Merge https://gitlab.denx.de/u-boot/custodians/u-boot-x86
[oweals/u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6
7 #include <common.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <malloc.h>
12 #include <memalign.h>
13 #include <pci.h>
14 #include <time.h>
15 #include <dm/device-internal.h>
16 #include <linux/compat.h>
17 #include "nvme.h"
18
19 #define NVME_Q_DEPTH            2
20 #define NVME_AQ_DEPTH           2
21 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
22 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
23 #define ADMIN_TIMEOUT           60
24 #define IO_TIMEOUT              30
25 #define MAX_PRP_POOL            512
26
27 enum nvme_queue_id {
28         NVME_ADMIN_Q,
29         NVME_IO_Q,
30         NVME_Q_NUM,
31 };
32
33 /*
34  * An NVM Express queue. Each device has at least two (one for admin
35  * commands and one for I/O commands).
36  */
37 struct nvme_queue {
38         struct nvme_dev *dev;
39         struct nvme_command *sq_cmds;
40         struct nvme_completion *cqes;
41         wait_queue_head_t sq_full;
42         u32 __iomem *q_db;
43         u16 q_depth;
44         s16 cq_vector;
45         u16 sq_head;
46         u16 sq_tail;
47         u16 cq_head;
48         u16 qid;
49         u8 cq_phase;
50         u8 cqe_seen;
51         unsigned long cmdid_data[];
52 };
53
54 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
55 {
56         u32 bit = enabled ? NVME_CSTS_RDY : 0;
57         int timeout;
58         ulong start;
59
60         /* Timeout field in the CAP register is in 500 millisecond units */
61         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
62
63         start = get_timer(0);
64         while (get_timer(start) < timeout) {
65                 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
66                         return 0;
67         }
68
69         return -ETIME;
70 }
71
72 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
73                            int total_len, u64 dma_addr)
74 {
75         u32 page_size = dev->page_size;
76         int offset = dma_addr & (page_size - 1);
77         u64 *prp_pool;
78         int length = total_len;
79         int i, nprps;
80         u32 prps_per_page = (page_size >> 3) - 1;
81         u32 num_pages;
82
83         length -= (page_size - offset);
84
85         if (length <= 0) {
86                 *prp2 = 0;
87                 return 0;
88         }
89
90         if (length)
91                 dma_addr += (page_size - offset);
92
93         if (length <= page_size) {
94                 *prp2 = dma_addr;
95                 return 0;
96         }
97
98         nprps = DIV_ROUND_UP(length, page_size);
99         num_pages = DIV_ROUND_UP(nprps, prps_per_page);
100
101         if (nprps > dev->prp_entry_num) {
102                 free(dev->prp_pool);
103                 /*
104                  * Always increase in increments of pages.  It doesn't waste
105                  * much memory and reduces the number of allocations.
