Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / ath / wil6210 / main.c
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/moduleparam.h>
19 #include <linux/if_arp.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rtnetlink.h>
22
23 #include "wil6210.h"
24 #include "txrx.h"
25 #include "txrx_edma.h"
26 #include "wmi.h"
27 #include "boot_loader.h"
28
29 #define WAIT_FOR_HALP_VOTE_MS 100
30 #define WAIT_FOR_SCAN_ABORT_MS 1000
31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
32 #define WIL_BOARD_FILE_MAX_NAMELEN 128
33
34 bool debug_fw; /* = false; */
35 module_param(debug_fw, bool, 0444);
36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
37
38 static u8 oob_mode;
39 module_param(oob_mode, byte, 0444);
40 MODULE_PARM_DESC(oob_mode,
41                  " enable out of the box (OOB) mode in FW, for diagnostics and certification");
42
43 bool no_fw_recovery;
44 module_param(no_fw_recovery, bool, 0644);
45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
46
47 /* if not set via modparam, will be set to default value of 1/8 of
48  * rx ring size during init flow
49  */
50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
51 module_param(rx_ring_overflow_thrsh, ushort, 0444);
52 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
53                  " RX ring overflow threshold in descriptors.");
54
55 /* We allow allocation of more than 1 page buffers to support large packets.
56  * It is suboptimal behavior performance wise in case MTU above page size.
57  */
58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
59 static int mtu_max_set(const char *val, const struct kernel_param *kp)
60 {
61         int ret;
62
63         /* sets mtu_max directly. no need to restore it in case of
64          * illegal value since we assume this will fail insmod
65          */
66         ret = param_set_uint(val, kp);
67         if (ret)
68                 return ret;
69
70         if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
71                 ret = -EINVAL;
72
73         return ret;
74 }
75
76 static const struct kernel_param_ops mtu_max_ops = {
77         .set = mtu_max_set,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
82 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
83
84 static uint rx_ring_order;
85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
87
88 static int ring_order_set(const char *val, const struct kernel_param *kp)
89 {
90         int ret;
91         uint x;
92
93         ret = kstrtouint(val, 0, &x);
94         if (ret)
95                 return ret;
96
97         if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
98                 return -EINVAL;
99
100         *((uint *)kp->arg) = x;
101
102         return 0;
103 }
104
105 static const struct kernel_param_ops ring_order_ops = {
106         .set = ring_order_set,
107         .get = param_get_uint,
108 };
109
110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
116
117 enum {
118         WIL_BOOT_ERR,
119         WIL_BOOT_VANILLA,
120         WIL_BOOT_PRODUCTION,
121         WIL_BOOT_DEVELOPMENT,
122 };
123
124 enum {
125         WIL_SIG_STATUS_VANILLA = 0x0,
126         WIL_SIG_STATUS_DEVELOPMENT = 0x1,
127         WIL_SIG_STATUS_PRODUCTION = 0x2,
128         WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
129 };
130
131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
133
134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
135
136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
137 /* round up to be above 2 ms total */
138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
139
140 /*
141  * Due to a hardware issue,
142  * one has to read/write to/from NIC in 32-bit chunks;
143  * regular memcpy_fromio and siblings will
144  * not work on 64-bit platform - it uses 64-bit transactions
145  *
146  * Force 32-bit transactions to enable NIC on 64-bit platforms
147  *
148  * To avoid byte swap on big endian host, __raw_{read|write}l
149  * should be used - {read|write}l would swap bytes to provide
150  * little endian on PCI value in host endianness.
151  */
152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
153                           size_t count)
154 {
155         u32 *d = dst;
156         const volatile u32 __iomem *s = src;
157
158         for (; count >= 4; count -= 4)
159                 *d++ = __raw_readl(s++);
160
161         if (unlikely(count)) {
162                 /* count can be 1..3 */
163                 u32 tmp = __raw_readl(s);
164
165                 memcpy(d, &tmp, count);
166         }
167 }
168
169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
170                         size_t count)
171 {
172         volatile u32 __iomem *d = dst;
173         const u32 *s = src;
174
175         for (; count >= 4; count -= 4)
176                 __raw_writel(*s++, d++);
177
178         if (unlikely(count)) {
179                 /* count can be 1..3 */
180                 u32 tmp = 0;
181
182                 memcpy(&tmp, s, count);
183                 __raw_writel(tmp, d);
184         }
185 }
186
187 /* Device memory access is prohibited while reset or suspend.
188  * wil_mem_access_lock protects accessing device memory in these cases
189  */
190 int wil_mem_access_lock(struct wil6210_priv *wil)
191 {
192         if (!down_read_trylock(&wil->mem_lock))
193                 return -EBUSY;
194
195         if (test_bit(wil_status_suspending, wil->status) ||
196             test_bit(wil_status_suspended, wil->status)) {
197                 up_read(&wil->mem_lock);
198                 return -EBUSY;
199         }
200
201         return 0;
202 }
203
204 void wil_mem_access_unlock(struct wil6210_priv *wil)
205 {
206         up_read(&wil->mem_lock);
207 }
208
209 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
210 {
211         struct wil_ring *ring = &wil->ring_tx[id];
212         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
213
214         lockdep_assert_held(&wil->mutex);
215
216         if (!ring->va)
217                 return;
218
219         wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
220
221         spin_lock_bh(&txdata->lock);
222         txdata->dot1x_open = false;
223         txdata->mid = U8_MAX;
224         txdata->enabled = 0; /* no Tx can be in progress or start anew */
225         spin_unlock_bh(&txdata->lock);
226         /* napi_synchronize waits for completion of the current NAPI but will
227          * not prevent the next NAPI run.
