Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / ath / wil6210 / txrx.c
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32
33 bool rx_align_2;
34 module_param(rx_align_2, bool, 0444);
35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
36
37 bool rx_large_buf;
38 module_param(rx_large_buf, bool, 0444);
39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
40
41 /* Drop Tx packets in case Tx ring is full */
42 bool drop_if_ring_full;
43
44 static inline uint wil_rx_snaplen(void)
45 {
46         return rx_align_2 ? 6 : 0;
47 }
48
49 /* wil_ring_wmark_low - low watermark for available descriptor space */
50 static inline int wil_ring_wmark_low(struct wil_ring *ring)
51 {
52         return ring->size / 8;
53 }
54
55 /* wil_ring_wmark_high - high watermark for available descriptor space */
56 static inline int wil_ring_wmark_high(struct wil_ring *ring)
57 {
58         return ring->size / 4;
59 }
60
61 /* returns true if num avail descriptors is lower than wmark_low */
62 static inline int wil_ring_avail_low(struct wil_ring *ring)
63 {
64         return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
65 }
66
67 /* returns true if num avail descriptors is higher than wmark_high */
68 static inline int wil_ring_avail_high(struct wil_ring *ring)
69 {
70         return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
71 }
72
73 /* returns true when all tx vrings are empty */
74 bool wil_is_tx_idle(struct wil6210_priv *wil)
75 {
76         int i;
77         unsigned long data_comp_to;
78         int min_ring_id = wil_get_min_tx_ring_id(wil);
79
80         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
81                 struct wil_ring *vring = &wil->ring_tx[i];
82                 int vring_index = vring - wil->ring_tx;
83                 struct wil_ring_tx_data *txdata =
84                         &wil->ring_tx_data[vring_index];
85
86                 spin_lock(&txdata->lock);
87
88                 if (!vring->va || !txdata->enabled) {
89                         spin_unlock(&txdata->lock);
90                         continue;
91                 }
92
93                 data_comp_to = jiffies + msecs_to_jiffies(
94                                         WIL_DATA_COMPLETION_TO_MS);
95                 if (test_bit(wil_status_napi_en, wil->status)) {
96                         while (!wil_ring_is_empty(vring)) {
97                                 if (time_after(jiffies, data_comp_to)) {
98                                         wil_dbg_pm(wil,
99                                                    "TO waiting for idle tx\n");
100                                         spin_unlock(&txdata->lock);
101                                         return false;
102                                 }
103                                 wil_dbg_ratelimited(wil,
104                                                     "tx vring is not empty -> NAPI\n");
105                                 spin_unlock(&txdata->lock);
106                                 napi_synchronize(&wil->napi_tx);
107                                 msleep(20);
108                                 spin_lock(&txdata->lock);
109                                 if (!vring->va || !txdata->enabled)
110                                         break;
111                         }
112                 }
113
114                 spin_unlock(&txdata->lock);
115         }
116
117         return true;
118 }
119
120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
121 {
122         struct device *dev = wil_to_dev(wil);
123         size_t sz = vring->size * sizeof(vring->va[0]);
124         uint i;
125
126         wil_dbg_misc(wil, "vring_alloc:\n");
127
128         BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
129
130         vring->swhead = 0;
131         vring->swtail = 0;
132         vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
133         if (!vring->ctx) {
134                 vring->va = NULL;
135                 return -ENOMEM;
136         }
137
138         /* vring->va should be aligned on its size rounded up to power of 2
139          * This is granted by the dma_alloc_coherent.
140          *
141          * HW has limitation that all vrings addresses must share the same
142          * upper 16 msb bits part of 48 bits address. To workaround that,
143          * if we are using more than 32 bit addresses switch to 32 bit
144          * allocation before allocating vring memory.
145          *
146          * There's no check for the return value of dma_set_mask_and_coherent,
147          * since we assume if we were able to set the mask during
148          * initialization in this system it will not fail if we set it again
149          */
150         if (wil->dma_addr_size > 32)
151                 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
152
153         vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
154         if (!vring->va) {
155                 kfree(vring->ctx);
156                 vring->ctx = NULL;
157                 return -ENOMEM;
158         }
159
160         if (wil->dma_addr_size > 32)
161                 dma_set_mask_and_coherent(dev,
162                                           DMA_BIT_MASK(wil->dma_addr_size));
163
164         /* initially, all descriptors are SW owned
165          * For Tx and Rx, ownership bit is at the same location, thus
166          * we can use any
167          */
168         for (i = 0; i < vring->size; i++) {
169                 volatile struct vring_tx_desc *_d =
170                         &vring->va[i].tx.legacy;
171
172                 _d->dma.status = TX_DMA_STATUS_DU;
173         }
174
175         wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
176                      vring->va, &vring->pa, vring->ctx);
177
178         return 0;
179 }
180
181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
182                              struct wil_ctx *ctx)
183 {
184         struct vring_tx_desc *d = &desc->legacy;
185         dma_addr_t pa = wil_desc_addr(&d->dma.addr);
186         u16 dmalen = le16_to_cpu(d->dma.length);
187
188         switch (ctx->mapped_as) {
189         case wil_mapped_as_single:
190                 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
191                 break;
192         case wil_mapped_as_page:
193                 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
194                 break;
195         default:
196                 break;
197         }
198 }
199
200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
201 {
202         struct device *dev = wil_to_dev(wil);
203         size_t sz = vring->size * sizeof(vring->va[0]);
204
205         lockdep_assert_held(&wil->mutex);
206         if (!vring->is_rx) {
207                 int vring_index = vring - wil->ring_tx;
208
209                 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
210                              vring_index, vring->size, vring->va,
211                              &vring->pa, vring->ctx);
212         } else {
213                 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
214                              vring->size, vring->va,
215                              &vring->pa, vring->ctx);
216         }
217
218         while (!wil_ring_is_empty(vring)) {
219                 dma_addr_t pa;
220                 u16 dmalen;
221                 struct wil_ctx *ctx;
222
223                 if (!vring->is_rx) {
224                         struct vring_tx_desc dd, *d = &dd;
225                         volatile struct vring_tx_desc *_d =
226                                         &vring->va[vring->swtail].tx.legacy;
227
228                         ctx = &vring->ctx[vring->swtail];
229                         if (!ctx) {
230                                 wil_dbg_txrx(wil,
231                                              "ctx(%d) was already completed\n",
232                                              vring->swtail);
233                                 vring->swtail = wil_ring_next_tail(vring);
234                                 continue;
235                         }
236                         *d = *_d;
237                         wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
238                         if (ctx->skb)
239                                 dev_kfree_skb_any(ctx->skb);
240                         vring->swtail = wil_ring_next_tail(vring);
241                 } else { /* rx */
242                         struct vring_rx_desc dd, *d = &dd;
243                         volatile struct vring_rx_desc *_d =
244                                 &vring->va[vring->swhead].rx.legacy;
245
246                         ctx = &vring->ctx[vring->swhead];
247                         *d = *_d;
248                         pa = wil_desc_addr(&d->dma.addr);
249                         dmalen = le16_to_cpu(d->dma.length);
250                         dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
251                         kfree_skb(ctx->skb);
252                         wil_ring_advance_head(vring, 1);
253                 }
254         }
255         dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
256         kfree(vring->ctx);
257         vring->pa = 0;
258         vring->va = NULL;
259         vring->ctx = NULL;
260 }
261
262 /**
263  * Allocate one skb for Rx VRING
264  *
265  * Safe to call from IRQ
266  */
267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
268                                u32 i, int headroom)
269 {
270         struct device *dev = wil_to_dev(wil);
271         unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
272         struct vring_rx_desc dd, *d = &dd;
273         volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
274         dma_addr_t pa;
275         struct sk_buff *skb = dev_alloc_skb(sz + headroom);
276
277         if (unlikely(!skb))
278                 return -ENOMEM;
279
280         skb_reserve(skb, headroom);
281         skb_put(skb, sz);
282
283         /**
284          * Make sure that the network stack calculates checksum for packets
285          * which failed the HW checksum calculation
286          */
287         skb->ip_summed = CHECKSUM_NONE;
288
289         pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
290         if (unlikely(dma_mapping_error(dev, pa))) {
291                 kfree_skb(skb);
292                 return -ENOMEM;
293         }
294
295         d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
296         wil_desc_addr_set(&d->dma.addr, pa);
297         /* ip_length don't care */
298         /* b11 don't care */
299         /* error don't care */
300         d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
301         d->dma.length = cpu_to_le16(sz);
302         *_d = *d;
303         vring->ctx[i].skb = skb;
304
305         return 0;
306 }
307
308 /**
309  * Adds radiotap header
310  *
311  * Any error indicated as "Bad FCS"
312  *
313  * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
314  *  - Rx descriptor: 32 bytes
315  *  - Phy info
316  */
317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
318                                        struct sk_buff *skb)
319 {
320         struct wil6210_rtap {
321                 struct ieee80211_radiotap_header rthdr;
322                 /* fields should be in the order of bits in rthdr.it_present */
323                 /* flags */
324                 u8 flags;
325                 /* channel */
326                 __le16 chnl_freq __aligned(2);
327                 __le16 chnl_flags;
328                 /* MCS */
329                 u8 mcs_present;
330                 u8 mcs_flags;
331                 u8 mcs_index;
332         } __packed;
333         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
334         struct wil6210_rtap *rtap;
335         int rtap_len = sizeof(struct wil6210_rtap);
336         struct ieee80211_channel *ch = wil->monitor_chandef.chan;
337
338         if (skb_headroom(skb) < rtap_len &&
339             pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
340                 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
341                 return;
342         }
343
344         rtap = skb_push(skb, rtap_len);
345         memset(rtap, 0, rtap_len);
346
347         rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
348         rtap->rthdr.it_len = cpu_to_le16(rtap_len);
349         rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
350                         (1 << IEEE80211_RADIOTAP_CHANNEL) |
351                         (1 << IEEE80211_RADIOTAP_MCS));
352         if (d->dma.status & RX_DMA_STATUS_ERROR)
353                 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
354
355         rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
356         rtap->chnl_flags = cpu_to_le16(0);
357
358         rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
359         rtap->mcs_flags = 0;
360         rtap->mcs_index = wil_rxdesc_mcs(d);
361 }
362
363 static bool wil_is_rx_idle(struct wil6210_priv *wil)
364 {
365         struct vring_rx_desc *_d;
366         struct wil_ring *ring = &wil->ring_rx;
367
368         _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
369         if (_d->dma.status & RX_DMA_STATUS_DU)
370                 return false;
371
372         return true;
373 }
374
375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
376 {
377         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
378         int mid = wil_rxdesc_mid(d);
379         struct wil6210_vif *vif = wil->vifs[mid];
380         /* cid from DMA descriptor is limited to 3 bits.
