Linux-libre 4.10.3-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 struct netcp_tx_cb {
104         void    *ts_context;
105         void    (*txtstamp)(void *context, struct sk_buff *skb);
106 };
107
108 static LIST_HEAD(netcp_devices);
109 static LIST_HEAD(netcp_modules);
110 static DEFINE_MUTEX(netcp_modules_lock);
111
112 static int netcp_debug_level = -1;
113 module_param(netcp_debug_level, int, 0);
114 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
115
116 /* Helper functions - Get/Set */
117 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
118                          struct knav_dma_desc *desc)
119 {
120         *buff_len = le32_to_cpu(desc->buff_len);
121         *buff = le32_to_cpu(desc->buff);
122         *ndesc = le32_to_cpu(desc->next_desc);
123 }
124
125 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
126 {
127         /* No Endian conversion needed as this data is untouched by hw */
128         return desc->sw_data[index];
129 }
130
131 /* use these macros to get sw data */
132 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
133 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
134 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
135 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
136
137 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
138                              struct knav_dma_desc *desc)
139 {
140         *buff = le32_to_cpu(desc->orig_buff);
141         *buff_len = le32_to_cpu(desc->orig_len);
142 }
143
144 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
145 {
146         int i;
147
148         for (i = 0; i < num_words; i++)
149                 words[i] = le32_to_cpu(desc[i]);
150 }
151
152 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
153                          struct knav_dma_desc *desc)
154 {
155         desc->buff_len = cpu_to_le32(buff_len);
156         desc->buff = cpu_to_le32(buff);
157         desc->next_desc = cpu_to_le32(ndesc);
158 }
159
160 static void set_desc_info(u32 desc_info, u32 pkt_info,
161                           struct knav_dma_desc *desc)
162 {
163         desc->desc_info = cpu_to_le32(desc_info);
164         desc->packet_info = cpu_to_le32(pkt_info);
165 }
166
167 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
168 {
169         /* No Endian conversion needed as this data is untouched by hw */
170         desc->sw_data[index] = data;
171 }
172
173 /* use these macros to set sw data */
174 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
175 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
176 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
177 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
178
179 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
180                              struct knav_dma_desc *desc)
181 {
182         desc->orig_buff = cpu_to_le32(buff);
183         desc->orig_len = cpu_to_le32(buff_len);
184 }
185
186 static void set_words(u32 *words, int num_words, __le32 *desc)
187 {
188         int i;
189
190         for (i = 0; i < num_words; i++)
191                 desc[i] = cpu_to_le32(words[i]);
192 }
193
194 /* Read the e-fuse value as 32 bit values to be endian independent */
195 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
196 {
197         unsigned int addr0, addr1;
198
199         addr1 = readl(efuse_mac + 4);
200         addr0 = readl(efuse_mac);
201
202         switch (swap) {
203         case NETCP_EFUSE_ADDR_SWAP:
204                 addr0 = addr1;
205                 addr1 = readl(efuse_mac);
206                 break;
207         default:
208                 break;
209         }
210
211         x[0] = (addr1 & 0x0000ff00) >> 8;
212         x[1] = addr1 & 0x000000ff;
213         x[2] = (addr0 & 0xff000000) >> 24;
214         x[3] = (addr0 & 0x00ff0000) >> 16;
215         x[4] = (addr0 & 0x0000ff00) >> 8;
216         x[5] = addr0 & 0x000000ff;
217
218         return 0;
219 }
220
221 static const char *netcp_node_name(struct device_node *node)
222 {
223         const char *name;
224
225         if (of_property_read_string(node, "label", &name) < 0)
226                 name = node->name;
227         if (!name)
228                 name = "unknown";
229         return name;
230 }
231
232 /* Module management routines */
233 static int netcp_register_interface(struct netcp_intf *netcp)
234 {
235         int ret;
236
237         ret = register_netdev(netcp->ndev);
238         if (!ret)
239                 netcp->netdev_registered = true;
240         return ret;
241 }
242
243 static int netcp_module_probe(struct netcp_device *netcp_device,
244                               struct netcp_module *module)
245 {
246         struct device *dev = netcp_device->device;
247         struct device_node *devices, *interface, *node = dev->of_node;
248         struct device_node *child;
249         struct netcp_inst_modpriv *inst_modpriv;
250         struct netcp_intf *netcp_intf;
251         struct netcp_module *tmp;
252         bool primary_module_registered = false;
253         int ret;
254
255         /* Find this module in the sub-tree for this device */
256         devices = of_get_child_by_name(node, "netcp-devices");
257         if (!devices) {
258                 dev_err(dev, "could not find netcp-devices node\n");
259                 return NETCP_MOD_PROBE_SKIPPED;
260         }
261
262         for_each_available_child_of_node(devices, child) {
263                 const char *name = netcp_node_name(child);
264
265                 if (!strcasecmp(module->name, name))
266                         break;
267         }
268
269         of_node_put(devices);
270         /* If module not used for this device, skip it */
271         if (!child) {
272                 dev_warn(dev, "module(%s) not used for device\n", module->name);
273                 return NETCP_MOD_PROBE_SKIPPED;
274         }
275
276         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
277         if (!inst_modpriv) {
278                 of_node_put(child);
279                 return -ENOMEM;
280         }
281
282         inst_modpriv->netcp_device = netcp_device;
283         inst_modpriv->netcp_module = module;
284         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
285
286         ret = module->probe(netcp_device, dev, child,
287                             &inst_modpriv->module_priv);
288         of_node_put(child);
289         if (ret) {
290                 dev_err(dev, "Probe of module(%s) failed with %d\n",
291                         module->name, ret);
292                 list_del(&inst_modpriv->inst_list);
293                 devm_kfree(dev, inst_modpriv);
294                 return NETCP_MOD_PROBE_FAILED;
295         }
296
297         /* Attach modules only if the primary module is probed */
298         for_each_netcp_module(tmp) {
299                 if (tmp->primary)
300                         primary_module_registered = true;
301         }
302
303         if (!primary_module_registered)
304                 return 0;
305
306         /* Attach module to interfaces */
307         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
308                             interface_list) {
309                 struct netcp_intf_modpriv *intf_modpriv;
310
311                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
312                                             GFP_KERNEL);
313                 if (!intf_modpriv)
314                         return -ENOMEM;
315
316                 interface = of_parse_phandle(netcp_intf->node_interface,
317                                              module->name, 0);
318
319                 if (!interface) {
320                         devm_kfree(dev, intf_modpriv);
321                         continue;
322                 }
323
324                 intf_modpriv->netcp_priv = netcp_intf;
325                 intf_modpriv->netcp_module = module;
326                 list_add_tail(&intf_modpriv->intf_list,
327                               &netcp_intf->module_head);
328
329                 ret = module->attach(inst_modpriv->module_priv,
330                                      netcp_intf->ndev, interface,
331                                      &intf_modpriv->module_priv);
332                 of_node_put(interface);
333                 if (ret) {
334                         dev_dbg(dev, "Attach of module %s declined with %d\n",
335                                 module->name, ret);
336                         list_del(&intf_modpriv->intf_list);
337                         devm_kfree(dev, intf_modpriv);
338                         continue;
339                 }
340         }
341
342         /* Now register the interface with netdev */
343         list_for_each_entry(netcp_intf,
344                             &netcp_device->interface_head,
345                             interface_list) {
346                 /* If interface not registered then register now */
347                 if (!netcp_intf->netdev_registered) {
348                         ret = netcp_register_interface(netcp_intf);
349                         if (ret)
350                                 return -ENODEV;
351                 }
352         }
353         return 0;
354 }
355
356 int netcp_register_module(struct netcp_module *module)
357 {
358         struct netcp_device *netcp_device;
359         struct netcp_module *tmp;
360         int ret;
361
362         if (!module->name) {
363                 WARN(1, "error registering netcp module: no name\n");
364                 return -EINVAL;
365         }
366
367         if (!module->probe) {
368                 WARN(1, "error registering netcp module: no probe\n");
369                 return -EINVAL;
370         }
371
372         mutex_lock(&netcp_modules_lock);
373
374         for_each_netcp_module(tmp) {
375                 if (!strcasecmp(tmp->name, module->name)) {
376                         mutex_unlock(&netcp_modules_lock);
377                         return -EEXIST;
378                 }
379         }
380         list_add_tail(&module->module_list, &netcp_modules);
381
382         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
383                 ret = netcp_module_probe(netcp_device, module);
384                 if (ret < 0)
385                         goto fail;
386         }
387         mutex_unlock(&netcp_modules_lock);