106                  */
107                 dev->prp_pool = memalign(page_size, num_pages * page_size);
108                 if (!dev->prp_pool) {
109                         printf("Error: malloc prp_pool fail\n");
110                         return -ENOMEM;
111                 }
112                 dev->prp_entry_num = prps_per_page * num_pages;
113         }
114
115         prp_pool = dev->prp_pool;
116         i = 0;
117         while (nprps) {
118                 if (i == ((page_size >> 3) - 1)) {
119                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
120                                         page_size);
121                         i = 0;
122                         prp_pool += page_size;
123                 }
124                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
125                 dma_addr += page_size;
126                 nprps--;
127         }
128         *prp2 = (ulong)dev->prp_pool;
129
130         flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
131                            dev->prp_entry_num * sizeof(u64));
132
133         return 0;
134 }
135
136 static __le16 nvme_get_cmd_id(void)
137 {
138         static unsigned short cmdid;
139
140         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
141 }
142
143 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
144 {
145         u64 start = (ulong)&nvmeq->cqes[index];
146         u64 stop = start + sizeof(struct nvme_completion);
147
148         invalidate_dcache_range(start, stop);
149
150         return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
151 }
152
153 /**
154  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
155  *
156  * @nvmeq:      The queue to use
157  * @cmd:        The command to send
158  */
159 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
160 {
161         u16 tail = nvmeq->sq_tail;
162
163         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
164         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
165                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
166
167         if (++tail == nvmeq->q_depth)
168                 tail = 0;
169         writel(tail, nvmeq->q_db);
170         nvmeq->sq_tail = tail;
171 }
172
173 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
174                                 struct nvme_command *cmd,
175                                 u32 *result, unsigned timeout)
176 {
177         u16 head = nvmeq->cq_head;
178         u16 phase = nvmeq->cq_phase;
179         u16 status;
180         ulong start_time;
181         ulong timeout_us = timeout * 100000;
182
183         cmd->common.command_id = nvme_get_cmd_id();
184         nvme_submit_cmd(nvmeq, cmd);
185
186         start_time = timer_get_us();
187
188         for (;;) {
189                 status = nvme_read_completion_status(nvmeq, head);
190                 if ((status & 0x01) == phase)
191                         break;
192                 if (timeout_us > 0 && (timer_get_us() - start_time)
193                     >= timeout_us)
194                         return -ETIMEDOUT;
195         }
196
197         status >>= 1;
198         if (status) {
199                 printf("ERROR: status = %x, phase = %d, head = %d\n",
200                        status, phase, head);
201                 status = 0;
202                 if (++head == nvmeq->q_depth) {
203                         head = 0;
204                         phase = !phase;
205                 }
206                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
207                 nvmeq->cq_head = head;
208                 nvmeq->cq_phase = phase;
209
210                 return -EIO;
211         }
212
213         if (result)
214                 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
215
216         if (++head == nvmeq->q_depth) {
217                 head = 0;
218                 phase = !phase;
219         }
220         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
221         nvmeq->cq_head = head;
222         nvmeq->cq_phase = phase;
223
224         return status;
225 }
226
227 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
228                                  u32 *result)
229 {
230         return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
231                                     result, ADMIN_TIMEOUT);
232 }
233
234 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
235                                            int qid, int depth)
236 {
237         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
238         if (!nvmeq)
239                 return NULL;
240         memset(nvmeq, 0, sizeof(*nvmeq));
241
242         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
243         if (!nvmeq->cqes)
244                 goto free_nvmeq;
245         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
246
247         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
248         if (!nvmeq->sq_cmds)
249                 goto free_queue;
250         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
251
252         nvmeq->dev = dev;
253
254         nvmeq->cq_head = 0;
255         nvmeq->cq_phase = 1;
256         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
257         nvmeq->q_depth = depth;
258         nvmeq->qid = qid;
259         dev->queue_count++;
260         dev->queues[qid] = nvmeq;
261
262         return nvmeq;
263
264  free_queue:
265         free((void *)nvmeq->cqes);
266  free_nvmeq:
267         free(nvmeq);
268
269         return NULL;
270 }
271
272 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
273 {
274         struct nvme_command c;
275
276         memset(&c, 0, sizeof(c));