381          * In case of cid>=8, the value would be cid modulo 8 and we need to
382          * find real cid by locating the transmitter (ta) inside sta array
383          */
384         int cid = wil_rxdesc_cid(d);
385         unsigned int snaplen = wil_rx_snaplen();
386         struct ieee80211_hdr_3addr *hdr;
387         int i;
388         unsigned char *ta;
389         u8 ftype;
390
391         /* in monitor mode there are no connections */
392         if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
393                 return cid;
394
395         ftype = wil_rxdesc_ftype(d) << 2;
396         if (likely(ftype == IEEE80211_FTYPE_DATA)) {
397                 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
398                         wil_err_ratelimited(wil,
399                                             "Short data frame, len = %d\n",
400                                             skb->len);
401                         return -ENOENT;
402                 }
403                 ta = wil_skb_get_sa(skb);
404         } else {
405                 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
406                         wil_err_ratelimited(wil, "Short frame, len = %d\n",
407                                             skb->len);
408                         return -ENOENT;
409                 }
410                 hdr = (void *)skb->data;
411                 ta = hdr->addr2;
412         }
413
414         if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
415                 return cid;
416
417         /* assuming no concurrency between AP interfaces and STA interfaces.
418          * multista is used only in P2P_GO or AP mode. In other modes return
419          * cid from the rx descriptor
420          */
421         if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
422             vif->wdev.iftype != NL80211_IFTYPE_AP)
423                 return cid;
424
425         /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
426          * to find the real cid, compare transmitter address with the stored
427          * stations mac address in the driver sta array
428          */
429         for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
430                 if (wil->sta[i].status != wil_sta_unused &&
431                     ether_addr_equal(wil->sta[i].addr, ta)) {
432                         cid = i;
433                         break;
434                 }
435         }
436         if (i >= wil->max_assoc_sta) {
437                 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
438                                     ta, vif->wdev.iftype, ftype, skb->len);
439                 cid = -ENOENT;
440         }
441
442         return cid;
443 }
444
445 /**
446  * reap 1 frame from @swhead
447  *
448  * Rx descriptor copied to skb->cb
449  *
450  * Safe to call from IRQ
451  */
452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
453                                          struct wil_ring *vring)
454 {
455         struct device *dev = wil_to_dev(wil);
456         struct wil6210_vif *vif;
457         struct net_device *ndev;
458         volatile struct vring_rx_desc *_d;
459         struct vring_rx_desc *d;
460         struct sk_buff *skb;
461         dma_addr_t pa;
462         unsigned int snaplen = wil_rx_snaplen();
463         unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
464         u16 dmalen;
465         u8 ftype;
466         int cid, mid;
467         int i;
468         struct wil_net_stats *stats;
469
470         BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
471
472 again:
473         if (unlikely(wil_ring_is_empty(vring)))
474                 return NULL;
475
476         i = (int)vring->swhead;
477         _d = &vring->va[i].rx.legacy;
478         if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
479                 /* it is not error, we just reached end of Rx done area */
480                 return NULL;
481         }
482
483         skb = vring->ctx[i].skb;
484         vring->ctx[i].skb = NULL;
485         wil_ring_advance_head(vring, 1);
486         if (!skb) {
487                 wil_err(wil, "No Rx skb at [%d]\n", i);
488                 goto again;
489         }
490         d = wil_skb_rxdesc(skb);
491         *d = *_d;
492         pa = wil_desc_addr(&d->dma.addr);
493
494         dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
495         dmalen = le16_to_cpu(d->dma.length);
496
497         trace_wil6210_rx(i, d);
498         wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
499         wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
500                           (const void *)d, sizeof(*d), false);
501
502         mid = wil_rxdesc_mid(d);
503         vif = wil->vifs[mid];
504
505         if (unlikely(!vif)) {
506                 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
507                              mid);
508                 kfree_skb(skb);
509                 goto again;
510         }
511         ndev = vif_to_ndev(vif);
512         if (unlikely(dmalen > sz)) {
513                 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
514                                     dmalen);
515                 kfree_skb(skb);
516                 goto again;
517         }
518         skb_trim(skb, dmalen);
519
520         prefetch(skb->data);
521
522         wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
523                           skb->data, skb_headlen(skb), false);
524
525         cid = wil_rx_get_cid_by_skb(wil, skb);
526         if (cid == -ENOENT) {
527                 kfree_skb(skb);
528                 goto again;
529         }
530         wil_skb_set_cid(skb, (u8)cid);
531         stats = &wil->sta[cid].stats;
532
533         stats->last_mcs_rx = wil_rxdesc_mcs(d);
534         if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
535                 stats->rx_per_mcs[stats->last_mcs_rx]++;
536
537         /* use radiotap header only if required */
538         if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
539                 wil_rx_add_radiotap_header(wil, skb);
540
541         /* no extra checks if in sniffer mode */
542         if (ndev->type != ARPHRD_ETHER)
543                 return skb;
544         /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
545          * Driver should recognize it by frame type, that is found
546          * in Rx descriptor. If type is not data, it is 802.11 frame as is
547          */
548         ftype = wil_rxdesc_ftype(d) << 2;
549         if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
550                 u8 fc1 = wil_rxdesc_fc1(d);
551                 int tid = wil_rxdesc_tid(d);
552                 u16 seq = wil_rxdesc_seq(d);
553
554                 wil_dbg_txrx(wil,
555                              "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556                              fc1, mid, cid, tid, seq);
557                 stats->rx_non_data_frame++;
558                 if (wil_is_back_req(fc1)) {
559                         wil_dbg_txrx(wil,
560                                      "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
561                                      mid, cid, tid, seq);
562                         wil_rx_bar(wil, vif, cid, tid, seq);
563                 } else {
564                         /* print again all info. One can enable only this
565                          * without overhead for printing every Rx frame
566                          */
567                         wil_dbg_txrx(wil,
568                                      "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
569                                      fc1, mid, cid, tid, seq);
570                         wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
571                                           (const void *)d, sizeof(*d), false);
572                         wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
573                                           skb->data, skb_headlen(skb), false);
574                 }
575                 kfree_skb(skb);
576                 goto again;
577         }
578
579         /* L4 IDENT is on when HW calculated checksum, check status
580          * and in case of error drop the packet
581          * higher stack layers will handle retransmission (if required)
582          */
583         if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
584                 /* L4 protocol identified, csum calculated */
585                 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
586                         skb->ip_summed = CHECKSUM_UNNECESSARY;
587                 /* If HW reports bad checksum, let IP stack re-check it
588                  * For example, HW don't understand Microsoft IP stack that
589                  * mis-calculates TCP checksum - if it should be 0x0,
590                  * it writes 0xffff in violation of RFC 1624
591                  */
592                 else
593                         stats->rx_csum_err++;
594         }
595
596         if (snaplen) {
597                 /* Packet layout
598                  * +-------+-------+---------+------------+------+
599                  * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
600                  * +-------+-------+---------+------------+------+
601                  * Need to remove SNAP, shifting SA and DA forward
602                  */
603                 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
604                 skb_pull(skb, snaplen);
605         }
606
607         return skb;
608 }
609
610 /**
611  * allocate and fill up to @count buffers in rx ring
612  * buffers posted at @swtail
613  * Note: we have a single RX queue for servicing all VIFs, but we
614  * allocate skbs with headroom according to main interface only. This
615  * means it will not work with monitor interface together with other VIFs.
616  * Currently we only support monitor interface on its own without other VIFs,
617  * and we will need to fix this code once we add support.
618  */
619 static int wil_rx_refill(struct wil6210_priv *wil, int count)
620 {
621         struct net_device *ndev = wil->main_ndev;
622         struct wil_ring *v = &wil->ring_rx;
623         u32 next_tail;
624         int rc = 0;
625         int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
626                         WIL6210_RTAP_SIZE : 0;
627
628         for (; next_tail = wil_ring_next_tail(v),
629              (next_tail != v->swhead) && (count-- > 0);
630              v->swtail = next_tail) {
631                 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
632                 if (unlikely(rc)) {
633                         wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
634                                             rc, v->swtail);
635                         break;
636                 }
637         }
638
639         /* make sure all writes to descriptors (shared memory) are done before
640          * committing them to HW
641          */
642         wmb();
643
644         wil_w(wil, v->hwtail, v->swtail);
645
646         return rc;
647 }
648
649 /**
650  * reverse_memcmp - Compare two areas of memory, in reverse order
651  * @cs: One area of memory
652  * @ct: Another area of memory
653  * @count: The size of the area.
