Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / ralink / rt2x00 / rt61pci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6  */
7
8 /*
9         Module: rt61pci
10         Abstract: rt61pci device specific routines.
11         Supported chipsets: RT2561, RT2561s, RT2661.
12  */
13
14 #include <linux/crc-itu-t.h>
15 #include <linux/delay.h>
16 #include <linux/etherdevice.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/eeprom_93cx6.h>
22
23 #include "rt2x00.h"
24 #include "rt2x00mmio.h"
25 #include "rt2x00pci.h"
26 #include "rt61pci.h"
27
28 /*
29  * Allow hardware encryption to be disabled.
30  */
31 static bool modparam_nohwcrypt = false;
32 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
33 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34
35 /*
36  * Register access.
37  * BBP and RF register require indirect register access,
38  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
39  * These indirect registers work with busy bits,
40  * and we will try maximal REGISTER_BUSY_COUNT times to access
41  * the register while taking a REGISTER_BUSY_DELAY us delay
42  * between each attempt. When the busy bit is still set at that time,
43  * the access attempt is considered to have failed,
44  * and we will print an error.
45  */
46 #define WAIT_FOR_BBP(__dev, __reg) \
47         rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
48 #define WAIT_FOR_RF(__dev, __reg) \
49         rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
50 #define WAIT_FOR_MCU(__dev, __reg) \
51         rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
52                                 H2M_MAILBOX_CSR_OWNER, (__reg))
53
54 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
55                               const unsigned int word, const u8 value)
56 {
57         u32 reg;
58
59         mutex_lock(&rt2x00dev->csr_mutex);
60
61         /*
62          * Wait until the BBP becomes available, afterwards we
63          * can safely write the new data into the register.
64          */
65         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
66                 reg = 0;
67                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
68                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
69                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
70                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
71
72                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
73         }
74
75         mutex_unlock(&rt2x00dev->csr_mutex);
76 }
77
78 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
79                            const unsigned int word)
80 {
81         u32 reg;
82         u8 value;
83
84         mutex_lock(&rt2x00dev->csr_mutex);
85
86         /*
87          * Wait until the BBP becomes available, afterwards we
88          * can safely write the read request into the register.
89          * After the data has been written, we wait until hardware
90          * returns the correct value, if at any time the register
91          * doesn't become available in time, reg will be 0xffffffff
92          * which means we return 0xff to the caller.
93          */
94         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
95                 reg = 0;
96                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
97                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
98                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
99
100                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
101
102                 WAIT_FOR_BBP(rt2x00dev, &reg);
103         }
104
105         value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
106
107         mutex_unlock(&rt2x00dev->csr_mutex);
108
109         return value;
110 }
111
112 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                              const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
126                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
127                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
129
130                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
138                                 const u8 command, const u8 token,
139                                 const u8 arg0, const u8 arg1)
140 {
141         u32 reg;
142
143         mutex_lock(&rt2x00dev->csr_mutex);
144
145         /*
146          * Wait until the MCU becomes available, afterwards we
147          * can safely write the new data into the register.
148          */
149         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
150                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
151                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
152                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
153                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
154                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
155
156                 reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
157                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
158                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
159                 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
160         }
161
162         mutex_unlock(&rt2x00dev->csr_mutex);
163
164 }
165
166 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
167 {
168         struct rt2x00_dev *rt2x00dev = eeprom->data;
169         u32 reg;
170
171         reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
172
173         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
174         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
175         eeprom->reg_data_clock =
176             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
177         eeprom->reg_chip_select =
178             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
179 }
180
181 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
182 {
183         struct rt2x00_dev *rt2x00dev = eeprom->data;
184         u32 reg = 0;
185
186         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
187         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
188         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
189                            !!eeprom->reg_data_clock);
190         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
191                            !!eeprom->reg_chip_select);
192
193         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
194 }
195
196 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
197 static const struct rt2x00debug rt61pci_rt2x00debug = {
198         .owner  = THIS_MODULE,
199         .csr    = {
200                 .read           = rt2x00mmio_register_read,
201                 .write          = rt2x00mmio_register_write,
202                 .flags          = RT2X00DEBUGFS_OFFSET,
203                 .word_base      = CSR_REG_BASE,
204                 .word_size      = sizeof(u32),
205                 .word_count     = CSR_REG_SIZE / sizeof(u32),
206         },
207         .eeprom = {
208                 .read           = rt2x00_eeprom_read,
209                 .write          = rt2x00_eeprom_write,
210                 .word_base      = EEPROM_BASE,
211                 .word_size      = sizeof(u16),
212                 .word_count     = EEPROM_SIZE / sizeof(u16),
213         },
214         .bbp    = {
215                 .read           = rt61pci_bbp_read,
216                 .write          = rt61pci_bbp_write,
217                 .word_base      = BBP_BASE,
218                 .word_size      = sizeof(u8),
219                 .word_count     = BBP_SIZE / sizeof(u8),
220         },
221         .rf     = {
222                 .read           = rt2x00_rf_read,
223                 .write          = rt61pci_rf_write,
224                 .word_base      = RF_BASE,
225                 .word_size      = sizeof(u32),
226                 .word_count     = RF_SIZE / sizeof(u32),
227         },
228 };
229 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
230
231 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
232 {
233         u32 reg;
234
235         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
236         return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
237 }
238
239 #ifdef CONFIG_RT2X00_LIB_LEDS
240 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
241                                    enum led_brightness brightness)
242 {
243         struct rt2x00_led *led =
244             container_of(led_cdev, struct rt2x00_led, led_dev);
245         unsigned int enabled = brightness != LED_OFF;
246         unsigned int a_mode =
247             (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
248         unsigned int bg_mode =
249             (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
250
251         if (led->type == LED_TYPE_RADIO) {
252                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
253                                    MCU_LEDCS_RADIO_STATUS, enabled);
254
255                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
256                                     (led->rt2x00dev->led_mcu_reg & 0xff),
257                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
258         } else if (led->type == LED_TYPE_ASSOC) {
259                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
260                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
261                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
263
264                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265                                     (led->rt2x00dev->led_mcu_reg & 0xff),
266                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
267         } else if (led->type == LED_TYPE_QUALITY) {
268                 /*
269                  * The brightness is divided into 6 levels (0 - 5),
270                  * this means we need to convert the brightness
271                  * argument into the matching level within that range.
272                  */
273                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
274                                     brightness / (LED_FULL / 6), 0);
275         }
276 }
277
278 static int rt61pci_blink_set(struct led_classdev *led_cdev,
279                              unsigned long *delay_on,
280                              unsigned long *delay_off)
281 {
282         struct rt2x00_led *led =
283             container_of(led_cdev, struct rt2x00_led, led_dev);
284         u32 reg;
285
286         reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
287         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
288         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
289         rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
290
291         return 0;
292 }
293
294 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
295                              struct rt2x00_led *led,
296                              enum led_type type)
297 {
298         led->rt2x00dev = rt2x00dev;
299         led->type = type;
300         led->led_dev.brightness_set = rt61pci_brightness_set;
301         led->led_dev.blink_set = rt61pci_blink_set;
302         led->flags = LED_INITIALIZED;
303 }
304 #endif /* CONFIG_RT2X00_LIB_LEDS */
305
306 /*
307  * Configuration handlers.
308  */
309 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
310                                      struct rt2x00lib_crypto *crypto,
311                                      struct ieee80211_key_conf *key)
312 {
313         /*
314          * Let the software handle the shared keys,
315          * since the hardware decryption does not work reliably,
316          * because the firmware does not know the key's keyidx.
317          */
318         return -EOPNOTSUPP;
319 }
320
321 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
322                                        struct rt2x00lib_crypto *crypto,
323                                        struct ieee80211_key_conf *key)
324 {
325         struct hw_pairwise_ta_entry addr_entry;
326         struct hw_key_entry key_entry;
327         u32 mask;
328         u32 reg;
329
330         if (crypto->cmd == SET_KEY) {
331                 /*
332                  * rt2x00lib can't determine the correct free
333                  * key_idx for pairwise keys. We have 2 registers
334                  * with key valid bits. The goal is simple: read
335                  * the first register. If that is full, move to
336                  * the next register.
337                  * When both registers are full, we drop the key.
338                  * Otherwise, we use the first invalid entry.