228          * Add a memory barrier to guarantee that txdata->enabled is zeroed
229          * before napi_synchronize so that the next scheduled NAPI will not
230          * handle this vring
231          */
232         wmb();
233         /* make sure NAPI won't touch this vring */
234         if (test_bit(wil_status_napi_en, wil->status))
235                 napi_synchronize(&wil->napi_tx);
236
237         wil->txrx_ops.ring_fini_tx(wil, ring);
238 }
239
240 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
241 {
242         int i;
243
244         for (i = 0; i < wil->max_assoc_sta; i++) {
245                 if (wil->sta[i].mid == mid &&
246                     wil->sta[i].status == wil_sta_connected)
247                         return true;
248         }
249
250         return false;
251 }
252
253 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
254                                         u16 reason_code)
255 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
256 {
257         uint i;
258         struct wil6210_priv *wil = vif_to_wil(vif);
259         struct net_device *ndev = vif_to_ndev(vif);
260         struct wireless_dev *wdev = vif_to_wdev(vif);
261         struct wil_sta_info *sta = &wil->sta[cid];
262         int min_ring_id = wil_get_min_tx_ring_id(wil);
263
264         might_sleep();
265         wil_dbg_misc(wil,
266                      "disconnect_cid_complete: CID %d, MID %d, status %d\n",
267                      cid, sta->mid, sta->status);
268         /* inform upper layers */
269         if (sta->status != wil_sta_unused) {
270                 if (vif->mid != sta->mid) {
271                         wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
272                                 vif->mid);
273                 }
274
275                 switch (wdev->iftype) {
276                 case NL80211_IFTYPE_AP:
277                 case NL80211_IFTYPE_P2P_GO:
278                         /* AP-like interface */
279                         cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
280                         break;
281                 default:
282                         break;
283                 }
284                 sta->status = wil_sta_unused;
285                 sta->mid = U8_MAX;
286         }
287         /* reorder buffers */
288         for (i = 0; i < WIL_STA_TID_NUM; i++) {
289                 struct wil_tid_ampdu_rx *r;
290
291                 spin_lock_bh(&sta->tid_rx_lock);
292
293                 r = sta->tid_rx[i];
294                 sta->tid_rx[i] = NULL;
295                 wil_tid_ampdu_rx_free(wil, r);
296
297                 spin_unlock_bh(&sta->tid_rx_lock);
298         }
299         /* crypto context */
300         memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
301         memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
302         /* release vrings */
303         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
304                 if (wil->ring2cid_tid[i][0] == cid)
305                         wil_ring_fini_tx(wil, i);
306         }
307         /* statistics */
308         memset(&sta->stats, 0, sizeof(sta->stats));
309         sta->stats.tx_latency_min_us = U32_MAX;
310 }
311
312 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
313                                          const u8 *bssid, u16 reason_code)
314 {
315         struct wil6210_priv *wil = vif_to_wil(vif);
316         int cid = -ENOENT;
317         struct net_device *ndev;
318         struct wireless_dev *wdev;
319
320         ndev = vif_to_ndev(vif);
321         wdev = vif_to_wdev(vif);
322
323         might_sleep();
324         wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
325                  bssid, reason_code);
326
327         /* Cases are:
328          * - disconnect single STA, still connected
329          * - disconnect single STA, already disconnected
330          * - disconnect all
331          *
332          * For "disconnect all", there are 3 options:
333          * - bssid == NULL
334          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
335          * - bssid is our MAC address
336          */
337         if (bssid && !is_broadcast_ether_addr(bssid) &&
338             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
339                 cid = wil_find_cid(wil, vif->mid, bssid);
340                 wil_dbg_misc(wil,
341                              "Disconnect complete %pM, CID=%d, reason=%d\n",
342                              bssid, cid, reason_code);
343                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
344                         wil_disconnect_cid_complete(vif, cid, reason_code);
345         } else { /* all */
346                 wil_dbg_misc(wil, "Disconnect complete all\n");
347                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
348                         wil_disconnect_cid_complete(vif, cid, reason_code);
349         }
350
351         /* link state */
352         switch (wdev->iftype) {
353         case NL80211_IFTYPE_STATION:
354         case NL80211_IFTYPE_P2P_CLIENT:
355                 wil_bcast_fini(vif);
356                 wil_update_net_queues_bh(wil, vif, NULL, true);
357                 netif_carrier_off(ndev);
358                 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
359                         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
360
361                 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
362                         atomic_dec(&wil->connected_vifs);
363                         cfg80211_disconnected(ndev, reason_code,
364                                               NULL, 0,
365                                               vif->locally_generated_disc,
366                                               GFP_KERNEL);
367                         vif->locally_generated_disc = false;
368                 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
369                         cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
370                                                 WLAN_STATUS_UNSPECIFIED_FAILURE,
371                                                 GFP_KERNEL);
372                         vif->bss = NULL;
373                 }
374                 clear_bit(wil_vif_fwconnecting, vif->status);
375                 clear_bit(wil_vif_ft_roam, vif->status);
376
377                 break;
378         case NL80211_IFTYPE_AP:
379         case NL80211_IFTYPE_P2P_GO:
380                 if (!wil_vif_is_connected(wil, vif->mid)) {
381                         wil_update_net_queues_bh(wil, vif, NULL, true);
382                         if (test_and_clear_bit(wil_vif_fwconnected,
383                                                vif->status))
384                                 atomic_dec(&wil->connected_vifs);
385                 } else {
386                         wil_update_net_queues_bh(wil, vif, NULL, false);
387                 }
388                 break;
389         default:
390                 break;
391         }
392 }
393
394 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
395                               u16 reason_code)
396 {
397         struct wil6210_priv *wil = vif_to_wil(vif);
398         struct wireless_dev *wdev = vif_to_wdev(vif);
399         struct wil_sta_info *sta = &wil->sta[cid];
400         bool del_sta = false;
401
402         might_sleep();
403         wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
404                      cid, sta->mid, sta->status);
405
406         if (sta->status == wil_sta_unused)
407                 return 0;
408
409         if (vif->mid != sta->mid) {
410                 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
411                 return -EINVAL;
412         }
413
414         /* inform lower layers */
415         if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
416                 del_sta = true;
417
418         /* disconnect by sending command disconnect/del_sta and wait
419          * synchronously for WMI_DISCONNECT_EVENTID event.
420          */
421         return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
422 }
423
424 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
425                                 u16 reason_code)
426 {
427         struct wil6210_priv *wil;
428         struct net_device *ndev;
429         int cid = -ENOENT;
430
431         if (unlikely(!vif))
432                 return;
433
434         wil = vif_to_wil(vif);
435         ndev = vif_to_ndev(vif);
436
437         might_sleep();
438         wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
439
440         /* Cases are:
441          * - disconnect single STA, still connected
442          * - disconnect single STA, already disconnected
443          * - disconnect all
444          *
445          * For "disconnect all", there are 3 options:
446          * - bssid == NULL
447          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
448          * - bssid is our MAC address
449          */
450         if (bssid && !is_broadcast_ether_addr(bssid) &&
451             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
452                 cid = wil_find_cid(wil, vif->mid, bssid);
453                 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
454                              bssid, cid, reason_code);
455                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
456                         wil_disconnect_cid(vif, cid, reason_code);
457         } else { /* all */
458                 wil_dbg_misc(wil, "Disconnect all\n");
459                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
460                         wil_disconnect_cid(vif, cid, reason_code);
461         }
462
463         /* call event handler manually after processing wmi_call,
464          * to avoid deadlock - disconnect event handler acquires
465          * wil->mutex while it is already held here
466          */
467         _wil6210_disconnect_complete(vif, bssid, reason_code);
468 }
469
470 void wil_disconnect_worker(struct work_struct *work)
471 {
472         struct wil6210_vif *vif = container_of(work,
473                         struct wil6210_vif, disconnect_worker);
474         struct wil6210_priv *wil = vif_to_wil(vif);
475         struct net_device *ndev = vif_to_ndev(vif);
476         int rc;
477         struct {
478                 struct wmi_cmd_hdr wmi;
479                 struct wmi_disconnect_event evt;
480         } __packed reply;
481
482         if (test_bit(wil_vif_fwconnected, vif->status))
483                 /* connect succeeded after all */
484                 return;
485
486         if (!test_bit(wil_vif_fwconnecting, vif->status))
487                 /* already disconnected */
488                 return;
489
490         memset(&reply, 0, sizeof(reply));
491
492         rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
493                       WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
494                       WIL6210_DISCONNECT_TO_MS);
495         if (rc) {
496                 wil_err(wil, "disconnect error %d\n", rc);
497                 return;
498         }
499
500         wil_update_net_queues_bh(wil, vif, NULL, true);
501         netif_carrier_off(ndev);
502         cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
503                                 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
504         clear_bit(wil_vif_fwconnecting, vif->status);
505 }
506
507 static int wil_wait_for_recovery(struct wil6210_priv *wil)
508 {
509         if (wait_event_interruptible(wil->wq, wil->recovery_state !=
510                                      fw_recovery_pending)) {
511                 wil_err(wil, "Interrupt, canceling recovery\n");
512                 return -ERESTARTSYS;
513         }
514         if (wil->recovery_state != fw_recovery_running) {
515                 wil_info(wil, "Recovery cancelled\n");
516                 return -EINTR;
517         }
518         wil_info(wil, "Proceed with recovery\n");
519         return 0;
520 }
521
522 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
523 {
524         wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
525                      wil->recovery_state, state);
526
527         wil->recovery_state = state;
528         wake_up_interruptible(&wil->wq);
529 }
530
531 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
532 {
533         return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
534 }
535
536 static void wil_fw_error_worker(struct work_struct *work)
537 {
538         struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
539                                                 fw_error_worker);
540         struct net_device *ndev = wil->main_ndev;
541         struct wireless_dev *wdev;
542
543         wil_dbg_misc(wil, "fw error worker\n");
544
545         if (!ndev || !(ndev->flags & IFF_UP)) {
546                 wil_info(wil, "No recovery - interface is down\n");
547                 return;
548         }
549         wdev = ndev->ieee80211_ptr;
550
551         /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
552          * passed since last recovery attempt
553          */
554         if (time_is_after_jiffies(wil->last_fw_recovery +
555                                   WIL6210_FW_RECOVERY_TO))
556                 wil->recovery_count++;
557         else
558                 wil->recovery_count = 1; /* fw was alive for a long time */
559
560         if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
561                 wil_err(wil, "too many recovery attempts (%d), giving up\n",
562                         wil->recovery_count);
563                 return;
564         }
565
566         wil->last_fw_recovery = jiffies;
567
568         wil_info(wil, "fw error recovery requested (try %d)...\n",
569                  wil->recovery_count);
570         if (!no_fw_recovery)
571                 wil->recovery_state = fw_recovery_running;
572         if (wil_wait_for_recovery(wil) != 0)
573                 return;
574
575         rtnl_lock();
576         mutex_lock(&wil->mutex);
577         /* Needs adaptation for multiple VIFs
578          * need to go over all VIFs and consider the appropriate
579          * recovery because each one can have different iftype.
