Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
49 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO        5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK     256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
90                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER        1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static const struct net_device_ops stmmac_netdev_ops;
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122         if (unlikely(watchdog < 0))
123                 watchdog = TX_TIMEO;
124         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125                 buf_sz = DEFAULT_BUFSIZE;
126         if (unlikely(flow_ctrl > 1))
127                 flow_ctrl = FLOW_AUTO;
128         else if (likely(flow_ctrl < 0))
129                 flow_ctrl = FLOW_OFF;
130         if (unlikely((pause < 0) || (pause > 0xffff)))
131                 pause = PAUSE_TIME;
132         if (eee_timer < 0)
133                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145         u32 queue;
146
147         for (queue = 0; queue < maxq; queue++) {
148                 struct stmmac_channel *ch = &priv->channel[queue];
149
150                 if (queue < rx_queues_cnt)
151                         napi_disable(&ch->rx_napi);
152                 if (queue < tx_queues_cnt)
153                         napi_disable(&ch->tx_napi);
154         }
155 }
156
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166         u32 queue;
167
168         for (queue = 0; queue < maxq; queue++) {
169                 struct stmmac_channel *ch = &priv->channel[queue];
170
171                 if (queue < rx_queues_cnt)
172                         napi_enable(&ch->rx_napi);
173                 if (queue < tx_queues_cnt)
174                         napi_enable(&ch->tx_napi);
175         }
176 }
177
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185         u32 queue;
186
187         for (queue = 0; queue < tx_queues_cnt; queue++)
188                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198         u32 queue;
199
200         for (queue = 0; queue < tx_queues_cnt; queue++)
201                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206         if (!test_bit(STMMAC_DOWN, &priv->state) &&
207             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208                 queue_work(priv->wq, &priv->service_task);
209 }
210
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213         netif_carrier_off(priv->dev);
214         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215         stmmac_service_event_schedule(priv);
216 }
217
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *      If a specific clk_csr value is passed from the platform
225  *      this means that the CSR Clock Range selection cannot be
226  *      changed at run-time and it is fixed (as reported in the driver
227  *      documentation). Viceversa the driver will try to set the MDC
228  *      clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232         u32 clk_rate;
233
234         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235
236         /* Platform provided default clk_csr would be assumed valid
237          * for all other cases except for the below mentioned ones.
238          * For values higher than the IEEE 802.3 specified frequency
239          * we can not estimate the proper divider as it is not known
240          * the frequency of clk_csr_i. So we do not change the default
241          * divider.
242          */
243         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244                 if (clk_rate < CSR_F_35M)
245                         priv->clk_csr = STMMAC_CSR_20_35M;
246                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247                         priv->clk_csr = STMMAC_CSR_35_60M;
248                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249                         priv->clk_csr = STMMAC_CSR_60_100M;
250                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251                         priv->clk_csr = STMMAC_CSR_100_150M;
252                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253                         priv->clk_csr = STMMAC_CSR_150_250M;
254                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255                         priv->clk_csr = STMMAC_CSR_250_300M;
256         }
257
258         if (priv->plat->has_sun8i) {
259                 if (clk_rate > 160000000)
260                         priv->clk_csr = 0x03;
261                 else if (clk_rate > 80000000)
262                         priv->clk_csr = 0x02;
263                 else if (clk_rate > 40000000)
264                         priv->clk_csr = 0x01;
265                 else
266                         priv->clk_csr = 0;
267         }
268
269         if (priv->plat->has_xgmac) {
270                 if (clk_rate > 400000000)
271                         priv->clk_csr = 0x5;
272                 else if (clk_rate > 350000000)
273                         priv->clk_csr = 0x4;
274                 else if (clk_rate > 300000000)
275                         priv->clk_csr = 0x3;
276                 else if (clk_rate > 250000000)
277                         priv->clk_csr = 0x2;
278                 else if (clk_rate > 150000000)
279                         priv->clk_csr = 0x1;