654  *
655  * Cut'n'paste from original memcmp (see lib/string.c)
656  * with minimal modifications
657  */
658 int reverse_memcmp(const void *cs, const void *ct, size_t count)
659 {
660         const unsigned char *su1, *su2;
661         int res = 0;
662
663         for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
664              --su1, --su2, count--) {
665                 res = *su1 - *su2;
666                 if (res)
667                         break;
668         }
669         return res;
670 }
671
672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
673 {
674         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
675         int cid = wil_skb_get_cid(skb);
676         int tid = wil_rxdesc_tid(d);
677         int key_id = wil_rxdesc_key_id(d);
678         int mc = wil_rxdesc_mcast(d);
679         struct wil_sta_info *s = &wil->sta[cid];
680         struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
681                                       &s->tid_crypto_rx[tid];
682         struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
683         const u8 *pn = (u8 *)&d->mac.pn_15_0;
684
685         if (!cc->key_set) {
686                 wil_err_ratelimited(wil,
687                                     "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
688                                     cid, tid, mc, key_id);
689                 return -EINVAL;
690         }
691
692         if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
693                 wil_err_ratelimited(wil,
694                                     "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
695                                     cid, tid, mc, key_id, pn, cc->pn);
696                 return -EINVAL;
697         }
698         memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
699
700         return 0;
701 }
702
703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
704                               struct wil_net_stats *stats)
705 {
706         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
707
708         if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
709             (d->dma.error & RX_DMA_ERROR_MIC)) {
710                 stats->rx_mic_error++;
711                 wil_dbg_txrx(wil, "MIC error, dropping packet\n");
712                 return -EFAULT;
713         }
714
715         return 0;
716 }
717
718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
719                                     int *security)
720 {
721         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
722
723         *cid = wil_skb_get_cid(skb);
724         *security = wil_rxdesc_security(d);
725 }
726
727 /*
728  * Pass Rx packet to the netif. Update statistics.
729  * Called in softirq context (NAPI poll).
730  */
731 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
732 {
733         gro_result_t rc = GRO_NORMAL;
734         struct wil6210_vif *vif = ndev_to_vif(ndev);
735         struct wil6210_priv *wil = ndev_to_wil(ndev);
736         struct wireless_dev *wdev = vif_to_wdev(vif);
737         unsigned int len = skb->len;
738         int cid;
739         int security;
740         u8 *sa, *da = wil_skb_get_da(skb);
741         /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
742          * is not suitable, need to look at data
743          */
744         int mcast = is_multicast_ether_addr(da);
745         struct wil_net_stats *stats;
746         struct sk_buff *xmit_skb = NULL;
747         static const char * const gro_res_str[] = {
748                 [GRO_MERGED]            = "GRO_MERGED",
749                 [GRO_MERGED_FREE]       = "GRO_MERGED_FREE",
750                 [GRO_HELD]              = "GRO_HELD",
751                 [GRO_NORMAL]            = "GRO_NORMAL",
752                 [GRO_DROP]              = "GRO_DROP",
753                 [GRO_CONSUMED]          = "GRO_CONSUMED",
754         };
755
756         wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
757
758         stats = &wil->sta[cid].stats;
759
760         skb_orphan(skb);
761
762         if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
763                 rc = GRO_DROP;
764                 dev_kfree_skb(skb);
765                 stats->rx_replay++;
766                 goto stats;
767         }
768
769         /* check errors reported by HW and update statistics */
770         if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
771                 dev_kfree_skb(skb);
772                 return;
773         }
774
775         if (wdev->iftype == NL80211_IFTYPE_STATION) {
776                 sa = wil_skb_get_sa(skb);
777                 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
778                         /* mcast packet looped back to us */
779                         rc = GRO_DROP;
780                         dev_kfree_skb(skb);
781                         goto stats;
782                 }
783         } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
784                 if (mcast) {
785                         /* send multicast frames both to higher layers in
786                          * local net stack and back to the wireless medium
787                          */
788                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
789                 } else {
790                         int xmit_cid = wil_find_cid(wil, vif->mid, da);
791
792                         if (xmit_cid >= 0) {
793                                 /* The destination station is associated to
794                                  * this AP (in this VLAN), so send the frame
795                                  * directly to it and do not pass it to local
796                                  * net stack.
797                                  */
798                                 xmit_skb = skb;
799                                 skb = NULL;
800                         }
801                 }
802         }
803         if (xmit_skb) {
804                 /* Send to wireless media and increase priority by 256 to
805                  * keep the received priority instead of reclassifying
806                  * the frame (see cfg80211_classify8021d).
807                  */
808                 xmit_skb->dev = ndev;
809                 xmit_skb->priority += 256;
810                 xmit_skb->protocol = htons(ETH_P_802_3);
811                 skb_reset_network_header(xmit_skb);
812                 skb_reset_mac_header(xmit_skb);
813                 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
814                 dev_queue_xmit(xmit_skb);
815         }
816
817         if (skb) { /* deliver to local stack */
818                 skb->protocol = eth_type_trans(skb, ndev);
819                 skb->dev = ndev;
820                 rc = napi_gro_receive(&wil->napi_rx, skb);
821                 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
822                              len, gro_res_str[rc]);
823         }
824 stats:
825         /* statistics. rc set to GRO_NORMAL for AP bridging */
826         if (unlikely(rc == GRO_DROP)) {
827                 ndev->stats.rx_dropped++;
828                 stats->rx_dropped++;
829                 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
830         } else {
831                 ndev->stats.rx_packets++;
832                 stats->rx_packets++;
833                 ndev->stats.rx_bytes += len;
834                 stats->rx_bytes += len;
835                 if (mcast)
836                         ndev->stats.multicast++;
837         }
838 }
839
840 /**
841  * Proceed all completed skb's from Rx VRING
842  *
843  * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
844  */
845 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
846 {
847         struct net_device *ndev = wil->main_ndev;
848         struct wireless_dev *wdev = ndev->ieee80211_ptr;
849         struct wil_ring *v = &wil->ring_rx;
850         struct sk_buff *skb;
851
852         if (unlikely(!v->va)) {
853                 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
854                 return;
855         }
856         wil_dbg_txrx(wil, "rx_handle\n");
857         while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
858                 (*quota)--;
859
860                 /* monitor is currently supported on main interface only */
861                 if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
862                         skb->dev = ndev;
863                         skb_reset_mac_header(skb);
864                         skb->ip_summed = CHECKSUM_UNNECESSARY;
865                         skb->pkt_type = PACKET_OTHERHOST;
866                         skb->protocol = htons(ETH_P_802_2);
867                         wil_netif_rx_any(skb, ndev);
868                 } else {
869                         wil_rx_reorder(wil, skb);
870                 }
871         }
872         wil_rx_refill(wil, v->size);
873 }
874
875 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
876 {
877         wil->rx_buf_len = rx_large_buf ?