388         return 0;
389
390 fail:
391         mutex_unlock(&netcp_modules_lock);
392         netcp_unregister_module(module);
393         return ret;
394 }
395 EXPORT_SYMBOL_GPL(netcp_register_module);
396
397 static void netcp_release_module(struct netcp_device *netcp_device,
398                                  struct netcp_module *module)
399 {
400         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
401         struct netcp_intf *netcp_intf, *netcp_tmp;
402         struct device *dev = netcp_device->device;
403
404         /* Release the module from each interface */
405         list_for_each_entry_safe(netcp_intf, netcp_tmp,
406                                  &netcp_device->interface_head,
407                                  interface_list) {
408                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
409
410                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
411                                          &netcp_intf->module_head,
412                                          intf_list) {
413                         if (intf_modpriv->netcp_module == module) {
414                                 module->release(intf_modpriv->module_priv);
415                                 list_del(&intf_modpriv->intf_list);
416                                 devm_kfree(dev, intf_modpriv);
417                                 break;
418                         }
419                 }
420         }
421
422         /* Remove the module from each instance */
423         list_for_each_entry_safe(inst_modpriv, inst_tmp,
424                                  &netcp_device->modpriv_head, inst_list) {
425                 if (inst_modpriv->netcp_module == module) {
426                         module->remove(netcp_device,
427                                        inst_modpriv->module_priv);
428                         list_del(&inst_modpriv->inst_list);
429                         devm_kfree(dev, inst_modpriv);
430                         break;
431                 }
432         }
433 }
434
435 void netcp_unregister_module(struct netcp_module *module)
436 {
437         struct netcp_device *netcp_device;
438         struct netcp_module *module_tmp;
439
440         mutex_lock(&netcp_modules_lock);
441
442         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
443                 netcp_release_module(netcp_device, module);
444         }
445
446         /* Remove the module from the module list */
447         for_each_netcp_module(module_tmp) {
448                 if (module == module_tmp) {
449                         list_del(&module->module_list);
450                         break;
451                 }
452         }
453
454         mutex_unlock(&netcp_modules_lock);
455 }
456 EXPORT_SYMBOL_GPL(netcp_unregister_module);
457
458 void *netcp_module_get_intf_data(struct netcp_module *module,
459                                  struct netcp_intf *intf)
460 {
461         struct netcp_intf_modpriv *intf_modpriv;
462
463         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
464                 if (intf_modpriv->netcp_module == module)
465                         return intf_modpriv->module_priv;
466         return NULL;
467 }
468 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
469
470 /* Module TX and RX Hook management */
471 struct netcp_hook_list {
472         struct list_head         list;
473         netcp_hook_rtn          *hook_rtn;
474         void                    *hook_data;
475         int                      order;
476 };
477
478 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
479                           netcp_hook_rtn *hook_rtn, void *hook_data)
480 {
481         struct netcp_hook_list *entry;
482         struct netcp_hook_list *next;
483         unsigned long flags;
484
485         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
486         if (!entry)
487                 return -ENOMEM;
488
489         entry->hook_rtn  = hook_rtn;
490         entry->hook_data = hook_data;
491         entry->order     = order;
492
493         spin_lock_irqsave(&netcp_priv->lock, flags);
494         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
495                 if (next->order > order)
496                         break;
497         }
498         __list_add(&entry->list, next->list.prev, &next->list);
499         spin_unlock_irqrestore(&netcp_priv->lock, flags);
500
501         return 0;
502 }
503 EXPORT_SYMBOL_GPL(netcp_register_txhook);
504
505 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
506                             netcp_hook_rtn *hook_rtn, void *hook_data)
507 {
508         struct netcp_hook_list *next, *n;
509         unsigned long flags;
510
511         spin_lock_irqsave(&netcp_priv->lock, flags);
512         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
513                 if ((next->order     == order) &&
514                     (next->hook_rtn  == hook_rtn) &&
515                     (next->hook_data == hook_data)) {
516                         list_del(&next->list);
517                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
518                         devm_kfree(netcp_priv->dev, next);
519                         return 0;
520                 }
521         }
522         spin_unlock_irqrestore(&netcp_priv->lock, flags);
523         return -ENOENT;
524 }
525 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
526
527 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
528                           netcp_hook_rtn *hook_rtn, void *hook_data)
529 {
530         struct netcp_hook_list *entry;
531         struct netcp_hook_list *next;
532         unsigned long flags;
533
534         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
535         if (!entry)
536                 return -ENOMEM;
537
538         entry->hook_rtn  = hook_rtn;
539         entry->hook_data = hook_data;
540         entry->order     = order;
541
542         spin_lock_irqsave(&netcp_priv->lock, flags);
543         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
544                 if (next->order > order)
545                         break;
546         }
547         __list_add(&entry->list, next->list.prev, &next->list);
548         spin_unlock_irqrestore(&netcp_priv->lock, flags);
549
550         return 0;
551 }
552 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
553
554 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
555                             netcp_hook_rtn *hook_rtn, void *hook_data)
556 {
557         struct netcp_hook_list *next, *n;
558         unsigned long flags;
559
560         spin_lock_irqsave(&netcp_priv->lock, flags);
561         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
562                 if ((next->order     == order) &&
563                     (next->hook_rtn  == hook_rtn) &&
564                     (next->hook_data == hook_data)) {
565                         list_del(&next->list);
566                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
567                         devm_kfree(netcp_priv->dev, next);
568                         return 0;
569                 }
570         }
571         spin_unlock_irqrestore(&netcp_priv->lock, flags);
572
573         return -ENOENT;
574 }
575 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
576
577 static void netcp_frag_free(bool is_frag, void *ptr)
578 {
579         if (is_frag)
580                 skb_free_frag(ptr);
581         else
582                 kfree(ptr);
583 }
584
585 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
586                                      struct knav_dma_desc *desc)
587 {
588         struct knav_dma_desc *ndesc;
589         dma_addr_t dma_desc, dma_buf;
590         unsigned int buf_len, dma_sz = sizeof(*ndesc);
591         void *buf_ptr;
592         u32 tmp;
593
594         get_words(&dma_desc, 1, &desc->next_desc);
595
596         while (dma_desc) {
597                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
598                 if (unlikely(!ndesc)) {
599                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
600                         break;
601                 }
602                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
603                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
604                  * field as a 32bit value. Will not work on 64bit machines
605                  */
606                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
607                 buf_len = (int)GET_SW_DATA1(desc);
608                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
609                 __free_page(buf_ptr);
610                 knav_pool_desc_put(netcp->rx_pool, desc);
611         }
612         /* warning!!!! We are retrieving the virtual ptr in the sw_data
613          * field as a 32bit value. Will not work on 64bit machines
614          */
615         buf_ptr = (void *)GET_SW_DATA0(desc);
616         buf_len = (int)GET_SW_DATA1(desc);
617
618         if (buf_ptr)
619                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
620         knav_pool_desc_put(netcp->rx_pool, desc);
621 }
622
623 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
624 {
625         struct knav_dma_desc *desc;
626         unsigned int dma_sz;
627         dma_addr_t dma;
628
629         for (; ;) {
630                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
631                 if (!dma)
632                         break;
633
634                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
635                 if (unlikely(!desc)) {
636                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
637                                 __func__);
638                         netcp->ndev->stats.rx_errors++;
639                         continue;
640                 }
641                 netcp_free_rx_desc_chain(netcp, desc);
642                 netcp->ndev->stats.rx_dropped++;
643         }
644 }
645
646 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
647 {
648         unsigned int dma_sz, buf_len, org_buf_len;
649         struct knav_dma_desc *desc, *ndesc;
650         unsigned int pkt_sz = 0, accum_sz;
651         struct netcp_hook_list *rx_hook;
652         dma_addr_t dma_desc, dma_buff;