580          */
581         switch (wdev->iftype) {
582         case NL80211_IFTYPE_STATION:
583         case NL80211_IFTYPE_P2P_CLIENT:
584         case NL80211_IFTYPE_MONITOR:
585                 /* silent recovery, upper layers will see disconnect */
586                 __wil_down(wil);
587                 __wil_up(wil);
588                 break;
589         case NL80211_IFTYPE_AP:
590         case NL80211_IFTYPE_P2P_GO:
591                 if (no_fw_recovery) /* upper layers do recovery */
592                         break;
593                 /* silent recovery, upper layers will see disconnect */
594                 __wil_down(wil);
595                 __wil_up(wil);
596                 mutex_unlock(&wil->mutex);
597                 wil_cfg80211_ap_recovery(wil);
598                 mutex_lock(&wil->mutex);
599                 wil_info(wil, "... completed\n");
600                 break;
601         default:
602                 wil_err(wil, "No recovery - unknown interface type %d\n",
603                         wdev->iftype);
604                 break;
605         }
606
607         mutex_unlock(&wil->mutex);
608         rtnl_unlock();
609 }
610
611 static int wil_find_free_ring(struct wil6210_priv *wil)
612 {
613         int i;
614         int min_ring_id = wil_get_min_tx_ring_id(wil);
615
616         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
617                 if (!wil->ring_tx[i].va)
618                         return i;
619         }
620         return -EINVAL;
621 }
622
623 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
624 {
625         struct wil6210_priv *wil = vif_to_wil(vif);
626         int rc = -EINVAL, ringid;
627
628         if (cid < 0) {
629                 wil_err(wil, "No connection pending\n");
630                 goto out;
631         }
632         ringid = wil_find_free_ring(wil);
633         if (ringid < 0) {
634                 wil_err(wil, "No free vring found\n");
635                 goto out;
636         }
637
638         wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
639                     cid, vif->mid, ringid);
640
641         rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
642                                         cid, 0);
643         if (rc)
644                 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
645                         cid, vif->mid, ringid);
646
647 out:
648         return rc;
649 }
650
651 int wil_bcast_init(struct wil6210_vif *vif)
652 {
653         struct wil6210_priv *wil = vif_to_wil(vif);
654         int ri = vif->bcast_ring, rc;
655
656         if (ri >= 0 && wil->ring_tx[ri].va)
657                 return 0;
658
659         ri = wil_find_free_ring(wil);
660         if (ri < 0)
661                 return ri;
662
663         vif->bcast_ring = ri;
664         rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
665         if (rc)
666                 vif->bcast_ring = -1;
667
668         return rc;
669 }
670
671 void wil_bcast_fini(struct wil6210_vif *vif)
672 {
673         struct wil6210_priv *wil = vif_to_wil(vif);
674         int ri = vif->bcast_ring;
675
676         if (ri < 0)
677                 return;
678
679         vif->bcast_ring = -1;
680         wil_ring_fini_tx(wil, ri);
681 }
682
683 void wil_bcast_fini_all(struct wil6210_priv *wil)
684 {
685         int i;
686         struct wil6210_vif *vif;
687
688         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
689                 vif = wil->vifs[i];
690                 if (vif)
691                         wil_bcast_fini(vif);
692         }
693 }
694
695 int wil_priv_init(struct wil6210_priv *wil)
696 {
697         uint i;
698
699         wil_dbg_misc(wil, "priv_init\n");
700
701         memset(wil->sta, 0, sizeof(wil->sta));
702         for (i = 0; i < WIL6210_MAX_CID; i++) {
703                 spin_lock_init(&wil->sta[i].tid_rx_lock);
704                 wil->sta[i].mid = U8_MAX;
705         }
706
707         for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
708                 spin_lock_init(&wil->ring_tx_data[i].lock);
709                 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
710         }
711
712         mutex_init(&wil->mutex);
713         mutex_init(&wil->vif_mutex);
714         mutex_init(&wil->wmi_mutex);
715         mutex_init(&wil->halp.lock);
716
717         init_completion(&wil->wmi_ready);
718         init_completion(&wil->wmi_call);
719         init_completion(&wil->halp.comp);
720
721         INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
722         INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
723
724         INIT_LIST_HEAD(&wil->pending_wmi_ev);
725         spin_lock_init(&wil->wmi_ev_lock);
726         spin_lock_init(&wil->net_queue_lock);
727         init_waitqueue_head(&wil->wq);
728         init_rwsem(&wil->mem_lock);
729
730         wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
731         if (!wil->wmi_wq)
732                 return -EAGAIN;
733
734         wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
735         if (!wil->wq_service)
736                 goto out_wmi_wq;
737
738         wil->last_fw_recovery = jiffies;
739         wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
740         wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
741         wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
742         wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
743
744         if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
745                 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
746
747         wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
748
749         wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
750                               WMI_WAKEUP_TRIGGER_BCAST;
751         memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
752         wil->ring_idle_trsh = 16;
753
754         wil->reply_mid = U8_MAX;
755         wil->max_vifs = 1;
756         wil->max_assoc_sta = max_assoc_sta;
757
758         /* edma configuration can be updated via debugfs before allocation */
759         wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
760         wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
761
762         /* Rx status ring size should be bigger than the number of RX buffers
763          * in order to prevent backpressure on the status ring, which may
764          * cause HW freeze.
765          */
766         wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
767         /* Number of RX buffer IDs should be bigger than the RX descriptor
768          * ring size as in HW reorder flow, the HW can consume additional
769          * buffers before releasing the previous ones.