277         c.delete_queue.opcode = opcode;
278         c.delete_queue.qid = cpu_to_le16(id);
279
280         return nvme_submit_admin_cmd(dev, &c, NULL);
281 }
282
283 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
284 {
285         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
286 }
287
288 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
289 {
290         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
291 }
292
293 static int nvme_enable_ctrl(struct nvme_dev *dev)
294 {
295         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
296         dev->ctrl_config |= NVME_CC_ENABLE;
297         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
298
299         return nvme_wait_ready(dev, true);
300 }
301
302 static int nvme_disable_ctrl(struct nvme_dev *dev)
303 {
304         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
305         dev->ctrl_config &= ~NVME_CC_ENABLE;
306         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
307
308         return nvme_wait_ready(dev, false);
309 }
310
311 static void nvme_free_queue(struct nvme_queue *nvmeq)
312 {
313         free((void *)nvmeq->cqes);
314         free(nvmeq->sq_cmds);
315         free(nvmeq);
316 }
317
318 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
319 {
320         int i;
321
322         for (i = dev->queue_count - 1; i >= lowest; i--) {
323                 struct nvme_queue *nvmeq = dev->queues[i];
324                 dev->queue_count--;
325                 dev->queues[i] = NULL;
326                 nvme_free_queue(nvmeq);
327         }
328 }
329
330 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
331 {
332         struct nvme_dev *dev = nvmeq->dev;
333
334         nvmeq->sq_tail = 0;
335         nvmeq->cq_head = 0;
336         nvmeq->cq_phase = 1;
337         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
338         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
339         flush_dcache_range((ulong)nvmeq->cqes,
340                            (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
341         dev->online_queues++;
342 }
343
344 static int nvme_configure_admin_queue(struct nvme_dev *dev)
345 {
346         int result;
347         u32 aqa;
348         u64 cap = dev->cap;
349         struct nvme_queue *nvmeq;
350         /* most architectures use 4KB as the page size */
351         unsigned page_shift = 12;
352         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
353         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
354
355         if (page_shift < dev_page_min) {
356                 debug("Device minimum page size (%u) too large for host (%u)\n",
357                       1 << dev_page_min, 1 << page_shift);
358                 return -ENODEV;
359         }
360
361         if (page_shift > dev_page_max) {
362                 debug("Device maximum page size (%u) smaller than host (%u)\n",
363                       1 << dev_page_max, 1 << page_shift);
364                 page_shift = dev_page_max;
365         }
366
367         result = nvme_disable_ctrl(dev);
368         if (result < 0)
369                 return result;
370
371         nvmeq = dev->queues[NVME_ADMIN_Q];
372         if (!nvmeq) {
373                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
374                 if (!nvmeq)
375                         return -ENOMEM;
376         }
377
378         aqa = nvmeq->q_depth - 1;
379         aqa |= aqa << 16;
380         aqa |= aqa << 16;
381
382         dev->page_size = 1 << page_shift;
383
384         dev->ctrl_config = NVME_CC_CSS_NVM;
385         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
386         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
387         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
388
389         writel(aqa, &dev->bar->aqa);
390         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
391         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
392
393         result = nvme_enable_ctrl(dev);
394         if (result)
395                 goto free_nvmeq;
396
397         nvmeq->cq_vector = 0;
398
399         nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
400
401         return result;
402
403  free_nvmeq:
404         nvme_free_queues(dev, 0);
405
406         return result;
407 }
408
409 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
410                             struct nvme_queue *nvmeq)
411 {
412         struct nvme_command c;
413         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
414
415         memset(&c, 0, sizeof(c));
416         c.create_cq.opcode = nvme_admin_create_cq;
417         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
418         c.create_cq.cqid = cpu_to_le16(qid);
419         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
420         c.create_cq.cq_flags = cpu_to_le16(flags);
421         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
422
423         return nvme_submit_admin_cmd(dev, &c, NULL);
424 }
425
426 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
427                             struct nvme_queue *nvmeq)
428 {
429         struct nvme_command c;
430         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
431
432         memset(&c, 0, sizeof(c));
433         c.create_sq.opcode = nvme_admin_create_sq;
434         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
435         c.create_sq.sqid = cpu_to_le16(qid);
436         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
437         c.create_sq.sq_flags = cpu_to_le16(flags);
438         c.create_sq.cqid = cpu_to_le16(qid);
439
440         return nvme_submit_admin_cmd(dev, &c, NULL);
441 }
442
443 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