653         struct netcp_packet p_info;
654         struct sk_buff *skb;
655         void *org_buf_ptr;
656
657         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
658         if (!dma_desc)
659                 return -1;
660
661         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
662         if (unlikely(!desc)) {
663                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
664                 return 0;
665         }
666
667         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
668         /* warning!!!! We are retrieving the virtual ptr in the sw_data
669          * field as a 32bit value. Will not work on 64bit machines
670          */
671         org_buf_ptr = (void *)GET_SW_DATA0(desc);
672         org_buf_len = (int)GET_SW_DATA1(desc);
673
674         if (unlikely(!org_buf_ptr)) {
675                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
676                 goto free_desc;
677         }
678
679         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
680         accum_sz = buf_len;
681         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
682
683         /* Build a new sk_buff for the primary buffer */
684         skb = build_skb(org_buf_ptr, org_buf_len);
685         if (unlikely(!skb)) {
686                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
687                 goto free_desc;
688         }
689
690         /* update data, tail and len */
691         skb_reserve(skb, NETCP_SOP_OFFSET);
692         __skb_put(skb, buf_len);
693
694         /* Fill in the page fragment list */
695         while (dma_desc) {
696                 struct page *page;
697
698                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
699                 if (unlikely(!ndesc)) {
700                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
701                         goto free_desc;
702                 }
703
704                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
705                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
706                  * field as a 32bit value. Will not work on 64bit machines
707                  */
708                 page = (struct page *)GET_SW_DATA0(desc);
709
710                 if (likely(dma_buff && buf_len && page)) {
711                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
712                                        DMA_FROM_DEVICE);
713                 } else {
714                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
715                                 &dma_buff, buf_len, page);
716                         goto free_desc;
717                 }
718
719                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
720                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
721                 accum_sz += buf_len;
722
723                 /* Free the descriptor */
724                 knav_pool_desc_put(netcp->rx_pool, ndesc);
725         }
726
727         /* Free the primary descriptor */
728         knav_pool_desc_put(netcp->rx_pool, desc);
729
730         /* check for packet len and warn */
731         if (unlikely(pkt_sz != accum_sz))
732                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
733                         pkt_sz, accum_sz);
734
735         /* Remove ethernet FCS from the packet */
736         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
737
738         /* Call each of the RX hooks */
739         p_info.skb = skb;
740         skb->dev = netcp->ndev;
741         p_info.rxtstamp_complete = false;
742         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
743                 int ret;
744
745                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
746                                         &p_info);
747                 if (unlikely(ret)) {
748                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
749                                 rx_hook->order, ret);
750                         netcp->ndev->stats.rx_errors++;
751                         dev_kfree_skb(skb);
752                         return 0;
753                 }
754         }
755
756         netcp->ndev->stats.rx_packets++;
757         netcp->ndev->stats.rx_bytes += skb->len;
758
759         /* push skb up the stack */
760         skb->protocol = eth_type_trans(skb, netcp->ndev);
761         netif_receive_skb(skb);
762         return 0;
763
764 free_desc:
765         netcp_free_rx_desc_chain(netcp, desc);
766         netcp->ndev->stats.rx_errors++;
767         return 0;
768 }
769
770 static int netcp_process_rx_packets(struct netcp_intf *netcp,
771                                     unsigned int budget)
772 {
773         int i;
774
775         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
776                 ;
777         return i;
778 }
779
780 /* Release descriptors and attached buffers from Rx FDQ */
781 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
782 {
783         struct knav_dma_desc *desc;
784         unsigned int buf_len, dma_sz;
785         dma_addr_t dma;
786         void *buf_ptr;
787
788         /* Allocate descriptor */
789         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
790                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
791                 if (unlikely(!desc)) {
792                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
793                         continue;
794                 }
795
796                 get_org_pkt_info(&dma, &buf_len, desc);
797                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
798                  * field as a 32bit value. Will not work on 64bit machines
799                  */
800                 buf_ptr = (void *)GET_SW_DATA0(desc);
801
802                 if (unlikely(!dma)) {
803                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
804                         knav_pool_desc_put(netcp->rx_pool, desc);
805                         continue;
806                 }
807
808                 if (unlikely(!buf_ptr)) {
809                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
810                         knav_pool_desc_put(netcp->rx_pool, desc);
811                         continue;
812                 }
813
814                 if (fdq == 0) {
815                         dma_unmap_single(netcp->dev, dma, buf_len,
816                                          DMA_FROM_DEVICE);
817                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
818                 } else {
819                         dma_unmap_page(netcp->dev, dma, buf_len,
820                                        DMA_FROM_DEVICE);
821                         __free_page(buf_ptr);
822                 }
823
824                 knav_pool_desc_put(netcp->rx_pool, desc);
825         }
826 }
827
828 static void netcp_rxpool_free(struct netcp_intf *netcp)
829 {
830         int i;
831
832         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
833              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
834                 netcp_free_rx_buf(netcp, i);
835
836         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
837                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
838                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
839
840         knav_pool_destroy(netcp->rx_pool);
841         netcp->rx_pool = NULL;
842 }
843
844 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
845 {
846         struct knav_dma_desc *hwdesc;
847         unsigned int buf_len, dma_sz;
848         u32 desc_info, pkt_info;
849         struct page *page;
850         dma_addr_t dma;
851         void *bufptr;
852         u32 sw_data[2];
853
854         /* Allocate descriptor */
855         hwdesc = knav_pool_desc_get(netcp->rx_pool);
856         if (IS_ERR_OR_NULL(hwdesc)) {
857                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
858                 return -ENOMEM;
859         }
860
861         if (likely(fdq == 0)) {
862                 unsigned int primary_buf_len;
863                 /* Allocate a primary receive queue entry */
864                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
865                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
866                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
867
868                 bufptr = netdev_alloc_frag(primary_buf_len);
869                 sw_data[1] = primary_buf_len;
870
871                 if (unlikely(!bufptr)) {
872                         dev_warn_ratelimited(netcp->ndev_dev,
873                                              "Primary RX buffer alloc failed\n");
874                         goto fail;
875                 }
876                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
877                                      DMA_TO_DEVICE);
878                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
879                         goto fail;
880
881                 /* warning!!!! We are saving the virtual ptr in the sw_data
882                  * field as a 32bit value. Will not work on 64bit machines
883                  */
884                 sw_data[0] = (u32)bufptr;
885         } else {
886                 /* Allocate a secondary receive queue entry */
887                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
888                 if (unlikely(!page)) {
889                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
890                         goto fail;
891                 }
892                 buf_len = PAGE_SIZE;
893                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
894                 /* warning!!!! We are saving the virtual ptr in the sw_data
895                  * field as a 32bit value. Will not work on 64bit machines
896                  */
897                 sw_data[0] = (u32)page;
898                 sw_data[1] = 0;
899         }
900
901         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
902         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
903         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
904         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
905         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
906                     KNAV_DMA_DESC_RETQ_SHIFT;