280                 else
281                         priv->clk_csr = 0x0;
282         }
283 }
284
285 static void print_pkt(unsigned char *buf, int len)
286 {
287         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294         u32 avail;
295
296         if (tx_q->dirty_tx > tx_q->cur_tx)
297                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298         else
299                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300
301         return avail;
302 }
303
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312         u32 dirty;
313
314         if (rx_q->dirty_rx <= rx_q->cur_rx)
315                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
316         else
317                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318
319         return dirty;
320 }
321
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330         u32 tx_cnt = priv->plat->tx_queues_to_use;
331         u32 queue;
332
333         /* check if all TX queues have the work finished */
334         for (queue = 0; queue < tx_cnt; queue++) {
335                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336
337                 if (tx_q->dirty_tx != tx_q->cur_tx)
338                         return; /* still unfinished work */
339         }
340
341         /* Check and enter in LPI mode */
342         if (!priv->tx_path_in_lpi_mode)
343                 stmmac_set_eee_mode(priv, priv->hw,
344                                 priv->plat->en_tx_lpi_clockgating);
345 }
346
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355         stmmac_reset_eee_mode(priv, priv->hw);
356         del_timer_sync(&priv->eee_ctrl_timer);
357         priv->tx_path_in_lpi_mode = false;
358 }
359
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370
371         stmmac_enable_eee_mode(priv);
372         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385         int tx_lpi_timer = priv->tx_lpi_timer;
386
387         /* Using PCS we cannot dial with the phy registers at this stage
388          * so we do not support extra feature like EEE.
389          */
390         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391             (priv->hw->pcs == STMMAC_PCS_TBI) ||
392             (priv->hw->pcs == STMMAC_PCS_RTBI))
393                 return false;
394
395         /* Check if MAC core supports the EEE feature. */
396         if (!priv->dma_cap.eee)
397                 return false;
398
399         mutex_lock(&priv->lock);
400
401         /* Check if it needs to be deactivated */
402         if (!priv->eee_active) {
403                 if (priv->eee_enabled) {
404                         netdev_dbg(priv->dev, "disable EEE\n");
405                         del_timer_sync(&priv->eee_ctrl_timer);
406                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407                 }
408                 mutex_unlock(&priv->lock);
409                 return false;
410         }
411
412         if (priv->eee_active && !priv->eee_enabled) {
413                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416                                      tx_lpi_timer);
417         }
418
419         mutex_unlock(&priv->lock);
420         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421         return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433                                    struct dma_desc *p, struct sk_buff *skb)
434 {
435         struct skb_shared_hwtstamps shhwtstamp;
436         bool found = false;
437         u64 ns = 0;
438
439         if (!priv->hwts_tx_en)
440                 return;
441
442         /* exit if skb doesn't support hw tstamp */
443         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444                 return;
445
446         /* check tx tstamp status */
447         if (stmmac_get_tx_timestamp_status(priv, p)) {
448                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449                 found = true;
450         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451                 found = true;
452         }
453
454         if (found) {
455                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459                 /* pass tstamp to stack */
460                 skb_tstamp_tx(skb, &shhwtstamp);
461         }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474                                    struct dma_desc *np, struct sk_buff *skb)
475 {
476         struct skb_shared_hwtstamps *shhwtstamp = NULL;
477         struct dma_desc *desc = p;
478         u64 ns = 0;
479
480         if (!priv->hwts_rx_en)
481                 return;
482         /* For GMAC4, the valid timestamp is from CTX next desc. */
483         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484                 desc = np;
485
486         /* Check if timestamp is available */
487         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490                 shhwtstamp = skb_hwtstamps(skb);
491                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493         } else  {
494                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495         }
496 }
497
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511         struct stmmac_priv *priv = netdev_priv(dev);
512         struct hwtstamp_config config;
513         struct timespec64 now;
514         u64 temp = 0;