770          */
771         wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
772
773         wil->amsdu_en = 1;
774
775         return 0;
776
777 out_wmi_wq:
778         destroy_workqueue(wil->wmi_wq);
779
780         return -EAGAIN;
781 }
782
783 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
784 {
785         if (wil->platform_ops.bus_request) {
786                 wil->bus_request_kbps = kbps;
787                 wil->platform_ops.bus_request(wil->platform_handle, kbps);
788         }
789 }
790
791 /**
792  * wil6210_disconnect - disconnect one connection
793  * @vif: virtual interface context
794  * @bssid: peer to disconnect, NULL to disconnect all
795  * @reason_code: Reason code for the Disassociation frame
796  *
797  * Disconnect and release associated resources. Issue WMI
798  * command(s) to trigger MAC disconnect. When command was issued
799  * successfully, call the wil6210_disconnect_complete function
800  * to handle the event synchronously
801  */
802 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
803                         u16 reason_code)
804 {
805         struct wil6210_priv *wil = vif_to_wil(vif);
806
807         wil_dbg_misc(wil, "disconnecting\n");
808
809         del_timer_sync(&vif->connect_timer);
810         _wil6210_disconnect(vif, bssid, reason_code);
811 }
812
813 /**
814  * wil6210_disconnect_complete - handle disconnect event
815  * @vif: virtual interface context
816  * @bssid: peer to disconnect, NULL to disconnect all
817  * @reason_code: Reason code for the Disassociation frame
818  *
819  * Release associated resources and indicate upper layers the
820  * connection is terminated.
821  */
822 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
823                                  u16 reason_code)
824 {
825         struct wil6210_priv *wil = vif_to_wil(vif);
826
827         wil_dbg_misc(wil, "got disconnect\n");
828
829         del_timer_sync(&vif->connect_timer);
830         _wil6210_disconnect_complete(vif, bssid, reason_code);
831 }
832
833 void wil_priv_deinit(struct wil6210_priv *wil)
834 {
835         wil_dbg_misc(wil, "priv_deinit\n");
836
837         wil_set_recovery_state(wil, fw_recovery_idle);
838         cancel_work_sync(&wil->fw_error_worker);
839         wmi_event_flush(wil);
840         destroy_workqueue(wil->wq_service);
841         destroy_workqueue(wil->wmi_wq);
842         kfree(wil->brd_info);
843 }
844
845 static void wil_shutdown_bl(struct wil6210_priv *wil)
846 {
847         u32 val;
848
849         wil_s(wil, RGF_USER_BL +
850               offsetof(struct bl_dedicated_registers_v1,
851                        bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
852
853         usleep_range(100, 150);
854
855         val = wil_r(wil, RGF_USER_BL +
856                     offsetof(struct bl_dedicated_registers_v1,
857                              bl_shutdown_handshake));
858         if (val & BL_SHUTDOWN_HS_RTD) {
859                 wil_dbg_misc(wil, "BL is ready for halt\n");
860                 return;
861         }
862
863         wil_err(wil, "BL did not report ready for halt\n");
864 }
865
866 /* this format is used by ARC embedded CPU for instruction memory */
867 static inline u32 ARC_me_imm32(u32 d)
868 {
869         return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
870 }
871
872 /* defines access to interrupt vectors for wil_freeze_bl */
873 #define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
874 /* ARC long jump instruction */
875 #define ARC_JAL_INST                    (0x20200f80)
876
877 static void wil_freeze_bl(struct wil6210_priv *wil)
878 {
879         u32 jal, upc, saved;
880         u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
881
882         jal = wil_r(wil, wil->iccm_base + ivt3);
883         if (jal != ARC_me_imm32(ARC_JAL_INST)) {
884                 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
885                 return;
886         }
887
888         /* prevent the target from entering deep sleep
889          * and disabling memory access
890          */
891         saved = wil_r(wil, RGF_USER_USAGE_8);
892         wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
893         usleep_range(20, 25); /* let the BL process the bit */
894
895         /* redirect to endless loop in the INT_L1 context and let it trap */
896         wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
897         usleep_range(20, 25); /* let the BL get into the trap */
898
899         /* verify the BL is frozen */
900         upc = wil_r(wil, RGF_USER_CPU_PC);
901         if (upc < ivt3 || (upc > (ivt3 + 8)))
902                 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
903
904         wil_w(wil, RGF_USER_USAGE_8, saved);
905 }
906
907 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
908 {
909         u32 tmp, ver;
910
911         /* before halting device CPU driver must make sure BL is not accessing
912          * host memory. This is done differently depending on BL version:
913          * 1. For very old BL versions the procedure is skipped
914          * (not supported).
915          * 2. For old BL version we use a special trick to freeze the BL
916          * 3. For new BL versions we shutdown the BL using handshake procedure.
917          */
918         tmp = wil_r(wil, RGF_USER_BL +
919                     offsetof(struct bl_dedicated_registers_v0,
920                              boot_loader_struct_version));
921         if (!tmp) {
922                 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
923                 return;
924         }
925
926         tmp = wil_r(wil, RGF_USER_BL +
927                     offsetof(struct bl_dedicated_registers_v1,
928                              bl_shutdown_handshake));
929         ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
930
931         if (ver > 0)
932                 wil_shutdown_bl(wil);
933         else
934                 wil_freeze_bl(wil);
935 }
936
937 static inline void wil_halt_cpu(struct wil6210_priv *wil)
938 {
939         if (wil->hw_version >= HW_VER_TALYN_MB) {
940                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
941                       BIT_USER_USER_CPU_MAN_RST);
942                 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
943                       BIT_USER_MAC_CPU_MAN_RST);
944         } else {
945                 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
946                 wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
947         }
948 }
949
950 static inline void wil_release_cpu(struct wil6210_priv *wil)
951 {
952         /* Start CPU */
953         if (wil->hw_version >= HW_VER_TALYN_MB)
954                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
955         else
956                 wil_w(wil, RGF_USER_USER_CPU_0, 1);
957 }
958
959 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
960 {
961         wil_info(wil, "oob_mode to %d\n", mode);
962         switch (mode) {
963         case 0:
964                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
965                       BIT_USER_OOB_R2_MODE);
966                 break;
967         case 1:
968                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
969                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
970                 break;
971         case 2:
972                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
973                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
974                 break;
975         default:
976                 wil_err(wil, "invalid oob_mode: %d\n", mode);
977         }
978 }
979
980 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
981 {
982         int delay = 0;
983         u32 x, x1 = 0;
984
985         /* wait until device ready. */
986         if (no_flash) {
987                 msleep(PMU_READY_DELAY_MS);
988
989                 wil_dbg_misc(wil, "Reset completed\n");
990         } else {
991                 do {
992                         msleep(RST_DELAY);
993                         x = wil_r(wil, RGF_USER_BL +
994                                   offsetof(struct bl_dedicated_registers_v0,
995                                            boot_loader_ready));
996                         if (x1 != x) {
997                                 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
998                                              x1, x);
999                                 x1 = x;
1000                         }
1001                         if (delay++ > RST_COUNT) {
1002                                 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1003                                         x);
1004                                 return -ETIME;
1005                         }
1006                 } while (x != BL_READY);
1007
1008                 wil_dbg_misc(wil, "Reset completed in %d ms\n",
1009                              delay * RST_DELAY);
1010         }
1011
1012         return 0;
1013 }
1014
1015 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1016 {
1017         u32 otp_hw;
1018         u8 signature_status;
1019         bool otp_signature_err;
1020         bool hw_section_done;
1021         u32 otp_qc_secured;
1022         int delay = 0;
1023
1024         /* Wait for OTP signature test to complete */
1025         usleep_range(2000, 2200);
1026
1027         wil->boot_config = WIL_BOOT_ERR;
1028
1029         /* Poll until OTP signature status is valid.