444                   unsigned cns, dma_addr_t dma_addr)
445 {
446         struct nvme_command c;
447         u32 page_size = dev->page_size;
448         int offset = dma_addr & (page_size - 1);
449         int length = sizeof(struct nvme_id_ctrl);
450         int ret;
451
452         memset(&c, 0, sizeof(c));
453         c.identify.opcode = nvme_admin_identify;
454         c.identify.nsid = cpu_to_le32(nsid);
455         c.identify.prp1 = cpu_to_le64(dma_addr);
456
457         length -= (page_size - offset);
458         if (length <= 0) {
459                 c.identify.prp2 = 0;
460         } else {
461                 dma_addr += (page_size - offset);
462                 c.identify.prp2 = cpu_to_le64(dma_addr);
463         }
464
465         c.identify.cns = cpu_to_le32(cns);
466
467         ret = nvme_submit_admin_cmd(dev, &c, NULL);
468         if (!ret)
469                 invalidate_dcache_range(dma_addr,
470                                         dma_addr + sizeof(struct nvme_id_ctrl));
471
472         return ret;
473 }
474
475 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
476                       dma_addr_t dma_addr, u32 *result)
477 {
478         struct nvme_command c;
479
480         memset(&c, 0, sizeof(c));
481         c.features.opcode = nvme_admin_get_features;
482         c.features.nsid = cpu_to_le32(nsid);
483         c.features.prp1 = cpu_to_le64(dma_addr);
484         c.features.fid = cpu_to_le32(fid);
485
486         /*
487          * TODO: add cache invalidate operation when the size of
488          * the DMA buffer is known
489          */
490
491         return nvme_submit_admin_cmd(dev, &c, result);
492 }
493
494 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
495                       dma_addr_t dma_addr, u32 *result)
496 {
497         struct nvme_command c;
498
499         memset(&c, 0, sizeof(c));
500         c.features.opcode = nvme_admin_set_features;
501         c.features.prp1 = cpu_to_le64(dma_addr);
502         c.features.fid = cpu_to_le32(fid);
503         c.features.dword11 = cpu_to_le32(dword11);
504
505         /*
506          * TODO: add cache flush operation when the size of
507          * the DMA buffer is known
508          */
509
510         return nvme_submit_admin_cmd(dev, &c, result);
511 }
512
513 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
514 {
515         struct nvme_dev *dev = nvmeq->dev;
516         int result;
517
518         nvmeq->cq_vector = qid - 1;
519         result = nvme_alloc_cq(dev, qid, nvmeq);
520         if (result < 0)
521                 goto release_cq;
522
523         result = nvme_alloc_sq(dev, qid, nvmeq);
524         if (result < 0)
525                 goto release_sq;
526
527         nvme_init_queue(nvmeq, qid);
528
529         return result;
530
531  release_sq:
532         nvme_delete_sq(dev, qid);
533  release_cq:
534         nvme_delete_cq(dev, qid);
535
536         return result;
537 }
538
539 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
540 {
541         int status;
542         u32 result;
543         u32 q_count = (count - 1) | ((count - 1) << 16);
544
545         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
546                         q_count, 0, &result);
547
548         if (status < 0)
549                 return status;
550         if (status > 1)
551                 return 0;
552
553         return min(result & 0xffff, result >> 16) + 1;
554 }
555
556 static void nvme_create_io_queues(struct nvme_dev *dev)
557 {
558         unsigned int i;
559
560         for (i = dev->queue_count; i <= dev->max_qid; i++)
561                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
562                         break;
563
564         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
565                 if (nvme_create_queue(dev->queues[i], i))
566                         break;
567 }
568
569 static int nvme_setup_io_queues(struct nvme_dev *dev)
570 {
571         int nr_io_queues;
572         int result;
573
574         nr_io_queues = 1;
575         result = nvme_set_queue_count(dev, nr_io_queues);
576         if (result <= 0)
577                 return result;
578
579         dev->max_qid = nr_io_queues;
580
581         /* Free previously allocated queues */
582         nvme_free_queues(dev, nr_io_queues + 1);
583         nvme_create_io_queues(dev);
584
585         return 0;
586 }
587
588 static int nvme_get_info_from_identify(struct nvme_dev *dev)
589 {
590         struct nvme_id_ctrl *ctrl;
591         int ret;
592         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
593
594         ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
595         if (!ctrl)
596                 return -ENOMEM;
597
598         ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
599         if (ret) {
600                 free(ctrl);
601                 return -EIO;
602         }
603
604         dev->nn = le32_to_cpu(ctrl->nn);
605         dev->vwc = ctrl->vwc;
606         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
607         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
608         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
609         if (ctrl->mdts)
610                 dev->max_transfer_shift = (ctrl->mdts + shift);
611         else {
612                 /*
613                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
614                  * data transfer size between the host and the controller. The
615                  * host should not submit a command that exceeds this transfer
616                  * size. The value is in units of the minimum memory page size
617                  * and is reported as a power of two (2^n).