339                  */
340                 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
341                 if (reg && reg == ~0) {
342                         key->hw_key_idx = 32;
343                         reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
344                         if (reg && reg == ~0)
345                                 return -ENOSPC;
346                 }
347
348                 key->hw_key_idx += reg ? ffz(reg) : 0;
349
350                 /*
351                  * Upload key to hardware
352                  */
353                 memcpy(key_entry.key, crypto->key,
354                        sizeof(key_entry.key));
355                 memcpy(key_entry.tx_mic, crypto->tx_mic,
356                        sizeof(key_entry.tx_mic));
357                 memcpy(key_entry.rx_mic, crypto->rx_mic,
358                        sizeof(key_entry.rx_mic));
359
360                 memset(&addr_entry, 0, sizeof(addr_entry));
361                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
362                 addr_entry.cipher = crypto->cipher;
363
364                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
365                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
366                                                &key_entry, sizeof(key_entry));
367
368                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
369                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
370                                                &addr_entry, sizeof(addr_entry));
371
372                 /*
373                  * Enable pairwise lookup table for given BSS idx.
374                  * Without this, received frames will not be decrypted
375                  * by the hardware.
376                  */
377                 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
378                 reg |= (1 << crypto->bssidx);
379                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
380
381                 /*
382                  * The driver does not support the IV/EIV generation
383                  * in hardware. However it doesn't support the IV/EIV
384                  * inside the ieee80211 frame either, but requires it
385                  * to be provided separately for the descriptor.
386                  * rt2x00lib will cut the IV/EIV data out of all frames
387                  * given to us by mac80211, but we must tell mac80211
388                  * to generate the IV/EIV data.
389                  */
390                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
391         }
392
393         /*
394          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
395          * a particular key is valid. Because using the FIELD32()
396          * defines directly will cause a lot of overhead, we use
397          * a calculation to determine the correct bit directly.
398          */
399         if (key->hw_key_idx < 32) {
400                 mask = 1 << key->hw_key_idx;
401
402                 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
403                 if (crypto->cmd == SET_KEY)
404                         reg |= mask;
405                 else if (crypto->cmd == DISABLE_KEY)
406                         reg &= ~mask;
407                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
408         } else {
409                 mask = 1 << (key->hw_key_idx - 32);
410
411                 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
412                 if (crypto->cmd == SET_KEY)
413                         reg |= mask;
414                 else if (crypto->cmd == DISABLE_KEY)
415                         reg &= ~mask;
416                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
417         }
418
419         return 0;
420 }
421
422 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
423                                   const unsigned int filter_flags)
424 {
425         u32 reg;
426
427         /*
428          * Start configuration steps.
429          * Note that the version error will always be dropped
430          * and broadcast frames will always be accepted since
431          * there is no filter for it at this time.
432          */
433         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
434         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
435                            !(filter_flags & FIF_FCSFAIL));
436         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
437                            !(filter_flags & FIF_PLCPFAIL));
438         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
439                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
440         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
441                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
442         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
443                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
444                            !rt2x00dev->intf_ap_count);
445         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
446         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
447                            !(filter_flags & FIF_ALLMULTI));
448         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
449         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
450                            !(filter_flags & FIF_CONTROL));
451         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
452 }
453
454 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
455                                 struct rt2x00_intf *intf,
456                                 struct rt2x00intf_conf *conf,
457                                 const unsigned int flags)
458 {
459         u32 reg;
460
461         if (flags & CONFIG_UPDATE_TYPE) {
462                 /*
463                  * Enable synchronisation.
464                  */
465                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
466                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
467                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
468         }
469
470         if (flags & CONFIG_UPDATE_MAC) {
471                 reg = le32_to_cpu(conf->mac[1]);
472                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
473                 conf->mac[1] = cpu_to_le32(reg);
474
475                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
476                                                conf->mac, sizeof(conf->mac));
477         }
478
479         if (flags & CONFIG_UPDATE_BSSID) {
480                 reg = le32_to_cpu(conf->bssid[1]);
481                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
482                 conf->bssid[1] = cpu_to_le32(reg);
483
484                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
485                                                conf->bssid,
486                                                sizeof(conf->bssid));
487         }
488 }
489
490 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
491                                struct rt2x00lib_erp *erp,
492                                u32 changed)
493 {
494         u32 reg;
495
496         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
497         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
498         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
499         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
500
501         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
502                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
503                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
504                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
505                                    !!erp->short_preamble);
506                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
507         }
508
509         if (changed & BSS_CHANGED_BASIC_RATES)
510                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
511                                           erp->basic_rates);
512
513         if (changed & BSS_CHANGED_BEACON_INT) {
514                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
515                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
516                                    erp->beacon_int * 16);
517                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
518         }
519
520         if (changed & BSS_CHANGED_ERP_SLOT) {
521                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
522                 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
523                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
524
525                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
526                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
527                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
528                 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
529                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
530         }
531 }
532
533 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
534                                       struct antenna_setup *ant)
535 {
536         u8 r3;
537         u8 r4;
538         u8 r77;
539
540         r3 = rt61pci_bbp_read(rt2x00dev, 3);
541         r4 = rt61pci_bbp_read(rt2x00dev, 4);
542         r77 = rt61pci_bbp_read(rt2x00dev, 77);
543
544         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
545
546         /*
547          * Configure the RX antenna.
548          */
549         switch (ant->rx) {
550         case ANTENNA_HW_DIVERSITY:
551                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
552                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
553                                   (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
554                 break;
555         case ANTENNA_A:
556                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
557                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
558                 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
559                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
560                 else
561                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
562                 break;
563         case ANTENNA_B:
564         default:
565                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
566                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
567                 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
568                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
569                 else
570                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
571                 break;
572         }
573
574         rt61pci_bbp_write(rt2x00dev, 77, r77);
575         rt61pci_bbp_write(rt2x00dev, 3, r3);
576         rt61pci_bbp_write(rt2x00dev, 4, r4);
577 }
578
579 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
580                                       struct antenna_setup *ant)
581 {
582         u8 r3;
583         u8 r4;
584         u8 r77;
585
586         r3 = rt61pci_bbp_read(rt2x00dev, 3);
587         r4 = rt61pci_bbp_read(rt2x00dev, 4);
588         r77 = rt61pci_bbp_read(rt2x00dev, 77);
589
590         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
591         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
592                           !rt2x00_has_cap_frame_type(rt2x00dev));
593
594         /*
595          * Configure the RX antenna.
596          */
597         switch (ant->rx) {
598         case ANTENNA_HW_DIVERSITY:
599                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
600                 break;
601         case ANTENNA_A:
602                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
603                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
604                 break;
605         case ANTENNA_B:
606         default:
607                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
608                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
609                 break;
610         }
611
612         rt61pci_bbp_write(rt2x00dev, 77, r77);
613         rt61pci_bbp_write(rt2x00dev, 3, r3);
614         rt61pci_bbp_write(rt2x00dev, 4, r4);
615 }
616
617 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
618                                            const int p1, const int p2)
619 {
620         u32 reg;
621
622         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
623
624         rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
625         rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
626
627         rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
628         rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
629
630         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
631 }
632
633 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
634                                         struct antenna_setup *ant)
635 {
636         u8 r3;
637         u8 r4;
638         u8 r77;
639
640         r3 = rt61pci_bbp_read(rt2x00dev, 3);
641         r4 = rt61pci_bbp_read(rt2x00dev, 4);
642         r77 = rt61pci_bbp_read(rt2x00dev, 77);
643
644         /*
645          * Configure the RX antenna.
646          */
647         switch (ant->rx) {
648         case ANTENNA_A:
649                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
650                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
651                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
652                 break;
653         case ANTENNA_HW_DIVERSITY:
654                 /*
655                  * FIXME: Antenna selection for the rf 2529 is very confusing
656                  * in the legacy driver. Just default to antenna B until the
657                  * legacy code can be properly translated into rt2x00 code.
658                  */
659         case ANTENNA_B:
660         default:
661                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
664                 break;
665         }
666
667         rt61pci_bbp_write(rt2x00dev, 77, r77);
668         rt61pci_bbp_write(rt2x00dev, 3, r3);
669         rt61pci_bbp_write(rt2x00dev, 4, r4);
670 }
671
672 struct antenna_sel {
673         u8 word;
674         /*
675          * value[0] -> non-LNA
676          * value[1] -> LNA
677          */
678         u8 value[2];
679 };
680
681 static const struct antenna_sel antenna_sel_a[] = {
682         { 96,  { 0x58, 0x78 } },
683         { 104, { 0x38, 0x48 } },
684         { 75,  { 0xfe, 0x80 } },
685         { 86,  { 0xfe, 0x80 } },
686         { 88,  { 0xfe, 0x80 } },
687         { 35,  { 0x60, 0x60 } },
688         { 97,  { 0x58, 0x58 } },
689         { 98,  { 0x58, 0x58 } },
690 };
691
692 static const struct antenna_sel antenna_sel_bg[] = {
693         { 96,  { 0x48, 0x68 } },
694         { 104, { 0x2c, 0x3c } },
695         { 75,  { 0xfe, 0x80 } },
696         { 86,  { 0xfe, 0x80 } },
697         { 88,  { 0xfe, 0x80 } },
698         { 35,  { 0x50, 0x50 } },
699         { 97,  { 0x48, 0x48 } },
700         { 98,  { 0x48, 0x48 } },
701 };
702
703 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
704                                struct antenna_setup *ant)
705 {
706         const struct antenna_sel *sel;
707         unsigned int lna;
708         unsigned int i;
709         u32 reg;
710
711         /*
712          * We should never come here because rt2x00lib is supposed
713          * to catch this and send us the correct antenna explicitely.