515         u32 ptp_v2 = 0;
516         u32 tstamp_all = 0;
517         u32 ptp_over_ipv4_udp = 0;
518         u32 ptp_over_ipv6_udp = 0;
519         u32 ptp_over_ethernet = 0;
520         u32 snap_type_sel = 0;
521         u32 ts_master_en = 0;
522         u32 ts_event_en = 0;
523         u32 sec_inc = 0;
524         u32 value = 0;
525         bool xmac;
526
527         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530                 netdev_alert(priv->dev, "No support for HW time stamping\n");
531                 priv->hwts_tx_en = 0;
532                 priv->hwts_rx_en = 0;
533
534                 return -EOPNOTSUPP;
535         }
536
537         if (copy_from_user(&config, ifr->ifr_data,
538                            sizeof(config)))
539                 return -EFAULT;
540
541         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542                    __func__, config.flags, config.tx_type, config.rx_filter);
543
544         /* reserved for future extensions */
545         if (config.flags)
546                 return -EINVAL;
547
548         if (config.tx_type != HWTSTAMP_TX_OFF &&
549             config.tx_type != HWTSTAMP_TX_ON)
550                 return -ERANGE;
551
552         if (priv->adv_ts) {
553                 switch (config.rx_filter) {
554                 case HWTSTAMP_FILTER_NONE:
555                         /* time stamp no incoming packet at all */
556                         config.rx_filter = HWTSTAMP_FILTER_NONE;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560                         /* PTP v1, UDP, any kind of event packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562                         /* 'xmac' hardware can support Sync, Pdelay_Req and
563                          * Pdelay_resp by setting bit14 and bits17/16 to 01
564                          * This leaves Delay_Req timestamps out.
565                          * Enable all events *and* general purpose message
566                          * timestamping
567                          */
568                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571                         break;
572
573                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574                         /* PTP v1, UDP, Sync packet */
575                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576                         /* take time stamp for SYNC messages only */
577                         ts_event_en = PTP_TCR_TSEVNTENA;
578
579                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581                         break;
582
583                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584                         /* PTP v1, UDP, Delay_req packet */
585                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586                         /* take time stamp for Delay_Req messages only */
587                         ts_master_en = PTP_TCR_TSMSTRENA;
588                         ts_event_en = PTP_TCR_TSEVNTENA;
589
590                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592                         break;
593
594                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595                         /* PTP v2, UDP, any kind of event packet */
596                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597                         ptp_v2 = PTP_TCR_TSVER2ENA;
598                         /* take time stamp for all event messages */
599                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603                         break;
604
605                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606                         /* PTP v2, UDP, Sync packet */
607                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608                         ptp_v2 = PTP_TCR_TSVER2ENA;
609                         /* take time stamp for SYNC messages only */
610                         ts_event_en = PTP_TCR_TSEVNTENA;
611
612                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614                         break;
615
616                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617                         /* PTP v2, UDP, Delay_req packet */
618                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619                         ptp_v2 = PTP_TCR_TSVER2ENA;
620                         /* take time stamp for Delay_Req messages only */
621                         ts_master_en = PTP_TCR_TSMSTRENA;
622                         ts_event_en = PTP_TCR_TSEVNTENA;
623
624                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626                         break;
627
628                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629                         /* PTP v2/802.AS1 any layer, any kind of event packet */
630                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631                         ptp_v2 = PTP_TCR_TSVER2ENA;
632                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633                         if (priv->synopsys_id != DWMAC_CORE_5_10)
634                                 ts_event_en = PTP_TCR_TSEVNTENA;
635                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637                         ptp_over_ethernet = PTP_TCR_TSIPENA;
638                         break;
639
