arm: mach-k3: j721e: Rename BOOT_DEVICE_USB to BOOT_DEVICE_DFU
[oweals/u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6
7 #include <common.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <memalign.h>
12 #include <pci.h>
13 #include <time.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16
17 #define NVME_Q_DEPTH            2
18 #define NVME_AQ_DEPTH           2
19 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
21 #define ADMIN_TIMEOUT           60
22 #define IO_TIMEOUT              30
23 #define MAX_PRP_POOL            512
24
25 enum nvme_queue_id {
26         NVME_ADMIN_Q,
27         NVME_IO_Q,
28         NVME_Q_NUM,
29 };
30
31 /*
32  * An NVM Express queue. Each device has at least two (one for admin
33  * commands and one for I/O commands).
34  */
35 struct nvme_queue {
36         struct nvme_dev *dev;
37         struct nvme_command *sq_cmds;
38         struct nvme_completion *cqes;
39         wait_queue_head_t sq_full;
40         u32 __iomem *q_db;
41         u16 q_depth;
42         s16 cq_vector;
43         u16 sq_head;
44         u16 sq_tail;
45         u16 cq_head;
46         u16 qid;
47         u8 cq_phase;
48         u8 cqe_seen;
49         unsigned long cmdid_data[];
50 };
51
52 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
53 {
54         u32 bit = enabled ? NVME_CSTS_RDY : 0;
55         int timeout;
56         ulong start;
57
58         /* Timeout field in the CAP register is in 500 millisecond units */
59         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
60
61         start = get_timer(0);
62         while (get_timer(start) < timeout) {
63                 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
64                         return 0;
65         }
66
67         return -ETIME;
68 }
69
70 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
71                            int total_len, u64 dma_addr)
72 {
73         u32 page_size = dev->page_size;
74         int offset = dma_addr & (page_size - 1);
75         u64 *prp_pool;
76         int length = total_len;
77         int i, nprps;
78         u32 prps_per_page = (page_size >> 3) - 1;
79         u32 num_pages;
80
81         length -= (page_size - offset);
82
83         if (length <= 0) {
84                 *prp2 = 0;
85                 return 0;
86         }
87
88         if (length)
89                 dma_addr += (page_size - offset);
90
91         if (length <= page_size) {
92                 *prp2 = dma_addr;
93                 return 0;
94         }
95
96         nprps = DIV_ROUND_UP(length, page_size);
97         num_pages = DIV_ROUND_UP(nprps, prps_per_page);
98
99         if (nprps > dev->prp_entry_num) {
100                 free(dev->prp_pool);
101                 /*
102                  * Always increase in increments of pages.  It doesn't waste
103                  * much memory and reduces the number of allocations.
104                  */
105                 dev->prp_pool = memalign(page_size, num_pages * page_size);
106                 if (!dev->prp_pool) {
107                         printf("Error: malloc prp_pool fail\n");
108                         return -ENOMEM;
109                 }
110                 dev->prp_entry_num = prps_per_page * num_pages;
111         }
112
113         prp_pool = dev->prp_pool;
114         i = 0;
115         while (nprps) {
116                 if (i == ((page_size >> 3) - 1)) {
117                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
118                                         page_size);
119                         i = 0;
120                         prp_pool += page_size;
121                 }
122                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
123                 dma_addr += page_size;
124                 nprps--;
125         }
126         *prp2 = (ulong)dev->prp_pool;
127
128         flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
129                            dev->prp_entry_num * sizeof(u64));
130
131         return 0;
132 }
133
134 static __le16 nvme_get_cmd_id(void)
135 {
136         static unsigned short cmdid;
137
138         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
139 }
140
141 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
142 {
143         u64 start = (ulong)&nvmeq->cqes[index];
144         u64 stop = start + sizeof(struct nvme_completion);
145
146         invalidate_dcache_range(start, stop);
147
148         return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
149 }
150
151 /**
152  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
153  *
154  * @nvmeq:      The queue to use
155  * @cmd:        The command to send
156  */
157 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
158 {
159         u16 tail = nvmeq->sq_tail;
160
161         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
162         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
163                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
164
165         if (++tail == nvmeq->q_depth)