714          */
715         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
716                ant->tx == ANTENNA_SW_DIVERSITY);
717
718         if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
719                 sel = antenna_sel_a;
720                 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
721         } else {
722                 sel = antenna_sel_bg;
723                 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
724         }
725
726         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
727                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
728
729         reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
730
731         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
732                            rt2x00dev->curr_band == NL80211_BAND_2GHZ);
733         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
734                            rt2x00dev->curr_band == NL80211_BAND_5GHZ);
735
736         rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
737
738         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
739                 rt61pci_config_antenna_5x(rt2x00dev, ant);
740         else if (rt2x00_rf(rt2x00dev, RF2527))
741                 rt61pci_config_antenna_2x(rt2x00dev, ant);
742         else if (rt2x00_rf(rt2x00dev, RF2529)) {
743                 if (rt2x00_has_cap_double_antenna(rt2x00dev))
744                         rt61pci_config_antenna_2x(rt2x00dev, ant);
745                 else
746                         rt61pci_config_antenna_2529(rt2x00dev, ant);
747         }
748 }
749
750 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
751                                     struct rt2x00lib_conf *libconf)
752 {
753         u16 eeprom;
754         short lna_gain = 0;
755
756         if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
757                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
758                         lna_gain += 14;
759
760                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
761                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
762         } else {
763                 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
764                         lna_gain += 14;
765
766                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
767                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
768         }
769
770         rt2x00dev->lna_gain = lna_gain;
771 }
772
773 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
774                                    struct rf_channel *rf, const int txpower)
775 {
776         u8 r3;
777         u8 r94;
778         u8 smart;
779
780         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
781         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
782
783         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
784
785         r3 = rt61pci_bbp_read(rt2x00dev, 3);
786         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
787         rt61pci_bbp_write(rt2x00dev, 3, r3);
788
789         r94 = 6;
790         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
791                 r94 += txpower - MAX_TXPOWER;
792         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
793                 r94 += txpower;
794         rt61pci_bbp_write(rt2x00dev, 94, r94);
795
796         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
797         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
798         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
799         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
800
801         udelay(200);
802
803         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
804         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
805         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
806         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
807
808         udelay(200);
809
810         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
811         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
812         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
813         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
814
815         msleep(1);
816 }
817
818 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
819                                    const int txpower)
820 {
821         struct rf_channel rf;
822
823         rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
824         rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
825         rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
826         rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
827
828         rt61pci_config_channel(rt2x00dev, &rf, txpower);
829 }
830
831 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
832                                     struct rt2x00lib_conf *libconf)
833 {
834         u32 reg;
835
836         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
837         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
838         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
839         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
840         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
841                            libconf->conf->long_frame_max_tx_count);
842         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
843                            libconf->conf->short_frame_max_tx_count);
844         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
845 }
846
847 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
848                                 struct rt2x00lib_conf *libconf)
849 {
850         enum dev_state state =
851             (libconf->conf->flags & IEEE80211_CONF_PS) ?
852                 STATE_SLEEP : STATE_AWAKE;
853         u32 reg;
854
855         if (state == STATE_SLEEP) {
856                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
857                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
858                                    rt2x00dev->beacon_int - 10);
859                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
860                                    libconf->conf->listen_interval - 1);
861                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
862
863                 /* We must first disable autowake before it can be enabled */
864                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
865                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
866
867                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
868                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
869
870                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
871                                           0x00000005);
872                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
873                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
874
875                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
876         } else {
877                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
878                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
879                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
880                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
881                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
882                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
883
884                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
885                                           0x00000007);
886                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
887                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
888
889                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
890         }
891 }
892
893 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
894                            struct rt2x00lib_conf *libconf,
895                            const unsigned int flags)
896 {
897         /* Always recalculate LNA gain before changing configuration */
898         rt61pci_config_lna_gain(rt2x00dev, libconf);
899
900         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
901                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
902                                        libconf->conf->power_level);
903         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
904             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
905                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
906         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
907                 rt61pci_config_retry_limit(rt2x00dev, libconf);
908         if (flags & IEEE80211_CONF_CHANGE_PS)
909                 rt61pci_config_ps(rt2x00dev, libconf);
910 }
911
912 /*
913  * Link tuning
914  */
915 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
916                                struct link_qual *qual)
917 {
918         u32 reg;
919
920         /*
921          * Update FCS error count from register.
922          */
923         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
924         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
925
926         /*
927          * Update False CCA count from register.
928          */
929         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
930         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
931 }
932
933 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
934                                    struct link_qual *qual, u8 vgc_level)
935 {
936         if (qual->vgc_level != vgc_level) {
937                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
938                 qual->vgc_level = vgc_level;
939                 qual->vgc_level_reg = vgc_level;
940         }
941 }
942
943 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
944                                 struct link_qual *qual)
945 {
946         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
947 }
948
949 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
950                                struct link_qual *qual, const u32 count)
951 {
952         u8 up_bound;
953         u8 low_bound;
954
955         /*
956          * Determine r17 bounds.
957          */
958         if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
959                 low_bound = 0x28;
960                 up_bound = 0x48;
961                 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
962                         low_bound += 0x10;
963                         up_bound += 0x10;
964                 }
965         } else {
966                 low_bound = 0x20;
967                 up_bound = 0x40;
968                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
969                         low_bound += 0x10;
970                         up_bound += 0x10;
971                 }
972         }
973
974         /*
975          * If we are not associated, we should go straight to the
976          * dynamic CCA tuning.
977          */
978         if (!rt2x00dev->intf_associated)
979                 goto dynamic_cca_tune;
980
981         /*
982          * Special big-R17 for very short distance
983          */
984         if (qual->rssi >= -35) {
985                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
986                 return;
987         }
988
989         /*
990          * Special big-R17 for short distance
991          */
992         if (qual->rssi >= -58) {
993                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
994                 return;
995         }
996
997         /*
998          * Special big-R17 for middle-short distance
999          */
1000         if (qual->rssi >= -66) {
1001                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1002                 return;
1003         }
1004
1005         /*
1006          * Special mid-R17 for middle distance
1007          */
1008         if (qual->rssi >= -74) {
1009                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1010                 return;
1011         }
1012
1013         /*
1014          * Special case: Change up_bound based on the rssi.
1015          * Lower up_bound when rssi is weaker then -74 dBm.
1016          */
1017         up_bound -= 2 * (-74 - qual->rssi);
1018         if (low_bound > up_bound)
1019                 up_bound = low_bound;
1020
1021         if (qual->vgc_level > up_bound) {
1022                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1023                 return;
1024         }
1025
1026 dynamic_cca_tune:
1027
1028         /*
1029          * r17 does not yet exceed upper limit, continue and base
1030          * the r17 tuning on the false CCA count.
1031          */
1032         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1033                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1034         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1035                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1036 }
1037
1038 /*
1039  * Queue handlers.
1040  */
1041 static void rt61pci_start_queue(struct data_queue *queue)
1042 {
1043         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1044         u32 reg;
1045
1046         switch (queue->qid) {
1047         case QID_RX:
1048                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1049                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1050                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1051                 break;
1052         case QID_BEACON:
1053                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1054                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1055                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1056                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1057                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1058                 break;
1059         default:
1060                 break;
1061         }
1062 }
1063
1064 static void rt61pci_kick_queue(struct data_queue *queue)
1065 {
1066         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1067         u32 reg;
1068
1069         switch (queue->qid) {
1070         case QID_AC_VO:
1071                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1072                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1073                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1074                 break;
1075         case QID_AC_VI:
1076                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1077                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1078                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1079                 break;
1080         case QID_AC_BE:
1081                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1082                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1083                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1084                 break;
1085         case QID_AC_BK:
1086                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1087                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1088                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1089                 break;
1090         default:
1091                 break;
1092         }
1093 }
1094
1095 static void rt61pci_stop_queue(struct data_queue *queue)
1096 {
1097         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1098         u32 reg;
1099
1100         switch (queue->qid) {
1101         case QID_AC_VO:
1102                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1103                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1104                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1105                 break;
1106         case QID_AC_VI:
1107                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1108                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1109                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1110                 break;
1111         case QID_AC_BE:
1112                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1113                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1114                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1115                 break;
1116         case QID_AC_BK:
1117                 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1118                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1119                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1120                 break;
1121         case QID_RX:
1122                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1123                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1124                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1125                 break;
1126         case QID_BEACON:
1127                 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1128                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1129                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1130                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1131                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1132
1133                 /*
1134                  * Wait for possibly running tbtt tasklets.
