
341                                enum dma_data_direction dir,
342                                unsigned long attrs)
343 {
344         return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
345                         attrs);
346 }
347
348 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
349                            enum dma_data_direction dir, unsigned long attrs)
350 {
351         dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
352 }
353
354 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
355                       enum dma_data_direction dir, unsigned long attrs)
356 {
357         return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
358 }
359
360 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
361                          enum dma_data_direction dir, unsigned long attrs)
362 {
363         dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
364 }
365
366 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
367                                     size_t size, enum dma_data_direction dir)
368 {
369         dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
370 }
371
372 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
373                                        size_t size, enum dma_data_direction dir)
374 {
375         dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
376 }
377
378 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
379                                 int nents, enum dma_data_direction dir)
380 {
381         dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
382 }
383
384 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
385                                    int nents, enum dma_data_direction dir)
386 {
387         dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
388 }
389
390 static int vmd_dma_supported(struct device *dev, u64 mask)
391 {
392         return dma_supported(to_vmd_dev(dev), mask);
393 }
394
395 static u64 vmd_get_required_mask(struct device *dev)
396 {
397         return dma_get_required_mask(to_vmd_dev(dev));
398 }
399
400 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401 {
402         struct dma_domain *domain = &vmd->dma_domain;
403
404         if (get_dma_ops(&vmd->dev->dev))
405                 del_dma_domain(domain);
406 }
407
408 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
409         do {                                    \
410                 if (source->fn)                 \
411                         dest->fn = vmd_##fn;    \
412         } while (0)
413
414 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415 {
416         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417         struct dma_map_ops *dest = &vmd->dma_ops;
418         struct dma_domain *domain = &vmd->dma_domain;
419
420         domain->domain_nr = vmd->sysdata.domain;
421         domain->dma_ops = dest;
422
423         if (!source)
424                 return;
425         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426         ASSIGN_VMD_DMA_OPS(source, dest, free);
427         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
438         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
439         add_dma_domain(domain);
440 }
441 #undef ASSIGN_VMD_DMA_OPS
442
443 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
444                                   unsigned int devfn, int reg, int len)
445 {
446         char __iomem *addr = vmd->cfgbar +
447                              ((bus->number - vmd->busn_start) << 20) +
448                              (devfn << 12) + reg;
449
450         if ((addr - vmd->cfgbar) + len >=
451             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
452                 return NULL;
453
454         return addr;
455 }
456
457 /*
458  * CPU may deadlock if config space is not serialized on some versions of this
459  * hardware, so all config space access is done under a spinlock.
460  */
461 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
462                         int len, u32 *value)
463 {
464         struct vmd_dev *vmd = vmd_from_bus(bus);
465         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
466         unsigned long flags;
467         int ret = 0;
468
469         if (!addr)
470                 return -EFAULT;
471
472         spin_lock_irqsave(&vmd->cfg_lock, flags);
473         switch (len) {
474         case 1:
475                 *value = readb(addr);
476                 break;
477         case 2:
478                 *value = readw(addr);
479                 break;
480         case 4:
481                 *value = readl(addr);
482                 break;
483         default:
484                 ret = -EINVAL;
485                 break;
486         }
487         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
488         return ret;
489 }
490
491 /*
492  * VMD h/w converts non-posted config writes to posted memory writes. The
493  * read-back in this function forces the completion so it returns only after
494  * the config space was written, as expected.
495  */
496 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
497                          int len, u32 value)
498 {
499         struct vmd_dev *vmd = vmd_from_bus(bus);
500         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
501         unsigned long flags;
502         int ret = 0;
503
504         if (!addr)
505                 return -EFAULT;
506
507         spin_lock_irqsave(&vmd->cfg_lock, flags);
508         switch (len) {
509         case 1:
510                 writeb(value, addr);
511                 readb(addr);
512                 break;
513         case 2:
514                 writew(value, addr);
515                 readw(addr);
516                 break;
517         case 4:
518                 writel(value, addr);
519                 readl(addr);
520                 break;
521         default:
522                 ret = -EINVAL;
523                 break;
524         }
525         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
526         return ret;
527 }
528
529 static struct pci_ops vmd_ops = {
530         .read           = vmd_pci_read,
531         .write          = vmd_pci_write,
532 };
533
534 static void vmd_attach_resources(struct vmd_dev *vmd)
535 {
536         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
537         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
538 }
539
540 static void vmd_detach_resources(struct vmd_dev *vmd)
541 {
542         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
543         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
544 }
545
546 /*
547  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
548  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
549  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
550  * currently reserved.