878                 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
879         if (mtu_max > wil->rx_buf_len) {
880                 /* do not allow RX buffers to be smaller than mtu_max, for
881                  * backward compatibility (mtu_max parameter was also used
882                  * to support receiving large packets)
883                  */
884                 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
885                 wil->rx_buf_len = mtu_max;
886         }
887 }
888
889 static int wil_rx_init(struct wil6210_priv *wil, uint order)
890 {
891         struct wil_ring *vring = &wil->ring_rx;
892         int rc;
893
894         wil_dbg_misc(wil, "rx_init\n");
895
896         if (vring->va) {
897                 wil_err(wil, "Rx ring already allocated\n");
898                 return -EINVAL;
899         }
900
901         wil_rx_buf_len_init(wil);
902
903         vring->size = 1 << order;
904         vring->is_rx = true;
905         rc = wil_vring_alloc(wil, vring);
906         if (rc)
907                 return rc;
908
909         rc = wmi_rx_chain_add(wil, vring);
910         if (rc)
911                 goto err_free;
912
913         rc = wil_rx_refill(wil, vring->size);
914         if (rc)
915                 goto err_free;
916
917         return 0;
918  err_free:
919         wil_vring_free(wil, vring);
920
921         return rc;
922 }
923
924 static void wil_rx_fini(struct wil6210_priv *wil)
925 {
926         struct wil_ring *vring = &wil->ring_rx;
927
928         wil_dbg_misc(wil, "rx_fini\n");
929
930         if (vring->va)
931                 wil_vring_free(wil, vring);
932 }
933
934 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
935                            u32 len, int vring_index)
936 {
937         struct vring_tx_desc *d = &desc->legacy;
938
939         wil_desc_addr_set(&d->dma.addr, pa);
940         d->dma.ip_length = 0;
941         /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
942         d->dma.b11 = 0/*14 | BIT(7)*/;
943         d->dma.error = 0;
944         d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
945         d->dma.length = cpu_to_le16((u16)len);
946         d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
947         d->mac.d[0] = 0;
948         d->mac.d[1] = 0;
949         d->mac.d[2] = 0;
950         d->mac.ucode_cmd = 0;
951         /* translation type:  0 - bypass; 1 - 802.3; 2 - native wifi */
952         d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
953                       (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
954
955         return 0;
956 }
957
958 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
959 {
960         spin_lock_bh(&txdata->lock);
961         txdata->dot1x_open = 0;
962         txdata->enabled = 0;
963         txdata->idle = 0;
964         txdata->last_idle = 0;
965         txdata->begin = 0;
966         txdata->agg_wsize = 0;
967         txdata->agg_timeout = 0;
968         txdata->agg_amsdu = 0;
969         txdata->addba_in_progress = false;
970         txdata->mid = U8_MAX;
971         spin_unlock_bh(&txdata->lock);
972 }
973
974 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
975                              int cid, int tid)
976 {
977         struct wil6210_priv *wil = vif_to_wil(vif);
978         int rc;
979         struct wmi_vring_cfg_cmd cmd = {
980                 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
981                 .vring_cfg = {
982                         .tx_sw_ring = {
983                                 .max_mpdu_size =
984                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
985                                 .ring_size = cpu_to_le16(size),
986                         },
987                         .ringid = id,
988                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
989                         .mac_ctrl = 0,
990                         .to_resolution = 0,
991                         .agg_max_wsize = 0,
992                         .schd_params = {
993                                 .priority = cpu_to_le16(0),
994                                 .timeslot_us = cpu_to_le16(0xfff),
995                         },
996                 },
997         };
998         struct {
999                 struct wmi_cmd_hdr wmi;
1000                 struct wmi_vring_cfg_done_event cmd;
1001         } __packed reply = {
1002                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1003         };
1004         struct wil_ring *vring = &wil->ring_tx[id];
1005         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1006
1007         if (cid >= WIL6210_RX_DESC_MAX_CID) {
1008                 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1009                 cmd.vring_cfg.cid = cid;
1010                 cmd.vring_cfg.tid = tid;
1011         } else {
1012                 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1013         }
1014
1015         wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1016                      cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1017         lockdep_assert_held(&wil->mutex);
1018
1019         if (vring->va) {
1020                 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1021                 rc = -EINVAL;
1022                 goto out;
1023         }
1024
1025         wil_tx_data_init(txdata);
1026         vring->is_rx = false;
1027         vring->size = size;
1028         rc = wil_vring_alloc(wil, vring);
1029         if (rc)
1030                 goto out;
1031
1032         wil->ring2cid_tid[id][0] = cid;
1033         wil->ring2cid_tid[id][1] = tid;
1034
1035         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1036
1037         if (!vif->privacy)
1038                 txdata->dot1x_open = true;
1039         rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1040                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1041                       WIL_WMI_CALL_GENERAL_TO_MS);
1042         if (rc)
1043                 goto out_free;
1044
1045         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1046                 wil_err(wil, "Tx config failed, status 0x%02x\n",
1047                         reply.cmd.status);
1048                 rc = -EINVAL;
1049                 goto out_free;
1050         }
1051
1052         spin_lock_bh(&txdata->lock);
1053         vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1054         txdata->mid = vif->mid;
1055         txdata->enabled = 1;
1056         spin_unlock_bh(&txdata->lock);
1057
1058         if (txdata->dot1x_open && (agg_wsize >= 0))
1059                 wil_addba_tx_request(wil, id, agg_wsize);
1060
1061         return 0;
1062  out_free:
1063         spin_lock_bh(&txdata->lock);
1064         txdata->dot1x_open = false;
1065         txdata->enabled = 0;
1066         spin_unlock_bh(&txdata->lock);
1067         wil_vring_free(wil, vring);
1068         wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1069         wil->ring2cid_tid[id][1] = 0;
1070
1071  out:
1072
1073         return rc;
1074 }
1075
1076 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1077                                int tid)
1078 {
1079         struct wil6210_priv *wil = vif_to_wil(vif);
1080         int rc;
1081         struct wmi_vring_cfg_cmd cmd = {
1082                 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1083                 .vring_cfg = {
1084                         .tx_sw_ring = {
1085                                 .max_mpdu_size =
1086                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1087                                 .ring_size = 0,
1088                         },
1089                         .ringid = ring_id,
1090                         .cidxtid = mk_cidxtid(cid, tid),
1091                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1092                         .mac_ctrl = 0,
1093                         .to_resolution = 0,
1094                         .agg_max_wsize = 0,
1095                         .schd_params = {
1096                                 .priority = cpu_to_le16(0),
1097                                 .timeslot_us = cpu_to_le16(0xfff),
1098                         },
1099                 },
1100         };
1101         struct {
1102                 struct wmi_cmd_hdr wmi;
1103                 struct wmi_vring_cfg_done_event cmd;
1104         } __packed reply = {
1105                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1106         };
1107         struct wil_ring *vring = &wil->ring_tx[ring_id];
1108         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1109
1110         wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1111                      cid, tid);
1112         lockdep_assert_held(&wil->mutex);
1113
1114         if (!vring->va) {
1115                 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1116                 return -EINVAL;
1117         }
1118
1119         if (wil->ring2cid_tid[ring_id][0] != cid ||
1120             wil->ring2cid_tid[ring_id][1] != tid) {
1121                 wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1122                         wil->ring2cid_tid[ring_id][0],
1123                         wil->ring2cid_tid[ring_id][1]);
1124         }
1125
1126         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1127
1128         rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1129                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1130                       WIL_WMI_CALL_GENERAL_TO_MS);
1131         if (rc)
1132                 goto fail;
1133
1134         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1135                 wil_err(wil, "Tx modify failed, status 0x%02x\n",
1136                         reply.cmd.status);
1137                 rc = -EINVAL;
1138                 goto fail;
1139         }
1140
1141         /* set BA aggregation window size to 0 to force a new BA with the
1142          * new AP
1143          */
1144         txdata->agg_wsize = 0;
1145         if (txdata->dot1x_open && agg_wsize >= 0)
1146                 wil_addba_tx_request(wil, ring_id, agg_wsize);
1147
1148         return 0;
1149 fail:
1150         spin_lock_bh(&txdata->lock);
1151         txdata->dot1x_open = false;
1152         txdata->enabled = 0;
1153         spin_unlock_bh(&txdata->lock);
1154         wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1155         wil->ring2cid_tid[ring_id][1] = 0;
1156         return rc;
1157 }
1158
1159 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1160 {
1161         struct wil6210_priv *wil = vif_to_wil(vif);
1162         int rc;
1163         struct wmi_bcast_vring_cfg_cmd cmd = {
1164                 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1165                 .vring_cfg = {
1166                         .tx_sw_ring = {
1167                                 .max_mpdu_size =
1168                                         cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1169                                 .ring_size = cpu_to_le16(size),
1170                         },
1171                         .ringid = id,
1172                         .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1173                 },
1174         };
1175         struct {
1176                 struct wmi_cmd_hdr wmi;
1177                 struct wmi_vring_cfg_done_event cmd;
1178         } __packed reply = {
1179                 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1180         };
1181         struct wil_ring *vring = &wil->ring_tx[id];
1182         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1183
1184         wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1185                      cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1186         lockdep_assert_held(&wil->mutex);
1187
1188         if (vring->va) {
1189                 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1190                 rc = -EINVAL;
1191                 goto out;
1192         }
1193
1194         wil_tx_data_init(txdata);
1195         vring->is_rx = false;
1196         vring->size = size;
1197         rc = wil_vring_alloc(wil, vring);
1198         if (rc)
1199                 goto out;
1200
1201         wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1202         wil->ring2cid_tid[id][1] = 0; /* TID */
1203
1204         cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1205
1206         if (!vif->privacy)
1207                 txdata->dot1x_open = true;
1208         rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1209                       &cmd, sizeof(cmd),
1210                       WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1211                       WIL_WMI_CALL_GENERAL_TO_MS);
1212         if (rc)
1213                 goto out_free;
1214
1215         if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1216                 wil_err(wil, "Tx config failed, status 0x%02x\n",
1217                         reply.cmd.status);
1218                 rc = -EINVAL;
1219                 goto out_free;
1220         }
1221
1222         spin_lock_bh(&txdata->lock);
1223         vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1224         txdata->mid = vif->mid;
1225         txdata->enabled = 1;
1226         spin_unlock_bh(&txdata->lock);
1227
1228         return 0;
1229  out_free:
1230         spin_lock_bh(&txdata->lock);
1231         txdata->enabled = 0;
1232         txdata->dot1x_open = false;
1233         spin_unlock_bh(&txdata->lock);
1234         wil_vring_free(wil, vring);
1235  out:
1236
1237         return rc;
1238 }
1239
1240 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1241                                           struct wil6210_vif *vif,
1242                                           struct sk_buff *skb)
1243 {
1244         int i, cid;
1245         const u8 *da = wil_skb_get_da(skb);
1246         int min_ring_id = wil_get_min_tx_ring_id(wil);
1247
1248         cid = wil_find_cid(wil, vif->mid, da);
1249
1250         if (cid < 0 || cid >= wil->max_assoc_sta)
1251                 return NULL;
1252
1253         /* TODO: fix for multiple TID */
1254         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1255                 if (!wil->ring_tx_data[i].dot1x_open &&
1256                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1257                         continue;
1258                 if (wil->ring2cid_tid[i][0] == cid) {
1259                         struct wil_ring *v = &wil->ring_tx[i];
1260                         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1261
1262                         wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1263                                      da, i);
1264                         if (v->va && txdata->enabled) {
1265                                 return v;
1266                         } else {
1267                                 wil_dbg_txrx(wil,
1268                                              "find_tx_ucast: vring[%d] not valid\n",
1269                                              i);
1270                                 return NULL;
1271                         }
1272                 }
1273         }
1274
1275         return NULL;
1276 }
1277
1278 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1279                        struct wil_ring *ring, struct sk_buff *skb);
1280
1281 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1282                                              struct wil6210_vif *vif,
1283                                              struct sk_buff *skb)
1284 {
1285         struct wil_ring *ring;
1286         int i;
1287         u8 cid;
1288         struct wil_ring_tx_data  *txdata;
1289         int min_ring_id = wil_get_min_tx_ring_id(wil);
1290
1291         /* In the STA mode, it is expected to have only 1 VRING
1292          * for the AP we connected to.