907         set_org_pkt_info(dma, buf_len, hwdesc);
908         SET_SW_DATA0(sw_data[0], hwdesc);
909         SET_SW_DATA1(sw_data[1], hwdesc);
910         set_desc_info(desc_info, pkt_info, hwdesc);
911
912         /* Push to FDQs */
913         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
914                            &dma_sz);
915         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
916         return 0;
917
918 fail:
919         knav_pool_desc_put(netcp->rx_pool, hwdesc);
920         return -ENOMEM;
921 }
922
923 /* Refill Rx FDQ with descriptors & attached buffers */
924 static void netcp_rxpool_refill(struct netcp_intf *netcp)
925 {
926         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
927         int i, ret = 0;
928
929         /* Calculate the FDQ deficit and refill */
930         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
931                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
932                                  knav_queue_get_count(netcp->rx_fdq[i]);
933
934                 while (fdq_deficit[i]-- && !ret)
935                         ret = netcp_allocate_rx_buf(netcp, i);
936         } /* end for fdqs */
937 }
938
939 /* NAPI poll */
940 static int netcp_rx_poll(struct napi_struct *napi, int budget)
941 {
942         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
943                                                 rx_napi);
944         unsigned int packets;
945
946         packets = netcp_process_rx_packets(netcp, budget);
947
948         netcp_rxpool_refill(netcp);
949         if (packets < budget) {
950                 napi_complete(&netcp->rx_napi);
951                 knav_queue_enable_notify(netcp->rx_queue);
952         }
953
954         return packets;
955 }
956
957 static void netcp_rx_notify(void *arg)
958 {
959         struct netcp_intf *netcp = arg;
960
961         knav_queue_disable_notify(netcp->rx_queue);
962         napi_schedule(&netcp->rx_napi);
963 }
964
965 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
966                                      struct knav_dma_desc *desc,
967                                      unsigned int desc_sz)
968 {
969         struct knav_dma_desc *ndesc = desc;
970         dma_addr_t dma_desc, dma_buf;
971         unsigned int buf_len;
972
973         while (ndesc) {
974                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
975
976                 if (dma_buf && buf_len)
977                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
978                                          DMA_TO_DEVICE);
979                 else
980                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
981                                  &dma_buf, buf_len);
982
983                 knav_pool_desc_put(netcp->tx_pool, ndesc);
984                 ndesc = NULL;
985                 if (dma_desc) {
986                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
987                                                      desc_sz);
988                         if (!ndesc)
989                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
990                 }
991         }
992 }
993
994 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
995                                           unsigned int budget)
996 {
997         struct knav_dma_desc *desc;
998         struct netcp_tx_cb *tx_cb;
999         struct sk_buff *skb;
1000         unsigned int dma_sz;
1001         dma_addr_t dma;
1002         int pkts = 0;
1003
1004         while (budget--) {
1005                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1006                 if (!dma)
1007                         break;
1008                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1009                 if (unlikely(!desc)) {
1010                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1011                         netcp->ndev->stats.tx_errors++;
1012                         continue;
1013                 }
1014
1015                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1016                  * field as a 32bit value. Will not work on 64bit machines
1017                  */
1018                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1019                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1020                 if (!skb) {
1021                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1022                         netcp->ndev->stats.tx_errors++;
1023                         continue;
1024                 }
1025
1026                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1027                 if (tx_cb->txtstamp)
1028                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1029
1030                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1031                     netif_running(netcp->ndev) &&
1032                     (knav_pool_count(netcp->tx_pool) >
1033                     netcp->tx_resume_threshold)) {
1034                         u16 subqueue = skb_get_queue_mapping(skb);
1035
1036                         netif_wake_subqueue(netcp->ndev, subqueue);
1037                 }
1038
1039                 netcp->ndev->stats.tx_packets++;
1040                 netcp->ndev->stats.tx_bytes += skb->len;
1041                 dev_kfree_skb(skb);
1042                 pkts++;
1043         }
1044         return pkts;
1045 }
1046
1047 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1048 {
1049         int packets;
1050         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1051                                                 tx_napi);
1052
1053         packets = netcp_process_tx_compl_packets(netcp, budget);
1054         if (packets < budget) {
1055                 napi_complete(&netcp->tx_napi);
1056                 knav_queue_enable_notify(netcp->tx_compl_q);
1057         }
1058
1059         return packets;
1060 }
1061
1062 static void netcp_tx_notify(void *arg)
1063 {
1064         struct netcp_intf *netcp = arg;
1065
1066         knav_queue_disable_notify(netcp->tx_compl_q);
1067         napi_schedule(&netcp->tx_napi);
1068 }
1069
1070 static struct knav_dma_desc*
1071 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1072 {
1073         struct knav_dma_desc *desc, *ndesc, *pdesc;
1074         unsigned int pkt_len = skb_headlen(skb);
1075         struct device *dev = netcp->dev;
1076         dma_addr_t dma_addr;
1077         unsigned int dma_sz;
1078         int i;
1079
1080         /* Map the linear buffer */
1081         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1082         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1083                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1084                 return NULL;
1085         }
1086
1087         desc = knav_pool_desc_get(netcp->tx_pool);
1088         if (IS_ERR_OR_NULL(desc)) {
1089                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1090                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1091                 return NULL;
1092         }
1093
1094         set_pkt_info(dma_addr, pkt_len, 0, desc);
1095         if (skb_is_nonlinear(skb)) {
1096                 prefetchw(skb_shinfo(skb));
1097         } else {
1098                 desc->next_desc = 0;
1099                 goto upd_pkt_len;
1100         }
1101
1102         pdesc = desc;
1103
1104         /* Handle the case where skb is fragmented in pages */
1105         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1106                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1107                 struct page *page = skb_frag_page(frag);
1108                 u32 page_offset = frag->page_offset;
1109                 u32 buf_len = skb_frag_size(frag);
1110                 dma_addr_t desc_dma;
1111                 u32 desc_dma_32;
1112                 u32 pkt_info;
1113
1114                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1115                                         DMA_TO_DEVICE);
1116                 if (unlikely(!dma_addr)) {
1117                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1118                         goto free_descs;
1119                 }
1120
1121                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1122                 if (IS_ERR_OR_NULL(ndesc)) {
1123                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1124                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1125                         goto free_descs;
1126                 }
1127
1128                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1129                 pkt_info =
1130                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1131                                 KNAV_DMA_DESC_RETQ_SHIFT;
1132                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1133                 desc_dma_32 = (u32)desc_dma;
1134                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1135                 pkt_len += buf_len;
1136                 if (pdesc != desc)
1137                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1138                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1139                 pdesc = ndesc;
1140         }
1141         if (pdesc != desc)
1142                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1143                                    &dma_addr, &dma_sz);
1144
1145         /* frag list based linkage is not supported for now. */
1146         if (skb_shinfo(skb)->frag_list) {
1147                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1148                 goto free_descs;
1149         }
1150
1151 upd_pkt_len:
1152         WARN_ON(pkt_len != skb->len);
1153
1154         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1155         set_words(&pkt_len, 1, &desc->desc_info);
1156         return desc;
1157
1158 free_descs:
1159         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1160         return NULL;
1161 }
1162
1163 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1164                                struct sk_buff *skb,
1165                                struct knav_dma_desc *desc)
1166 {
1167         struct netcp_tx_pipe *tx_pipe = NULL;
1168         struct netcp_hook_list *tx_hook;