1135                  */
1136                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1137                 break;
1138         default:
1139                 break;
1140         }
1141 }
1142
1143 /*
1144  * Firmware functions
1145  */
1146 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1147 {
1148         u16 chip;
1149         char *fw_name;
1150
1151         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1152         switch (chip) {
1153         case RT2561_PCI_ID:
1154                 fw_name = FIRMWARE_RT2561;
1155                 break;
1156         case RT2561s_PCI_ID:
1157                 fw_name = FIRMWARE_RT2561s;
1158                 break;
1159         case RT2661_PCI_ID:
1160                 fw_name = FIRMWARE_RT2661;
1161                 break;
1162         default:
1163                 fw_name = NULL;
1164                 break;
1165         }
1166
1167         return fw_name;
1168 }
1169
1170 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1171                                   const u8 *data, const size_t len)
1172 {
1173         u16 fw_crc;
1174         u16 crc;
1175
1176         /*
1177          * Only support 8kb firmware files.
1178          */
1179         if (len != 8192)
1180                 return FW_BAD_LENGTH;
1181
1182         /*
1183          * The last 2 bytes in the firmware array are the crc checksum itself.
1184          * This means that we should never pass those 2 bytes to the crc
1185          * algorithm.
1186          */
1187         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1188
1189         /*
1190          * Use the crc itu-t algorithm.
1191          */
1192         crc = crc_itu_t(0, data, len - 2);
1193         crc = crc_itu_t_byte(crc, 0);
1194         crc = crc_itu_t_byte(crc, 0);
1195
1196         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1197 }
1198
1199 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1200                                  const u8 *data, const size_t len)
1201 {
1202         int i;
1203         u32 reg;
1204
1205         /*
1206          * Wait for stable hardware.
1207          */
1208         for (i = 0; i < 100; i++) {
1209                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1210                 if (reg)
1211                         break;
1212                 msleep(1);
1213         }
1214
1215         if (!reg) {
1216                 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1217                 return -EBUSY;
1218         }
1219
1220         /*
1221          * Prepare MCU and mailbox for firmware loading.
1222          */
1223         reg = 0;
1224         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1226         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1227         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1228         rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1229
1230         /*
1231          * Write firmware to device.
1232          */
1233         reg = 0;
1234         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1235         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1236         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1237
1238         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1239                                        data, len);
1240
1241         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1242         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1245         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1246
1247         for (i = 0; i < 100; i++) {
1248                 reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1249                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1250                         break;
1251                 msleep(1);
1252         }
1253
1254         if (i == 100) {
1255                 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1256                 return -EBUSY;
1257         }
1258
1259         /*
1260          * Hardware needs another millisecond before it is ready.
1261          */
1262         msleep(1);
1263
1264         /*
1265          * Reset MAC and BBP registers.
1266          */
1267         reg = 0;
1268         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1269         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1270         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1271
1272         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1273         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1274         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1275         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1276
1277         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1278         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1279         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1280
1281         return 0;
1282 }
1283
1284 /*
1285  * Initialization functions.
1286  */
1287 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1288 {
1289         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1290         u32 word;
1291
1292         if (entry->queue->qid == QID_RX) {
1293                 word = rt2x00_desc_read(entry_priv->desc, 0);
1294
1295                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1296         } else {
1297                 word = rt2x00_desc_read(entry_priv->desc, 0);
1298
1299                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300                         rt2x00_get_field32(word, TXD_W0_VALID));
1301         }
1302 }
1303
1304 static void rt61pci_clear_entry(struct queue_entry *entry)
1305 {
1306         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1307         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1308         u32 word;
1309
1310         if (entry->queue->qid == QID_RX) {
1311                 word = rt2x00_desc_read(entry_priv->desc, 5);
1312                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1313                                    skbdesc->skb_dma);
1314                 rt2x00_desc_write(entry_priv->desc, 5, word);
1315
1316                 word = rt2x00_desc_read(entry_priv->desc, 0);
1317                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1318                 rt2x00_desc_write(entry_priv->desc, 0, word);
1319         } else {
1320                 word = rt2x00_desc_read(entry_priv->desc, 0);
1321                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1322                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1323                 rt2x00_desc_write(entry_priv->desc, 0, word);
1324         }
1325 }
1326
1327 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1328 {
1329         struct queue_entry_priv_mmio *entry_priv;
1330         u32 reg;
1331
1332         /*
1333          * Initialize registers.
1334          */
1335         reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1336         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1337                            rt2x00dev->tx[0].limit);
1338         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1339                            rt2x00dev->tx[1].limit);
1340         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1341                            rt2x00dev->tx[2].limit);
1342         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1343                            rt2x00dev->tx[3].limit);
1344         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1345
1346         reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1347         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1348                            rt2x00dev->tx[0].desc_size / 4);
1349         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1350
1351         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1352         reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1353         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1354                            entry_priv->desc_dma);
1355         rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1356
1357         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1358         reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1359         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1360                            entry_priv->desc_dma);
1361         rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1362
1363         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1364         reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1365         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1366                            entry_priv->desc_dma);
1367         rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1368
1369         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1370         reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1371         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1372                            entry_priv->desc_dma);
1373         rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1374
1375         reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1376         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1377         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1378                            rt2x00dev->rx->desc_size / 4);
1379         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1380         rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1381
1382         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1383         reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1384         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1385                            entry_priv->desc_dma);
1386         rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1387
1388         reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1389         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1390         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1391         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1392         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1393         rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1394
1395         reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1396         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1397         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1398         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1399         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1400         rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1401
1402         reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1403         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1404         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1405
1406         return 0;
1407 }
1408
1409 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1410 {
1411         u32 reg;
1412
1413         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1414         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1415         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1416         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1417         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1418
1419         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1420         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1421         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1422         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1423         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1424         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1425         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1426         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1427         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1428         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1429
1430         /*
1431          * CCK TXD BBP registers
1432          */
1433         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1434         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1435         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1436         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1437         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1438         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1439         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1440         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1441         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1442         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1443
1444         /*
1445          * OFDM TXD BBP registers
1446          */
1447         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1448         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1449         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1450         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1451         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1452         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1453         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1454         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1455
1456         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1457         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1458         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1459         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1460         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1461         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1462
1463         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1464         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1465         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1466         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1467         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1468         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1469
1470         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1471         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1472         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1473         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1474         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1475         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1476         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1477         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1478
1479         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1480
1481         rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1482
1483         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1484         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1485         rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1486
1487         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1488
1489         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1490                 return -EBUSY;
1491
1492         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1493
1494         /*
1495          * Invalidate all Shared Keys (SEC_CSR0),
1496          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1497          */
1498         rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1499         rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1500         rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1501
1502         rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1503         rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1504         rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1505         rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1506
1507         rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1508
1509         rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1510
1511         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1512
1513         /*
1514          * Clear all beacons
1515          * For the Beacon base registers we only need to clear
1516          * the first byte since that byte contains the VALID and OWNER
1517          * bits which (when set to 0) will invalidate the entire beacon.
1518          */
1519         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1520         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1521         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1522         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1523
1524         /*
1525          * We must clear the error counters.
1526          * These registers are cleared on read,
1527          * so we may pass a useless variable to store the value.
1528          */
1529         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1530         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1531         reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1532
1533         /*
1534          * Reset MAC and BBP registers.
1535          */
1536         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1537         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1538         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1539         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1540
1541         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1542         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1543         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1544         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1545
1546         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1547         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1548         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1549
1550         return 0;
1551 }
1552
1553 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1554 {
1555         unsigned int i;
1556         u8 value;
1557
1558         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1559                 value = rt61pci_bbp_read(rt2x00dev, 0);
1560                 if ((value != 0xff) && (value != 0x00))
1561                         return 0;
1562                 udelay(REGISTER_BUSY_DELAY);
1563         }
1564
1565         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1566         return -EACCES;
1567 }
1568
1569 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1570 {
1571         unsigned int i;
1572         u16 eeprom;
1573         u8 reg_id;
1574         u8 value;
1575
1576         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1577                 return -EACCES;
1578
1579         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1580         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1581         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1582         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1583         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1584         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1585         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1586         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1587         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1588         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1589         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1590         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1591         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1592         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1593         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1594         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1595         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1596         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1597         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1598         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1599         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1600         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1601         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1602         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1603
1604         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1605                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1606
1607                 if (eeprom != 0xffff && eeprom != 0x0000) {
1608                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1609                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1610                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1611                 }
1612         }
1613
1614         return 0;
1615 }
1616
1617 /*
1618  * Device state switch handlers.