166                 tail = 0;
167         writel(tail, nvmeq->q_db);
168         nvmeq->sq_tail = tail;
169 }
170
171 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
172                                 struct nvme_command *cmd,
173                                 u32 *result, unsigned timeout)
174 {
175         u16 head = nvmeq->cq_head;
176         u16 phase = nvmeq->cq_phase;
177         u16 status;
178         ulong start_time;
179         ulong timeout_us = timeout * 100000;
180
181         cmd->common.command_id = nvme_get_cmd_id();
182         nvme_submit_cmd(nvmeq, cmd);
183
184         start_time = timer_get_us();
185
186         for (;;) {
187                 status = nvme_read_completion_status(nvmeq, head);
188                 if ((status & 0x01) == phase)
189                         break;
190                 if (timeout_us > 0 && (timer_get_us() - start_time)
191                     >= timeout_us)
192                         return -ETIMEDOUT;
193         }
194
195         status >>= 1;
196         if (status) {
197                 printf("ERROR: status = %x, phase = %d, head = %d\n",
198                        status, phase, head);
199                 status = 0;
200                 if (++head == nvmeq->q_depth) {
201                         head = 0;
202                         phase = !phase;
203                 }
204                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
205                 nvmeq->cq_head = head;
206                 nvmeq->cq_phase = phase;
207
208                 return -EIO;
209         }
210
211         if (result)
212                 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
213
214         if (++head == nvmeq->q_depth) {
215                 head = 0;
216                 phase = !phase;
217         }
218         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
219         nvmeq->cq_head = head;
220         nvmeq->cq_phase = phase;
221
222         return status;
223 }
224
225 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
226                                  u32 *result)
227 {
228         return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
229                                     result, ADMIN_TIMEOUT);
230 }
231
232 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
233                                            int qid, int depth)
234 {
235         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
236         if (!nvmeq)
237                 return NULL;
238         memset(nvmeq, 0, sizeof(*nvmeq));
239
240         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
241         if (!nvmeq->cqes)
242                 goto free_nvmeq;
243         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
244
245         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
246         if (!nvmeq->sq_cmds)
247                 goto free_queue;
248         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
249
250         nvmeq->dev = dev;
251
252         nvmeq->cq_head = 0;
253         nvmeq->cq_phase = 1;
254         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
255         nvmeq->q_depth = depth;
256         nvmeq->qid = qid;
257         dev->queue_count++;
258         dev->queues[qid] = nvmeq;
259
260         return nvmeq;
261
262  free_queue:
263         free((void *)nvmeq->cqes);
264  free_nvmeq:
265         free(nvmeq);
266
267         return NULL;
268 }
269
270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
271 {
272         struct nvme_command c;
273
274         memset(&c, 0, sizeof(c));
275         c.delete_queue.opcode = opcode;
276         c.delete_queue.qid = cpu_to_le16(id);
277
278         return nvme_submit_admin_cmd(dev, &c, NULL);
279 }
280
281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
282 {
283         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
284 }
285
286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
287 {
288         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
289 }
290
291 static int nvme_enable_ctrl(struct nvme_dev *dev)
292 {
293         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294         dev->ctrl_config |= NVME_CC_ENABLE;
295         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
296
297         return nvme_wait_ready(dev, true);
298 }
299
300 static int nvme_disable_ctrl(struct nvme_dev *dev)
301 {
302         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303         dev->ctrl_config &= ~NVME_CC_ENABLE;
304         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
305
306         return nvme_wait_ready(dev, false);
307 }
308
309 static void nvme_free_queue(struct nvme_queue *nvmeq)
310 {
311         free((void *)nvmeq->cqes);
312         free(nvmeq->sq_cmds);
313         free(nvmeq);
314 }
315
316 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
317 {
318         int i;
319
320         for (i = dev->queue_count - 1; i >= lowest; i--) {
321                 struct nvme_queue *nvmeq = dev->queues[i];