551  */
552 static int vmd_find_free_domain(void)
553 {
554         int domain = 0xffff;
555         struct pci_bus *bus = NULL;
556
557         while ((bus = pci_find_next_bus(bus)) != NULL)
558                 domain = max_t(int, domain, pci_domain_nr(bus));
559         return domain + 1;
560 }
561
562 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
563 {
564         struct pci_sysdata *sd = &vmd->sysdata;
565         struct fwnode_handle *fn;
566         struct resource *res;
567         u32 upper_bits;
568         unsigned long flags;
569         LIST_HEAD(resources);
570         resource_size_t offset[2] = {0};
571         resource_size_t membar2_offset = 0x2000;
572         struct pci_bus *child;
573
574         /*
575          * Shadow registers may exist in certain VMD device ids which allow
576          * guests to correctly assign host physical addresses to the root ports
577          * and child devices. These registers will either return the host value
578          * or 0, depending on an enable bit in the VMD device.
579          */
580         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
581                 u32 vmlock;
582                 int ret;
583
584                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
585                 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
586                 if (ret || vmlock == ~0)
587                         return -ENODEV;
588
589                 if (MB2_SHADOW_EN(vmlock)) {
590                         void __iomem *membar2;
591
592                         membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
593                         if (!membar2)
594                                 return -ENOMEM;
595                         offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
596                                         readq(membar2 + MB2_SHADOW_OFFSET);
597                         offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
598                                         readq(membar2 + MB2_SHADOW_OFFSET + 8);
599                         pci_iounmap(vmd->dev, membar2);
600                 }
601         }
602
603         /*
604          * Certain VMD devices may have a root port configuration option which
605          * limits the bus range to between 0-127 or 128-255
606          */
607         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
608                 u32 vmcap, vmconfig;
609
610                 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
611                 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
612                 if (BUS_RESTRICT_CAP(vmcap) &&
613                     (BUS_RESTRICT_CFG(vmconfig) == 0x1))
614                         vmd->busn_start = 128;
615         }
616
617         res = &vmd->dev->resource[VMD_CFGBAR];
618         vmd->resources[0] = (struct resource) {
619                 .name  = "VMD CFGBAR",
620                 .start = vmd->busn_start,
621                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
622                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623         };
624
625         /*
626          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627          * put 32-bit resources in the window.
628          *
629          * There's no hardware reason why a 64-bit window *couldn't*
630          * contain a 32-bit resource, but pbus_size_mem() computes the
631          * bridge window size assuming a 64-bit window will contain no
632          * 32-bit resources.  __pci_assign_resource() enforces that
633          * artificial restriction to make sure everything will fit.
634          *
635          * The only way we could use a 64-bit non-prefetchable MEMBAR is
636          * if its address is <4GB so that we can convert it to a 32-bit
637          * resource.  To be visible to the host OS, all VMD endpoints must
638          * be initially configured by platform BIOS, which includes setting
639          * up these resources.  We can assume the device is configured
640          * according to the platform needs.
641          */
642         res = &vmd->dev->resource[VMD_MEMBAR1];
643         upper_bits = upper_32_bits(res->end);
644         flags = res->flags & ~IORESOURCE_SIZEALIGN;
645         if (!upper_bits)
646                 flags &= ~IORESOURCE_MEM_64;
647         vmd->resources[1] = (struct resource) {
648                 .name  = "VMD MEMBAR1",
649                 .start = res->start,
650                 .end   = res->end,
651                 .flags = flags,
652                 .parent = res,
653         };
654
655         res = &vmd->dev->resource[VMD_MEMBAR2];
656         upper_bits = upper_32_bits(res->end);
657         flags = res->flags & ~IORESOURCE_SIZEALIGN;
658         if (!upper_bits)
659                 flags &= ~IORESOURCE_MEM_64;
660         vmd->resources[2] = (struct resource) {
661                 .name  = "VMD MEMBAR2",
662                 .start = res->start + membar2_offset,
663                 .end   = res->end,
664                 .flags = flags,
665                 .parent = res,
666         };
667
668         sd->vmd_domain = true;
669         sd->domain = vmd_find_free_domain();
670         if (sd->domain < 0)
671                 return sd->domain;
672
673         sd->node = pcibus_to_node(vmd->dev->bus);
674
675         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
676         if (!fn)
677                 return -ENODEV;
678
679         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
680                                                     x86_vector_domain);
681         irq_domain_free_fwnode(fn);
682         if (!vmd->irq_domain)
683                 return -ENODEV;
684
685         pci_add_resource(&resources, &vmd->resources[0]);
686         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688
689         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690                                        &vmd_ops, sd, &resources);
691         if (!vmd->bus) {
692                 pci_free_resource_list(&resources);
693                 irq_domain_remove(vmd->irq_domain);
694                 return -ENODEV;
695         }
696
697         vmd_attach_resources(vmd);
698         vmd_setup_dma_ops(vmd);
699         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700
701         pci_scan_child_bus(vmd->bus);
702         pci_assign_unassigned_bus_resources(vmd->bus);
703
704         /*
705          * VMD root buses are virtual and don't return true on pci_is_pcie()
706          * and will fail pcie_bus_configure_settings() early. It can instead be
707          * run on each of the real root ports.