1619  */
1620 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621                                enum dev_state state)
1622 {
1623         int mask = (state == STATE_RADIO_IRQ_OFF);
1624         u32 reg;
1625         unsigned long flags;
1626
1627         /*
1628          * When interrupts are being enabled, the interrupt registers
1629          * should clear the register to assure a clean state.
1630          */
1631         if (state == STATE_RADIO_IRQ_ON) {
1632                 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1633                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1634
1635                 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1636                 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1637         }
1638
1639         /*
1640          * Only toggle the interrupts bits we are going to use.
1641          * Non-checked interrupt bits are disabled by default.
1642          */
1643         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1644
1645         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1646         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1647         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1648         rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1649         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1650         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1651         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1652
1653         reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1656         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1657         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1658         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1659         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1660         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1661         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1662         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1663         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1664
1665         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1666
1667         if (state == STATE_RADIO_IRQ_OFF) {
1668                 /*
1669                  * Ensure that all tasklets are finished.
1670                  */
1671                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1672                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1673                 tasklet_kill(&rt2x00dev->autowake_tasklet);
1674                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1675         }
1676 }
1677
1678 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1679 {
1680         u32 reg;
1681
1682         /*
1683          * Initialize all registers.
1684          */
1685         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1686                      rt61pci_init_registers(rt2x00dev) ||
1687                      rt61pci_init_bbp(rt2x00dev)))
1688                 return -EIO;
1689
1690         /*
1691          * Enable RX.
1692          */
1693         reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1694         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1695         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1696
1697         return 0;
1698 }
1699
1700 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1701 {
1702         /*
1703          * Disable power
1704          */
1705         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1706 }
1707
1708 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1709 {
1710         u32 reg, reg2;
1711         unsigned int i;
1712         char put_to_sleep;
1713
1714         put_to_sleep = (state != STATE_AWAKE);
1715
1716         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1717         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1718         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1719         rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1720
1721         /*
1722          * Device is not guaranteed to be in the requested state yet.
1723          * We must wait until the register indicates that the
1724          * device has entered the correct state.
1725          */
1726         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1727                 reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1728                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1729                 if (state == !put_to_sleep)
1730                         return 0;
1731                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1732                 msleep(10);
1733         }
1734
1735         return -EBUSY;
1736 }
1737
1738 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739                                     enum dev_state state)
1740 {
1741         int retval = 0;
1742
1743         switch (state) {
1744         case STATE_RADIO_ON:
1745                 retval = rt61pci_enable_radio(rt2x00dev);
1746                 break;
1747         case STATE_RADIO_OFF:
1748                 rt61pci_disable_radio(rt2x00dev);
1749                 break;
1750         case STATE_RADIO_IRQ_ON:
1751         case STATE_RADIO_IRQ_OFF:
1752                 rt61pci_toggle_irq(rt2x00dev, state);
1753                 break;
1754         case STATE_DEEP_SLEEP:
1755         case STATE_SLEEP:
1756         case STATE_STANDBY:
1757         case STATE_AWAKE:
1758                 retval = rt61pci_set_state(rt2x00dev, state);
1759                 break;
1760         default:
1761                 retval = -ENOTSUPP;
1762                 break;
1763         }
1764
1765         if (unlikely(retval))
1766                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1767                            state, retval);
1768
1769         return retval;
1770 }
1771
1772 /*
1773  * TX descriptor initialization
1774  */
1775 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1776                                   struct txentry_desc *txdesc)
1777 {
1778         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1779         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1780         __le32 *txd = entry_priv->desc;
1781         u32 word;
1782
1783         /*
1784          * Start writing the descriptor words.
1785          */
1786         word = rt2x00_desc_read(txd, 1);
1787         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1788         rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1789         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1790         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1791         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1792         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1793                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1794         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1795         rt2x00_desc_write(txd, 1, word);
1796
1797         word = rt2x00_desc_read(txd, 2);
1798         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1799         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1800         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1801                            txdesc->u.plcp.length_low);
1802         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1803                            txdesc->u.plcp.length_high);
1804         rt2x00_desc_write(txd, 2, word);
1805
1806         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1807                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1808                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1809         }
1810
1811         word = rt2x00_desc_read(txd, 5);
1812         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1813         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1814         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1815                            TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1816         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1817         rt2x00_desc_write(txd, 5, word);
1818
1819         if (entry->queue->qid != QID_BEACON) {
1820                 word = rt2x00_desc_read(txd, 6);
1821                 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1822                                    skbdesc->skb_dma);
1823                 rt2x00_desc_write(txd, 6, word);
1824
1825                 word = rt2x00_desc_read(txd, 11);
1826                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1827                                    txdesc->length);
1828                 rt2x00_desc_write(txd, 11, word);
1829         }
1830
1831         /*
1832          * Writing TXD word 0 must the last to prevent a race condition with
1833          * the device, whereby the device may take hold of the TXD before we
1834          * finished updating it.
1835          */
1836         word = rt2x00_desc_read(txd, 0);
1837         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1838         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1839         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1840                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1841         rt2x00_set_field32(&word, TXD_W0_ACK,
1842                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1843         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1844                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1845         rt2x00_set_field32(&word, TXD_W0_OFDM,
1846                            (txdesc->rate_mode == RATE_MODE_OFDM));
1847         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1848         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1849                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1850         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1851                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1852         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1853                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1854         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1855         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1856         rt2x00_set_field32(&word, TXD_W0_BURST,
1857                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1858         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1859         rt2x00_desc_write(txd, 0, word);
1860
1861         /*
1862          * Register descriptor details in skb frame descriptor.
1863          */
1864         skbdesc->desc = txd;
1865         skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1866                             TXD_DESC_SIZE;
1867 }
1868
1869 /*
1870  * TX data initialization
1871  */
1872 static void rt61pci_write_beacon(struct queue_entry *entry,
1873                                  struct txentry_desc *txdesc)
1874 {
1875         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1876         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1877         unsigned int beacon_base;
1878         unsigned int padding_len;
1879         u32 orig_reg, reg;
1880
1881         /*
1882          * Disable beaconing while we are reloading the beacon data,
1883          * otherwise we might be sending out invalid data.
1884          */
1885         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1886         orig_reg = reg;
1887         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1888         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1889
1890         /*
1891          * Write the TX descriptor for the beacon.
1892          */
1893         rt61pci_write_tx_desc(entry, txdesc);
1894
1895         /*
1896          * Dump beacon to userspace through debugfs.
1897          */
1898         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1899
1900         /*
1901          * Write entire beacon with descriptor and padding to register.
1902          */
1903         padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1904         if (padding_len && skb_pad(entry->skb, padding_len)) {
1905                 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1906                 /* skb freed by skb_pad() on failure */
1907                 entry->skb = NULL;
1908                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1909                 return;
1910         }
1911
1912         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1913         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
1914                                        entry_priv->desc, TXINFO_SIZE);
1915         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1916                                        entry->skb->data,
1917                                        entry->skb->len + padding_len);
1918
1919         /*
1920          * Enable beaconing again.
1921          *
1922          * For Wi-Fi faily generated beacons between participating
1923          * stations. Set TBTT phase adaptive adjustment step to 8us.
1924          */
1925         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1926
1927         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1928         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1929
1930         /*
1931          * Clean up beacon skb.
1932          */
1933         dev_kfree_skb_any(entry->skb);
1934         entry->skb = NULL;
1935 }
1936
1937 static void rt61pci_clear_beacon(struct queue_entry *entry)
1938 {
1939         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1940         u32 orig_reg, reg;
1941
1942         /*
1943          * Disable beaconing while we are reloading the beacon data,
1944          * otherwise we might be sending out invalid data.
1945          */
1946         orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1947         reg = orig_reg;
1948         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1949         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1950
1951         /*
1952          * Clear beacon.
1953          */
1954         rt2x00mmio_register_write(rt2x00dev,
1955                                   HW_BEACON_OFFSET(entry->entry_idx), 0);
1956
1957         /*
1958          * Restore global beaconing state.