322                 dev->queue_count--;
323                 dev->queues[i] = NULL;
324                 nvme_free_queue(nvmeq);
325         }
326 }
327
328 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
329 {
330         struct nvme_dev *dev = nvmeq->dev;
331
332         nvmeq->sq_tail = 0;
333         nvmeq->cq_head = 0;
334         nvmeq->cq_phase = 1;
335         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
336         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
337         flush_dcache_range((ulong)nvmeq->cqes,
338                            (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
339         dev->online_queues++;
340 }
341
342 static int nvme_configure_admin_queue(struct nvme_dev *dev)
343 {
344         int result;
345         u32 aqa;
346         u64 cap = dev->cap;
347         struct nvme_queue *nvmeq;
348         /* most architectures use 4KB as the page size */
349         unsigned page_shift = 12;
350         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
351         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
352
353         if (page_shift < dev_page_min) {
354                 debug("Device minimum page size (%u) too large for host (%u)\n",
355                       1 << dev_page_min, 1 << page_shift);
356                 return -ENODEV;
357         }
358
359         if (page_shift > dev_page_max) {
360                 debug("Device maximum page size (%u) smaller than host (%u)\n",
361                       1 << dev_page_max, 1 << page_shift);
362                 page_shift = dev_page_max;
363         }
364
365         result = nvme_disable_ctrl(dev);
366         if (result < 0)
367                 return result;
368
369         nvmeq = dev->queues[NVME_ADMIN_Q];
370         if (!nvmeq) {
371                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
372                 if (!nvmeq)
373                         return -ENOMEM;
374         }
375
376         aqa = nvmeq->q_depth - 1;
377         aqa |= aqa << 16;
378         aqa |= aqa << 16;
379
380         dev->page_size = 1 << page_shift;
381
382         dev->ctrl_config = NVME_CC_CSS_NVM;
383         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
384         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
385         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
386
387         writel(aqa, &dev->bar->aqa);
388         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
389         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
390
391         result = nvme_enable_ctrl(dev);
392         if (result)
393                 goto free_nvmeq;
394
395         nvmeq->cq_vector = 0;
396
397         nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
398
399         return result;
400
401  free_nvmeq:
402         nvme_free_queues(dev, 0);
403
404         return result;
405 }
406
407 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
408                             struct nvme_queue *nvmeq)
409 {
410         struct nvme_command c;
411         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
412
413         memset(&c, 0, sizeof(c));
414         c.create_cq.opcode = nvme_admin_create_cq;
415         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
416         c.create_cq.cqid = cpu_to_le16(qid);
417         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
418         c.create_cq.cq_flags = cpu_to_le16(flags);
419         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
420
421         return nvme_submit_admin_cmd(dev, &c, NULL);
422 }
423
424 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
425                             struct nvme_queue *nvmeq)
426 {
427         struct nvme_command c;
428         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
429
430         memset(&c, 0, sizeof(c));
431         c.create_sq.opcode = nvme_admin_create_sq;
432         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
433         c.create_sq.sqid = cpu_to_le16(qid);
434         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
435         c.create_sq.sq_flags = cpu_to_le16(flags);
436         c.create_sq.cqid = cpu_to_le16(qid);
437
438         return nvme_submit_admin_cmd(dev, &c, NULL);
439 }
440
441 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
442                   unsigned cns, dma_addr_t dma_addr)
443 {
444         struct nvme_command c;
445         u32 page_size = dev->page_size;
446         int offset = dma_addr & (page_size - 1);
447         int length = sizeof(struct nvme_id_ctrl);
448         int ret;
449
450         memset(&c, 0, sizeof(c));
451         c.identify.opcode = nvme_admin_identify;
452         c.identify.nsid = cpu_to_le32(nsid);
453         c.identify.prp1 = cpu_to_le64(dma_addr);
454
455         length -= (page_size - offset);
456         if (length <= 0) {
457                 c.identify.prp2 = 0;
458         } else {
459                 dma_addr += (page_size - offset);