1169         struct netcp_packet p_info;
1170         struct netcp_tx_cb *tx_cb;
1171         unsigned int dma_sz;
1172         dma_addr_t dma;
1173         u32 tmp = 0;
1174         int ret = 0;
1175
1176         p_info.netcp = netcp;
1177         p_info.skb = skb;
1178         p_info.tx_pipe = NULL;
1179         p_info.psdata_len = 0;
1180         p_info.ts_context = NULL;
1181         p_info.txtstamp = NULL;
1182         p_info.epib = desc->epib;
1183         p_info.psdata = (u32 __force *)desc->psdata;
1184         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1185
1186         /* Find out where to inject the packet for transmission */
1187         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1188                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1189                                         &p_info);
1190                 if (unlikely(ret != 0)) {
1191                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1192                                 tx_hook->order, ret);
1193                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1194                         goto out;
1195                 }
1196         }
1197
1198         /* Make sure some TX hook claimed the packet */
1199         tx_pipe = p_info.tx_pipe;
1200         if (!tx_pipe) {
1201                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1202                 ret = -ENXIO;
1203                 goto out;
1204         }
1205
1206         tx_cb = (struct netcp_tx_cb *)skb->cb;
1207         tx_cb->ts_context = p_info.ts_context;
1208         tx_cb->txtstamp = p_info.txtstamp;
1209
1210         /* update descriptor */
1211         if (p_info.psdata_len) {
1212                 /* psdata points to both native-endian and device-endian data */
1213                 __le32 *psdata = (void __force *)p_info.psdata;
1214
1215                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1216                         p_info.psdata_len);
1217                 set_words(p_info.psdata, p_info.psdata_len, psdata);
1218                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1219                         KNAV_DMA_DESC_PSLEN_SHIFT;
1220         }
1221
1222         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1223                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1224                 KNAV_DMA_DESC_RETQ_SHIFT);
1225
1226         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1227                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1228                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1229         }
1230
1231         set_words(&tmp, 1, &desc->packet_info);
1232         /* warning!!!! We are saving the virtual ptr in the sw_data
1233          * field as a 32bit value. Will not work on 64bit machines
1234          */
1235         SET_SW_DATA0((u32)skb, desc);
1236
1237         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1238                 tmp = tx_pipe->switch_to_port;
1239                 set_words(&tmp, 1, &desc->tag_info);
1240         }
1241
1242         /* submit packet descriptor */
1243         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1244                                  &dma_sz);
1245         if (unlikely(ret)) {
1246                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1247                 ret = -ENOMEM;
1248                 goto out;
1249         }
1250         skb_tx_timestamp(skb);
1251         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1252
1253 out:
1254         return ret;
1255 }
1256
1257 /* Submit the packet */
1258 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1259 {
1260         struct netcp_intf *netcp = netdev_priv(ndev);
1261         int subqueue = skb_get_queue_mapping(skb);
1262         struct knav_dma_desc *desc;
1263         int desc_count, ret = 0;
1264
1265         if (unlikely(skb->len <= 0)) {
1266                 dev_kfree_skb(skb);
1267                 return NETDEV_TX_OK;
1268         }
1269
1270         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1271                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1272                 if (ret < 0) {
1273                         /* If we get here, the skb has already been dropped */
1274                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1275                                  ret);
1276                         ndev->stats.tx_dropped++;
1277                         return ret;
1278                 }
1279                 skb->len = NETCP_MIN_PACKET_SIZE;
1280         }
1281
1282         desc = netcp_tx_map_skb(skb, netcp);
1283         if (unlikely(!desc)) {
1284                 netif_stop_subqueue(ndev, subqueue);
1285                 ret = -ENOBUFS;
1286                 goto drop;
1287         }
1288
1289         ret = netcp_tx_submit_skb(netcp, skb, desc);
1290         if (ret)
1291                 goto drop;
1292
1293         netif_trans_update(ndev);
1294
1295         /* Check Tx pool count & stop subqueue if needed */
1296         desc_count = knav_pool_count(netcp->tx_pool);
1297         if (desc_count < netcp->tx_pause_threshold) {
1298                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1299                 netif_stop_subqueue(ndev, subqueue);
1300         }
1301         return NETDEV_TX_OK;
1302
1303 drop:
1304         ndev->stats.tx_dropped++;
1305         if (desc)
1306                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1307         dev_kfree_skb(skb);
1308         return ret;
1309 }
1310
1311 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1312 {
1313         if (tx_pipe->dma_channel) {
1314                 knav_dma_close_channel(tx_pipe->dma_channel);
1315                 tx_pipe->dma_channel = NULL;
1316         }
1317         return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1320
1321 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1322 {
1323         struct device *dev = tx_pipe->netcp_device->device;
1324         struct knav_dma_cfg config;
1325         int ret = 0;
1326         u8 name[16];
1327
1328         memset(&config, 0, sizeof(config));
1329         config.direction = DMA_MEM_TO_DEV;
1330         config.u.tx.filt_einfo = false;
1331         config.u.tx.filt_pswords = false;
1332         config.u.tx.priority = DMA_PRIO_MED_L;
1333
1334         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1335                                 tx_pipe->dma_chan_name, &config);
1336         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1337                 dev_err(dev, "failed opening tx chan(%s)\n",
1338                         tx_pipe->dma_chan_name);
1339                 goto err;
1340         }
1341
1342         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1343         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1344                                              KNAV_QUEUE_SHARED);
1345         if (IS_ERR(tx_pipe->dma_queue)) {
1346                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1347                         name, ret);
1348                 ret = PTR_ERR(tx_pipe->dma_queue);
1349                 goto err;
1350         }
1351
1352         dev_dbg(dev, "opened tx pipe %s\n", name);
1353         return 0;
1354
1355 err:
1356         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1357                 knav_dma_close_channel(tx_pipe->dma_channel);
1358         tx_pipe->dma_channel = NULL;
1359         return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1362
1363 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1364                       struct netcp_device *netcp_device,
1365                       const char *dma_chan_name, unsigned int dma_queue_id)
1366 {
1367         memset(tx_pipe, 0, sizeof(*tx_pipe));
1368         tx_pipe->netcp_device = netcp_device;
1369         tx_pipe->dma_chan_name = dma_chan_name;
1370         tx_pipe->dma_queue_id = dma_queue_id;
1371         return 0;
1372 }
1373 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1374
1375 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1376                                           const u8 *addr,
1377                                           enum netcp_addr_type type)
1378 {
1379         struct netcp_addr *naddr;
1380
1381         list_for_each_entry(naddr, &netcp->addr_list, node) {
1382                 if (naddr->type != type)
1383                         continue;
1384                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1385                         continue;
1386                 return naddr;
1387         }
1388
1389         return NULL;
1390 }
1391
1392 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1393                                          const u8 *addr,
1394                                          enum netcp_addr_type type)
1395 {
1396         struct netcp_addr *naddr;
1397
1398         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1399         if (!naddr)
1400                 return NULL;
1401
1402         naddr->type = type;
1403         naddr->flags = 0;
1404         naddr->netcp = netcp;
1405         if (addr)
1406                 ether_addr_copy(naddr->addr, addr);
1407         else
1408                 eth_zero_addr(naddr->addr);
1409         list_add_tail(&naddr->node, &netcp->addr_list);
1410
1411         return naddr;
1412 }
1413
1414 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1415 {
1416         list_del(&naddr->node);
1417         devm_kfree(netcp->dev, naddr);
1418 }
1419
1420 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1421 {
1422         struct netcp_addr *naddr;
1423
1424         list_for_each_entry(naddr, &netcp->addr_list, node)
1425                 naddr->flags = 0;
1426 }
1427
1428 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1429                                 enum netcp_addr_type type)
1430 {
1431         struct netcp_addr *naddr;
1432
1433         naddr = netcp_addr_find(netcp, addr, type);
1434         if (naddr) {
1435                 naddr->flags |= ADDR_VALID;
1436                 return;
1437         }
1438
1439         naddr = netcp_addr_add(netcp, addr, type);
1440         if (!WARN_ON(!naddr))
1441                 naddr->flags |= ADDR_NEW;
1442 }
1443