1959          */
1960         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1961 }
1962
1963 /*
1964  * RX control handlers
1965  */
1966 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1967 {
1968         u8 offset = rt2x00dev->lna_gain;
1969         u8 lna;
1970
1971         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1972         switch (lna) {
1973         case 3:
1974                 offset += 90;
1975                 break;
1976         case 2:
1977                 offset += 74;
1978                 break;
1979         case 1:
1980                 offset += 64;
1981                 break;
1982         default:
1983                 return 0;
1984         }
1985
1986         if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1987                 if (lna == 3 || lna == 2)
1988                         offset += 10;
1989         }
1990
1991         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1992 }
1993
1994 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1995                                 struct rxdone_entry_desc *rxdesc)
1996 {
1997         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1998         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1999         u32 word0;
2000         u32 word1;
2001
2002         word0 = rt2x00_desc_read(entry_priv->desc, 0);
2003         word1 = rt2x00_desc_read(entry_priv->desc, 1);
2004
2005         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2006                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2007
2008         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2009         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2010
2011         if (rxdesc->cipher != CIPHER_NONE) {
2012                 rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2013                 rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2014                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2015
2016                 rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2017                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2018
2019                 /*
2020                  * Hardware has stripped IV/EIV data from 802.11 frame during
2021                  * decryption. It has provided the data separately but rt2x00lib
2022                  * should decide if it should be reinserted.
2023                  */
2024                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2025
2026                 /*
2027                  * The hardware has already checked the Michael Mic and has
2028                  * stripped it from the frame. Signal this to mac80211.
2029                  */
2030                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2031
2032                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2033                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2034                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2035                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2036         }
2037
2038         /*
2039          * Obtain the status about this packet.
2040          * When frame was received with an OFDM bitrate,
2041          * the signal is the PLCP value. If it was received with
2042          * a CCK bitrate the signal is the rate in 100kbit/s.
2043          */
2044         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2045         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2046         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2047
2048         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2049                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2050         else
2051                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2052         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2053                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2054 }
2055
2056 /*
2057  * Interrupt functions.
2058  */
2059 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2060 {
2061         struct data_queue *queue;
2062         struct queue_entry *entry;
2063         struct queue_entry *entry_done;
2064         struct queue_entry_priv_mmio *entry_priv;
2065         struct txdone_entry_desc txdesc;
2066         u32 word;
2067         u32 reg;
2068         int type;
2069         int index;
2070         int i;
2071
2072         /*
2073          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2074          * at most X times and also stop processing once the TX_STA_FIFO_VALID
2075          * flag is not set anymore.
2076          *
2077          * The legacy drivers use X=TX_RING_SIZE but state in a comment
2078          * that the TX_STA_FIFO stack has a size of 16. We stick to our
2079          * tx ring size for now.
2080          */
2081         for (i = 0; i < rt2x00dev->tx->limit; i++) {
2082                 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2083                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2084                         break;
2085
2086                 /*
2087                  * Skip this entry when it contains an invalid
2088                  * queue identication number.
2089                  */
2090                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2091                 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2092                 if (unlikely(!queue))
2093                         continue;
2094
2095                 /*
2096                  * Skip this entry when it contains an invalid
2097                  * index number.
2098                  */
2099                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2100                 if (unlikely(index >= queue->limit))
2101                         continue;
2102
2103                 entry = &queue->entries[index];
2104                 entry_priv = entry->priv_data;
2105                 word = rt2x00_desc_read(entry_priv->desc, 0);
2106
2107                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2108                     !rt2x00_get_field32(word, TXD_W0_VALID))
2109                         return;
2110
2111                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2112                 while (entry != entry_done) {
2113                         /* Catch up.
2114                          * Just report any entries we missed as failed.
2115                          */
2116                         rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2117                                     entry_done->entry_idx);
2118
2119                         rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2120                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2121                 }
2122
2123                 /*
2124                  * Obtain the status about this packet.
2125                  */
2126                 txdesc.flags = 0;
2127                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2128                 case 0: /* Success, maybe with retry */
2129                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2130                         break;
2131                 case 6: /* Failure, excessive retries */
2132                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2133                         /* Fall through - this is a failed frame! */
2134                 default: /* Failure */
2135                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2136                 }
2137                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2138
2139                 /*
2140                  * the frame was retried at least once
2141                  * -> hw used fallback rates
2142                  */
2143                 if (txdesc.retry)
2144                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2145
2146                 rt2x00lib_txdone(entry, &txdesc);
2147         }
2148 }
2149
2150 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2151 {
2152         struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2153
2154         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2155 }
2156
2157 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2158                                             struct rt2x00_field32 irq_field)
2159 {
2160         u32 reg;
2161
2162         /*
2163          * Enable a single interrupt. The interrupt mask register
2164          * access needs locking.
2165          */
2166         spin_lock_irq(&rt2x00dev->irqmask_lock);
2167
2168         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2169         rt2x00_set_field32(&reg, irq_field, 0);
2170         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2171
2172         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2173 }
2174
2175 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2176                                          struct rt2x00_field32 irq_field)
2177 {
2178         u32 reg;
2179
2180         /*
2181          * Enable a single MCU interrupt. The interrupt mask register
2182          * access needs locking.
2183          */
2184         spin_lock_irq(&rt2x00dev->irqmask_lock);
2185
2186         reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2187         rt2x00_set_field32(&reg, irq_field, 0);
2188         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2189
2190         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2191 }
2192
2193 static void rt61pci_txstatus_tasklet(unsigned long data)
2194 {
2195         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2196         rt61pci_txdone(rt2x00dev);
2197         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2198                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2199 }
2200
2201 static void rt61pci_tbtt_tasklet(unsigned long data)
2202 {
2203         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2204         rt2x00lib_beacondone(rt2x00dev);
2205         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2206                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2207 }
2208
2209 static void rt61pci_rxdone_tasklet(unsigned long data)
2210 {
2211         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2212         if (rt2x00mmio_rxdone(rt2x00dev))
2213                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2214         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2215                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2216 }
2217
2218 static void rt61pci_autowake_tasklet(unsigned long data)
2219 {
2220         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2221         rt61pci_wakeup(rt2x00dev);
2222         rt2x00mmio_register_write(rt2x00dev,
2223                                   M2H_CMD_DONE_CSR, 0xffffffff);
2224         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2225                 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2226 }
2227
2228 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2229 {
2230         struct rt2x00_dev *rt2x00dev = dev_instance;
2231         u32 reg_mcu, mask_mcu;
2232         u32 reg, mask;
2233
2234         /*
2235          * Get the interrupt sources & saved to local variable.
2236          * Write register value back to clear pending interrupts.
2237          */
2238         reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2239         rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2240
2241         reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2242         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2243
2244         if (!reg && !reg_mcu)
2245                 return IRQ_NONE;
2246
2247         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2248                 return IRQ_HANDLED;
2249
2250         /*
2251          * Schedule tasklets for interrupt handling.
2252          */
2253         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2254                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2255
2256         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2257                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2258
2259         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2260                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2261
2262         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2263                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2264
2265         /*
2266          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2267          * for interrupts and interrupt masks we can just use the value of
2268          * INT_SOURCE_CSR to create the interrupt mask.
2269          */
2270         mask = reg;
2271         mask_mcu = reg_mcu;
2272
2273         /*
2274          * Disable all interrupts for which a tasklet was scheduled right now,
2275          * the tasklet will reenable the appropriate interrupts.
2276          */
2277         spin_lock(&rt2x00dev->irqmask_lock);
2278
2279         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2280         reg |= mask;
2281         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2282
2283         reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2284         reg |= mask_mcu;
2285         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2286
2287         spin_unlock(&rt2x00dev->irqmask_lock);
2288
2289         return IRQ_HANDLED;
2290 }
2291
2292 /*
2293  * Device probe functions.
2294  */
2295 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2296 {
2297         struct eeprom_93cx6 eeprom;
2298         u32 reg;
2299         u16 word;
2300         u8 *mac;
2301         s8 value;
2302
2303         reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2304
2305         eeprom.data = rt2x00dev;
2306         eeprom.register_read = rt61pci_eepromregister_read;
2307         eeprom.register_write = rt61pci_eepromregister_write;
2308         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2309             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2310         eeprom.reg_data_in = 0;
2311         eeprom.reg_data_out = 0;
2312         eeprom.reg_data_clock = 0;
2313         eeprom.reg_chip_select = 0;
2314
2315         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2316                                EEPROM_SIZE / sizeof(u16));
2317
2318         /*
2319          * Start validation of the data that has been read.