1293          * find 1-st vring eligible for this skb and use it.
1294          */
1295         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1296                 ring = &wil->ring_tx[i];
1297                 txdata = &wil->ring_tx_data[i];
1298                 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1299                         continue;
1300
1301                 cid = wil->ring2cid_tid[i][0];
1302                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1303                         continue;
1304
1305                 if (!wil->ring_tx_data[i].dot1x_open &&
1306                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1307                         continue;
1308
1309                 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1310
1311                 return ring;
1312         }
1313
1314         wil_dbg_txrx(wil, "Tx while no rings active?\n");
1315
1316         return NULL;
1317 }
1318
1319 /* Use one of 2 strategies:
1320  *
1321  * 1. New (real broadcast):
1322  *    use dedicated broadcast vring
1323  * 2. Old (pseudo-DMS):
1324  *    Find 1-st vring and return it;
1325  *    duplicate skb and send it to other active vrings;
1326  *    in all cases override dest address to unicast peer's address
1327  * Use old strategy when new is not supported yet:
1328  *  - for PBSS
1329  */
1330 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1331                                             struct wil6210_vif *vif,
1332                                             struct sk_buff *skb)
1333 {
1334         struct wil_ring *v;
1335         struct wil_ring_tx_data *txdata;
1336         int i = vif->bcast_ring;
1337
1338         if (i < 0)
1339                 return NULL;
1340         v = &wil->ring_tx[i];
1341         txdata = &wil->ring_tx_data[i];
1342         if (!v->va || !txdata->enabled)
1343                 return NULL;
1344         if (!wil->ring_tx_data[i].dot1x_open &&
1345             skb->protocol != cpu_to_be16(ETH_P_PAE))
1346                 return NULL;
1347
1348         return v;
1349 }
1350
1351 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1352                                  struct sk_buff *skb, int vring_index)
1353 {
1354         u8 *da = wil_skb_get_da(skb);
1355         int cid = wil->ring2cid_tid[vring_index][0];
1356
1357         ether_addr_copy(da, wil->sta[cid].addr);
1358 }
1359
1360 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1361                                             struct wil6210_vif *vif,
1362                                             struct sk_buff *skb)
1363 {
1364         struct wil_ring *v, *v2;
1365         struct sk_buff *skb2;
1366         int i;
1367         u8 cid;
1368         const u8 *src = wil_skb_get_sa(skb);
1369         struct wil_ring_tx_data *txdata, *txdata2;
1370         int min_ring_id = wil_get_min_tx_ring_id(wil);
1371
1372         /* find 1-st vring eligible for data */
1373         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1374                 v = &wil->ring_tx[i];
1375                 txdata = &wil->ring_tx_data[i];
1376                 if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1377                         continue;
1378
1379                 cid = wil->ring2cid_tid[i][0];
1380                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1381                         continue;
1382                 if (!wil->ring_tx_data[i].dot1x_open &&
1383                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1384                         continue;
1385
1386                 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1387                 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1388                         continue;
1389
1390                 goto found;
1391         }
1392
1393         wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1394
1395         return NULL;
1396
1397 found:
1398         wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1399         wil_set_da_for_vring(wil, skb, i);
1400
1401         /* find other active vrings and duplicate skb for each */
1402         for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1403                 v2 = &wil->ring_tx[i];
1404                 txdata2 = &wil->ring_tx_data[i];
1405                 if (!v2->va || txdata2->mid != vif->mid)
1406                         continue;
1407                 cid = wil->ring2cid_tid[i][0];
1408                 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1409                         continue;
1410                 if (!wil->ring_tx_data[i].dot1x_open &&
1411                     skb->protocol != cpu_to_be16(ETH_P_PAE))
1412                         continue;
1413
1414                 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1415                         continue;
1416
1417                 skb2 = skb_copy(skb, GFP_ATOMIC);
1418                 if (skb2) {
1419                         wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1420                         wil_set_da_for_vring(wil, skb2, i);
1421                         wil_tx_ring(wil, vif, v2, skb2);
1422                         /* successful call to wil_tx_ring takes skb2 ref */
1423                         dev_kfree_skb_any(skb2);
1424                 } else {
1425                         wil_err(wil, "skb_copy failed\n");
1426                 }
1427         }
1428
1429         return v;
1430 }
1431
1432 static inline
1433 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1434 {
1435         d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1436 }
1437
1438 /**
1439  * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1440  * @skb is used to obtain the protocol and headers length.
1441  * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1442  * 2 - middle, 3 - last descriptor.
1443  */
1444
1445 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1446                                           struct sk_buff *skb,
1447                                           int tso_desc_type, bool is_ipv4,
1448                                           int tcp_hdr_len, int skb_net_hdr_len)
1449 {
1450         d->dma.b11 = ETH_HLEN; /* MAC header length */
1451         d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1452
1453         d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1454         /* L4 header len: TCP header length */
1455         d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1456
1457         /* Setup TSO: bit and desc type */
1458         d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1459                 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1460         d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1461
1462         d->dma.ip_length = skb_net_hdr_len;
1463         /* Enable TCP/UDP checksum */
1464         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1465         /* Calculate pseudo-header */
1466         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1467 }
1468
1469 /**
1470  * Sets the descriptor @d up for csum. The corresponding
1471  * @skb is used to obtain the protocol and headers length.
1472  * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1473  * Note, if d==NULL, the function only returns the protocol result.
1474  *
1475  * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1476  * is "if unrolling" to optimize the critical path.
1477  */
1478
1479 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1480                                      struct sk_buff *skb){
1481         int protocol;
1482
1483         if (skb->ip_summed != CHECKSUM_PARTIAL)
1484                 return 0;
1485
1486         d->dma.b11 = ETH_HLEN; /* MAC header length */
1487
1488         switch (skb->protocol) {
1489         case cpu_to_be16(ETH_P_IP):
1490                 protocol = ip_hdr(skb)->protocol;
1491                 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1492                 break;
1493         case cpu_to_be16(ETH_P_IPV6):
1494                 protocol = ipv6_hdr(skb)->nexthdr;
1495                 break;
1496         default:
1497                 return -EINVAL;
1498         }
1499
1500         switch (protocol) {
1501         case IPPROTO_TCP:
1502                 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1503                 /* L4 header len: TCP header length */
1504                 d->dma.d0 |=
1505                 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1506                 break;
1507         case IPPROTO_UDP:
1508                 /* L4 header len: UDP header length */
1509                 d->dma.d0 |=
1510                 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1511                 break;
1512         default:
1513                 return -EINVAL;
1514         }
1515
1516         d->dma.ip_length = skb_network_header_len(skb);
1517         /* Enable TCP/UDP checksum */
1518         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1519         /* Calculate pseudo-header */
1520         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1521
1522         return 0;
1523 }
1524
1525 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1526 {
1527         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1528               BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1529               BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1530 }
1531
1532 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1533 {
1534         d->dma.d0 |= wil_tso_type_lst <<
1535                   DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1536 }
1537
1538 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1539                               struct wil_ring *vring, struct sk_buff *skb)
1540 {
1541         struct device *dev = wil_to_dev(wil);
1542
1543         /* point to descriptors in shared memory */
1544         volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1545                                       *_first_desc = NULL;
1546
1547         /* pointers to shadow descriptors */
1548         struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1549                              *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1550                              *first_desc = &first_desc_mem;
1551
1552         /* pointer to shadow descriptors' context */
1553         struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1554
1555         int descs_used = 0; /* total number of used descriptors */
1556         int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1557
1558         u32 swhead = vring->swhead;
1559         int used, avail = wil_ring_avail_tx(vring);
1560         int nr_frags = skb_shinfo(skb)->nr_frags;
1561         int min_desc_required = nr_frags + 1;
1562         int mss = skb_shinfo(skb)->gso_size;    /* payload size w/o headers */
1563         int f, len, hdrlen, headlen;
1564         int vring_index = vring - wil->ring_tx;
1565         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1566         uint i = swhead;
1567         dma_addr_t pa;
1568         const skb_frag_t *frag = NULL;
1569         int rem_data = mss;
1570         int lenmss;
1571         int hdr_compensation_need = true;
1572         int desc_tso_type = wil_tso_type_first;
1573         bool is_ipv4;
1574         int tcp_hdr_len;
1575         int skb_net_hdr_len;
1576         int gso_type;
1577         int rc = -EINVAL;
1578
1579         wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1580                      vring_index);
1581
1582         if (unlikely(!txdata->enabled))
1583                 return -EINVAL;
1584
1585         /* A typical page 4K is 3-4 payloads, we assume each fragment
1586          * is a full payload, that's how min_desc_required has been
1587          * calculated. In real we might need more or less descriptors,
1588          * this is the initial check only.
