Linux-libre 2.6.32.6-gnu1
[librecmc/linux-libre.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
67
68 #include <net/mac80211.h>
69
70 #include "iwl-commands.h"
71 #include "iwl-dev.h"
72 #include "iwl-core.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
75 #include "iwl-io.h"
76
77 /************************** EEPROM BANDS ****************************
78  *
79  * The iwl_eeprom_band definitions below provide the mapping from the
80  * EEPROM contents to the specific channel number supported for each
81  * band.
82  *
83  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85  * The specific geography and calibration information for that channel
86  * is contained in the eeprom map itself.
87  *
88  * During init, we copy the eeprom information and channel map
89  * information into priv->channel_info_24/52 and priv->channel_map_24/52
90  *
91  * channel_map_24/52 provides the index in the channel_info array for a
92  * given channel.  We have to have two separate maps as there is channel
93  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
94  * band_2
95  *
96  * A value of 0xff stored in the channel_map indicates that the channel
97  * is not supported by the hardware at all.
98  *
99  * A value of 0xfe in the channel_map indicates that the channel is not
100  * valid for Tx with the current hardware.  This means that
101  * while the system can tune and receive on a given channel, it may not
102  * be able to associate or transmit any frames on that
103  * channel.  There is no corresponding channel information for that
104  * entry.
105  *
106  *********************************************************************/
107
108 /* 2.4 GHz */
109 const u8 iwl_eeprom_band_1[14] = {
110         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
111 };
112
113 /* 5.2 GHz bands */
114 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
115         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
116 };
117
118 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
119         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
120 };
121
122 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
123         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
124 };
125
126 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
127         145, 149, 153, 157, 161, 165
128 };
129
130 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
131         1, 2, 3, 4, 5, 6, 7
132 };
133
134 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
135         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
136 };
137
138 /**
139  * struct iwl_txpwr_section: eeprom section information
140  * @offset: indirect address into eeprom image
141  * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142  * @band: band type for the section
143  * @is_common - true: common section, false: channel section
144  * @is_cck - true: cck section, false: not cck section
145  * @is_ht_40 - true: all channel in the section are HT40 channel,
146  *             false: legacy or HT 20 MHz
147  *             ignore if it is common section
148  * @iwl_eeprom_section_channel: channel array in the section,
149  *             ignore if common section
150  */
151 struct iwl_txpwr_section {
152         u32 offset;
153         u8 count;
154         enum ieee80211_band band;
155         bool is_common;
156         bool is_cck;
157         bool is_ht40;
158         u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
159 };
160
161 /**
162  * section 1 - 3 are regulatory tx power apply to all channels based on
163  *    modulation: CCK, OFDM
164  *    Band: 2.4GHz, 5.2GHz
165  * section 4 - 10 are regulatory tx power apply to specified channels
166  *    For example:
167  *      1L - Channel 1 Legacy
168  *      1HT - Channel 1 HT
169  *      (1,+1) - Channel 1 HT40 "_above_"
170  *
171  * Section 1: all CCK channels
172  * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173  * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174  * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175  * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176  * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177  * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178  * Section 8: 2.4 GHz channel: 13L, 13HT
179  * Section 9: 2.4 GHz channel: 140L, 140HT
180  * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1)
181  *
182  */
183 static const struct iwl_txpwr_section enhinfo[] = {
184         { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
185         { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
186         { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
187         { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
188                 false, false, false,
189                 {1, 1, 2, 2, 10, 10, 11, 11 } },
190         { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
191                 false, false, true,
192                 { 1, 2, 6, 7, 9 } },
193         { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
194                 false, false, false,
195                 { 36, 64, 100, 36, 64, 100 } },
196         { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
197                 false, false, true,
198                 { 36, 60, 100 } },
199         { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
200                 false, false, false,
201                 { 13, 13 } },
202         { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
203                 false, false, false,
204                 { 140, 140 } },
205         { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
206                 false, false, true,
207                 { 132, 44 } },
208 };
209
210 /******************************************************************************
211  *
212  * EEPROM related functions
213  *
214 ******************************************************************************/
215
216 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
217 {
218         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
219         if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) {
220                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
221                 return -ENOENT;
222         }
223         return 0;
224 }
225 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
226
227 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
228 {
229         u32 otpgp;
230
231         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
232         if (mode == IWL_OTP_ACCESS_ABSOLUTE)
233                 iwl_clear_bit(priv, CSR_OTP_GP_REG,
234                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