2320          */
2321         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2322         rt2x00lib_set_mac_address(rt2x00dev, mac);
2323
2324         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2325         if (word == 0xffff) {
2326                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2327                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2328                                    ANTENNA_B);
2329                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2330                                    ANTENNA_B);
2331                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2332                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2333                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2334                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2335                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2336                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2337         }
2338
2339         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2340         if (word == 0xffff) {
2341                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2342                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2343                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2344                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2345                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2346                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2347                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2348                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2349                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2350         }
2351
2352         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2353         if (word == 0xffff) {
2354                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2355                                    LED_MODE_DEFAULT);
2356                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2357                 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2358         }
2359
2360         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2361         if (word == 0xffff) {
2362                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2363                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2364                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2365                 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2366         }
2367
2368         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2369         if (word == 0xffff) {
2370                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2371                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2372                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2373                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2374         } else {
2375                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2376                 if (value < -10 || value > 10)
2377                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2378                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2379                 if (value < -10 || value > 10)
2380                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2381                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2382         }
2383
2384         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2385         if (word == 0xffff) {
2386                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2387                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2388                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2389                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2390         } else {
2391                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2392                 if (value < -10 || value > 10)
2393                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2394                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2395                 if (value < -10 || value > 10)
2396                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2397                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2398         }
2399
2400         return 0;
2401 }
2402
2403 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2404 {
2405         u32 reg;
2406         u16 value;
2407         u16 eeprom;
2408
2409         /*
2410          * Read EEPROM word for configuration.
2411          */
2412         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2413
2414         /*
2415          * Identify RF chipset.
2416          */
2417         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2418         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2419         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2420                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2421
2422         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2423             !rt2x00_rf(rt2x00dev, RF5325) &&
2424             !rt2x00_rf(rt2x00dev, RF2527) &&
2425             !rt2x00_rf(rt2x00dev, RF2529)) {
2426                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2427                 return -ENODEV;
2428         }
2429
2430         /*
2431          * Determine number of antennas.
2432          */
2433         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2434                 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2435
2436         /*
2437          * Identify default antenna configuration.
2438          */
2439         rt2x00dev->default_ant.tx =
2440             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2441         rt2x00dev->default_ant.rx =
2442             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2443
2444         /*
2445          * Read the Frame type.
2446          */
2447         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2448                 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2449
2450         /*
2451          * Detect if this device has a hardware controlled radio.
2452          */
2453         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2454                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2455
2456         /*
2457          * Read frequency offset and RF programming sequence.
2458          */
2459         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2460         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2461                 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2462
2463         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2464
2465         /*
2466          * Read external LNA informations.
2467          */
2468         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2469
2470         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2471                 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2472         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2473                 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2474
2475         /*
2476          * When working with a RF2529 chip without double antenna,
2477          * the antenna settings should be gathered from the NIC
2478          * eeprom word.
2479          */
2480         if (rt2x00_rf(rt2x00dev, RF2529) &&
2481             !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2482                 rt2x00dev->default_ant.rx =
2483                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2484                 rt2x00dev->default_ant.tx =
2485                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2486
2487                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2488                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2489                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2490                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2491         }
2492
2493         /*
2494          * Store led settings, for correct led behaviour.
2495          * If the eeprom value is invalid,
2496          * switch to default led mode.
2497          */
2498 #ifdef CONFIG_RT2X00_LIB_LEDS
2499         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2500         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2501
2502         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2503         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2504         if (value == LED_MODE_SIGNAL_STRENGTH)
2505                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2506                                  LED_TYPE_QUALITY);
2507
2508         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2509         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2510                            rt2x00_get_field16(eeprom,
2511                                               EEPROM_LED_POLARITY_GPIO_0));
2512         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2513                            rt2x00_get_field16(eeprom,
2514                                               EEPROM_LED_POLARITY_GPIO_1));
2515         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2516                            rt2x00_get_field16(eeprom,
2517                                               EEPROM_LED_POLARITY_GPIO_2));
2518         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2519                            rt2x00_get_field16(eeprom,
2520                                               EEPROM_LED_POLARITY_GPIO_3));
2521         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2522                            rt2x00_get_field16(eeprom,
2523                                               EEPROM_LED_POLARITY_GPIO_4));
2524         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2525                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2526         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2527                            rt2x00_get_field16(eeprom,
2528                                               EEPROM_LED_POLARITY_RDY_G));
2529         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2530                            rt2x00_get_field16(eeprom,
2531                                               EEPROM_LED_POLARITY_RDY_A));
2532 #endif /* CONFIG_RT2X00_LIB_LEDS */
2533
2534         return 0;
2535 }
2536
2537 /*
2538  * RF value list for RF5225 & RF5325
2539  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2540  */
2541 static const struct rf_channel rf_vals_noseq[] = {
2542         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2543         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2544         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2545         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2546         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2547         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2548         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2549         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2550         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2551         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2552         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2553         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2554         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2555         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2556
2557         /* 802.11 UNI / HyperLan 2 */
2558         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2559         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2560         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2561         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2562         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2563         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2564         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2565         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2566
2567         /* 802.11 HyperLan 2 */
2568         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2569         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2570         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2571         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2572         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2573         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2574         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2575         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2576         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2577         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2578
2579         /* 802.11 UNII */
2580         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2581         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2582         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2583         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2584         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2585         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2586
2587         /* MMAC(Japan)J52 ch 34,38,42,46 */
2588         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2589         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2590         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2591         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2592 };
2593
2594 /*
2595  * RF value list for RF5225 & RF5325
2596  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2597  */
2598 static const struct rf_channel rf_vals_seq[] = {
2599         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2600         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2601         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2602         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2603         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2604         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2605         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2606         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2607         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2608         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2609         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2610         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2611         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2612         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2613
2614         /* 802.11 UNI / HyperLan 2 */
2615         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2616         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2617         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2618         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2619         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2620         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2621         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2622         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2623
2624         /* 802.11 HyperLan 2 */
2625         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2626         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2627         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2628         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2629         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2630         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2631         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2632         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2633         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2634         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2635
2636         /* 802.11 UNII */
2637         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2638         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2639         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2640         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2641         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2642         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2643
2644         /* MMAC(Japan)J52 ch 34,38,42,46 */
2645         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2646         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2647         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2648         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2649 };
2650
2651 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2652 {
2653         struct hw_mode_spec *spec = &rt2x00dev->spec;
2654         struct channel_info *info;
2655         char *tx_power;
2656         unsigned int i;
2657
2658         /*
2659          * Disable powersaving as default.
2660          */
2661         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2662
2663         /*
2664          * Initialize all hw fields.
2665          */
2666         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2667         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2668         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2669         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2670
2671         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2672         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2673                                 rt2x00_eeprom_addr(rt2x00dev,
2674                                                    EEPROM_MAC_ADDR_0));
2675
2676         /*
2677          * As rt61 has a global fallback table we cannot specify
2678          * more then one tx rate per frame but since the hw will
2679          * try several rates (based on the fallback table) we should
2680          * initialize max_report_rates to the maximum number of rates
2681          * we are going to try. Otherwise mac80211 will truncate our
2682          * reported tx rates and the rc algortihm will end up with
2683          * incorrect data.
2684          */
2685         rt2x00dev->hw->max_rates = 1;
2686         rt2x00dev->hw->max_report_rates = 7;
2687         rt2x00dev->hw->max_rate_tries = 1;
2688
2689         /*
2690          * Initialize hw_mode information.
2691          */
2692         spec->supported_bands = SUPPORT_BAND_2GHZ;
2693         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2694
2695         if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2696                 spec->num_channels = 14;
2697                 spec->channels = rf_vals_noseq;
2698         } else {
2699                 spec->num_channels = 14;
2700                 spec->channels = rf_vals_seq;
2701         }
2702
2703         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2704                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2705                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2706         }
2707
2708         /*
2709          * Create channel information array
2710          */
2711         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2712         if (!info)
2713                 return -ENOMEM;
2714
2715         spec->channels_info = info;
2716
2717         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2718         for (i = 0; i < 14; i++) {
2719                 info[i].max_power = MAX_TXPOWER;
2720                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2721         }
2722
2723         if (spec->num_channels > 14) {
2724                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2725                 for (i = 14; i < spec->num_channels; i++) {
2726                         info[i].max_power = MAX_TXPOWER;
2727                         info[i].default_power1 =
2728                                         TXPOWER_FROM_DEV(tx_power[i - 14]);
2729                 }
2730         }
2731
2732         return 0;
2733 }
2734
2735 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2736 {
2737         int retval;
2738         u32 reg;
2739
2740         /*
2741          * Disable power saving.
2742          */
2743         rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2744
2745         /*
2746          * Allocate eeprom data.
2747          */
2748         retval = rt61pci_validate_eeprom(rt2x00dev);
2749         if (retval)
2750                 return retval;
2751
2752         retval = rt61pci_init_eeprom(rt2x00dev);
2753         if (retval)
2754                 return retval;
2755
2756         /*
2757          * Enable rfkill polling by setting GPIO direction of the
2758          * rfkill switch GPIO pin correctly.
2759          */
2760         reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2761         rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2762         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2763
2764         /*
2765          * Initialize hw specifications.