640                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
641                         /* PTP v2/802.AS1, any layer, Sync packet */
642                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
643                         ptp_v2 = PTP_TCR_TSVER2ENA;
644                         /* take time stamp for SYNC messages only */
645                         ts_event_en = PTP_TCR_TSEVNTENA;
646
647                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
648                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
649                         ptp_over_ethernet = PTP_TCR_TSIPENA;
650                         break;
651
652                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
653                         /* PTP v2/802.AS1, any layer, Delay_req packet */
654                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
655                         ptp_v2 = PTP_TCR_TSVER2ENA;
656                         /* take time stamp for Delay_Req messages only */
657                         ts_master_en = PTP_TCR_TSMSTRENA;
658                         ts_event_en = PTP_TCR_TSEVNTENA;
659
660                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
661                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
662                         ptp_over_ethernet = PTP_TCR_TSIPENA;
663                         break;
664
665                 case HWTSTAMP_FILTER_NTP_ALL:
666                 case HWTSTAMP_FILTER_ALL:
667                         /* time stamp any incoming packet */
668                         config.rx_filter = HWTSTAMP_FILTER_ALL;
669                         tstamp_all = PTP_TCR_TSENALL;
670                         break;
671
672                 default:
673                         return -ERANGE;
674                 }
675         } else {
676                 switch (config.rx_filter) {
677                 case HWTSTAMP_FILTER_NONE:
678                         config.rx_filter = HWTSTAMP_FILTER_NONE;
679                         break;
680                 default:
681                         /* PTP v1, UDP, any kind of event packet */
682                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
683                         break;
684                 }
685         }
686         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
687         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
688
689         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
690                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
691         else {
692                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
693                          tstamp_all | ptp_v2 | ptp_over_ethernet |
694                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
695                          ts_master_en | snap_type_sel);
696                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
697
698                 /* program Sub Second Increment reg */
699                 stmmac_config_sub_second_increment(priv,
700                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
701                                 xmac, &sec_inc);
702                 temp = div_u64(1000000000ULL, sec_inc);
703
704                 /* Store sub second increment and flags for later use */
705                 priv->sub_second_inc = sec_inc;
706                 priv->systime_flags = value;
707
708                 /* calculate default added value:
709                  * formula is :
710                  * addend = (2^32)/freq_div_ratio;
711                  * where, freq_div_ratio = 1e9ns/sec_inc
712                  */
713                 temp = (u64)(temp << 32);
714                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
715                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
716
717                 /* initialize system time */
718                 ktime_get_real_ts64(&now);
719
720                 /* lower 32 bits of tv_sec are safe until y2106 */
721                 stmmac_init_systime(priv, priv->ptpaddr,
722                                 (u32)now.tv_sec, now.tv_nsec);
723         }
724
725         memcpy(&priv->tstamp_config, &config, sizeof(config));
726
727         return copy_to_user(ifr->ifr_data, &config,
728                             sizeof(config)) ? -EFAULT : 0;
729 }
730
731 /**
732  *  stmmac_hwtstamp_get - read hardware timestamping.
733  *  @dev: device pointer.
734  *  @ifr: An IOCTL specific structure, that can contain a pointer to
735  *  a proprietary structure used to pass information to the driver.
736  *  Description:
737  *  This function obtain the current hardware timestamping settings
738     as requested.
739  */
740 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
741 {
742         struct stmmac_priv *priv = netdev_priv(dev);
743         struct hwtstamp_config *config = &priv->tstamp_config;
744
745         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
746                 return -EOPNOTSUPP;
747
748         return copy_to_user(ifr->ifr_data, config,
749                             sizeof(*config)) ? -EFAULT : 0;
750 }
751
752 /**
753  * stmmac_init_ptp - init PTP
754  * @priv: driver private structure
755  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
756  * This is done by looking at the HW cap. register.
757  * This function also registers the ptp driver.