708          */
709         list_for_each_entry(child, &vmd->bus->children, node)
710                 pcie_bus_configure_settings(child);
711
712         pci_bus_add_devices(vmd->bus);
713
714         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715                                "domain"), "Can't create symlink to domain\n");
716         return 0;
717 }
718
719 static irqreturn_t vmd_irq(int irq, void *data)
720 {
721         struct vmd_irq_list *irqs = data;
722         struct vmd_irq *vmdirq;
723         int idx;
724
725         idx = srcu_read_lock(&irqs->srcu);
726         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
727                 generic_handle_irq(vmdirq->virq);
728         srcu_read_unlock(&irqs->srcu, idx);
729
730         return IRQ_HANDLED;
731 }
732
733 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
734 {
735         struct vmd_dev *vmd;
736         int i, err;
737
738         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
739                 return -ENOMEM;
740
741         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
742         if (!vmd)
743                 return -ENOMEM;
744
745         vmd->dev = dev;
746         err = pcim_enable_device(dev);
747         if (err < 0)
748                 return err;
749
750         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
751         if (!vmd->cfgbar)
752                 return -ENOMEM;
753
754         pci_set_master(dev);
755         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
756             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
757                 return -ENODEV;
758
759         vmd->msix_count = pci_msix_vec_count(dev);
760         if (vmd->msix_count < 0)
761                 return -ENODEV;
762
763         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
764                                         PCI_IRQ_MSIX);
765         if (vmd->msix_count < 0)
766                 return vmd->msix_count;
767
768         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
769                                  GFP_KERNEL);
770         if (!vmd->irqs)
771                 return -ENOMEM;
772
773         for (i = 0; i < vmd->msix_count; i++) {
774                 err = init_srcu_struct(&vmd->irqs[i].srcu);
775                 if (err)
776                         return err;
777
778                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
779                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
780                                        vmd_irq, IRQF_NO_THREAD,
781                                        "vmd", &vmd->irqs[i]);
782                 if (err)
783                         return err;
784         }
785
786         spin_lock_init(&vmd->cfg_lock);
787         pci_set_drvdata(dev, vmd);
788         err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
789         if (err)
790                 return err;
791
792         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
793                  vmd->sysdata.domain);
794         return 0;
795 }
796
797 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
798 {
799         int i;
800
801         for (i = 0; i < vmd->msix_count; i++)
802                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
803 }
804
805 static void vmd_remove(struct pci_dev *dev)
806 {
807         struct vmd_dev *vmd = pci_get_drvdata(dev);
808
809         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
810         pci_stop_root_bus(vmd->bus);
811         pci_remove_root_bus(vmd->bus);
812         vmd_cleanup_srcu(vmd);
813         vmd_teardown_dma_ops(vmd);
814         vmd_detach_resources(vmd);
815         irq_domain_remove(vmd->irq_domain);
816 }
817
818 #ifdef CONFIG_PM_SLEEP
819 static int vmd_suspend(struct device *dev)
820 {
821         struct pci_dev *pdev = to_pci_dev(dev);
822         struct vmd_dev *vmd = pci_get_drvdata(pdev);
823         int i;
824
825         for (i = 0; i < vmd->msix_count; i++)
826                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
827
828         pci_save_state(pdev);
829         return 0;
830 }
831
832 static int vmd_resume(struct device *dev)
833 {
834         struct pci_dev *pdev = to_pci_dev(dev);
835         struct vmd_dev *vmd = pci_get_drvdata(pdev);
836         int err, i;
837
838         for (i = 0; i < vmd->msix_count; i++) {
839                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
840                                        vmd_irq, IRQF_NO_THREAD,
841                                        "vmd", &vmd->irqs[i]);
842                 if (err)
843                         return err;
844         }
845
846         pci_restore_state(pdev);
847         return 0;
848 }
849 #endif
850 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
851
852 static const struct pci_device_id vmd_ids[] = {
853         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
854         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
855                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
856                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
857         {0,}
858 };
859 MODULE_DEVICE_TABLE(pci, vmd_ids);
860
861 static struct pci_driver vmd_drv = {
862         .name           = "vmd",
863         .id_table       = vmd_ids,
864         .probe          = vmd_probe,
865         .remove         = vmd_remove,
866         .driver         = {
867                 .pm     = &vmd_dev_pm_ops,
868         },
869 };
870 module_pci_driver(vmd_drv);
871
872 MODULE_AUTHOR("Intel Corporation");
873 MODULE_LICENSE("GPL v2");
874 MODULE_VERSION("0.6");