Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13         "turn on native support for multiple controllers per subsystem");
14
15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
16 {
17         struct nvme_ns_head *h;
18
19         lockdep_assert_held(&subsys->lock);
20         list_for_each_entry(h, &subsys->nsheads, entry)
21                 if (h->disk)
22                         blk_mq_unfreeze_queue(h->disk->queue);
23 }
24
25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
26 {
27         struct nvme_ns_head *h;
28
29         lockdep_assert_held(&subsys->lock);
30         list_for_each_entry(h, &subsys->nsheads, entry)
31                 if (h->disk)
32                         blk_mq_freeze_queue_wait(h->disk->queue);
33 }
34
35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
36 {
37         struct nvme_ns_head *h;
38
39         lockdep_assert_held(&subsys->lock);
40         list_for_each_entry(h, &subsys->nsheads, entry)
41                 if (h->disk)
42                         blk_freeze_queue_start(h->disk->queue);
43 }
44
45 /*
46  * If multipathing is enabled we need to always use the subsystem instance
47  * number for numbering our devices to avoid conflicts between subsystems that
48  * have multiple controllers and thus use the multipath-aware subsystem node
49  * and those that have a single controller and use the controller node
50  * directly.
51  */
52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
53                         struct nvme_ctrl *ctrl, int *flags)
54 {
55         if (!multipath) {
56                 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
57         } else if (ns->head->disk) {
58                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
59                                 ctrl->instance, ns->head->instance);
60                 *flags = GENHD_FL_HIDDEN;
61         } else {
62                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
63                                 ns->head->instance);
64         }
65 }
66
67 void nvme_failover_req(struct request *req)
68 {
69         struct nvme_ns *ns = req->q->queuedata;
70         u16 status = nvme_req(req)->status;
71         unsigned long flags;
72
73         spin_lock_irqsave(&ns->head->requeue_lock, flags);
74         blk_steal_bios(&ns->head->requeue_list, req);
75         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
76         blk_mq_end_request(req, 0);
77
78         switch (status & 0x7ff) {
79         case NVME_SC_ANA_TRANSITION:
80         case NVME_SC_ANA_INACCESSIBLE:
81         case NVME_SC_ANA_PERSISTENT_LOSS:
82                 /*
83                  * If we got back an ANA error we know the controller is alive,
84                  * but not ready to serve this namespaces.  The spec suggests
85                  * we should update our general state here, but due to the fact
86                  * that the admin and I/O queues are not serialized that is
87                  * fundamentally racy.  So instead just clear the current path,
88                  * mark the the path as pending and kick of a re-read of the ANA
89                  * log page ASAP.
90                  */
91                 nvme_mpath_clear_current_path(ns);
92                 if (ns->ctrl->ana_log_buf) {
93                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
94                         queue_work(nvme_wq, &ns->ctrl->ana_work);
95                 }
96                 break;
97         case NVME_SC_HOST_PATH_ERROR:
98                 /*
99                  * Temporary transport disruption in talking to the controller.
100                  * Try to send on a new path.
101                  */
102                 nvme_mpath_clear_current_path(ns);
103                 break;
104         default:
105                 /*
106                  * Reset the controller for any non-ANA error as we don't know
107                  * what caused the error.