1589          */
1590         if (unlikely(avail < min_desc_required)) {
1591                 wil_err_ratelimited(wil,
1592                                     "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1593                                     vring_index, min_desc_required);
1594                 return -ENOMEM;
1595         }
1596
1597         /* Header Length = MAC header len + IP header len + TCP header len*/
1598         hdrlen = ETH_HLEN +
1599                 (int)skb_network_header_len(skb) +
1600                 tcp_hdrlen(skb);
1601
1602         gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1603         switch (gso_type) {
1604         case SKB_GSO_TCPV4:
1605                 /* TCP v4, zero out the IP length and IPv4 checksum fields
1606                  * as required by the offloading doc
1607                  */
1608                 ip_hdr(skb)->tot_len = 0;
1609                 ip_hdr(skb)->check = 0;
1610                 is_ipv4 = true;
1611                 break;
1612         case SKB_GSO_TCPV6:
1613                 /* TCP v6, zero out the payload length */
1614                 ipv6_hdr(skb)->payload_len = 0;
1615                 is_ipv4 = false;
1616                 break;
1617         default:
1618                 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1619                  * It is also illegal for both to be set simultaneously
1620                  */
1621                 return -EINVAL;
1622         }
1623
1624         if (skb->ip_summed != CHECKSUM_PARTIAL)
1625                 return -EINVAL;
1626
1627         /* tcp header length and skb network header length are fixed for all
1628          * packet's descriptors - read then once here
1629          */
1630         tcp_hdr_len = tcp_hdrlen(skb);
1631         skb_net_hdr_len = skb_network_header_len(skb);
1632
1633         _hdr_desc = &vring->va[i].tx.legacy;
1634
1635         pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1636         if (unlikely(dma_mapping_error(dev, pa))) {
1637                 wil_err(wil, "TSO: Skb head DMA map error\n");
1638                 goto err_exit;
1639         }
1640
1641         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1642                                   hdrlen, vring_index);
1643         wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1644                                       tcp_hdr_len, skb_net_hdr_len);
1645         wil_tx_last_desc(hdr_desc);
1646
1647         vring->ctx[i].mapped_as = wil_mapped_as_single;
1648         hdr_ctx = &vring->ctx[i];
1649
1650         descs_used++;
1651         headlen = skb_headlen(skb) - hdrlen;
1652
1653         for (f = headlen ? -1 : 0; f < nr_frags; f++)  {
1654                 if (headlen) {
1655                         len = headlen;
1656                         wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1657                                      len);
1658                 } else {
1659                         frag = &skb_shinfo(skb)->frags[f];
1660                         len = frag->size;
1661                         wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1662                 }
1663
1664                 while (len) {
1665                         wil_dbg_txrx(wil,
1666                                      "TSO: len %d, rem_data %d, descs_used %d\n",
1667                                      len, rem_data, descs_used);
1668
1669                         if (descs_used == avail)  {
1670                                 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1671                                 rc = -ENOMEM;
1672                                 goto mem_error;
1673                         }
1674
1675                         lenmss = min_t(int, rem_data, len);
1676                         i = (swhead + descs_used) % vring->size;
1677                         wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1678
1679                         if (!headlen) {
1680                                 pa = skb_frag_dma_map(dev, frag,
1681                                                       frag->size - len, lenmss,
1682                                                       DMA_TO_DEVICE);
1683                                 vring->ctx[i].mapped_as = wil_mapped_as_page;
1684                         } else {
1685                                 pa = dma_map_single(dev,
1686                                                     skb->data +
1687                                                     skb_headlen(skb) - headlen,
1688                                                     lenmss,
1689                                                     DMA_TO_DEVICE);
1690                                 vring->ctx[i].mapped_as = wil_mapped_as_single;
1691                                 headlen -= lenmss;
1692                         }
1693
1694                         if (unlikely(dma_mapping_error(dev, pa))) {
1695                                 wil_err(wil, "TSO: DMA map page error\n");
1696                                 goto mem_error;
1697                         }
1698
1699                         _desc = &vring->va[i].tx.legacy;
1700
1701                         if (!_first_desc) {
1702                                 _first_desc = _desc;
1703                                 first_ctx = &vring->ctx[i];
1704                                 d = first_desc;
1705                         } else {
1706                                 d = &desc_mem;
1707                         }
1708
1709                         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1710                                                   pa, lenmss, vring_index);
1711                         wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1712                                                       is_ipv4, tcp_hdr_len,
1713                                                       skb_net_hdr_len);
1714
1715                         /* use tso_type_first only once */
1716                         desc_tso_type = wil_tso_type_mid;
1717
1718                         descs_used++;  /* desc used so far */
1719                         sg_desc_cnt++; /* desc used for this segment */
1720                         len -= lenmss;
1721                         rem_data -= lenmss;
1722
1723                         wil_dbg_txrx(wil,
1724                                      "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1725                                      len, rem_data, descs_used, sg_desc_cnt);
1726
1727                         /* Close the segment if reached mss size or last frag*/
1728                         if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1729                                 if (hdr_compensation_need) {
1730                                         /* first segment include hdr desc for
1731                                          * release
1732                                          */
1733                                         hdr_ctx->nr_frags = sg_desc_cnt;
1734                                         wil_tx_desc_set_nr_frags(first_desc,
1735                                                                  sg_desc_cnt +
1736                                                                  1);
1737                                         hdr_compensation_need = false;
1738                                 } else {
1739                                         wil_tx_desc_set_nr_frags(first_desc,
1740                                                                  sg_desc_cnt);
1741                                 }
1742                                 first_ctx->nr_frags = sg_desc_cnt - 1;
1743
1744                                 wil_tx_last_desc(d);
1745
1746                                 /* first descriptor may also be the last
1747                                  * for this mss - make sure not to copy
1748                                  * it twice
1749                                  */
1750                                 if (first_desc != d)
1751                                         *_first_desc = *first_desc;
1752
1753                                 /*last descriptor will be copied at the end
1754                                  * of this TS processing
1755                                  */
1756                                 if (f < nr_frags - 1 || len > 0)
1757                                         *_desc = *d;
1758
1759                                 rem_data = mss;
1760                                 _first_desc = NULL;
1761                                 sg_desc_cnt = 0;
1762                         } else if (first_desc != d) /* update mid descriptor */
1763                                         *_desc = *d;
1764                 }
1765         }
1766
1767         if (!_desc)
1768                 goto mem_error;
1769
1770         /* first descriptor may also be the last.
1771          * in this case d pointer is invalid
1772          */
1773         if (_first_desc == _desc)
1774                 d = first_desc;
1775
1776         /* Last data descriptor */
1777         wil_set_tx_desc_last_tso(d);
1778         *_desc = *d;
1779
1780         /* Fill the total number of descriptors in first desc (hdr)*/
1781         wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1782         *_hdr_desc = *hdr_desc;
1783
1784         /* hold reference to skb
1785          * to prevent skb release before accounting
1786          * in case of immediate "tx done"
1787          */
1788         vring->ctx[i].skb = skb_get(skb);
1789
1790         /* performance monitoring */
1791         used = wil_ring_used_tx(vring);
1792         if (wil_val_in_range(wil->ring_idle_trsh,
1793                              used, used + descs_used)) {
1794                 txdata->idle += get_cycles() - txdata->last_idle;
1795                 wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1796                              vring_index, used, used + descs_used);
1797         }
1798
1799         /* Make sure to advance the head only after descriptor update is done.
1800          * This will prevent a race condition where the completion thread
1801          * will see the DU bit set from previous run and will handle the
1802          * skb before it was completed.