758  */
759 static int stmmac_init_ptp(struct stmmac_priv *priv)
760 {
761         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
762
763         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
764                 return -EOPNOTSUPP;
765
766         priv->adv_ts = 0;
767         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
768         if (xmac && priv->dma_cap.atime_stamp)
769                 priv->adv_ts = 1;
770         /* Dwmac 3.x core with extend_desc can support adv_ts */
771         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
772                 priv->adv_ts = 1;
773
774         if (priv->dma_cap.time_stamp)
775                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
776
777         if (priv->adv_ts)
778                 netdev_info(priv->dev,
779                             "IEEE 1588-2008 Advanced Timestamp supported\n");
780
781         priv->hwts_tx_en = 0;
782         priv->hwts_rx_en = 0;
783
784         stmmac_ptp_register(priv);
785
786         return 0;
787 }
788
789 static void stmmac_release_ptp(struct stmmac_priv *priv)
790 {
791         if (priv->plat->clk_ptp_ref)
792                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
793         stmmac_ptp_unregister(priv);
794 }
795
796 /**
797  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
798  *  @priv: driver private structure
799  *  Description: It is used for configuring the flow control in all queues
800  */
801 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
802 {
803         u32 tx_cnt = priv->plat->tx_queues_to_use;
804
805         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
806                         priv->pause, tx_cnt);
807 }
808
809 static void stmmac_validate(struct phylink_config *config,
810                             unsigned long *supported,
811                             struct phylink_link_state *state)
812 {
813         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
815         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
816         int tx_cnt = priv->plat->tx_queues_to_use;
817         int max_speed = priv->plat->max_speed;
818
819         phylink_set(mac_supported, 10baseT_Half);
820         phylink_set(mac_supported, 10baseT_Full);
821         phylink_set(mac_supported, 100baseT_Half);
822         phylink_set(mac_supported, 100baseT_Full);
823         phylink_set(mac_supported, 1000baseT_Half);
824         phylink_set(mac_supported, 1000baseT_Full);
825         phylink_set(mac_supported, 1000baseKX_Full);
826
827         phylink_set(mac_supported, Autoneg);
828         phylink_set(mac_supported, Pause);
829         phylink_set(mac_supported, Asym_Pause);
830         phylink_set_port_modes(mac_supported);
831
832         /* Cut down 1G if asked to */
833         if ((max_speed > 0) && (max_speed < 1000)) {
834                 phylink_set(mask, 1000baseT_Full);
835                 phylink_set(mask, 1000baseX_Full);
836         } else if (priv->plat->has_xgmac) {
837                 if (!max_speed || (max_speed >= 2500)) {
838                         phylink_set(mac_supported, 2500baseT_Full);
839                         phylink_set(mac_supported, 2500baseX_Full);
840                 }
841                 if (!max_speed || (max_speed >= 5000)) {
842                         phylink_set(mac_supported, 5000baseT_Full);
843                 }
844                 if (!max_speed || (max_speed >= 10000)) {
845                         phylink_set(mac_supported, 10000baseSR_Full);
846                         phylink_set(mac_supported, 10000baseLR_Full);
847                         phylink_set(mac_supported, 10000baseER_Full);
848                         phylink_set(mac_supported, 10000baseLRM_Full);
849                         phylink_set(mac_supported, 10000baseT_Full);
850                         phylink_set(mac_supported, 10000baseKX4_Full);
851                         phylink_set(mac_supported, 10000baseKR_Full);
852                 }
853         }
854
855         /* Half-Duplex can only work with single queue */
856         if (tx_cnt > 1) {
857                 phylink_set(mask, 10baseT_Half);
858                 phylink_set(mask, 100baseT_Half);
859                 phylink_set(mask, 1000baseT_Half);
860         }
861
862         bitmap_and(supported, supported, mac_supported,
863                    __ETHTOOL_LINK_MODE_MASK_NBITS);
864         bitmap_andnot(supported, supported, mask,
865                       __ETHTOOL_LINK_MODE_MASK_NBITS);
866         bitmap_and(state->advertising, state->advertising, mac_supported,
867                    __ETHTOOL_LINK_MODE_MASK_NBITS);
868         bitmap_andnot(state->advertising, state->advertising, mask,
869                       __ETHTOOL_LINK_MODE_MASK_NBITS);
870 }
871
872 static int stmmac_mac_link_state(struct phylink_config *config,
873                                  struct phylink_link_state *state)
874 {
875         return -EOPNOTSUPP;
876 }
877
878 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
879                               const struct phylink_link_state *state)
880 {
881         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
882         u32 ctrl;
883
884         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
885         ctrl &= ~priv->hw->link.speed_mask;
886
887         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
888                 switch (state->speed) {
889                 case SPEED_10000:
890                         ctrl |= priv->hw->link.xgmii.speed10000;