108                  */
109                 nvme_reset_ctrl(ns->ctrl);
110                 break;
111         }
112
113         kblockd_schedule_work(&ns->head->requeue_work);
114 }
115
116 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
117 {
118         struct nvme_ns *ns;
119
120         down_read(&ctrl->namespaces_rwsem);
121         list_for_each_entry(ns, &ctrl->namespaces, list) {
122                 if (ns->head->disk)
123                         kblockd_schedule_work(&ns->head->requeue_work);
124         }
125         up_read(&ctrl->namespaces_rwsem);
126 }
127
128 static const char *nvme_ana_state_names[] = {
129         [0]                             = "invalid state",
130         [NVME_ANA_OPTIMIZED]            = "optimized",
131         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
132         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
133         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
134         [NVME_ANA_CHANGE]               = "change",
135 };
136
137 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
138 {
139         struct nvme_ns_head *head = ns->head;
140         bool changed = false;
141         int node;
142
143         if (!head)
144                 goto out;
145
146         for_each_node(node) {
147                 if (ns == rcu_access_pointer(head->current_path[node])) {
148                         rcu_assign_pointer(head->current_path[node], NULL);
149                         changed = true;
150                 }
151         }
152 out:
153         return changed;
154 }
155
156 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
157 {
158         struct nvme_ns *ns;
159
160         mutex_lock(&ctrl->scan_lock);
161         list_for_each_entry(ns, &ctrl->namespaces, list)
162                 if (nvme_mpath_clear_current_path(ns))
163                         kblockd_schedule_work(&ns->head->requeue_work);
164         mutex_unlock(&ctrl->scan_lock);
165 }
166
167 static bool nvme_path_is_disabled(struct nvme_ns *ns)
168 {
169         return ns->ctrl->state != NVME_CTRL_LIVE ||
170                 test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
171                 test_bit(NVME_NS_REMOVING, &ns->flags);
172 }
173
174 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
175 {
176         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
177         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
178
179         list_for_each_entry_rcu(ns, &head->list, siblings) {
180                 if (nvme_path_is_disabled(ns))
181                         continue;
182
183                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
184                         distance = node_distance(node, ns->ctrl->numa_node);
185                 else
186                         distance = LOCAL_DISTANCE;
187
188                 switch (ns->ana_state) {
189                 case NVME_ANA_OPTIMIZED:
190                         if (distance < found_distance) {
191                                 found_distance = distance;
192                                 found = ns;
193                         }
194                         break;
195                 case NVME_ANA_NONOPTIMIZED:
196                         if (distance < fallback_distance) {
197                                 fallback_distance = distance;
198                                 fallback = ns;
199                         }
200                         break;
201                 default:
202                         break;
203                 }
204         }
205
206         if (!found)
207                 found = fallback;
208         if (found)
209                 rcu_assign_pointer(head->current_path[node], found);
210         return found;
211 }
212
213 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
214                 struct nvme_ns *ns)
215 {
216         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
217                         siblings);
218         if (ns)
219                 return ns;
220         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
221 }
222
223 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
224                 int node, struct nvme_ns *old)
225 {
226         struct nvme_ns *ns, *found, *fallback = NULL;
227
228         if (list_is_singular(&head->list)) {
229                 if (nvme_path_is_disabled(old))
230                         return NULL;
231                 return old;
232         }
233
234         for (ns = nvme_next_ns(head, old);
235              ns != old;
236              ns = nvme_next_ns(head, ns)) {
237                 if (nvme_path_is_disabled(ns))
238                         continue;
239
240                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
241                         found = ns;
242                         goto out;
243                 }
244                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
245                         fallback = ns;
246         }
247
248         if (!fallback)
249                 return NULL;
250         found = fallback;
251 out:
252         rcu_assign_pointer(head->current_path[node], found);
253         return found;
254 }
255
256 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
257 {
258         return ns->ctrl->state == NVME_CTRL_LIVE &&
259                 ns->ana_state == NVME_ANA_OPTIMIZED;
260 }
261
262 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
263 {
264         int node = numa_node_id();
265         struct nvme_ns *ns;
266
267         ns = srcu_dereference(head->current_path[node], &head->srcu);
268         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
269                 ns = nvme_round_robin_path(head, node, ns);
270         if (unlikely(!ns || !nvme_path_is_optimized(ns)))
271                 ns = __nvme_find_path(head, node);
272         return ns;
273 }
274
275 static bool nvme_available_path(struct nvme_ns_head *head)
276 {
277         struct nvme_ns *ns;
278
279         list_for_each_entry_rcu(ns, &head->list, siblings) {
280                 switch (ns->ctrl->state) {
281                 case NVME_CTRL_LIVE:
282                 case NVME_CTRL_RESETTING:
283                 case NVME_CTRL_CONNECTING:
284                         /* fallthru */
285                         return true;
286                 default:
287                         break;
288                 }
289         }
290         return false;
291 }
292
293 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
294                 struct bio *bio)
295 {
296         struct nvme_ns_head *head = q->queuedata;
297         struct device *dev = disk_to_dev(head->disk);
298         struct nvme_ns *ns;
299         blk_qc_t ret = BLK_QC_T_NONE;
300         int srcu_idx;
301
302         /*
303          * The namespace might be going away and the bio might
304          * be moved to a different queue via blk_steal_bios(),
305          * so we need to use the bio_split pool from the original
306          * queue to allocate the bvecs from.