1030          * In vanilla and development modes, when signature test is complete
1031          * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1032          * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1033          * for signature status change to 2 or 3.
1034          */
1035         do {
1036                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1037                 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1038                 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1039
1040                 if (otp_signature_err &&
1041                     signature_status == WIL_SIG_STATUS_VANILLA) {
1042                         wil->boot_config = WIL_BOOT_VANILLA;
1043                         break;
1044                 }
1045                 if (otp_signature_err &&
1046                     signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1047                         wil->boot_config = WIL_BOOT_DEVELOPMENT;
1048                         break;
1049                 }
1050                 if (!otp_signature_err &&
1051                     signature_status == WIL_SIG_STATUS_PRODUCTION) {
1052                         wil->boot_config = WIL_BOOT_PRODUCTION;
1053                         break;
1054                 }
1055                 if  (!otp_signature_err &&
1056                      signature_status ==
1057                      WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1058                         /* Unrecognized OTP signature found. Possibly a
1059                          * corrupted production signature, access control
1060                          * is applied as in production mode, therefore
1061                          * do not fail
1062                          */
1063                         wil->boot_config = WIL_BOOT_PRODUCTION;
1064                         break;
1065                 }
1066                 if (delay++ > OTP_HW_COUNT)
1067                         break;
1068
1069                 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1070         } while (!otp_signature_err && signature_status == 0);
1071
1072         if (wil->boot_config == WIL_BOOT_ERR) {
1073                 wil_err(wil,
1074                         "invalid boot config, signature_status %d otp_signature_err %d\n",
1075                         signature_status, otp_signature_err);
1076                 return -ETIME;
1077         }
1078
1079         wil_dbg_misc(wil,
1080                      "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1081                      delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1082
1083         if (wil->boot_config == WIL_BOOT_VANILLA)
1084                 /* Assuming not SPI boot (currently not supported) */
1085                 goto out;
1086
1087         hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1088         delay = 0;
1089
1090         while (!hw_section_done) {
1091                 msleep(RST_DELAY);
1092
1093                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1094                 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1095
1096                 if (delay++ > RST_COUNT) {
1097                         wil_err(wil, "TO waiting for hw_section_done\n");
1098                         return -ETIME;
1099                 }
1100         }
1101
1102         wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1103
1104         otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1105         wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1106         wil_dbg_misc(wil, "secured boot is %sabled\n",
1107                      wil->secured_boot ? "en" : "dis");
1108
1109 out:
1110         wil_dbg_misc(wil, "Reset completed\n");
1111
1112         return 0;
1113 }
1114
1115 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1116 {
1117         u32 x;
1118         int rc;
1119
1120         wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1121
1122         if (wil->hw_version < HW_VER_TALYN) {
1123                 /* Clear MAC link up */
1124                 wil_s(wil, RGF_HP_CTRL, BIT(15));
1125                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1126                       BIT_HPAL_PERST_FROM_PAD);
1127                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1128         }
1129
1130         wil_halt_cpu(wil);
1131
1132         if (!no_flash) {
1133                 /* clear all boot loader "ready" bits */
1134                 wil_w(wil, RGF_USER_BL +
1135                       offsetof(struct bl_dedicated_registers_v0,
1136                                boot_loader_ready), 0);
1137                 /* this should be safe to write even with old BLs */
1138                 wil_w(wil, RGF_USER_BL +
1139                       offsetof(struct bl_dedicated_registers_v1,
1140                                bl_shutdown_handshake), 0);
1141         }
1142         /* Clear Fw Download notification */
1143         wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1144
1145         wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1146         /* XTAL stabilization should take about 3ms */
1147         usleep_range(5000, 7000);
1148         x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1149         if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1150                 wil_err(wil, "Xtal stabilization timeout\n"
1151                         "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1152                 return -ETIME;
1153         }
1154         /* switch 10k to XTAL*/
1155         wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1156         /* 40 MHz */
1157         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1158
1159         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1160         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1161
1162         if (wil->hw_version >= HW_VER_TALYN_MB) {
1163                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1164                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1165                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1166                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1167         } else {
1168                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1169                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1170                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1171                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1172         }
1173
1174         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1175         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1176
1177         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1178         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1179         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1180         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1181
1182         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1183         /* reset A2 PCIE AHB */
1184         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1185
1186         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1187
1188         if (wil->hw_version == HW_VER_TALYN_MB)
1189                 rc = wil_wait_device_ready_talyn_mb(wil);
1190         else
1191                 rc = wil_wait_device_ready(wil, no_flash);
1192         if (rc)
1193                 return rc;
1194
1195         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1196
1197         /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1198         wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1199               BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1200
1201         if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1202                 /* Reset OTP HW vectors to fit 40MHz */
1203                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1204                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1205                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1206                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1207                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1208                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1209                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1210                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1211                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1212                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1213                 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1214         }
1215
1216         return 0;
1217 }
1218
1219 static void wil_collect_fw_info(struct wil6210_priv *wil)
1220 {
1221         struct wiphy *wiphy = wil_to_wiphy(wil);
1222         u8 retry_short;
1223         int rc;
1224
1225         wil_refresh_fw_capabilities(wil);
1226
1227         rc = wmi_get_mgmt_retry(wil, &retry_short);
1228         if (!rc) {
1229                 wiphy->retry_short = retry_short;
1230                 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1231         }
1232 }
1233
1234 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1235 {
1236         struct wiphy *wiphy = wil_to_wiphy(wil);
1237         int features;
1238
1239         wil->keep_radio_on_during_sleep =
1240                 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1241                          wil->platform_capa) &&
1242                 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1243
1244         wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1245                  wil->keep_radio_on_during_sleep);
1246
1247         if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1248                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1249         else
1250                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1251
1252         if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1253                 wiphy->max_sched_scan_reqs = 1;
1254                 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1255                 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1256                 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1257                 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1258         }
1259
1260         if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1261                 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1262
1263         if (wil->platform_ops.set_features) {
1264                 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1265                                      wil->fw_capabilities) &&
1266                             test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1267                                      wil->platform_capa)) ?