235         else
236                 iwl_set_bit(priv, CSR_OTP_GP_REG,
237                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
238 }
239
240 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
241 {
242         u32 otpgp;
243         int nvm_type;
244
245         /* OTP only valid for CP/PP and after */
246         switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
247         case CSR_HW_REV_TYPE_NONE:
248                 IWL_ERR(priv, "Unknown hardware type\n");
249                 return -ENOENT;
250         case CSR_HW_REV_TYPE_3945:
251         case CSR_HW_REV_TYPE_4965:
252         case CSR_HW_REV_TYPE_5300:
253         case CSR_HW_REV_TYPE_5350:
254         case CSR_HW_REV_TYPE_5100:
255         case CSR_HW_REV_TYPE_5150:
256                 nvm_type = NVM_DEVICE_TYPE_EEPROM;
257                 break;
258         default:
259                 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
260                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
261                         nvm_type = NVM_DEVICE_TYPE_OTP;
262                 else
263                         nvm_type = NVM_DEVICE_TYPE_EEPROM;
264                 break;
265         }
266         return  nvm_type;
267 }
268
269 /*
270  * The device's EEPROM semaphore prevents conflicts between driver and uCode
271  * when accessing the EEPROM; each access is a series of pulses to/from the
272  * EEPROM chip, not a single event, so even reads could conflict if they
273  * weren't arbitrated by the semaphore.
274  */
275 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
276 {
277         u16 count;
278         int ret;
279
280         for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
281                 /* Request semaphore */
282                 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
283                             CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
284
285                 /* See if we got it */
286                 ret = iwl_poll_direct_bit(priv, CSR_HW_IF_CONFIG_REG,
287                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
288                                 EEPROM_SEM_TIMEOUT);
289                 if (ret >= 0) {
290                         IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
291                                 count+1);
292                         return ret;
293                 }
294         }
295
296         return ret;
297 }
298 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
299
300 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
301 {
302         iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
303                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
304
305 }
306 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
307
308 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
309 {
310         BUG_ON(offset >= priv->cfg->eeprom_size);
311         return &priv->eeprom[offset];
312 }
313 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
314
315 static int iwl_init_otp_access(struct iwl_priv *priv)
316 {
317         int ret;
318
319         /* Enable 40MHz radio clock */
320         _iwl_write32(priv, CSR_GP_CNTRL,
321                      _iwl_read32(priv, CSR_GP_CNTRL) |
322                      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
323
324         /* wait for clock to be ready */
325         ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
326                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
327                                   25000);
328         if (ret < 0)
329                 IWL_ERR(priv, "Time out access OTP\n");
330         else {
331                 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
332                                   APMG_PS_CTRL_VAL_RESET_REQ);
333                 udelay(5);
334                 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
335                                     APMG_PS_CTRL_VAL_RESET_REQ);
336         }
337         return ret;
338 }
339
340 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
341 {
342         int ret = 0;
343         u32 r;
344         u32 otpgp;
345
346         _iwl_write32(priv, CSR_EEPROM_REG,
347                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
348         ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
349                                   CSR_EEPROM_REG_READ_VALID_MSK,
350                                   IWL_EEPROM_ACCESS_TIMEOUT);
351         if (ret < 0) {
352                 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
353                 return ret;
354         }
355         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
356         /* check for ECC errors: */
357         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
358         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
359                 /* stop in this case */
360                 /* set the uncorrectable OTP ECC bit for acknowledgement */
361                 iwl_set_bit(priv, CSR_OTP_GP_REG,
362                         CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
363                 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
364                 return -EINVAL;
365         }
366         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
367                 /* continue in this case */
368                 /* set the correctable OTP ECC bit for acknowledgement */
369                 iwl_set_bit(priv, CSR_OTP_GP_REG,
370                                 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
371                 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
372         }
373         *eeprom_data = cpu_to_le16(r >> 16);
374         return 0;
375 }
376
377 /*
378  * iwl_is_otp_empty: check for empty OTP
379  */
380 static bool iwl_is_otp_empty(struct iwl_priv *priv)
381 {
382         u16 next_link_addr = 0;
383         __le16 link_value;
384         bool is_empty = false;
385
386         /* locate the beginning of OTP link list */
387         if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
388                 if (!link_value) {
389                         IWL_ERR(priv, "OTP is empty\n");
390                         is_empty = true;
391                 }
392         } else {
393                 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
394                 is_empty = true;
395         }
396
397         return is_empty;
398 }
399
400
401 /*
402  * iwl_find_otp_image: find EEPROM image in OTP
403  *   finding the OTP block that contains the EEPROM image.