2766          */
2767         retval = rt61pci_probe_hw_mode(rt2x00dev);
2768         if (retval)
2769                 return retval;
2770
2771         /*
2772          * This device has multiple filters for control frames,
2773          * but has no a separate filter for PS Poll frames.
2774          */
2775         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2776
2777         /*
2778          * This device requires firmware and DMA mapped skbs.
2779          */
2780         __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2781         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2782         if (!modparam_nohwcrypt)
2783                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2784         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2785
2786         /*
2787          * Set the rssi offset.
2788          */
2789         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2790
2791         return 0;
2792 }
2793
2794 /*
2795  * IEEE80211 stack callback functions.
2796  */
2797 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2798                            struct ieee80211_vif *vif, u16 queue_idx,
2799                            const struct ieee80211_tx_queue_params *params)
2800 {
2801         struct rt2x00_dev *rt2x00dev = hw->priv;
2802         struct data_queue *queue;
2803         struct rt2x00_field32 field;
2804         int retval;
2805         u32 reg;
2806         u32 offset;
2807
2808         /*
2809          * First pass the configuration through rt2x00lib, that will
2810          * update the queue settings and validate the input. After that
2811          * we are free to update the registers based on the value
2812          * in the queue parameter.
2813          */
2814         retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2815         if (retval)
2816                 return retval;
2817
2818         /*
2819          * We only need to perform additional register initialization
2820          * for WMM queues.
2821          */
2822         if (queue_idx >= 4)
2823                 return 0;
2824
2825         queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2826
2827         /* Update WMM TXOP register */
2828         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2829         field.bit_offset = (queue_idx & 1) * 16;
2830         field.bit_mask = 0xffff << field.bit_offset;
2831
2832         reg = rt2x00mmio_register_read(rt2x00dev, offset);
2833         rt2x00_set_field32(&reg, field, queue->txop);
2834         rt2x00mmio_register_write(rt2x00dev, offset, reg);
2835
2836         /* Update WMM registers */
2837         field.bit_offset = queue_idx * 4;
2838         field.bit_mask = 0xf << field.bit_offset;
2839
2840         reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2841         rt2x00_set_field32(&reg, field, queue->aifs);
2842         rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2843
2844         reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2845         rt2x00_set_field32(&reg, field, queue->cw_min);
2846         rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2847
2848         reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2849         rt2x00_set_field32(&reg, field, queue->cw_max);
2850         rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2851
2852         return 0;
2853 }
2854
2855 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2856 {
2857         struct rt2x00_dev *rt2x00dev = hw->priv;
2858         u64 tsf;
2859         u32 reg;
2860
2861         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2862         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2863         reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2864         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2865
2866         return tsf;
2867 }
2868
2869 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2870         .tx                     = rt2x00mac_tx,
2871         .start                  = rt2x00mac_start,
2872         .stop                   = rt2x00mac_stop,
2873         .add_interface          = rt2x00mac_add_interface,
2874         .remove_interface       = rt2x00mac_remove_interface,
2875         .config                 = rt2x00mac_config,
2876         .configure_filter       = rt2x00mac_configure_filter,
2877         .set_key                = rt2x00mac_set_key,
2878         .sw_scan_start          = rt2x00mac_sw_scan_start,
2879         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2880         .get_stats              = rt2x00mac_get_stats,
2881         .bss_info_changed       = rt2x00mac_bss_info_changed,
2882         .conf_tx                = rt61pci_conf_tx,
2883         .get_tsf                = rt61pci_get_tsf,
2884         .rfkill_poll            = rt2x00mac_rfkill_poll,
2885         .flush                  = rt2x00mac_flush,
2886         .set_antenna            = rt2x00mac_set_antenna,
2887         .get_antenna            = rt2x00mac_get_antenna,
2888         .get_ringparam          = rt2x00mac_get_ringparam,
2889         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2890 };
2891
2892 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2893         .irq_handler            = rt61pci_interrupt,
2894         .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2895         .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2896         .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2897         .autowake_tasklet       = rt61pci_autowake_tasklet,
2898         .probe_hw               = rt61pci_probe_hw,
2899         .get_firmware_name      = rt61pci_get_firmware_name,
2900         .check_firmware         = rt61pci_check_firmware,
2901         .load_firmware          = rt61pci_load_firmware,
2902         .initialize             = rt2x00mmio_initialize,
2903         .uninitialize           = rt2x00mmio_uninitialize,
2904         .get_entry_state        = rt61pci_get_entry_state,
2905         .clear_entry            = rt61pci_clear_entry,
2906         .set_device_state       = rt61pci_set_device_state,
2907         .rfkill_poll            = rt61pci_rfkill_poll,
2908         .link_stats             = rt61pci_link_stats,
2909         .reset_tuner            = rt61pci_reset_tuner,
2910         .link_tuner             = rt61pci_link_tuner,
2911         .start_queue            = rt61pci_start_queue,
2912         .kick_queue             = rt61pci_kick_queue,
2913         .stop_queue             = rt61pci_stop_queue,
2914         .flush_queue            = rt2x00mmio_flush_queue,
2915         .write_tx_desc          = rt61pci_write_tx_desc,
2916         .write_beacon           = rt61pci_write_beacon,
2917         .clear_beacon           = rt61pci_clear_beacon,
2918         .fill_rxdone            = rt61pci_fill_rxdone,
2919         .config_shared_key      = rt61pci_config_shared_key,
2920         .config_pairwise_key    = rt61pci_config_pairwise_key,
2921         .config_filter          = rt61pci_config_filter,
2922         .config_intf            = rt61pci_config_intf,
2923         .config_erp             = rt61pci_config_erp,
2924         .config_ant             = rt61pci_config_ant,
2925         .config                 = rt61pci_config,
2926 };
2927
2928 static void rt61pci_queue_init(struct data_queue *queue)
2929 {
2930         switch (queue->qid) {
2931         case QID_RX:
2932                 queue->limit = 32;
2933                 queue->data_size = DATA_FRAME_SIZE;
2934                 queue->desc_size = RXD_DESC_SIZE;
2935                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2936                 break;
2937
2938         case QID_AC_VO:
2939         case QID_AC_VI:
2940         case QID_AC_BE:
2941         case QID_AC_BK:
2942                 queue->limit = 32;
2943                 queue->data_size = DATA_FRAME_SIZE;
2944                 queue->desc_size = TXD_DESC_SIZE;
2945                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2946                 break;
2947
2948         case QID_BEACON:
2949                 queue->limit = 4;
2950                 queue->data_size = 0; /* No DMA required for beacons */
2951                 queue->desc_size = TXINFO_SIZE;
2952                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2953                 break;
2954
2955         case QID_ATIM:
2956                 /* fallthrough */
2957         default:
2958                 BUG();
2959                 break;
2960         }
2961 }
2962
2963 static const struct rt2x00_ops rt61pci_ops = {
2964         .name                   = KBUILD_MODNAME,
2965         .max_ap_intf            = 4,
2966         .eeprom_size            = EEPROM_SIZE,
2967         .rf_size                = RF_SIZE,
2968         .tx_queues              = NUM_TX_QUEUES,
2969         .queue_init             = rt61pci_queue_init,
2970         .lib                    = &rt61pci_rt2x00_ops,
2971         .hw                     = &rt61pci_mac80211_ops,
2972 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2973         .debugfs                = &rt61pci_rt2x00debug,
2974 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2975 };
2976
2977 /*
2978  * RT61pci module information.
2979  */
2980 static const struct pci_device_id rt61pci_device_table[] = {
2981         /* RT2561s */
2982         { PCI_DEVICE(0x1814, 0x0301) },
2983         /* RT2561 v2 */
2984         { PCI_DEVICE(0x1814, 0x0302) },
2985         /* RT2661 */
2986         { PCI_DEVICE(0x1814, 0x0401) },
2987         { 0, }
2988 };
2989
2990 MODULE_AUTHOR(DRV_PROJECT);
2991 MODULE_VERSION(DRV_VERSION);
2992 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2993 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2994                         "PCI & PCMCIA chipset based cards");
2995 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2996 /*(DEBLOBBED)*/
2997 MODULE_LICENSE("GPL");
2998
2999 static int rt61pci_probe(struct pci_dev *pci_dev,
3000                          const struct pci_device_id *id)
3001 {
3002         return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3003 }
3004
3005 static struct pci_driver rt61pci_driver = {
3006         .name           = KBUILD_MODNAME,
3007         .id_table       = rt61pci_device_table,
3008         .probe          = rt61pci_probe,
3009         .remove         = rt2x00pci_remove,
3010         .suspend        = rt2x00pci_suspend,
3011         .resume         = rt2x00pci_resume,
3012 };
3013
3014 module_pci_driver(rt61pci_driver);