1444 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1445 {
1446         struct netcp_addr *naddr, *tmp;
1447         struct netcp_intf_modpriv *priv;
1448         struct netcp_module *module;
1449         int error;
1450
1451         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1452                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1453                         continue;
1454                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1455                         naddr->addr, naddr->type);
1456                 for_each_module(netcp, priv) {
1457                         module = priv->netcp_module;
1458                         if (!module->del_addr)
1459                                 continue;
1460                         error = module->del_addr(priv->module_priv,
1461                                                  naddr);
1462                         WARN_ON(error);
1463                 }
1464                 netcp_addr_del(netcp, naddr);
1465         }
1466 }
1467
1468 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1469 {
1470         struct netcp_addr *naddr, *tmp;
1471         struct netcp_intf_modpriv *priv;
1472         struct netcp_module *module;
1473         int error;
1474
1475         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1476                 if (!(naddr->flags & ADDR_NEW))
1477                         continue;
1478                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1479                         naddr->addr, naddr->type);
1480
1481                 for_each_module(netcp, priv) {
1482                         module = priv->netcp_module;
1483                         if (!module->add_addr)
1484                                 continue;
1485                         error = module->add_addr(priv->module_priv, naddr);
1486                         WARN_ON(error);
1487                 }
1488         }
1489 }
1490
1491 static void netcp_set_rx_mode(struct net_device *ndev)
1492 {
1493         struct netcp_intf *netcp = netdev_priv(ndev);
1494         struct netdev_hw_addr *ndev_addr;
1495         bool promisc;
1496
1497         promisc = (ndev->flags & IFF_PROMISC ||
1498                    ndev->flags & IFF_ALLMULTI ||
1499                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1500
1501         spin_lock(&netcp->lock);
1502         /* first clear all marks */
1503         netcp_addr_clear_mark(netcp);
1504
1505         /* next add new entries, mark existing ones */
1506         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1507         for_each_dev_addr(ndev, ndev_addr)
1508                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1509         netdev_for_each_uc_addr(ndev_addr, ndev)
1510                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1511         netdev_for_each_mc_addr(ndev_addr, ndev)
1512                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1513
1514         if (promisc)
1515                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1516
1517         /* finally sweep and callout into modules */
1518         netcp_addr_sweep_del(netcp);
1519         netcp_addr_sweep_add(netcp);
1520         spin_unlock(&netcp->lock);
1521 }
1522
1523 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1524 {
1525         int i;
1526
1527         if (netcp->rx_channel) {
1528                 knav_dma_close_channel(netcp->rx_channel);
1529                 netcp->rx_channel = NULL;
1530         }
1531
1532         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1533                 netcp_rxpool_free(netcp);
1534
1535         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1536                 knav_queue_close(netcp->rx_queue);
1537                 netcp->rx_queue = NULL;
1538         }
1539
1540         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1541              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1542                 knav_queue_close(netcp->rx_fdq[i]);
1543                 netcp->rx_fdq[i] = NULL;
1544         }
1545
1546         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1547                 knav_queue_close(netcp->tx_compl_q);
1548                 netcp->tx_compl_q = NULL;
1549         }
1550
1551         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1552                 knav_pool_destroy(netcp->tx_pool);
1553                 netcp->tx_pool = NULL;
1554         }
1555 }
1556
1557 static int netcp_setup_navigator_resources(struct net_device *ndev)
1558 {
1559         struct netcp_intf *netcp = netdev_priv(ndev);
1560         struct knav_queue_notify_config notify_cfg;
1561         struct knav_dma_cfg config;
1562         u32 last_fdq = 0;
1563         u8 name[16];
1564         int ret;
1565         int i;
1566
1567         /* Create Rx/Tx descriptor pools */
1568         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1569         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1570                                                 netcp->rx_pool_region_id);
1571         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1572                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1573                 ret = PTR_ERR(netcp->rx_pool);
1574                 goto fail;
1575         }
1576
1577         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1578         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1579                                                 netcp->tx_pool_region_id);
1580         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1581                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1582                 ret = PTR_ERR(netcp->tx_pool);
1583                 goto fail;
1584         }
1585
1586         /* open Tx completion queue */
1587         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1588         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1589         if (IS_ERR(netcp->tx_compl_q)) {
1590                 ret = PTR_ERR(netcp->tx_compl_q);
1591                 goto fail;
1592         }
1593         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1594
1595         /* Set notification for Tx completion */
1596         notify_cfg.fn = netcp_tx_notify;
1597         notify_cfg.fn_arg = netcp;
1598         ret = knav_queue_device_control(netcp->tx_compl_q,
1599                                         KNAV_QUEUE_SET_NOTIFIER,
1600                                         (unsigned long)&notify_cfg);
1601         if (ret)
1602                 goto fail;
1603
1604         knav_queue_disable_notify(netcp->tx_compl_q);
1605
1606         /* open Rx completion queue */
1607         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1608         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1609         if (IS_ERR(netcp->rx_queue)) {
1610                 ret = PTR_ERR(netcp->rx_queue);
1611                 goto fail;
1612         }
1613         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1614
1615         /* Set notification for Rx completion */
1616         notify_cfg.fn = netcp_rx_notify;
1617         notify_cfg.fn_arg = netcp;
1618         ret = knav_queue_device_control(netcp->rx_queue,
1619                                         KNAV_QUEUE_SET_NOTIFIER,
1620                                         (unsigned long)&notify_cfg);
1621         if (ret)
1622                 goto fail;
1623
1624         knav_queue_disable_notify(netcp->rx_queue);
1625
1626         /* open Rx FDQs */
1627         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1628              ++i) {
1629                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1630                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1631                 if (IS_ERR(netcp->rx_fdq[i])) {
1632                         ret = PTR_ERR(netcp->rx_fdq[i]);
1633                         goto fail;
1634                 }
1635         }
1636
1637         memset(&config, 0, sizeof(config));
1638         config.direction                = DMA_DEV_TO_MEM;
1639         config.u.rx.einfo_present       = true;
1640         config.u.rx.psinfo_present      = true;
1641         config.u.rx.err_mode            = DMA_DROP;
1642         config.u.rx.desc_type           = DMA_DESC_HOST;
1643         config.u.rx.psinfo_at_sop       = false;
1644         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1645         config.u.rx.dst_q               = netcp->rx_queue_id;
1646         config.u.rx.thresh              = DMA_THRESH_NONE;
1647
1648         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1649                 if (netcp->rx_fdq[i])
1650                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1651                 config.u.rx.fdq[i] = last_fdq;
1652         }
1653
1654         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1655                                         netcp->dma_chan_name, &config);
1656         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1657                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1658                         netcp->dma_chan_name);
1659                 goto fail;
1660         }
1661
1662         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1663         return 0;
1664
1665 fail:
1666         netcp_free_navigator_resources(netcp);
1667         return ret;
1668 }
1669
1670 /* Open the device */
1671 static int netcp_ndo_open(struct net_device *ndev)
1672 {
1673         struct netcp_intf *netcp = netdev_priv(ndev);
1674         struct netcp_intf_modpriv *intf_modpriv;
1675         struct netcp_module *module;
1676         int ret;
1677
1678         netif_carrier_off(ndev);
1679         ret = netcp_setup_navigator_resources(ndev);
1680         if (ret) {
1681                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1682                 goto fail;
1683         }
1684
1685         for_each_module(netcp, intf_modpriv) {
1686                 module = intf_modpriv->netcp_module;
1687                 if (module->open) {
1688                         ret = module->open(intf_modpriv->module_priv, ndev);
1689                         if (ret != 0) {
1690                                 dev_err(netcp->ndev_dev, "module open failed\n");
1691                                 goto fail_open;
1692                         }