404  *   the last valid block on the link list (the block _before_ the last block)
405  *   is the block we should read and used to configure the device.
406  *   If all the available OTP blocks are full, the last block will be the block
407  *   we should read and used to configure the device.
408  *   only perform this operation if shadow RAM is disabled
409  */
410 static int iwl_find_otp_image(struct iwl_priv *priv,
411                                         u16 *validblockaddr)
412 {
413         u16 next_link_addr = 0, valid_addr;
414         __le16 link_value = 0;
415         int usedblocks = 0;
416
417         /* set addressing mode to absolute to traverse the link list */
418         iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
419
420         /* checking for empty OTP or error */
421         if (iwl_is_otp_empty(priv))
422                 return -EINVAL;
423
424         /*
425          * start traverse link list
426          * until reach the max number of OTP blocks
427          * different devices have different number of OTP blocks
428          */
429         do {
430                 /* save current valid block address
431                  * check for more block on the link list
432                  */
433                 valid_addr = next_link_addr;
434                 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
435                 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
436                                usedblocks, next_link_addr);
437                 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
438                         return -EINVAL;
439                 if (!link_value) {
440                         /*
441                          * reach the end of link list, return success and
442                          * set address point to the starting address
443                          * of the image
444                          */
445                         *validblockaddr = valid_addr;
446                         /* skip first 2 bytes (link list pointer) */
447                         *validblockaddr += 2;
448                         return 0;
449                 }
450                 /* more in the link list, continue */
451                 usedblocks++;
452         } while (usedblocks <= priv->cfg->max_ll_items);
453
454         /* OTP has no valid blocks */
455         IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
456         return -EINVAL;
457 }
458
459 /**
460  * iwl_eeprom_init - read EEPROM contents
461  *
462  * Load the EEPROM contents from adapter into priv->eeprom
463  *
464  * NOTE:  This routine uses the non-debug IO access functions.
465  */
466 int iwl_eeprom_init(struct iwl_priv *priv)
467 {
468         __le16 *e;
469         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
470         int sz;
471         int ret;
472         u16 addr;
473         u16 validblockaddr = 0;
474         u16 cache_addr = 0;
475
476         priv->nvm_device_type = iwlcore_get_nvm_type(priv);
477         if (priv->nvm_device_type == -ENOENT)
478                 return -ENOENT;
479         /* allocate eeprom */
480         IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
481         sz = priv->cfg->eeprom_size;
482         priv->eeprom = kzalloc(sz, GFP_KERNEL);
483         if (!priv->eeprom) {
484                 ret = -ENOMEM;
485                 goto alloc_err;
486         }
487         e = (__le16 *)priv->eeprom;
488
489         ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
490         if (ret < 0) {
491                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
492                 ret = -ENOENT;
493                 goto err;
494         }
495
496         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
497         ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
498         if (ret < 0) {
499                 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
500                 ret = -ENOENT;
501                 goto err;
502         }
503         if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
504                 ret = iwl_init_otp_access(priv);
505                 if (ret) {
506                         IWL_ERR(priv, "Failed to initialize OTP access.\n");
507                         ret = -ENOENT;
508                         goto done;
509                 }
510                 _iwl_write32(priv, CSR_EEPROM_GP,
511                              iwl_read32(priv, CSR_EEPROM_GP) &
512                              ~CSR_EEPROM_GP_IF_OWNER_MSK);
513
514                 iwl_set_bit(priv, CSR_OTP_GP_REG,
515                              CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
516                              CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
517                 /* traversing the linked list if no shadow ram supported */
518                 if (!priv->cfg->shadow_ram_support) {
519                         if (iwl_find_otp_image(priv, &validblockaddr)) {
520                                 ret = -ENOENT;
521                                 goto done;
522                         }
523                 }
524                 for (addr = validblockaddr; addr < validblockaddr + sz;
525                      addr += sizeof(u16)) {
526                         __le16 eeprom_data;
527