1268                         BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1269
1270                 if (wil->n_msi == 3)
1271                         features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1272
1273                 wil->platform_ops.set_features(wil->platform_handle, features);
1274         }
1275
1276         if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1277                      wil->fw_capabilities)) {
1278                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1279                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1280         } else {
1281                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1282                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1283         }
1284
1285         update_supported_bands(wil);
1286 }
1287
1288 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1289 {
1290         le32_to_cpus(&r->base);
1291         le16_to_cpus(&r->entry_size);
1292         le16_to_cpus(&r->size);
1293         le32_to_cpus(&r->tail);
1294         le32_to_cpus(&r->head);
1295 }
1296
1297 /* construct actual board file name to use */
1298 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1299 {
1300         const char *board_file;
1301         const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1302                               WIL_FW_NAME_TALYN;
1303
1304         if (wil->board_file) {
1305                 board_file = wil->board_file;
1306         } else {
1307                 /* If specific FW file is used for Talyn,
1308                  * use specific board file
1309                  */
1310                 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1311                         board_file = WIL_BRD_NAME_TALYN;
1312                 else
1313                         board_file = WIL_BOARD_FILE_NAME;
1314         }
1315
1316         strlcpy(buf, board_file, len);
1317 }
1318
1319 static int wil_get_bl_info(struct wil6210_priv *wil)
1320 {
1321         struct net_device *ndev = wil->main_ndev;
1322         struct wiphy *wiphy = wil_to_wiphy(wil);
1323         union {
1324                 struct bl_dedicated_registers_v0 bl0;
1325                 struct bl_dedicated_registers_v1 bl1;
1326         } bl;
1327         u32 bl_ver;
1328         u8 *mac;
1329         u16 rf_status;
1330
1331         wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1332                              sizeof(bl));
1333         bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1334         mac = bl.bl0.mac_address;
1335
1336         if (bl_ver == 0) {
1337                 le32_to_cpus(&bl.bl0.rf_type);
1338                 le32_to_cpus(&bl.bl0.baseband_type);
1339                 rf_status = 0; /* actually, unknown */
1340                 wil_info(wil,
1341                          "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1342                          bl_ver, mac,
1343                          bl.bl0.rf_type, bl.bl0.baseband_type);
1344                 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1345         } else {
1346                 le16_to_cpus(&bl.bl1.rf_type);
1347                 rf_status = le16_to_cpu(bl.bl1.rf_status);
1348                 le32_to_cpus(&bl.bl1.baseband_type);
1349                 le16_to_cpus(&bl.bl1.bl_version_subminor);
1350                 le16_to_cpus(&bl.bl1.bl_version_build);
1351                 wil_info(wil,
1352                          "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1353                          bl_ver, mac,
1354                          bl.bl1.rf_type, rf_status,
1355                          bl.bl1.baseband_type);
1356                 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1357                          bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1358                          bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1359         }
1360
1361         if (!is_valid_ether_addr(mac)) {
1362                 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1363                 return -EINVAL;
1364         }
1365
1366         ether_addr_copy(ndev->perm_addr, mac);
1367         ether_addr_copy(wiphy->perm_addr, mac);
1368         if (!is_valid_ether_addr(ndev->dev_addr))
1369                 ether_addr_copy(ndev->dev_addr, mac);
1370
1371         if (rf_status) {/* bad RF cable? */
1372                 wil_err(wil, "RF communication error 0x%04x",
1373                         rf_status);
1374                 return -EAGAIN;
1375         }
1376
1377         return 0;
1378 }
1379
1380 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1381 {
1382         u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1383         u32 bl_ver = wil_r(wil, RGF_USER_BL +
1384                            offsetof(struct bl_dedicated_registers_v0,
1385                                     boot_loader_struct_version));
1386
1387         if (bl_ver < 2)
1388                 return;
1389
1390         bl_assert_code = wil_r(wil, RGF_USER_BL +
1391                                offsetof(struct bl_dedicated_registers_v1,
1392                                         bl_assert_code));
1393         bl_assert_blink = wil_r(wil, RGF_USER_BL +
1394                                 offsetof(struct bl_dedicated_registers_v1,
1395                                          bl_assert_blink));
1396         bl_magic_number = wil_r(wil, RGF_USER_BL +
1397                                 offsetof(struct bl_dedicated_registers_v1,
1398                                          bl_magic_number));
1399
1400         if (is_err) {
1401                 wil_err(wil,
1402                         "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1403                         bl_assert_code, bl_assert_blink, bl_magic_number);
1404         } else {
1405                 wil_dbg_misc(wil,
1406                              "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1407                              bl_assert_code, bl_assert_blink, bl_magic_number);
1408         }
1409 }
1410
1411 static int wil_get_otp_info(struct wil6210_priv *wil)
1412 {
1413         struct net_device *ndev = wil->main_ndev;
1414         struct wiphy *wiphy = wil_to_wiphy(wil);
1415         u8 mac[8];
1416         int mac_addr;
1417
1418         /* OEM MAC has precedence */
1419         mac_addr = RGF_OTP_OEM_MAC;
1420         wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1421
1422         if (is_valid_ether_addr(mac)) {
1423                 wil_info(wil, "using OEM MAC %pM\n", mac);
1424         } else {
1425                 if (wil->hw_version >= HW_VER_TALYN_MB)
1426                         mac_addr = RGF_OTP_MAC_TALYN_MB;
1427                 else
1428                         mac_addr = RGF_OTP_MAC;
1429
1430                 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1431                                      sizeof(mac));
1432         }
1433
1434         if (!is_valid_ether_addr(mac)) {
1435                 wil_err(wil, "Invalid MAC %pM\n", mac);
1436                 return -EINVAL;
1437         }
1438
1439         ether_addr_copy(ndev->perm_addr, mac);
1440         ether_addr_copy(wiphy->perm_addr, mac);
1441         if (!is_valid_ether_addr(ndev->dev_addr))
1442                 ether_addr_copy(ndev->dev_addr, mac);
1443
1444         return 0;
1445 }
1446
1447 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1448 {
1449         ulong to = msecs_to_jiffies(2000);
1450         ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1451
1452         if (0 == left) {
1453                 wil_err(wil, "Firmware not ready\n");
1454                 return -ETIME;
1455         } else {
1456                 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1457                          jiffies_to_msecs(to-left), wil->hw_version);
1458         }
1459         return 0;
1460 }
1461
1462 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1463 {
1464         struct wil6210_priv *wil = vif_to_wil(vif);
1465         int rc;
1466         struct cfg80211_scan_info info = {
1467                 .aborted = true,
1468         };
1469
1470         lockdep_assert_held(&wil->vif_mutex);
1471
1472         if (!vif->scan_request)
1473                 return;
1474
1475         wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1476         del_timer_sync(&vif->scan_timer);
1477         mutex_unlock(&wil->vif_mutex);
1478         rc = wmi_abort_scan(vif);
1479         if (!rc && sync)
1480                 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1481                                                  msecs_to_jiffies(
1482                                                  WAIT_FOR_SCAN_ABORT_MS));
1483
1484         mutex_lock(&wil->vif_mutex);
1485         if (vif->scan_request) {
1486                 cfg80211_scan_done(vif->scan_request, &info);
1487                 vif->scan_request = NULL;
1488         }
1489 }
1490
1491 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1492 {
1493         int i;
1494
1495         lockdep_assert_held(&wil->vif_mutex);
1496
1497         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1498                 struct wil6210_vif *vif = wil->vifs[i];
1499
1500                 if (vif)
1501                         wil_abort_scan(vif, sync);
1502         }
1503 }
1504
1505 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1506 {
1507         int rc;
1508
1509         if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1510                 wil_err(wil, "set_power_mgmt not supported\n");
1511                 return -EOPNOTSUPP;
1512         }
1513
1514         rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1515         if (rc)
1516                 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1517         else
1518                 wil->ps_profile = ps_profile;
1519
1520         return rc;
1521 }
1522
1523 static void wil_pre_fw_config(struct wil6210_priv *wil)
1524 {
1525         wil_clear_fw_log_addr(wil);
1526         /* Mark FW as loaded from host */
1527         wil_s(wil, RGF_USER_USAGE_6, 1);
1528
1529         /* clear any interrupts which on-card-firmware
1530          * may have set
1531          */
1532         wil6210_clear_irq(wil);
1533         /* CAF_ICR - clear and mask */
1534         /* it is W1C, clear by writing back same value */
1535         if (wil->hw_version < HW_VER_TALYN_MB) {
1536                 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1537                 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1538         }
1539         /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1540          * In Talyn-MB host cannot access this register due to
1541          * access control, hence PAL_UNIT_ICR is cleared by the FW
1542          */
1543         if (wil->hw_version < HW_VER_TALYN_MB)
1544                 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1545                       0);
1546
1547         if (wil->fw_calib_result > 0) {
1548                 __le32 val = cpu_to_le32(wil->fw_calib_result |
1549                                                 (CALIB_RESULT_SIGNATURE << 8));
1550                 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1551         }
1552 }
1553
1554 static int wil_restore_vifs(struct wil6210_priv *wil)
1555 {
1556         struct wil6210_vif *vif;
1557         struct net_device *ndev;
1558         struct wireless_dev *wdev;
1559         int i, rc;
1560
1561         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1562                 vif = wil->vifs[i];
1563                 if (!vif)
1564                         continue;
1565                 vif->ap_isolate = 0;
1566                 if (vif->mid) {
1567                         ndev = vif_to_ndev(vif);
1568                         wdev = vif_to_wdev(vif);
1569                         rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1570                                                wdev->iftype);
1571                         if (rc) {
1572                                 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1573                                         i, wdev->iftype, rc);
1574                                 return rc;
1575                         }
1576                 }
1577         }
1578
1579         return 0;
1580 }
1581
1582 /*
1583  * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1584  * driver clears the addresses before FW starts and FW initializes the address
1585  * when it is ready to send logs.