1693                 }
1694         }
1695
1696         napi_enable(&netcp->rx_napi);
1697         napi_enable(&netcp->tx_napi);
1698         knav_queue_enable_notify(netcp->tx_compl_q);
1699         knav_queue_enable_notify(netcp->rx_queue);
1700         netcp_rxpool_refill(netcp);
1701         netif_tx_wake_all_queues(ndev);
1702         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1703         return 0;
1704
1705 fail_open:
1706         for_each_module(netcp, intf_modpriv) {
1707                 module = intf_modpriv->netcp_module;
1708                 if (module->close)
1709                         module->close(intf_modpriv->module_priv, ndev);
1710         }
1711
1712 fail:
1713         netcp_free_navigator_resources(netcp);
1714         return ret;
1715 }
1716
1717 /* Close the device */
1718 static int netcp_ndo_stop(struct net_device *ndev)
1719 {
1720         struct netcp_intf *netcp = netdev_priv(ndev);
1721         struct netcp_intf_modpriv *intf_modpriv;
1722         struct netcp_module *module;
1723         int err = 0;
1724
1725         netif_tx_stop_all_queues(ndev);
1726         netif_carrier_off(ndev);
1727         netcp_addr_clear_mark(netcp);
1728         netcp_addr_sweep_del(netcp);
1729         knav_queue_disable_notify(netcp->rx_queue);
1730         knav_queue_disable_notify(netcp->tx_compl_q);
1731         napi_disable(&netcp->rx_napi);
1732         napi_disable(&netcp->tx_napi);
1733
1734         for_each_module(netcp, intf_modpriv) {
1735                 module = intf_modpriv->netcp_module;
1736                 if (module->close) {
1737                         err = module->close(intf_modpriv->module_priv, ndev);
1738                         if (err != 0)
1739                                 dev_err(netcp->ndev_dev, "Close failed\n");
1740                 }
1741         }
1742
1743         /* Recycle Rx descriptors from completion queue */
1744         netcp_empty_rx_queue(netcp);
1745
1746         /* Recycle Tx descriptors from completion queue */
1747         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1748
1749         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1750                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1751                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1752
1753         netcp_free_navigator_resources(netcp);
1754         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1755         return 0;
1756 }
1757
1758 static int netcp_ndo_ioctl(struct net_device *ndev,
1759                            struct ifreq *req, int cmd)
1760 {
1761         struct netcp_intf *netcp = netdev_priv(ndev);
1762         struct netcp_intf_modpriv *intf_modpriv;
1763         struct netcp_module *module;
1764         int ret = -1, err = -EOPNOTSUPP;
1765
1766         if (!netif_running(ndev))
1767                 return -EINVAL;
1768
1769         for_each_module(netcp, intf_modpriv) {
1770                 module = intf_modpriv->netcp_module;
1771                 if (!module->ioctl)
1772                         continue;
1773
1774                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1775                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1776                         ret = err;
1777                         goto out;
1778                 }
1779                 if (err == 0)
1780                         ret = err;
1781         }
1782
1783 out:
1784         return (ret == 0) ? 0 : err;
1785 }
1786
1787 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1788 {
1789         struct netcp_intf *netcp = netdev_priv(ndev);
1790         unsigned int descs = knav_pool_count(netcp->tx_pool);
1791
1792         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1793         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1794         netif_trans_update(ndev);
1795         netif_tx_wake_all_queues(ndev);
1796 }
1797
1798 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1799 {
1800         struct netcp_intf *netcp = netdev_priv(ndev);
1801         struct netcp_intf_modpriv *intf_modpriv;
1802         struct netcp_module *module;
1803         unsigned long flags;
1804         int err = 0;
1805
1806         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1807
1808         spin_lock_irqsave(&netcp->lock, flags);
1809         for_each_module(netcp, intf_modpriv) {
1810                 module = intf_modpriv->netcp_module;
1811                 if ((module->add_vid) && (vid != 0)) {
1812                         err = module->add_vid(intf_modpriv->module_priv, vid);
1813                         if (err != 0) {
1814                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1815                                         vid);
1816                                 break;
1817                         }
1818                 }
1819         }
1820         spin_unlock_irqrestore(&netcp->lock, flags);
1821
1822         return err;
1823 }
1824
1825 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1826 {
1827         struct netcp_intf *netcp = netdev_priv(ndev);
1828         struct netcp_intf_modpriv *intf_modpriv;
1829         struct netcp_module *module;
1830         unsigned long flags;
1831         int err = 0;
1832
1833         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1834
1835         spin_lock_irqsave(&netcp->lock, flags);
1836         for_each_module(netcp, intf_modpriv) {
1837                 module = intf_modpriv->netcp_module;
1838                 if (module->del_vid) {
1839                         err = module->del_vid(intf_modpriv->module_priv, vid);
1840                         if (err != 0) {
1841                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1842                                         vid);
1843                                 break;
1844                         }
1845                 }
1846         }
1847         spin_unlock_irqrestore(&netcp->lock, flags);
1848         return err;
1849 }
1850
1851 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1852                               void *accel_priv,
1853                               select_queue_fallback_t fallback)
1854 {
1855         return 0;
1856 }
1857
1858 static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1859                           struct tc_to_netdev *tc)
1860 {
1861         int i;
1862
1863         /* setup tc must be called under rtnl lock */
1864         ASSERT_RTNL();
1865
1866         if (tc->type != TC_SETUP_MQPRIO)
1867                 return -EINVAL;
1868
1869         /* Sanity-check the number of traffic classes requested */
1870         if ((dev->real_num_tx_queues <= 1) ||
1871             (dev->real_num_tx_queues < tc->tc))
1872                 return -EINVAL;
1873
1874         /* Configure traffic class to queue mappings */
1875         if (tc->tc) {
1876                 netdev_set_num_tc(dev, tc->tc);
1877                 for (i = 0; i < tc->tc; i++)
1878                         netdev_set_tc_queue(dev, i, 1, i);
1879         } else {
1880                 netdev_reset_tc(dev);
1881         }
1882
1883         return 0;
1884 }
1885
1886 static const struct net_device_ops netcp_netdev_ops = {
1887         .ndo_open               = netcp_ndo_open,
1888         .ndo_stop               = netcp_ndo_stop,
1889         .ndo_start_xmit         = netcp_ndo_start_xmit,
1890         .ndo_set_rx_mode        = netcp_set_rx_mode,
1891         .ndo_do_ioctl           = netcp_ndo_ioctl,
1892         .ndo_set_mac_address    = eth_mac_addr,
1893         .ndo_validate_addr      = eth_validate_addr,
1894         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1895         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1896         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1897         .ndo_select_queue       = netcp_select_queue,
1898         .ndo_setup_tc           = netcp_setup_tc,
1899 };
1900
1901 static int netcp_create_interface(struct netcp_device *netcp_device,
1902                                   struct device_node *node_interface)
1903 {
1904         struct device *dev = netcp_device->device;
1905         struct device_node *node = dev->of_node;
1906         struct netcp_intf *netcp;
1907         struct net_device *ndev;
1908         resource_size_t size;
1909         struct resource res;
1910         void __iomem *efuse = NULL;
1911         u32 efuse_mac = 0;
1912         const void *mac_addr;
1913         u8 efuse_mac_addr[6];
1914         u32 temp[2];
1915         int ret = 0;
1916
1917         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1918         if (!ndev) {
1919                 dev_err(dev, "Error allocating netdev\n");
1920                 return -ENOMEM;
1921         }
1922
1923         ndev->features |= NETIF_F_SG;
1924         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1925         ndev->hw_features = ndev->features;
1926         ndev->vlan_features |=  NETIF_F_SG;
1927
1928         /* MTU range: 68 - 9486 */
1929         ndev->min_mtu = ETH_MIN_MTU;
1930         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1931
1932         netcp = netdev_priv(ndev);
1933         spin_lock_init(&netcp->lock);
1934         INIT_LIST_HEAD(&netcp->module_head);
1935         INIT_LIST_HEAD(&netcp->txhook_list_head);
1936         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1937         INIT_LIST_HEAD(&netcp->addr_list);
1938         netcp->netcp_device = netcp_device;
1939         netcp->dev = netcp_device->device;
1940         netcp->ndev = ndev;
1941         netcp->ndev_dev  = &ndev->dev;
1942         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1943         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1944         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1945         netcp->node_interface = node_interface;
1946
1947         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1948         if (efuse_mac) {
1949                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1950                         dev_err(dev, "could not find efuse-mac reg resource\n");
1951                         ret = -ENODEV;
1952                         goto quit;
1953                 }
1954                 size = resource_size(&res);
1955
1956                 if (!devm_request_mem_region(dev, res.start, size,