307          */
308         blk_queue_split(q, &bio);
309
310         srcu_idx = srcu_read_lock(&head->srcu);
311         ns = nvme_find_path(head);
312         if (likely(ns)) {
313                 bio->bi_disk = ns->disk;
314                 bio->bi_opf |= REQ_NVME_MPATH;
315                 trace_block_bio_remap(bio->bi_disk->queue, bio,
316                                       disk_devt(ns->head->disk),
317                                       bio->bi_iter.bi_sector);
318                 ret = direct_make_request(bio);
319         } else if (nvme_available_path(head)) {
320                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
321
322                 spin_lock_irq(&head->requeue_lock);
323                 bio_list_add(&head->requeue_list, bio);
324                 spin_unlock_irq(&head->requeue_lock);
325         } else {
326                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
327
328                 bio->bi_status = BLK_STS_IOERR;
329                 bio_endio(bio);
330         }
331
332         srcu_read_unlock(&head->srcu, srcu_idx);
333         return ret;
334 }
335
336 static void nvme_requeue_work(struct work_struct *work)
337 {
338         struct nvme_ns_head *head =
339                 container_of(work, struct nvme_ns_head, requeue_work);
340         struct bio *bio, *next;
341
342         spin_lock_irq(&head->requeue_lock);
343         next = bio_list_get(&head->requeue_list);
344         spin_unlock_irq(&head->requeue_lock);
345
346         while ((bio = next) != NULL) {
347                 next = bio->bi_next;
348                 bio->bi_next = NULL;
349
350                 /*
351                  * Reset disk to the mpath node and resubmit to select a new
352                  * path.
353                  */
354                 bio->bi_disk = head->disk;
355                 generic_make_request(bio);
356         }
357 }
358
359 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
360 {
361         struct request_queue *q;
362         bool vwc = false;
363
364         mutex_init(&head->lock);
365         bio_list_init(&head->requeue_list);
366         spin_lock_init(&head->requeue_lock);
367         INIT_WORK(&head->requeue_work, nvme_requeue_work);
368
369         /*
370          * Add a multipath node if the subsystems supports multiple controllers.
371          * We also do this for private namespaces as the namespace sharing data could
372          * change after a rescan.
373          */
374         if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
375                 return 0;
376
377         q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
378         if (!q)
379                 goto out;
380         q->queuedata = head;
381         blk_queue_make_request(q, nvme_ns_head_make_request);
382         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
383         /* set to a default value for 512 until disk is validated */
384         blk_queue_logical_block_size(q, 512);
385         blk_set_stacking_limits(&q->limits);
386
387         /* we need to propagate up the VMC settings */
388         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
389                 vwc = true;
390         blk_queue_write_cache(q, vwc, vwc);
391
392         head->disk = alloc_disk(0);
393         if (!head->disk)
394                 goto out_cleanup_queue;
395         head->disk->fops = &nvme_ns_head_ops;
396         head->disk->private_data = head;
397         head->disk->queue = q;
398         head->disk->flags = GENHD_FL_EXT_DEVT;
399         sprintf(head->disk->disk_name, "nvme%dn%d",
400                         ctrl->subsys->instance, head->instance);
401         return 0;
402
403 out_cleanup_queue:
404         blk_cleanup_queue(q);
405 out:
406         return -ENOMEM;
407 }
408
409 static void nvme_mpath_set_live(struct nvme_ns *ns)
410 {
411         struct nvme_ns_head *head = ns->head;
412
413         lockdep_assert_held(&ns->head->lock);
414
415         if (!head->disk)
416                 return;
417
418         if (!(head->disk->flags & GENHD_FL_UP))
419                 device_add_disk(&head->subsys->dev, head->disk,
420                                 nvme_ns_id_attr_groups);
421
422         if (nvme_path_is_optimized(ns)) {
423                 int node, srcu_idx;
424
425                 srcu_idx = srcu_read_lock(&head->srcu);
426                 for_each_node(node)
427                         __nvme_find_path(head, node);
428                 srcu_read_unlock(&head->srcu, srcu_idx);
429         }
430
431         synchronize_srcu(&ns->head->srcu);
432         kblockd_schedule_work(&ns->head->requeue_work);
433 }
434