528                         ret = iwl_read_otp_word(priv, addr, &eeprom_data);
529                         if (ret)
530                                 goto done;
531                         e[cache_addr / 2] = eeprom_data;
532                         cache_addr += sizeof(u16);
533                 }
534         } else {
535                 /* eeprom is an array of 16bit values */
536                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
537                         u32 r;
538
539                         _iwl_write32(priv, CSR_EEPROM_REG,
540                                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
541
542                         ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
543                                                   CSR_EEPROM_REG_READ_VALID_MSK,
544                                                   IWL_EEPROM_ACCESS_TIMEOUT);
545                         if (ret < 0) {
546                                 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
547                                 goto done;
548                         }
549                         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
550                         e[addr / 2] = cpu_to_le16(r >> 16);
551                 }
552         }
553         ret = 0;
554 done:
555         priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
556 err:
557         if (ret)
558                 iwl_eeprom_free(priv);
559 alloc_err:
560         return ret;
561 }
562 EXPORT_SYMBOL(iwl_eeprom_init);
563
564 void iwl_eeprom_free(struct iwl_priv *priv)
565 {
566         kfree(priv->eeprom);
567         priv->eeprom = NULL;
568 }
569 EXPORT_SYMBOL(iwl_eeprom_free);
570
571 int iwl_eeprom_check_version(struct iwl_priv *priv)
572 {
573         u16 eeprom_ver;
574         u16 calib_ver;
575
576         eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
577         calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
578
579         if (eeprom_ver < priv->cfg->eeprom_ver ||
580             calib_ver < priv->cfg->eeprom_calib_ver)
581                 goto err;
582
583         return 0;
584 err:
585         IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
586                   eeprom_ver, priv->cfg->eeprom_ver,
587                   calib_ver,  priv->cfg->eeprom_calib_ver);
588         return -EINVAL;
589
590 }
591 EXPORT_SYMBOL(iwl_eeprom_check_version);
592
593 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
594 {
595         return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
596 }
597 EXPORT_SYMBOL(iwl_eeprom_query_addr);
598
599 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
600 {
601         if (!priv->eeprom)
602                 return 0;
603         return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
604 }
605 EXPORT_SYMBOL(iwl_eeprom_query16);
606
607 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
608 {
609         const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
610                                         EEPROM_MAC_ADDRESS);
611         memcpy(mac, addr, ETH_ALEN);
612 }
613 EXPORT_SYMBOL(iwl_eeprom_get_mac);
614
615 static void iwl_init_band_reference(const struct iwl_priv *priv,
616                         int eep_band, int *eeprom_ch_count,
617                         const struct iwl_eeprom_channel **eeprom_ch_info,
618                         const u8 **eeprom_ch_index)
619 {
620         u32 offset = priv->cfg->ops->lib->
621                         eeprom_ops.regulatory_bands[eep_band - 1];
622         switch (eep_band) {
623         case 1:         /* 2.4GHz band */
624                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
625                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
626                                 iwl_eeprom_query_addr(priv, offset);
627                 *eeprom_ch_index = iwl_eeprom_band_1;
628                 break;
629         case 2:         /* 4.9GHz band */
630                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
631                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
632                                 iwl_eeprom_query_addr(priv, offset);
633                 *eeprom_ch_index = iwl_eeprom_band_2;
634                 break;
635         case 3:         /* 5.2GHz band */
636                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
637                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
638                                 iwl_eeprom_query_addr(priv, offset);
639                 *eeprom_ch_index = iwl_eeprom_band_3;
640                 break;
641         case 4:         /* 5.5GHz band */
642                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
643                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
644                                 iwl_eeprom_query_addr(priv, offset);
645                 *eeprom_ch_index = iwl_eeprom_band_4;
646                 break;
647         case 5:         /* 5.7GHz band */
648                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
649                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
650                                 iwl_eeprom_query_addr(priv, offset);
651                 *eeprom_ch_index = iwl_eeprom_band_5;
652                 break;
653         case 6:         /* 2.4GHz ht40 channels */