1803          */
1804         wmb();
1805
1806         /* advance swhead */
1807         wil_ring_advance_head(vring, descs_used);
1808         wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1809
1810         /* make sure all writes to descriptors (shared memory) are done before
1811          * committing them to HW
1812          */
1813         wmb();
1814
1815         if (wil->tx_latency)
1816                 *(ktime_t *)&skb->cb = ktime_get();
1817         else
1818                 memset(skb->cb, 0, sizeof(ktime_t));
1819
1820         wil_w(wil, vring->hwtail, vring->swhead);
1821         return 0;
1822
1823 mem_error:
1824         while (descs_used > 0) {
1825                 struct wil_ctx *ctx;
1826
1827                 i = (swhead + descs_used - 1) % vring->size;
1828                 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
1829                 _desc = &vring->va[i].tx.legacy;
1830                 *d = *_desc;
1831                 _desc->dma.status = TX_DMA_STATUS_DU;
1832                 ctx = &vring->ctx[i];
1833                 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
1834                 memset(ctx, 0, sizeof(*ctx));
1835                 descs_used--;
1836         }
1837 err_exit:
1838         return rc;
1839 }
1840
1841 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1842                          struct wil_ring *ring, struct sk_buff *skb)
1843 {
1844         struct device *dev = wil_to_dev(wil);
1845         struct vring_tx_desc dd, *d = &dd;
1846         volatile struct vring_tx_desc *_d;
1847         u32 swhead = ring->swhead;
1848         int avail = wil_ring_avail_tx(ring);
1849         int nr_frags = skb_shinfo(skb)->nr_frags;
1850         uint f = 0;
1851         int ring_index = ring - wil->ring_tx;
1852         struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[ring_index];
1853         uint i = swhead;
1854         dma_addr_t pa;
1855         int used;
1856         bool mcast = (ring_index == vif->bcast_ring);
1857         uint len = skb_headlen(skb);
1858
1859         wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
1860                      skb->len, ring_index, nr_frags);
1861
1862         if (unlikely(!txdata->enabled))
1863                 return -EINVAL;
1864
1865         if (unlikely(avail < 1 + nr_frags)) {
1866                 wil_err_ratelimited(wil,
1867                                     "Tx ring[%2d] full. No space for %d fragments\n",
1868                                     ring_index, 1 + nr_frags);
1869                 return -ENOMEM;
1870         }
1871         _d = &ring->va[i].tx.legacy;
1872
1873         pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1874
1875         wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
1876                      skb_headlen(skb), skb->data, &pa);
1877         wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1878                           skb->data, skb_headlen(skb), false);
1879
1880         if (unlikely(dma_mapping_error(dev, pa)))
1881                 return -EINVAL;
1882         ring->ctx[i].mapped_as = wil_mapped_as_single;
1883         /* 1-st segment */
1884         wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
1885                                    ring_index);
1886         if (unlikely(mcast)) {
1887                 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1888                 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1889                         d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1890         }
1891         /* Process TCP/UDP checksum offloading */
1892         if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1893                 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1894                         ring_index);
1895                 goto dma_error;
1896         }
1897
1898         ring->ctx[i].nr_frags = nr_frags;
1899         wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1900
1901         /* middle segments */
1902         for (; f < nr_frags; f++) {
1903                 const struct skb_frag_struct *frag =
1904                                 &skb_shinfo(skb)->frags[f];
1905                 int len = skb_frag_size(frag);
1906
1907                 *_d = *d;
1908                 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1909                 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1910                                   (const void *)d, sizeof(*d), false);
1911                 i = (swhead + f + 1) % ring->size;
1912                 _d = &ring->va[i].tx.legacy;
1913                 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1914                                       DMA_TO_DEVICE);
1915                 if (unlikely(dma_mapping_error(dev, pa))) {
1916                         wil_err(wil, "Tx[%2d] failed to map fragment\n",
1917                                 ring_index);
1918                         goto dma_error;
1919                 }
1920                 ring->ctx[i].mapped_as = wil_mapped_as_page;
1921                 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1922                                            pa, len, ring_index);
1923                 /* no need to check return code -
1924                  * if it succeeded for 1-st descriptor,
1925                  * it will succeed here too
1926                  */
1927                 wil_tx_desc_offload_setup(d, skb);
1928         }
1929         /* for the last seg only */
1930         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1931         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1932         d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1933         *_d = *d;
1934         wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
1935         wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1936                           (const void *)d, sizeof(*d), false);
1937
1938         /* hold reference to skb
1939          * to prevent skb release before accounting
1940          * in case of immediate "tx done"
1941          */
1942         ring->ctx[i].skb = skb_get(skb);
1943
1944         /* performance monitoring */
1945         used = wil_ring_used_tx(ring);
1946         if (wil_val_in_range(wil->ring_idle_trsh,
1947                              used, used + nr_frags + 1)) {
1948                 txdata->idle += get_cycles() - txdata->last_idle;
1949                 wil_dbg_txrx(wil,  "Ring[%2d] not idle %d -> %d\n",
1950                              ring_index, used, used + nr_frags + 1);
1951         }
1952
1953         /* Make sure to advance the head only after descriptor update is done.
1954          * This will prevent a race condition where the completion thread
1955          * will see the DU bit set from previous run and will handle the
1956          * skb before it was completed.
1957          */
1958         wmb();
1959
1960         /* advance swhead */
1961         wil_ring_advance_head(ring, nr_frags + 1);
1962         wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
1963                      ring->swhead);
1964         trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
1965
1966         /* make sure all writes to descriptors (shared memory) are done before
1967          * committing them to HW
1968          */
1969         wmb();
1970
1971         if (wil->tx_latency)
1972                 *(ktime_t *)&skb->cb = ktime_get();
1973         else
1974                 memset(skb->cb, 0, sizeof(ktime_t));
1975
1976         wil_w(wil, ring->hwtail, ring->swhead);
1977
1978         return 0;
1979  dma_error:
1980         /* unmap what we have mapped */
1981         nr_frags = f + 1; /* frags mapped + one for skb head */
1982         for (f = 0; f < nr_frags; f++) {
1983                 struct wil_ctx *ctx;
1984
1985                 i = (swhead + f) % ring->size;
1986                 ctx = &ring->ctx[i];
1987                 _d = &ring->va[i].tx.legacy;
1988                 *d = *_d;
1989                 _d->dma.status = TX_DMA_STATUS_DU;
1990                 wil->txrx_ops.tx_desc_unmap(dev,
1991                                             (union wil_tx_desc *)d,
1992                                             ctx);
1993
1994                 memset(ctx, 0, sizeof(*ctx));
1995         }
1996
1997         return -EINVAL;
1998 }
1999
2000 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2001                        struct wil_ring *ring, struct sk_buff *skb)
2002 {
2003         int ring_index = ring - wil->ring_tx;
2004         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2005         int rc;
2006
2007         spin_lock(&txdata->lock);
2008
2009         if (test_bit(wil_status_suspending, wil->status) ||
2010             test_bit(wil_status_suspended, wil->status) ||
2011             test_bit(wil_status_resuming, wil->status)) {
2012                 wil_dbg_txrx(wil,
2013                              "suspend/resume in progress. drop packet\n");
2014                 spin_unlock(&txdata->lock);
2015                 return -EINVAL;
2016         }
2017
2018         rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2019              (wil, vif, ring, skb);
2020
2021         spin_unlock(&txdata->lock);
2022
2023         return rc;
2024 }
2025
2026 /**
2027  * Check status of tx vrings and stop/wake net queues if needed
2028  * It will start/stop net queues of a specific VIF net_device.
2029  *
2030  * This function does one of two checks:
2031  * In case check_stop is true, will check if net queues need to be stopped. If
2032  * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2033  * In case check_stop is false, will check if net queues need to be waked. If
2034  * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2035  * vring is the vring which is currently being modified by either adding
2036  * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2037  * be null when irrelevant (e.g. connect/disconnect events).
2038  *
2039  * The implementation is to stop net queues if modified vring has low
2040  * descriptor availability. Wake if all vrings are not in low descriptor
2041  * availability and modified vring has high descriptor availability.
2042  */
2043 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2044                                            struct wil6210_vif *vif,
2045                                            struct wil_ring *ring,
2046                                            bool check_stop)
2047 {
2048         int i;
2049         int min_ring_id = wil_get_min_tx_ring_id(wil);
2050
2051         if (unlikely(!vif))
2052                 return;
2053
2054         if (ring)
2055                 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2056                              (int)(ring - wil->ring_tx), vif->mid, check_stop,
2057                              vif->net_queue_stopped);
2058         else
2059                 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2060                              check_stop, vif->mid, vif->net_queue_stopped);
2061
2062         if (ring && drop_if_ring_full)
2063                 /* no need to stop/wake net queues */
2064                 return;
2065
2066         if (check_stop == vif->net_queue_stopped)
2067                 /* net queues already in desired state */
2068                 return;
2069
2070         if (check_stop) {
2071                 if (!ring || unlikely(wil_ring_avail_low(ring))) {
2072                         /* not enough room in the vring */
2073                         netif_tx_stop_all_queues(vif_to_ndev(vif));
2074                         vif->net_queue_stopped = true;
2075                         wil_dbg_txrx(wil, "netif_tx_stop called\n");
2076                 }
2077                 return;
2078         }
2079
2080         /* Do not wake the queues in suspend flow */
2081         if (test_bit(wil_status_suspending, wil->status) ||
2082             test_bit(wil_status_suspended, wil->status))
2083                 return;
2084
2085         /* check wake */
2086         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2087                 struct wil_ring *cur_ring = &wil->ring_tx[i];
2088                 struct wil_ring_tx_data  *txdata = &wil->ring_tx_data[i];
2089
2090                 if (txdata->mid != vif->mid || !cur_ring->va ||
2091                     !txdata->enabled || cur_ring == ring)
2092                         continue;
2093
2094                 if (wil_ring_avail_low(cur_ring)) {
2095                         wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2096                                      (int)(cur_ring - wil->ring_tx));
2097                         return;
2098                 }
2099         }
2100
2101         if (!ring || wil_ring_avail_high(ring)) {
2102                 /* enough room in the ring */
2103                 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2104                 netif_tx_wake_all_queues(vif_to_ndev(vif));
2105                 vif->net_queue_stopped = false;
2106         }
2107 }
2108