460                 c.identify.prp2 = cpu_to_le64(dma_addr);
461         }
462
463         c.identify.cns = cpu_to_le32(cns);
464
465         ret = nvme_submit_admin_cmd(dev, &c, NULL);
466         if (!ret)
467                 invalidate_dcache_range(dma_addr,
468                                         dma_addr + sizeof(struct nvme_id_ctrl));
469
470         return ret;
471 }
472
473 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
474                       dma_addr_t dma_addr, u32 *result)
475 {
476         struct nvme_command c;
477
478         memset(&c, 0, sizeof(c));
479         c.features.opcode = nvme_admin_get_features;
480         c.features.nsid = cpu_to_le32(nsid);
481         c.features.prp1 = cpu_to_le64(dma_addr);
482         c.features.fid = cpu_to_le32(fid);
483
484         /*
485          * TODO: add cache invalidate operation when the size of
486          * the DMA buffer is known
487          */
488
489         return nvme_submit_admin_cmd(dev, &c, result);
490 }
491
492 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
493                       dma_addr_t dma_addr, u32 *result)
494 {
495         struct nvme_command c;
496
497         memset(&c, 0, sizeof(c));
498         c.features.opcode = nvme_admin_set_features;
499         c.features.prp1 = cpu_to_le64(dma_addr);
500         c.features.fid = cpu_to_le32(fid);
501         c.features.dword11 = cpu_to_le32(dword11);
502
503         /*
504          * TODO: add cache flush operation when the size of
505          * the DMA buffer is known
506          */
507
508         return nvme_submit_admin_cmd(dev, &c, result);
509 }
510
511 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
512 {
513         struct nvme_dev *dev = nvmeq->dev;
514         int result;
515
516         nvmeq->cq_vector = qid - 1;
517         result = nvme_alloc_cq(dev, qid, nvmeq);
518         if (result < 0)
519                 goto release_cq;
520
521         result = nvme_alloc_sq(dev, qid, nvmeq);
522         if (result < 0)
523                 goto release_sq;
524
525         nvme_init_queue(nvmeq, qid);
526
527         return result;
528
529  release_sq:
530         nvme_delete_sq(dev, qid);
531  release_cq:
532         nvme_delete_cq(dev, qid);
533
534         return result;
535 }
536
537 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
538 {
539         int status;
540         u32 result;
541         u32 q_count = (count - 1) | ((count - 1) << 16);
542
543         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
544                         q_count, 0, &result);
545
546         if (status < 0)
547                 return status;
548         if (status > 1)
549                 return 0;
550
551         return min(result & 0xffff, result >> 16) + 1;
552 }
553
554 static void nvme_create_io_queues(struct nvme_dev *dev)
555 {
556         unsigned int i;
557
558         for (i = dev->queue_count; i <= dev->max_qid; i++)
559                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
560                         break;
561
562         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
563                 if (nvme_create_queue(dev->queues[i], i))
564                         break;
565 }
566
567 static int nvme_setup_io_queues(struct nvme_dev *dev)
568 {
569         int nr_io_queues;
570         int result;
571
572         nr_io_queues = 1;
573         result = nvme_set_queue_count(dev, nr_io_queues);
574         if (result <= 0)
575                 return result;
576
577         dev->max_qid = nr_io_queues;
578
579         /* Free previously allocated queues */
580         nvme_free_queues(dev, nr_io_queues + 1);
581         nvme_create_io_queues(dev);
582
583         return 0;
584 }
585
586 static int nvme_get_info_from_identify(struct nvme_dev *dev)
587 {
588         struct nvme_id_ctrl *ctrl;
589         int ret;
590         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
591
592         ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
593         if (!ctrl)
594                 return -ENOMEM;
595
596         ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
597         if (ret) {
598                 free(ctrl);
599                 return -EIO;
600         }
601
602         dev->nn = le32_to_cpu(ctrl->nn);
603         dev->vwc = ctrl->vwc;
604         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
605         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
606         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
607         if (ctrl->mdts)
608                 dev->max_transfer_shift = (ctrl->mdts + shift);
609         else {
610                 /*
611                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
612                  * data transfer size between the host and the controller. The
613                  * host should not submit a command that exceeds this transfer
614                  * size. The value is in units of the minimum memory page size
615                  * and is reported as a power of two (2^n).