654                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
655                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
656                                 iwl_eeprom_query_addr(priv, offset);
657                 *eeprom_ch_index = iwl_eeprom_band_6;
658                 break;
659         case 7:         /* 5 GHz ht40 channels */
660                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
661                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
662                                 iwl_eeprom_query_addr(priv, offset);
663                 *eeprom_ch_index = iwl_eeprom_band_7;
664                 break;
665         default:
666                 BUG();
667                 return;
668         }
669 }
670
671 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
672                             ? # x " " : "")
673
674 /**
675  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
676  *
677  * Does not set up a command, or touch hardware.
678  */
679 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
680                               enum ieee80211_band band, u16 channel,
681                               const struct iwl_eeprom_channel *eeprom_ch,
682                               u8 clear_ht40_extension_channel)
683 {
684         struct iwl_channel_info *ch_info;
685
686         ch_info = (struct iwl_channel_info *)
687                         iwl_get_channel_info(priv, band, channel);
688
689         if (!is_channel_valid(ch_info))
690                 return -1;
691
692         IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
693                         " Ad-Hoc %ssupported\n",
694                         ch_info->channel,
695                         is_channel_a_band(ch_info) ?
696                         "5.2" : "2.4",
697                         CHECK_AND_PRINT(IBSS),
698                         CHECK_AND_PRINT(ACTIVE),
699                         CHECK_AND_PRINT(RADAR),
700                         CHECK_AND_PRINT(WIDE),
701                         CHECK_AND_PRINT(DFS),
702                         eeprom_ch->flags,
703                         eeprom_ch->max_power_avg,
704                         ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
705                          && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
706                         "" : "not ");
707
708         ch_info->ht40_eeprom = *eeprom_ch;
709         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
710         ch_info->ht40_curr_txpow = eeprom_ch->max_power_avg;
711         ch_info->ht40_min_power = 0;
712         ch_info->ht40_scan_power = eeprom_ch->max_power_avg;
713         ch_info->ht40_flags = eeprom_ch->flags;
714         if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
715                 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
716
717         return 0;
718 }
719
720 /**
721  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
722  *     find the highest tx power from all chains for the channel
723  */
724 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
725                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element)
726 {
727         s8 max_txpower_avg = 0; /* (dBm) */
728
729         IWL_DEBUG_INFO(priv, "%d - "
730                         "chain_a: %d dB chain_b: %d dB "
731                         "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
732                         element,
733                         enhanced_txpower[element].chain_a_max >> 1,
734                         enhanced_txpower[element].chain_b_max >> 1,
735                         enhanced_txpower[element].chain_c_max >> 1,
736                         enhanced_txpower[element].mimo2_max >> 1,
737                         enhanced_txpower[element].mimo3_max >> 1);
738         /* Take the highest tx power from any valid chains */
739         if ((priv->cfg->valid_tx_ant & ANT_A) &&
740             (enhanced_txpower[element].chain_a_max > max_txpower_avg))
741                 max_txpower_avg = enhanced_txpower[element].chain_a_max;
742         if ((priv->cfg->valid_tx_ant & ANT_B) &&
743             (enhanced_txpower[element].chain_b_max > max_txpower_avg))
744                 max_txpower_avg = enhanced_txpower[element].chain_b_max;
745         if ((priv->cfg->valid_tx_ant & ANT_C) &&
746             (enhanced_txpower[element].chain_c_max > max_txpower_avg))
747                 max_txpower_avg = enhanced_txpower[element].chain_c_max;
748         if (((priv->cfg->valid_tx_ant == ANT_AB) |
749             (priv->cfg->valid_tx_ant == ANT_BC) |
750             (priv->cfg->valid_tx_ant == ANT_AC)) &&
751             (enhanced_txpower[element].mimo2_max > max_txpower_avg))
752                 max_txpower_avg =  enhanced_txpower[element].mimo2_max;
753         if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
754             (enhanced_txpower[element].mimo3_max > max_txpower_avg))
755                 max_txpower_avg = enhanced_txpower[element].mimo3_max;
756
757         /* max. tx power in EEPROM is in 1/2 dBm format
758          * convert from 1/2 dBm to dBm
759          */
760         return max_txpower_avg >> 1;
761 }
762
763 /**
764  * iwl_update_common_txpower: update channel tx power
765  *     update tx power per band based on EEPROM enhanced tx power info.