2109 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2110                            struct wil_ring *ring, bool check_stop)
2111 {
2112         spin_lock(&wil->net_queue_lock);
2113         __wil_update_net_queues(wil, vif, ring, check_stop);
2114         spin_unlock(&wil->net_queue_lock);
2115 }
2116
2117 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2118                               struct wil_ring *ring, bool check_stop)
2119 {
2120         spin_lock_bh(&wil->net_queue_lock);
2121         __wil_update_net_queues(wil, vif, ring, check_stop);
2122         spin_unlock_bh(&wil->net_queue_lock);
2123 }
2124
2125 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2126 {
2127         struct wil6210_vif *vif = ndev_to_vif(ndev);
2128         struct wil6210_priv *wil = vif_to_wil(vif);
2129         const u8 *da = wil_skb_get_da(skb);
2130         bool bcast = is_multicast_ether_addr(da);
2131         struct wil_ring *ring;
2132         static bool pr_once_fw;
2133         int rc;
2134
2135         wil_dbg_txrx(wil, "start_xmit\n");
2136         if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2137                 if (!pr_once_fw) {
2138                         wil_err(wil, "FW not ready\n");
2139                         pr_once_fw = true;
2140                 }
2141                 goto drop;
2142         }
2143         if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2144                 wil_dbg_ratelimited(wil,
2145                                     "VIF not connected, packet dropped\n");
2146                 goto drop;
2147         }
2148         if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2149                 wil_err(wil, "Xmit in monitor mode not supported\n");
2150                 goto drop;
2151         }
2152         pr_once_fw = false;
2153
2154         /* find vring */
2155         if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2156                 /* in STA mode (ESS), all to same VRING (to AP) */
2157                 ring = wil_find_tx_ring_sta(wil, vif, skb);
2158         } else if (bcast) {
2159                 if (vif->pbss)
2160                         /* in pbss, no bcast VRING - duplicate skb in
2161                          * all stations VRINGs
2162                          */
2163                         ring = wil_find_tx_bcast_2(wil, vif, skb);
2164                 else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2165                         /* AP has a dedicated bcast VRING */
2166                         ring = wil_find_tx_bcast_1(wil, vif, skb);
2167                 else
2168                         /* unexpected combination, fallback to duplicating
2169                          * the skb in all stations VRINGs
2170                          */
2171                         ring = wil_find_tx_bcast_2(wil, vif, skb);
2172         } else {
2173                 /* unicast, find specific VRING by dest. address */
2174                 ring = wil_find_tx_ucast(wil, vif, skb);
2175         }
2176         if (unlikely(!ring)) {
2177                 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2178                 goto drop;
2179         }
2180         /* set up vring entry */
2181         rc = wil_tx_ring(wil, vif, ring, skb);
2182
2183         switch (rc) {
2184         case 0:
2185                 /* shall we stop net queues? */
2186                 wil_update_net_queues_bh(wil, vif, ring, true);
2187                 /* statistics will be updated on the tx_complete */
2188                 dev_kfree_skb_any(skb);
2189                 return NETDEV_TX_OK;
2190         case -ENOMEM:
2191                 if (drop_if_ring_full)
2192                         goto drop;
2193                 return NETDEV_TX_BUSY;
2194         default:
2195                 break; /* goto drop; */
2196         }
2197  drop:
2198         ndev->stats.tx_dropped++;
2199         dev_kfree_skb_any(skb);
2200
2201         return NET_XMIT_DROP;
2202 }
2203
2204 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2205                          struct wil_sta_info *sta)
2206 {
2207         int skb_time_us;
2208         int bin;
2209
2210         if (!wil->tx_latency)
2211                 return;
2212
2213         if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2214                 return;
2215
2216         skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2217         bin = skb_time_us / wil->tx_latency_res;
2218         bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2219
2220         wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2221         sta->tx_latency_bins[bin]++;
2222         sta->stats.tx_latency_total_us += skb_time_us;
2223         if (skb_time_us < sta->stats.tx_latency_min_us)
2224                 sta->stats.tx_latency_min_us = skb_time_us;
2225         if (skb_time_us > sta->stats.tx_latency_max_us)
2226                 sta->stats.tx_latency_max_us = skb_time_us;
2227 }
2228
2229 /**
2230  * Clean up transmitted skb's from the Tx VRING
2231  *
2232  * Return number of descriptors cleared
2233  *
2234  * Safe to call from IRQ
2235  */
2236 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2237 {
2238         struct wil6210_priv *wil = vif_to_wil(vif);
2239         struct net_device *ndev = vif_to_ndev(vif);
2240         struct device *dev = wil_to_dev(wil);
2241         struct wil_ring *vring = &wil->ring_tx[ringid];
2242         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2243         int done = 0;
2244         int cid = wil->ring2cid_tid[ringid][0];
2245         struct wil_net_stats *stats = NULL;
2246         volatile struct vring_tx_desc *_d;
2247         int used_before_complete;
2248         int used_new;
2249
2250         if (unlikely(!vring->va)) {
2251                 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2252                 return 0;
2253         }
2254
2255         if (unlikely(!txdata->enabled)) {
2256                 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2257                 return 0;
2258         }
2259
2260         wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2261
2262         used_before_complete = wil_ring_used_tx(vring);
2263
2264         if (cid < wil->max_assoc_sta)
2265                 stats = &wil->sta[cid].stats;
2266
2267         while (!wil_ring_is_empty(vring)) {
2268                 int new_swtail;
2269                 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2270                 /**
2271                  * For the fragmented skb, HW will set DU bit only for the
2272                  * last fragment. look for it.
2273                  * In TSO the first DU will include hdr desc
2274                  */
2275                 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2276                 /* TODO: check we are not past head */
2277
2278                 _d = &vring->va[lf].tx.legacy;
2279                 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2280                         break;
2281
2282                 new_swtail = (lf + 1) % vring->size;
2283                 while (vring->swtail != new_swtail) {
2284                         struct vring_tx_desc dd, *d = &dd;
2285                         u16 dmalen;
2286                         struct sk_buff *skb;
2287
2288                         ctx = &vring->ctx[vring->swtail];
2289                         skb = ctx->skb;
2290                         _d = &vring->va[vring->swtail].tx.legacy;
2291
2292                         *d = *_d;
2293
2294                         dmalen = le16_to_cpu(d->dma.length);
2295                         trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2296                                               d->dma.error);
2297                         wil_dbg_txrx(wil,
2298                                      "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2299                                      ringid, vring->swtail, dmalen,
2300                                      d->dma.status, d->dma.error);
2301                         wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2302                                           (const void *)d, sizeof(*d), false);
2303
2304                         wil->txrx_ops.tx_desc_unmap(dev,
2305                                                     (union wil_tx_desc *)d,
2306                                                     ctx);
2307
2308                         if (skb) {
2309                                 if (likely(d->dma.error == 0)) {
2310                                         ndev->stats.tx_packets++;
2311                                         ndev->stats.tx_bytes += skb->len;
2312                                         if (stats) {
2313                                                 stats->tx_packets++;
2314                                                 stats->tx_bytes += skb->len;
2315
2316                                                 wil_tx_latency_calc(wil, skb,
2317                                                         &wil->sta[cid]);
2318                                         }
2319                                 } else {
2320                                         ndev->stats.tx_errors++;
2321                                         if (stats)
2322                                                 stats->tx_errors++;
2323                                 }
2324                                 wil_consume_skb(skb, d->dma.error == 0);
2325                         }
2326                         memset(ctx, 0, sizeof(*ctx));
2327                         /* Make sure the ctx is zeroed before updating the tail
2328                          * to prevent a case where wil_tx_ring will see
2329                          * this descriptor as used and handle it before ctx zero
2330                          * is completed.
2331                          */
2332                         wmb();
2333                         /* There is no need to touch HW descriptor:
2334                          * - ststus bit TX_DMA_STATUS_DU is set by design,
2335                          *   so hardware will not try to process this desc.,
2336                          * - rest of descriptor will be initialized on Tx.
2337                          */
2338                         vring->swtail = wil_ring_next_tail(vring);
2339                         done++;
2340                 }
2341         }
2342
2343         /* performance monitoring */
2344         used_new = wil_ring_used_tx(vring);
2345         if (wil_val_in_range(wil->ring_idle_trsh,
2346                              used_new, used_before_complete)) {
2347                 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2348                              ringid, used_before_complete, used_new);
2349                 txdata->last_idle = get_cycles();
2350         }
2351
2352         /* shall we wake net queues? */
2353         if (done)
2354                 wil_update_net_queues(wil, vif, vring, false);
2355
2356         return done;
2357 }
2358
2359 static inline int wil_tx_init(struct wil6210_priv *wil)
2360 {
2361         return 0;
2362 }
2363
2364 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2365
2366 static void wil_get_reorder_params(struct wil6210_priv *wil,
2367                                    struct sk_buff *skb, int *tid, int *cid,
2368                                    int *mid, u16 *seq, int *mcast, int *retry)
2369 {
2370         struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2371
2372         *tid = wil_rxdesc_tid(d);
2373         *cid = wil_skb_get_cid(skb);
2374         *mid = wil_rxdesc_mid(d);
2375         *seq = wil_rxdesc_seq(d);
2376         *mcast = wil_rxdesc_mcast(d);
2377         *retry = wil_rxdesc_retry(d);
2378 }
2379
2380 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2381 {
2382         wil->txrx_ops.configure_interrupt_moderation =
2383                 wil_configure_interrupt_moderation;
2384         /* TX ops */
2385         wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2386         wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2387         wil->txrx_ops.tx_ring_tso =  __wil_tx_vring_tso;
2388         wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2389         wil->txrx_ops.ring_fini_tx = wil_vring_free;
2390         wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2391         wil->txrx_ops.tx_init = wil_tx_init;
2392         wil->txrx_ops.tx_fini = wil_tx_fini;
2393         wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2394         /* RX ops */
2395         wil->txrx_ops.rx_init = wil_rx_init;
2396         wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2397         wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2398         wil->txrx_ops.get_netif_rx_params =
2399                 wil_get_netif_rx_params;
2400         wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2401         wil->txrx_ops.rx_error_check = wil_rx_error_check;
2402         wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2403         wil->txrx_ops.rx_fini = wil_rx_fini;
2404 }