618                  *
619                  * The spec also says: a value of 0h indicates no restrictions
620                  * on transfer size. But in nvme_blk_read/write() below we have
621                  * the following algorithm for maximum number of logic blocks
622                  * per transfer:
623                  *
624                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
625                  *
626                  * In order for lbas not to overflow, the maximum number is 15
627                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
628                  * Let's use 20 which provides 1MB size.
629                  */
630                 dev->max_transfer_shift = 20;
631         }
632
633         free(ctrl);
634         return 0;
635 }
636
637 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
638 {
639         struct nvme_ns *ns = dev_get_priv(udev);
640
641         if (ns_id)
642                 *ns_id = ns->ns_id;
643         if (eui64)
644                 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
645
646         return 0;
647 }
648
649 int nvme_scan_namespace(void)
650 {
651         struct uclass *uc;
652         struct udevice *dev;
653         int ret;
654
655         ret = uclass_get(UCLASS_NVME, &uc);
656         if (ret)
657                 return ret;
658
659         uclass_foreach_dev(dev, uc) {
660                 ret = device_probe(dev);
661                 if (ret)
662                         return ret;
663         }
664
665         return 0;
666 }
667
668 static int nvme_blk_probe(struct udevice *udev)
669 {
670         struct nvme_dev *ndev = dev_get_priv(udev->parent);
671         struct blk_desc *desc = dev_get_uclass_platdata(udev);
672         struct nvme_ns *ns = dev_get_priv(udev);
673         u8 flbas;
674         struct pci_child_platdata *pplat;
675         struct nvme_id_ns *id;
676
677         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
678         if (!id)
679                 return -ENOMEM;
680
681         memset(ns, 0, sizeof(*ns));
682         ns->dev = ndev;
683         /* extract the namespace id from the block device name */
684         ns->ns_id = trailing_strtol(udev->name) + 1;
685         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
686                 free(id);
687                 return -EIO;
688         }
689
690         memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
691         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
692         ns->flbas = flbas;
693         ns->lba_shift = id->lbaf[flbas].ds;
694         ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
695         ns->mode_select_block_len = 1 << ns->lba_shift;
696         list_add(&ns->list, &ndev->namespaces);
697
698         desc->lba = ns->mode_select_num_blocks;
699         desc->log2blksz = ns->lba_shift;
700         desc->blksz = 1 << ns->lba_shift;
701         desc->bdev = udev;
702         pplat = dev_get_parent_platdata(udev->parent);
703         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
704         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
705         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
706
707         free(id);
708         return 0;
709 }
710
711 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
712                          lbaint_t blkcnt, void *buffer, bool read)
713 {
714         struct nvme_ns *ns = dev_get_priv(udev);
715         struct nvme_dev *dev = ns->dev;
716         struct nvme_command c;
717         struct blk_desc *desc = dev_get_uclass_platdata(udev);
718         int status;
719         u64 prp2;
720         u64 total_len = blkcnt << desc->log2blksz;
721         u64 temp_len = total_len;
722
723         u64 slba = blknr;
724         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
725         u64 total_lbas = blkcnt;
726
727         flush_dcache_range((unsigned long)buffer,
728                            (unsigned long)buffer + total_len);
729
730         c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
731         c.rw.flags = 0;
732         c.rw.nsid = cpu_to_le32(ns->ns_id);
733         c.rw.control = 0;
734         c.rw.dsmgmt = 0;
735         c.rw.reftag = 0;
736         c.rw.apptag = 0;
737         c.rw.appmask = 0;
738         c.rw.metadata = 0;
739
740         while (total_lbas) {
741                 if (total_lbas < lbas) {
742                         lbas = (u16)total_lbas;
743                         total_lbas = 0;