766  */
767 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
768                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
769                 int section, int element)
770 {
771         struct iwl_channel_info *ch_info;
772         int ch;
773         bool is_ht40 = false;
774         s8 max_txpower_avg; /* (dBm) */
775
776         /* it is common section, contain all type (Legacy, HT and HT40)
777          * based on the element in the section to determine
778          * is it HT 40 or not
779          */
780         if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
781                 is_ht40 = true;
782         max_txpower_avg =
783                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
784         ch_info = priv->channel_info;
785
786         for (ch = 0; ch < priv->channel_count; ch++) {
787                 /* find matching band and update tx power if needed */
788                 if ((ch_info->band == enhinfo[section].band) &&
789                     (ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) {
790                         /* Update regulatory-based run-time data */
791                         ch_info->max_power_avg = ch_info->curr_txpow =
792                             max_txpower_avg;
793                         ch_info->scan_power = max_txpower_avg;
794                 }
795                 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
796                     ch_info->ht40_max_power_avg &&
797                     (ch_info->ht40_max_power_avg < max_txpower_avg)) {
798                         /* Update regulatory-based run-time data */
799                         ch_info->ht40_max_power_avg = max_txpower_avg;
800                         ch_info->ht40_curr_txpow = max_txpower_avg;
801                         ch_info->ht40_scan_power = max_txpower_avg;
802                 }
803                 ch_info++;
804         }
805         return max_txpower_avg;
806 }
807
808 /**
809  * iwl_update_channel_txpower: update channel tx power
810  *      update channel tx power based on EEPROM enhanced tx power info.
811  */
812 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
813                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
814                 int section, int element)
815 {
816         struct iwl_channel_info *ch_info;
817         int ch;
818         u8 channel;
819         s8 max_txpower_avg; /* (dBm) */
820
821         channel = enhinfo[section].iwl_eeprom_section_channel[element];
822         max_txpower_avg =
823                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
824
825         ch_info = priv->channel_info;
826         for (ch = 0; ch < priv->channel_count; ch++) {
827                 /* find matching channel and update tx power if needed */
828                 if (ch_info->channel == channel) {
829                         if ((ch_info->max_power_avg < max_txpower_avg) &&
830                             (!enhinfo[section].is_ht40)) {
831                                 /* Update regulatory-based run-time data */
832                                 ch_info->max_power_avg = max_txpower_avg;
833                                 ch_info->curr_txpow = max_txpower_avg;
834                                 ch_info->scan_power = max_txpower_avg;
835                         }
836                         if ((enhinfo[section].is_ht40) &&
837                             (ch_info->ht40_max_power_avg) &&
838                             (ch_info->ht40_max_power_avg < max_txpower_avg)) {
839                                 /* Update regulatory-based run-time data */
840                                 ch_info->ht40_max_power_avg = max_txpower_avg;
841                                 ch_info->ht40_curr_txpow = max_txpower_avg;
842                                 ch_info->ht40_scan_power = max_txpower_avg;
843                         }
844                         break;
845                 }
846                 ch_info++;
847         }
848         return max_txpower_avg;
849 }
850
851 /**
852  * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
853  */
854 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
855 {
856         int eeprom_section_count = 0;
857         int section, element;
858         struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
859         u32 offset;
860         s8 max_txpower_avg; /* (dBm) */
861
862         /* Loop through all the sections
863          * adjust bands and channel's max tx power
864          * Set the tx_power_user_lmt to the highest power
865          * supported by any channels and chains
866          */
867         for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
868                 eeprom_section_count = enhinfo[section].count;
869                 offset = enhinfo[section].offset;
870                 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
871                                 iwl_eeprom_query_addr(priv, offset);
872
873                 for (element = 0; element < eeprom_section_count; element++) {