435 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
436                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
437                         void *))
438 {
439         void *base = ctrl->ana_log_buf;
440         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
441         int error, i;
442
443         lockdep_assert_held(&ctrl->ana_lock);
444
445         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
446                 struct nvme_ana_group_desc *desc = base + offset;
447                 u32 nr_nsids = le32_to_cpu(desc->nnsids);
448                 size_t nsid_buf_size = nr_nsids * sizeof(__le32);
449
450                 if (WARN_ON_ONCE(desc->grpid == 0))
451                         return -EINVAL;
452                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
453                         return -EINVAL;
454                 if (WARN_ON_ONCE(desc->state == 0))
455                         return -EINVAL;
456                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
457                         return -EINVAL;
458
459                 offset += sizeof(*desc);
460                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
461                         return -EINVAL;
462
463                 error = cb(ctrl, desc, data);
464                 if (error)
465                         return error;
466
467                 offset += nsid_buf_size;
468                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
469                         return -EINVAL;
470         }
471
472         return 0;
473 }
474
475 static inline bool nvme_state_is_live(enum nvme_ana_state state)
476 {
477         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
478 }
479
480 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
481                 struct nvme_ns *ns)
482 {
483         mutex_lock(&ns->head->lock);
484         ns->ana_grpid = le32_to_cpu(desc->grpid);
485         ns->ana_state = desc->state;
486         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
487
488         if (nvme_state_is_live(ns->ana_state))
489                 nvme_mpath_set_live(ns);
490         mutex_unlock(&ns->head->lock);
491 }
492
493 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
494                 struct nvme_ana_group_desc *desc, void *data)
495 {
496         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
497         unsigned *nr_change_groups = data;
498         struct nvme_ns *ns;
499
500         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
501                         le32_to_cpu(desc->grpid),
502                         nvme_ana_state_names[desc->state]);
503
504         if (desc->state == NVME_ANA_CHANGE)
505                 (*nr_change_groups)++;
506
507         if (!nr_nsids)
508                 return 0;
509
510         down_write(&ctrl->namespaces_rwsem);
511         list_for_each_entry(ns, &ctrl->namespaces, list) {
512                 unsigned nsid = le32_to_cpu(desc->nsids[n]);
513
514                 if (ns->head->ns_id < nsid)
515                         continue;
516                 if (ns->head->ns_id == nsid)
517                         nvme_update_ns_ana_state(desc, ns);
518                 if (++n == nr_nsids)
519                         break;
520         }
521         up_write(&ctrl->namespaces_rwsem);
522         return 0;
523 }
524
525 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
526 {
527         u32 nr_change_groups = 0;
528         int error;
529
530         mutex_lock(&ctrl->ana_lock);
531         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
532                         groups_only ? NVME_ANA_LOG_RGO : 0,
533                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
534         if (error) {
535                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
536                 goto out_unlock;
537         }
538
539         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
540                         nvme_update_ana_state);
541         if (error)
542                 goto out_unlock;
543
544         /*
545          * In theory we should have an ANATT timer per group as they might enter
546          * the change state at different times.  But that is a lot of overhead
547          * just to protect against a target that keeps entering new changes
548          * states while never finishing previous ones.  But we'll still
549          * eventually time out once all groups are in change state, so this
550          * isn't a big deal.
551          *
552          * We also double the ANATT value to provide some slack for transports
553          * or AEN processing overhead.