744                 } else {
745                         total_lbas -= lbas;
746                 }
747
748                 if (nvme_setup_prps(dev, &prp2,
749                                     lbas << ns->lba_shift, (ulong)buffer))
750                         return -EIO;
751                 c.rw.slba = cpu_to_le64(slba);
752                 slba += lbas;
753                 c.rw.length = cpu_to_le16(lbas - 1);
754                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
755                 c.rw.prp2 = cpu_to_le64(prp2);
756                 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
757                                 &c, NULL, IO_TIMEOUT);
758                 if (status)
759                         break;
760                 temp_len -= (u32)lbas << ns->lba_shift;
761                 buffer += lbas << ns->lba_shift;
762         }
763
764         if (read)
765                 invalidate_dcache_range((unsigned long)buffer,
766                                         (unsigned long)buffer + total_len);
767
768         return (total_len - temp_len) >> desc->log2blksz;
769 }
770
771 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
772                            lbaint_t blkcnt, void *buffer)
773 {
774         return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
775 }
776
777 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
778                             lbaint_t blkcnt, const void *buffer)
779 {
780         return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
781 }
782
783 static const struct blk_ops nvme_blk_ops = {
784         .read   = nvme_blk_read,
785         .write  = nvme_blk_write,
786 };
787
788 U_BOOT_DRIVER(nvme_blk) = {
789         .name   = "nvme-blk",
790         .id     = UCLASS_BLK,
791         .probe  = nvme_blk_probe,
792         .ops    = &nvme_blk_ops,
793         .priv_auto_alloc_size = sizeof(struct nvme_ns),
794 };
795
796 static int nvme_bind(struct udevice *udev)
797 {
798         static int ndev_num;
799         char name[20];
800
801         sprintf(name, "nvme#%d", ndev_num++);
802
803         return device_set_name(udev, name);
804 }
805
806 static int nvme_probe(struct udevice *udev)
807 {
808         int ret;
809         struct nvme_dev *ndev = dev_get_priv(udev);
810
811         ndev->instance = trailing_strtol(udev->name);
812
813         INIT_LIST_HEAD(&ndev->namespaces);
814         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
815                         PCI_REGION_MEM);
816         if (readl(&ndev->bar->csts) == -1) {
817                 ret = -ENODEV;
818                 printf("Error: %s: Out of memory!\n", udev->name);
819                 goto free_nvme;
820         }
821
822         ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
823         if (!ndev->queues) {
824                 ret = -ENOMEM;
825                 printf("Error: %s: Out of memory!\n", udev->name);
826                 goto free_nvme;
827         }
828         memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
829
830         ndev->cap = nvme_readq(&ndev->bar->cap);
831         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
832         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
833         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
834
835         ret = nvme_configure_admin_queue(ndev);
836         if (ret)
837                 goto free_queue;
838
839         /* Allocate after the page size is known */
840         ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
841         if (!ndev->prp_pool) {
842                 ret = -ENOMEM;
843                 printf("Error: %s: Out of memory!\n", udev->name);
844                 goto free_nvme;
845         }
846         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
847
848         ret = nvme_setup_io_queues(ndev);
849         if (ret)
850                 goto free_queue;
851
852         nvme_get_info_from_identify(ndev);
853
854         return 0;
855
856 free_queue:
857         free((void *)ndev->queues);
858 free_nvme:
859         return ret;
860 }
861
862 U_BOOT_DRIVER(nvme) = {
863         .name   = "nvme",
864         .id     = UCLASS_NVME,
865         .bind   = nvme_bind,
866         .probe  = nvme_probe,
867         .priv_auto_alloc_size = sizeof(struct nvme_dev),
868 };
869
870 struct pci_device_id nvme_supported[] = {
871         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
872         {}
873 };
874
875 U_BOOT_PCI_DEVICE(nvme, nvme_supported);