874                         if (enhinfo[section].is_common)
875                                 max_txpower_avg =
876                                         iwl_update_common_txpower(priv,
877                                         enhanced_txpower, section, element);
878                         else
879                                 max_txpower_avg =
880                                         iwl_update_channel_txpower(priv,
881                                         enhanced_txpower, section, element);
882
883                         /* Update the tx_power_user_lmt to the highest power
884                          * supported by any channel */
885                         if (max_txpower_avg > priv->tx_power_user_lmt)
886                                 priv->tx_power_user_lmt = max_txpower_avg;
887                 }
888         }
889 }
890 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
891
892 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
893                             ? # x " " : "")
894
895 /**
896  * iwl_init_channel_map - Set up driver's info for all possible channels
897  */
898 int iwl_init_channel_map(struct iwl_priv *priv)
899 {
900         int eeprom_ch_count = 0;
901         const u8 *eeprom_ch_index = NULL;
902         const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
903         int band, ch;
904         struct iwl_channel_info *ch_info;
905
906         if (priv->channel_count) {
907                 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
908                 return 0;
909         }
910
911         IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
912
913         priv->channel_count =
914             ARRAY_SIZE(iwl_eeprom_band_1) +
915             ARRAY_SIZE(iwl_eeprom_band_2) +
916             ARRAY_SIZE(iwl_eeprom_band_3) +
917             ARRAY_SIZE(iwl_eeprom_band_4) +
918             ARRAY_SIZE(iwl_eeprom_band_5);
919
920         IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
921
922         priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
923                                      priv->channel_count, GFP_KERNEL);
924         if (!priv->channel_info) {
925                 IWL_ERR(priv, "Could not allocate channel_info\n");
926                 priv->channel_count = 0;
927                 return -ENOMEM;
928         }
929
930         ch_info = priv->channel_info;
931
932         /* Loop through the 5 EEPROM bands adding them in order to the
933          * channel map we maintain (that contains additional information than
934          * what just in the EEPROM) */
935         for (band = 1; band <= 5; band++) {
936
937                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
938                                         &eeprom_ch_info, &eeprom_ch_index);
939
940                 /* Loop through each band adding each of the channels */
941                 for (ch = 0; ch < eeprom_ch_count; ch++) {
942                         ch_info->channel = eeprom_ch_index[ch];
943                         ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
944                             IEEE80211_BAND_5GHZ;
945
946                         /* permanently store EEPROM's channel regulatory flags
947                          *   and max power in channel info database. */
948                         ch_info->eeprom = eeprom_ch_info[ch];
949
950                         /* Copy the run-time flags so they are there even on
951                          * invalid channels */
952                         ch_info->flags = eeprom_ch_info[ch].flags;
953                         /* First write that ht40 is not enabled, and then enable
954                          * one by one */
955                         ch_info->ht40_extension_channel =
956                                         IEEE80211_CHAN_NO_HT40;
957
958                         if (!(is_channel_valid(ch_info))) {
959                                 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
960                                                "No traffic\n",
961                                                ch_info->channel,
962                                                ch_info->flags,
963                                                is_channel_a_band(ch_info) ?
964                                                "5.2" : "2.4");
965                                 ch_info++;
966                                 continue;
967                         }
968
969                         /* Initialize regulatory-based run-time data */
970                         ch_info->max_power_avg = ch_info->curr_txpow =
971                             eeprom_ch_info[ch].max_power_avg;
972                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
973                         ch_info->min_power = 0;
974
975                         IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
976                                        " Ad-Hoc %ssupported\n",
977                                        ch_info->channel,
978                                        is_channel_a_band(ch_info) ?