554          */
555         if (nr_change_groups)
556                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
557         else
558                 del_timer_sync(&ctrl->anatt_timer);
559 out_unlock:
560         mutex_unlock(&ctrl->ana_lock);
561         return error;
562 }
563
564 static void nvme_ana_work(struct work_struct *work)
565 {
566         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
567
568         nvme_read_ana_log(ctrl, false);
569 }
570
571 static void nvme_anatt_timeout(struct timer_list *t)
572 {
573         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
574
575         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
576         nvme_reset_ctrl(ctrl);
577 }
578
579 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
580 {
581         if (!nvme_ctrl_use_ana(ctrl))
582                 return;
583         del_timer_sync(&ctrl->anatt_timer);
584         cancel_work_sync(&ctrl->ana_work);
585 }
586
587 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
588         struct device_attribute subsys_attr_##_name =   \
589                 __ATTR(_name, _mode, _show, _store)
590
591 static const char *nvme_iopolicy_names[] = {
592         [NVME_IOPOLICY_NUMA]    = "numa",
593         [NVME_IOPOLICY_RR]      = "round-robin",
594 };
595
596 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
597                 struct device_attribute *attr, char *buf)
598 {
599         struct nvme_subsystem *subsys =
600                 container_of(dev, struct nvme_subsystem, dev);
601
602         return sprintf(buf, "%s\n",
603                         nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
604 }
605
606 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
607                 struct device_attribute *attr, const char *buf, size_t count)
608 {
609         struct nvme_subsystem *subsys =
610                 container_of(dev, struct nvme_subsystem, dev);
611         int i;
612
613         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
614                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
615                         WRITE_ONCE(subsys->iopolicy, i);
616                         return count;
617                 }
618         }
619
620         return -EINVAL;
621 }
622 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
623                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
624
625 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
626                 char *buf)
627 {
628         return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
629 }
630 DEVICE_ATTR_RO(ana_grpid);
631
632 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
633                 char *buf)
634 {
635         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
636
637         return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
638 }
639 DEVICE_ATTR_RO(ana_state);
640
641 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
642                 struct nvme_ana_group_desc *desc, void *data)
643 {
644         struct nvme_ns *ns = data;
645
646         if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
647                 nvme_update_ns_ana_state(desc, ns);
648                 return -ENXIO; /* just break out of the loop */
649         }
650
651         return 0;
652 }
653
654 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
655 {
656         if (nvme_ctrl_use_ana(ns->ctrl)) {
657                 mutex_lock(&ns->ctrl->ana_lock);
658                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
659                 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
660                 mutex_unlock(&ns->ctrl->ana_lock);
661         } else {
662                 mutex_lock(&ns->head->lock);
663                 ns->ana_state = NVME_ANA_OPTIMIZED; 
664                 nvme_mpath_set_live(ns);
665                 mutex_unlock(&ns->head->lock);
666         }
667 }
668
669 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
670 {
671         if (!head->disk)
672                 return;
673         if (head->disk->flags & GENHD_FL_UP)
674                 del_gendisk(head->disk);
675         blk_set_queue_dying(head->disk->queue);
676         /* make sure all pending bios are cleaned up */
677         kblockd_schedule_work(&head->requeue_work);
678         flush_work(&head->requeue_work);
679         blk_cleanup_queue(head->disk->queue);
680         put_disk(head->disk);
681 }
682
683 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
684 {
685         int error;
686
687         /* check if multipath is enabled and we have the capability */
688         if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3)))
689                 return 0;
690
691         ctrl->anacap = id->anacap;
692         ctrl->anatt = id->anatt;
693         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
694         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
695
696         mutex_init(&ctrl->ana_lock);
697         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
698         ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
699                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
700         ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
701
702         if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
703                 dev_err(ctrl->device,
704                         "ANA log page size (%zd) larger than MDTS (%d).\n",
705                         ctrl->ana_log_size,
706                         ctrl->max_hw_sectors << SECTOR_SHIFT);
707                 dev_err(ctrl->device, "disabling ANA support.\n");
708                 return 0;
709         }
710
711         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
712         ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
713         if (!ctrl->ana_log_buf) {
714                 error = -ENOMEM;
715                 goto out;
716         }
717
718         error = nvme_read_ana_log(ctrl, false);
719         if (error)
720                 goto out_free_ana_log_buf;
721         return 0;
722 out_free_ana_log_buf:
723         kfree(ctrl->ana_log_buf);
724         ctrl->ana_log_buf = NULL;
725 out:
726         return error;
727 }
728
729 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
730 {
731         kfree(ctrl->ana_log_buf);
732         ctrl->ana_log_buf = NULL;
733 }
734