616                  *
617                  * The spec also says: a value of 0h indicates no restrictions
618                  * on transfer size. But in nvme_blk_read/write() below we have
619                  * the following algorithm for maximum number of logic blocks
620                  * per transfer:
621                  *
622                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
623                  *
624                  * In order for lbas not to overflow, the maximum number is 15
625                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
626                  * Let's use 20 which provides 1MB size.
627                  */
628                 dev->max_transfer_shift = 20;
629         }
630
631         free(ctrl);
632         return 0;
633 }
634
635 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
636 {
637         struct nvme_ns *ns = dev_get_priv(udev);
638
639         if (ns_id)
640                 *ns_id = ns->ns_id;
641         if (eui64)
642                 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
643
644         return 0;
645 }
646
647 int nvme_scan_namespace(void)
648 {
649         struct uclass *uc;
650         struct udevice *dev;
651         int ret;
652
653         ret = uclass_get(UCLASS_NVME, &uc);
654         if (ret)
655                 return ret;
656
657         uclass_foreach_dev(dev, uc) {
658                 ret = device_probe(dev);
659                 if (ret)
660                         return ret;
661         }
662
663         return 0;
664 }
665
666 static int nvme_blk_probe(struct udevice *udev)
667 {
668         struct nvme_dev *ndev = dev_get_priv(udev->parent);
669         struct blk_desc *desc = dev_get_uclass_platdata(udev);
670         struct nvme_ns *ns = dev_get_priv(udev);
671         u8 flbas;
672         struct pci_child_platdata *pplat;
673         struct nvme_id_ns *id;
674
675         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
676         if (!id)
677                 return -ENOMEM;
678
679         memset(ns, 0, sizeof(*ns));
680         ns->dev = ndev;
681         /* extract the namespace id from the block device name */
682         ns->ns_id = trailing_strtol(udev->name) + 1;
683         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
684                 free(id);
685                 return -EIO;
686         }
687
688         memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
689         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
690         ns->flbas = flbas;
691         ns->lba_shift = id->lbaf[flbas].ds;
692         ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
693         ns->mode_select_block_len = 1 << ns->lba_shift;
694         list_add(&ns->list, &ndev->namespaces);
695
696         desc->lba = ns->mode_select_num_blocks;
697         desc->log2blksz = ns->lba_shift;
698         desc->blksz = 1 << ns->lba_shift;
699         desc->bdev = udev;
700         pplat = dev_get_parent_platdata(udev->parent);
701         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
702         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
703         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
704
705         free(id);
706         return 0;
707 }
708
709 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
710                          lbaint_t blkcnt, void *buffer, bool read)
711 {
712         struct nvme_ns *ns = dev_get_priv(udev);
713         struct nvme_dev *dev = ns->dev;
714         struct nvme_command c;
715         struct blk_desc *desc = dev_get_uclass_platdata(udev);
716         int status;
717         u64 prp2;
718         u64 total_len = blkcnt << desc->log2blksz;
719         u64 temp_len = total_len;
720
721         u64 slba = blknr;
722         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
723         u64 total_lbas = blkcnt;
724
725         flush_dcache_range((unsigned long)buffer,
726                            (unsigned long)buffer + total_len);
727
728         c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
729         c.rw.flags = 0;
730         c.rw.nsid = cpu_to_le32(ns->ns_id);
731         c.rw.control = 0;
732         c.rw.dsmgmt = 0;
733         c.rw.reftag = 0;
734         c.rw.apptag = 0;
735         c.rw.appmask = 0;
736         c.rw.metadata = 0;
737
738         while (total_lbas) {
739                 if (total_lbas < lbas) {
740                         lbas = (u16)total_lbas;
741                         total_lbas = 0;