1957                                              dev_name(dev))) {
1958                         dev_err(dev, "could not reserve resource\n");
1959                         ret = -ENOMEM;
1960                         goto quit;
1961                 }
1962
1963                 efuse = devm_ioremap_nocache(dev, res.start, size);
1964                 if (!efuse) {
1965                         dev_err(dev, "could not map resource\n");
1966                         devm_release_mem_region(dev, res.start, size);
1967                         ret = -ENOMEM;
1968                         goto quit;
1969                 }
1970
1971                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1972                 if (is_valid_ether_addr(efuse_mac_addr))
1973                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1974                 else
1975                         random_ether_addr(ndev->dev_addr);
1976
1977                 devm_iounmap(dev, efuse);
1978                 devm_release_mem_region(dev, res.start, size);
1979         } else {
1980                 mac_addr = of_get_mac_address(node_interface);
1981                 if (mac_addr)
1982                         ether_addr_copy(ndev->dev_addr, mac_addr);
1983                 else
1984                         random_ether_addr(ndev->dev_addr);
1985         }
1986
1987         ret = of_property_read_string(node_interface, "rx-channel",
1988                                       &netcp->dma_chan_name);
1989         if (ret < 0) {
1990                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1991                 ret = -ENODEV;
1992                 goto quit;
1993         }
1994
1995         ret = of_property_read_u32(node_interface, "rx-queue",
1996                                    &netcp->rx_queue_id);
1997         if (ret < 0) {
1998                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1999                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2000         }
2001
2002         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2003                                          netcp->rx_queue_depths,
2004                                          KNAV_DMA_FDQ_PER_CHAN);
2005         if (ret < 0) {
2006                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2007                 netcp->rx_queue_depths[0] = 128;
2008         }
2009
2010         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2011         if (ret < 0) {
2012                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2013                 ret = -ENODEV;
2014                 goto quit;
2015         }
2016         netcp->rx_pool_size = temp[0];
2017         netcp->rx_pool_region_id = temp[1];
2018
2019         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2020         if (ret < 0) {
2021                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2022                 ret = -ENODEV;
2023                 goto quit;
2024         }
2025         netcp->tx_pool_size = temp[0];
2026         netcp->tx_pool_region_id = temp[1];
2027
2028         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2029                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2030                         MAX_SKB_FRAGS);
2031                 ret = -ENODEV;
2032                 goto quit;
2033         }
2034
2035         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2036                                    &netcp->tx_compl_qid);
2037         if (ret < 0) {
2038                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2039                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2040         }
2041
2042         /* NAPI register */
2043         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2044         netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2045
2046         /* Register the network device */
2047         ndev->dev_id            = 0;
2048         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2049         ndev->netdev_ops        = &netcp_netdev_ops;
2050         SET_NETDEV_DEV(ndev, dev);
2051
2052         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2053         return 0;
2054
2055 quit:
2056         free_netdev(ndev);
2057         return ret;
2058 }
2059
2060 static void netcp_delete_interface(struct netcp_device *netcp_device,
2061                                    struct net_device *ndev)
2062 {
2063         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2064         struct netcp_intf *netcp = netdev_priv(ndev);
2065         struct netcp_module *module;
2066
2067         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2068                 ndev->name);
2069
2070         /* Notify each of the modules that the interface is going away */
2071         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2072                                  intf_list) {
2073                 module = intf_modpriv->netcp_module;
2074                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2075                         module->name);
2076                 if (module->release)
2077                         module->release(intf_modpriv->module_priv);
2078                 list_del(&intf_modpriv->intf_list);
2079         }
2080         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2081              ndev->name);
2082
2083         list_del(&netcp->interface_list);
2084
2085         of_node_put(netcp->node_interface);
2086         unregister_netdev(ndev);
2087         netif_napi_del(&netcp->rx_napi);
2088         free_netdev(ndev);
2089 }
2090
2091 static int netcp_probe(struct platform_device *pdev)
2092 {
2093         struct device_node *node = pdev->dev.of_node;
2094         struct netcp_intf *netcp_intf, *netcp_tmp;
2095         struct device_node *child, *interfaces;
2096         struct netcp_device *netcp_device;
2097         struct device *dev = &pdev->dev;
2098         int ret;
2099
2100         if (!node) {
2101                 dev_err(dev, "could not find device info\n");
2102                 return -ENODEV;
2103         }
2104
2105         /* Allocate a new NETCP device instance */
2106         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2107         if (!netcp_device)
2108                 return -ENOMEM;
2109
2110         pm_runtime_enable(&pdev->dev);
2111         ret = pm_runtime_get_sync(&pdev->dev);
2112         if (ret < 0) {
2113                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2114                 pm_runtime_disable(&pdev->dev);
2115                 return ret;
2116         }
2117
2118         /* Initialize the NETCP device instance */
2119         INIT_LIST_HEAD(&netcp_device->interface_head);
2120         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2121         netcp_device->device = dev;
2122         platform_set_drvdata(pdev, netcp_device);
2123
2124         /* create interfaces */
2125         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2126         if (!interfaces) {
2127                 dev_err(dev, "could not find netcp-interfaces node\n");
2128                 ret = -ENODEV;
2129                 goto probe_quit;
2130         }
2131
2132         for_each_available_child_of_node(interfaces, child) {
2133                 ret = netcp_create_interface(netcp_device, child);
2134                 if (ret) {
2135                         dev_err(dev, "could not create interface(%s)\n",
2136                                 child->name);
2137                         goto probe_quit_interface;
2138                 }
2139         }
2140
2141         of_node_put(interfaces);
2142
2143         /* Add the device instance to the list */
2144         list_add_tail(&netcp_device->device_list, &netcp_devices);
2145
2146         return 0;
2147
2148 probe_quit_interface:
2149         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2150                                  &netcp_device->interface_head,
2151                                  interface_list) {
2152                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2153         }
2154
2155         of_node_put(interfaces);
2156
2157 probe_quit:
2158         pm_runtime_put_sync(&pdev->dev);
2159         pm_runtime_disable(&pdev->dev);
2160         platform_set_drvdata(pdev, NULL);
2161         return ret;
2162 }
2163
2164 static int netcp_remove(struct platform_device *pdev)
2165 {
2166         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2167         struct netcp_intf *netcp_intf, *netcp_tmp;
2168         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2169         struct netcp_module *module;
2170
2171         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2172                                  inst_list) {
2173                 module = inst_modpriv->netcp_module;
2174                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2175                 module->remove(netcp_device, inst_modpriv->module_priv);
2176                 list_del(&inst_modpriv->inst_list);
2177         }
2178
2179         /* now that all modules are removed, clean up the interfaces */
2180         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2181                                  &netcp_device->interface_head,
2182                                  interface_list) {
2183                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2184         }
2185
2186         WARN(!list_empty(&netcp_device->interface_head),
2187              "%s interface list not empty!\n", pdev->name);
2188
2189         pm_runtime_put_sync(&pdev->dev);
2190         pm_runtime_disable(&pdev->dev);
2191         platform_set_drvdata(pdev, NULL);
2192         return 0;
2193 }
2194
2195 static const struct of_device_id of_match[] = {
2196         { .compatible = "ti,netcp-1.0", },
2197         {},
2198 };
2199 MODULE_DEVICE_TABLE(of, of_match);
2200
2201 static struct platform_driver netcp_driver = {
2202         .driver = {
2203                 .name           = "netcp-1.0",
2204                 .of_match_table = of_match,
2205         },
2206         .probe = netcp_probe,
2207         .remove = netcp_remove,
2208 };
2209 module_platform_driver(netcp_driver);
2210
2211 MODULE_LICENSE("GPL v2");
2212 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2213 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");