979                                        "5.2" : "2.4",
980                                        CHECK_AND_PRINT_I(VALID),
981                                        CHECK_AND_PRINT_I(IBSS),
982                                        CHECK_AND_PRINT_I(ACTIVE),
983                                        CHECK_AND_PRINT_I(RADAR),
984                                        CHECK_AND_PRINT_I(WIDE),
985                                        CHECK_AND_PRINT_I(DFS),
986                                        eeprom_ch_info[ch].flags,
987                                        eeprom_ch_info[ch].max_power_avg,
988                                        ((eeprom_ch_info[ch].
989                                          flags & EEPROM_CHANNEL_IBSS)
990                                         && !(eeprom_ch_info[ch].
991                                              flags & EEPROM_CHANNEL_RADAR))
992                                        ? "" : "not ");
993
994                         /* Set the tx_power_user_lmt to the highest power
995                          * supported by any channel */
996                         if (eeprom_ch_info[ch].max_power_avg >
997                                                 priv->tx_power_user_lmt)
998                                 priv->tx_power_user_lmt =
999                                     eeprom_ch_info[ch].max_power_avg;
1000
1001                         ch_info++;
1002                 }
1003         }
1004
1005         /* Check if we do have HT40 channels */
1006         if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1007             EEPROM_REGULATORY_BAND_NO_HT40 &&
1008             priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1009             EEPROM_REGULATORY_BAND_NO_HT40)
1010                 return 0;
1011
1012         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1013         for (band = 6; band <= 7; band++) {
1014                 enum ieee80211_band ieeeband;
1015
1016                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1017                                         &eeprom_ch_info, &eeprom_ch_index);
1018
1019                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1020                 ieeeband =
1021                         (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1022
1023                 /* Loop through each band adding each of the channels */
1024                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1025                         /* Set up driver's info for lower half */
1026                         iwl_mod_ht40_chan_info(priv, ieeeband,
1027                                                 eeprom_ch_index[ch],
1028                                                 &eeprom_ch_info[ch],
1029                                                 IEEE80211_CHAN_NO_HT40PLUS);
1030
1031                         /* Set up driver's info for upper half */
1032                         iwl_mod_ht40_chan_info(priv, ieeeband,
1033                                                 eeprom_ch_index[ch] + 4,
1034                                                 &eeprom_ch_info[ch],
1035                                                 IEEE80211_CHAN_NO_HT40MINUS);
1036                 }
1037         }
1038
1039         /* for newer device (6000 series and up)
1040          * EEPROM contain enhanced tx power information
1041          * driver need to process addition information
1042          * to determine the max channel tx power limits
1043          */
1044         if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1045                 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1046
1047         return 0;
1048 }
1049 EXPORT_SYMBOL(iwl_init_channel_map);
1050
1051 /*
1052  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1053  */
1054 void iwl_free_channel_map(struct iwl_priv *priv)
1055 {
1056         kfree(priv->channel_info);
1057         priv->channel_count = 0;
1058 }
1059 EXPORT_SYMBOL(iwl_free_channel_map);
1060
1061 /**
1062  * iwl_get_channel_info - Find driver's private channel info
1063  *
1064  * Based on band and channel number.
1065  */
1066 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1067                                         enum ieee80211_band band, u16 channel)
1068 {
1069         int i;
1070
1071         switch (band) {
1072         case IEEE80211_BAND_5GHZ:
1073                 for (i = 14; i < priv->channel_count; i++) {
1074                         if (priv->channel_info[i].channel == channel)
1075                                 return &priv->channel_info[i];
1076                 }
1077                 break;
1078         case IEEE80211_BAND_2GHZ:
1079                 if (channel >= 1 && channel <= 14)
1080                         return &priv->channel_info[channel - 1];
1081                 break;
1082         default:
1083                 BUG();
1084         }
1085
1086         return NULL;
1087 }
1088 EXPORT_SYMBOL(iwl_get_channel_info);
1089