1586  */
1587 void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1588 {
1589         /* FW log addr */
1590         wil_w(wil, RGF_USER_USAGE_1, 0);
1591         /* ucode log addr */
1592         wil_w(wil, RGF_USER_USAGE_2, 0);
1593         wil_dbg_misc(wil, "Cleared FW and ucode log address");
1594 }
1595
1596 /*
1597  * We reset all the structures, and we reset the UMAC.
1598  * After calling this routine, you're expected to reload
1599  * the firmware.
1600  */
1601 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1602 {
1603         int rc, i;
1604         unsigned long status_flags = BIT(wil_status_resetting);
1605         int no_flash;
1606         struct wil6210_vif *vif;
1607
1608         wil_dbg_misc(wil, "reset\n");
1609
1610         WARN_ON(!mutex_is_locked(&wil->mutex));
1611         WARN_ON(test_bit(wil_status_napi_en, wil->status));
1612
1613         if (debug_fw) {
1614                 static const u8 mac[ETH_ALEN] = {
1615                         0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1616                 };
1617                 struct net_device *ndev = wil->main_ndev;
1618
1619                 ether_addr_copy(ndev->perm_addr, mac);
1620                 ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1621                 return 0;
1622         }
1623
1624         if (wil->hw_version == HW_VER_UNKNOWN)
1625                 return -ENODEV;
1626
1627         if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1628             wil->hw_version < HW_VER_TALYN_MB) {
1629                 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1630                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1631         }
1632
1633         if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1634                 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1635                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1636         }
1637
1638         if (wil->platform_ops.notify) {
1639                 rc = wil->platform_ops.notify(wil->platform_handle,
1640                                               WIL_PLATFORM_EVT_PRE_RESET);
1641                 if (rc)
1642                         wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1643                                 rc);
1644         }
1645
1646         set_bit(wil_status_resetting, wil->status);
1647         mutex_lock(&wil->vif_mutex);
1648         wil_abort_scan_all_vifs(wil, false);
1649         mutex_unlock(&wil->vif_mutex);
1650
1651         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1652                 vif = wil->vifs[i];
1653                 if (vif) {
1654                         cancel_work_sync(&vif->disconnect_worker);
1655                         wil6210_disconnect(vif, NULL,
1656                                            WLAN_REASON_DEAUTH_LEAVING);
1657                 }
1658         }
1659         wil_bcast_fini_all(wil);
1660
1661         /* Disable device led before reset*/
1662         wmi_led_cfg(wil, false);
1663
1664         /* prevent NAPI from being scheduled and prevent wmi commands */
1665         mutex_lock(&wil->wmi_mutex);
1666         if (test_bit(wil_status_suspending, wil->status))
1667                 status_flags |= BIT(wil_status_suspending);
1668         bitmap_and(wil->status, wil->status, &status_flags,
1669                    wil_status_last);
1670         wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1671         mutex_unlock(&wil->wmi_mutex);
1672
1673         wil_mask_irq(wil);
1674
1675         wmi_event_flush(wil);
1676
1677         flush_workqueue(wil->wq_service);
1678         flush_workqueue(wil->wmi_wq);
1679
1680         no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1681         if (!no_flash)
1682                 wil_bl_crash_info(wil, false);
1683         wil_disable_irq(wil);
1684         rc = wil_target_reset(wil, no_flash);
1685         wil6210_clear_irq(wil);
1686         wil_enable_irq(wil);
1687         wil->txrx_ops.rx_fini(wil);
1688         wil->txrx_ops.tx_fini(wil);
1689         if (rc) {
1690                 if (!no_flash)
1691                         wil_bl_crash_info(wil, true);
1692                 goto out;
1693         }
1694
1695         if (no_flash) {
1696                 rc = wil_get_otp_info(wil);
1697         } else {
1698                 rc = wil_get_bl_info(wil);
1699                 if (rc == -EAGAIN && !load_fw)
1700                         /* ignore RF error if not going up */
1701                         rc = 0;
1702         }
1703         if (rc)
1704                 goto out;
1705
1706         wil_set_oob_mode(wil, oob_mode);
1707         if (load_fw) {
1708                 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1709
1710                 if  (wil->secured_boot) {
1711                         wil_err(wil, "secured boot is not supported\n");
1712                         return -ENOTSUPP;
1713                 }
1714
1715                 board_file[0] = '\0';
1716                 wil_get_board_file(wil, board_file, sizeof(board_file));
1717                 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1718                          wil->wil_fw_name, board_file);
1719
1720                 if (!no_flash)
1721                         wil_bl_prepare_halt(wil);
1722
1723                 wil_halt_cpu(wil);
1724                 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1725                 /* Loading f/w from the file */
1726                 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1727                 if (rc)
1728                         goto out;
1729                 if (wil->num_of_brd_entries)
1730                         rc = wil_request_board(wil, board_file);
1731                 else
1732                         rc = wil_request_firmware(wil, board_file, true);
1733                 if (rc)
1734                         goto out;
1735
1736                 wil_pre_fw_config(wil);
1737                 wil_release_cpu(wil);
1738         }
1739
1740         /* init after reset */
1741         reinit_completion(&wil->wmi_ready);
1742         reinit_completion(&wil->wmi_call);
1743         reinit_completion(&wil->halp.comp);
1744
1745         clear_bit(wil_status_resetting, wil->status);
1746
1747         if (load_fw) {
1748                 wil_unmask_irq(wil);
1749
1750                 /* we just started MAC, wait for FW ready */
1751                 rc = wil_wait_for_fw_ready(wil);
1752                 if (rc)
1753                         return rc;
1754
1755                 /* check FW is responsive */
1756                 rc = wmi_echo(wil);
1757                 if (rc) {
1758                         wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1759                         return rc;
1760                 }
1761
1762                 wil->txrx_ops.configure_interrupt_moderation(wil);
1763
1764                 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1765                  * while there is back-pressure from Host during RX
1766                  */
1767                 if (wil->hw_version >= HW_VER_TALYN_MB)
1768                         wil_s(wil, RGF_DMA_MISC_CTL,
1769                               BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1770
1771                 rc = wil_restore_vifs(wil);
1772                 if (rc) {
1773                         wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1774                         return rc;
1775                 }
1776
1777                 wil_collect_fw_info(wil);
1778
1779                 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1780                         wil_ps_update(wil, wil->ps_profile);
1781
1782                 if (wil->platform_ops.notify) {
1783                         rc = wil->platform_ops.notify(wil->platform_handle,