742                 } else {
743                         total_lbas -= lbas;
744                 }
745
746                 if (nvme_setup_prps(dev, &prp2,
747                                     lbas << ns->lba_shift, (ulong)buffer))
748                         return -EIO;
749                 c.rw.slba = cpu_to_le64(slba);
750                 slba += lbas;
751                 c.rw.length = cpu_to_le16(lbas - 1);
752                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
753                 c.rw.prp2 = cpu_to_le64(prp2);
754                 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
755                                 &c, NULL, IO_TIMEOUT);
756                 if (status)
757                         break;
758                 temp_len -= (u32)lbas << ns->lba_shift;
759                 buffer += lbas << ns->lba_shift;
760         }
761
762         if (read)
763                 invalidate_dcache_range((unsigned long)buffer,
764                                         (unsigned long)buffer + total_len);
765
766         return (total_len - temp_len) >> desc->log2blksz;
767 }
768
769 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
770                            lbaint_t blkcnt, void *buffer)
771 {
772         return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
773 }
774
775 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
776                             lbaint_t blkcnt, const void *buffer)
777 {
778         return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
779 }
780
781 static const struct blk_ops nvme_blk_ops = {
782         .read   = nvme_blk_read,
783         .write  = nvme_blk_write,
784 };
785
786 U_BOOT_DRIVER(nvme_blk) = {
787         .name   = "nvme-blk",
788         .id     = UCLASS_BLK,
789         .probe  = nvme_blk_probe,
790         .ops    = &nvme_blk_ops,
791         .priv_auto_alloc_size = sizeof(struct nvme_ns),
792 };
793
794 static int nvme_bind(struct udevice *udev)
795 {
796         static int ndev_num;
797         char name[20];
798
799         sprintf(name, "nvme#%d", ndev_num++);
800
801         return device_set_name(udev, name);
802 }
803
804 static int nvme_probe(struct udevice *udev)
805 {
806         int ret;
807         struct nvme_dev *ndev = dev_get_priv(udev);
808
809         ndev->instance = trailing_strtol(udev->name);
810
811         INIT_LIST_HEAD(&ndev->namespaces);
812         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
813                         PCI_REGION_MEM);
814         if (readl(&ndev->bar->csts) == -1) {
815                 ret = -ENODEV;
816                 printf("Error: %s: Out of memory!\n", udev->name);
817                 goto free_nvme;
818         }
819
820         ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
821         if (!ndev->queues) {
822                 ret = -ENOMEM;
823                 printf("Error: %s: Out of memory!\n", udev->name);
824                 goto free_nvme;
825         }
826         memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
827
828         ndev->cap = nvme_readq(&ndev->bar->cap);
829         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
830         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
831         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
832
833         ret = nvme_configure_admin_queue(ndev);
834         if (ret)
835                 goto free_queue;
836
837         /* Allocate after the page size is known */
838         ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
839         if (!ndev->prp_pool) {
840                 ret = -ENOMEM;
841                 printf("Error: %s: Out of memory!\n", udev->name);
842                 goto free_nvme;
843         }
844         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
845
846         ret = nvme_setup_io_queues(ndev);
847         if (ret)
848                 goto free_queue;
849
850         nvme_get_info_from_identify(ndev);
851
852         return 0;
853
854 free_queue:
855         free((void *)ndev->queues);
856 free_nvme:
857         return ret;
858 }
859
860 U_BOOT_DRIVER(nvme) = {
861         .name   = "nvme",
862         .id     = UCLASS_NVME,
863         .bind   = nvme_bind,
864         .probe  = nvme_probe,
865         .priv_auto_alloc_size = sizeof(struct nvme_dev),
866 };
867
868 struct pci_device_id nvme_supported[] = {
869         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
870         {}
871 };
872
873 U_BOOT_PCI_DEVICE(nvme, nvme_supported);