1784                                                       WIL_PLATFORM_EVT_FW_RDY);
1785                         if (rc) {
1786                                 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1787                                         rc);
1788                                 rc = 0;
1789                         }
1790                 }
1791         }
1792
1793         return rc;
1794
1795 out:
1796         clear_bit(wil_status_resetting, wil->status);
1797         return rc;
1798 }
1799
1800 void wil_fw_error_recovery(struct wil6210_priv *wil)
1801 {
1802         wil_dbg_misc(wil, "starting fw error recovery\n");
1803
1804         if (test_bit(wil_status_resetting, wil->status)) {
1805                 wil_info(wil, "Reset already in progress\n");
1806                 return;
1807         }
1808
1809         wil->recovery_state = fw_recovery_pending;
1810         schedule_work(&wil->fw_error_worker);
1811 }
1812
1813 int __wil_up(struct wil6210_priv *wil)
1814 {
1815         struct net_device *ndev = wil->main_ndev;
1816         struct wireless_dev *wdev = ndev->ieee80211_ptr;
1817         int rc;
1818
1819         WARN_ON(!mutex_is_locked(&wil->mutex));
1820
1821         down_write(&wil->mem_lock);
1822         rc = wil_reset(wil, true);
1823         up_write(&wil->mem_lock);
1824         if (rc)
1825                 return rc;
1826
1827         /* Rx RING. After MAC and beacon */
1828         if (rx_ring_order == 0)
1829                 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1830                         WIL_RX_RING_SIZE_ORDER_DEFAULT :
1831                         WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1832
1833         rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1834         if (rc)
1835                 return rc;
1836
1837         rc = wil->txrx_ops.tx_init(wil);
1838         if (rc)
1839                 return rc;
1840
1841         switch (wdev->iftype) {
1842         case NL80211_IFTYPE_STATION:
1843                 wil_dbg_misc(wil, "type: STATION\n");
1844                 ndev->type = ARPHRD_ETHER;
1845                 break;
1846         case NL80211_IFTYPE_AP:
1847                 wil_dbg_misc(wil, "type: AP\n");
1848                 ndev->type = ARPHRD_ETHER;
1849                 break;
1850         case NL80211_IFTYPE_P2P_CLIENT:
1851                 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1852                 ndev->type = ARPHRD_ETHER;
1853                 break;
1854         case NL80211_IFTYPE_P2P_GO:
1855                 wil_dbg_misc(wil, "type: P2P_GO\n");
1856                 ndev->type = ARPHRD_ETHER;
1857                 break;
1858         case NL80211_IFTYPE_MONITOR:
1859                 wil_dbg_misc(wil, "type: Monitor\n");
1860                 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1861                 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1862                 break;
1863         default:
1864                 return -EOPNOTSUPP;
1865         }
1866
1867         /* MAC address - pre-requisite for other commands */
1868         wmi_set_mac_address(wil, ndev->dev_addr);
1869
1870         wil_dbg_misc(wil, "NAPI enable\n");
1871         napi_enable(&wil->napi_rx);
1872         napi_enable(&wil->napi_tx);
1873         set_bit(wil_status_napi_en, wil->status);
1874
1875         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1876
1877         return 0;
1878 }
1879
1880 int wil_up(struct wil6210_priv *wil)
1881 {
1882         int rc;
1883
1884         wil_dbg_misc(wil, "up\n");
1885
1886         mutex_lock(&wil->mutex);
1887         rc = __wil_up(wil);
1888         mutex_unlock(&wil->mutex);
1889
1890         return rc;
1891 }
1892
1893 int __wil_down(struct wil6210_priv *wil)
1894 {
1895         int rc;
1896         WARN_ON(!mutex_is_locked(&wil->mutex));
1897
1898         set_bit(wil_status_resetting, wil->status);
1899
1900         wil6210_bus_request(wil, 0);
1901
1902         wil_disable_irq(wil);
1903         if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1904                 napi_disable(&wil->napi_rx);
1905                 napi_disable(&wil->napi_tx);
1906                 wil_dbg_misc(wil, "NAPI disable\n");
1907         }
1908         wil_enable_irq(wil);
1909
1910         mutex_lock(&wil->vif_mutex);
1911         wil_p2p_stop_radio_operations(wil);
1912         wil_abort_scan_all_vifs(wil, false);
1913         mutex_unlock(&wil->vif_mutex);
1914
1915         down_write(&wil->mem_lock);
1916         rc = wil_reset(wil, false);
1917         up_write(&wil->mem_lock);
1918
1919         return rc;
1920 }
1921
1922 int wil_down(struct wil6210_priv *wil)
1923 {
1924         int rc;
1925
1926         wil_dbg_misc(wil, "down\n");
1927
1928         wil_set_recovery_state(wil, fw_recovery_idle);
1929         mutex_lock(&wil->mutex);
1930         rc = __wil_down(wil);
1931         mutex_unlock(&wil->mutex);
1932
1933         return rc;
1934 }
1935
1936 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1937 {
1938         int i;
1939         int rc = -ENOENT;
1940
1941         for (i = 0; i < wil->max_assoc_sta; i++) {
1942                 if (wil->sta[i].mid == mid &&
1943                     wil->sta[i].status != wil_sta_unused &&
1944                     ether_addr_equal(wil->sta[i].addr, mac)) {
1945                         rc = i;
1946                         break;
1947                 }
1948         }
1949
1950         return rc;
1951 }
1952
1953 void wil_halp_vote(struct wil6210_priv *wil)
1954 {
1955         unsigned long rc;
1956         unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1957
1958         if (wil->hw_version >= HW_VER_TALYN_MB)
1959                 return;
1960
1961         mutex_lock(&wil->halp.lock);
1962
1963         wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1964                     wil->halp.ref_cnt);
1965
1966         if (++wil->halp.ref_cnt == 1) {
1967                 reinit_completion(&wil->halp.comp);
1968                 /* mark to IRQ context to handle HALP ICR */
1969                 wil->halp.handle_icr = true;
1970                 wil6210_set_halp(wil);
1971                 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1972                 if (!rc) {
1973                         wil_err(wil, "HALP vote timed out\n");
1974                         /* Mask HALP as done in case the interrupt is raised */
1975                         wil->halp.handle_icr = false;
1976                         wil6210_mask_halp(wil);
1977                 } else {
1978                         wil_dbg_irq(wil,
1979                                     "halp_vote: HALP vote completed after %d ms\n",
1980                                     jiffies_to_msecs(to_jiffies - rc));
1981                 }
1982         }
1983
1984         wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1985                     wil->halp.ref_cnt);
1986
1987         mutex_unlock(&wil->halp.lock);
1988 }
1989
1990 void wil_halp_unvote(struct wil6210_priv *wil)
1991 {
1992         if (wil->hw_version >= HW_VER_TALYN_MB)
1993                 return;
1994
1995         WARN_ON(wil->halp.ref_cnt == 0);
1996
1997         mutex_lock(&wil->halp.lock);
1998
1999         wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2000                     wil->halp.ref_cnt);
2001
2002         if (--wil->halp.ref_cnt == 0) {
2003                 wil6210_clear_halp(wil);
2004                 wil_dbg_irq(wil, "HALP unvote\n");
2005         }
2006
2007         wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2008                     wil->halp.ref_cnt);
2009
2010         mutex_unlock(&wil->halp.lock);
2011 }
2012
2013 void wil_init_txrx_ops(struct wil6210_priv *wil)
2014 {
2015         if (wil->use_enhanced_dma_hw)
2016                 wil_init_txrx_ops_edma(wil);
2017         else
2018                 wil_init_txrx_ops_legacy_dma(wil);
2019 }