891                         break;
892                 case SPEED_5000:
893                         ctrl |= priv->hw->link.xgmii.speed5000;
894                         break;
895                 case SPEED_2500:
896                         ctrl |= priv->hw->link.xgmii.speed2500;
897                         break;
898                 default:
899                         return;
900                 }
901         } else {
902                 switch (state->speed) {
903                 case SPEED_2500:
904                         ctrl |= priv->hw->link.speed2500;
905                         break;
906                 case SPEED_1000:
907                         ctrl |= priv->hw->link.speed1000;
908                         break;
909                 case SPEED_100:
910                         ctrl |= priv->hw->link.speed100;
911                         break;
912                 case SPEED_10:
913                         ctrl |= priv->hw->link.speed10;
914                         break;
915                 default:
916                         return;
917                 }
918         }
919
920         priv->speed = state->speed;
921
922         if (priv->plat->fix_mac_speed)
923                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
924
925         if (!state->duplex)
926                 ctrl &= ~priv->hw->link.duplex;
927         else
928                 ctrl |= priv->hw->link.duplex;
929
930         /* Flow Control operation */
931         if (state->pause)
932                 stmmac_mac_flow_ctrl(priv, state->duplex);
933
934         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
935 }
936
937 static void stmmac_mac_an_restart(struct phylink_config *config)
938 {
939         /* Not Supported */
940 }
941
942 static void stmmac_mac_link_down(struct phylink_config *config,
943                                  unsigned int mode, phy_interface_t interface)
944 {
945         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946
947         stmmac_mac_set(priv, priv->ioaddr, false);
948         priv->eee_active = false;
949         stmmac_eee_init(priv);
950         stmmac_set_eee_pls(priv, priv->hw, false);
951 }
952
953 static void stmmac_mac_link_up(struct phylink_config *config,
954                                unsigned int mode, phy_interface_t interface,
955                                struct phy_device *phy)
956 {
957         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
958
959         stmmac_mac_set(priv, priv->ioaddr, true);
960         if (phy && priv->dma_cap.eee) {
961                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
962                 priv->eee_enabled = stmmac_eee_init(priv);
963                 stmmac_set_eee_pls(priv, priv->hw, true);
964         }
965 }
966
967 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
968         .validate = stmmac_validate,
969         .mac_link_state = stmmac_mac_link_state,
970         .mac_config = stmmac_mac_config,
971         .mac_an_restart = stmmac_mac_an_restart,
972         .mac_link_down = stmmac_mac_link_down,
973         .mac_link_up = stmmac_mac_link_up,
974 };
975
976 /**
977  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
978  * @priv: driver private structure
979  * Description: this is to verify if the HW supports the PCS.
980  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
981  * configured for the TBI, RTBI, or SGMII PHY interface.
982  */
983 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
984 {
985         int interface = priv->plat->interface;
986
987         if (priv->dma_cap.pcs) {
988                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
990                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
991                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
992                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
993                         priv->hw->pcs = STMMAC_PCS_RGMII;
994                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
995                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
996                         priv->hw->pcs = STMMAC_PCS_SGMII;
997                 }
998         }
999 }
1000
1001 /**
1002  * stmmac_init_phy - PHY initialization
1003  * @dev: net device structure
1004  * Description: it initializes the driver's PHY state, and attaches the PHY
1005  * to the mac driver.
1006  *  Return value:
1007  *  0 on success
1008  */
1009 static int stmmac_init_phy(struct net_device *dev)
1010 {
1011         struct stmmac_priv *priv = netdev_priv(dev);
1012         struct device_node *node;
1013         int ret;
1014
1015         node = priv->plat->phylink_node;
1016
1017         if (node)
1018                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1019
1020         /* Some DT bindings do not set-up the PHY handle. Let's try to
1021          * manually parse it
1022          */
1023         if (!node || ret) {
1024                 int addr = priv->plat->phy_addr;
1025                 struct phy_device *phydev;
1026
1027                 phydev = mdiobus_get_phy(priv->mii, addr);
1028                 if (!phydev) {
1029                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1030                         return -ENODEV;
1031                 }
1032
1033                 ret = phylink_connect_phy(priv->phylink, phydev);
1034         }
1035
1036         return ret;
1037 }
1038
1039 static int stmmac_phy_setup(struct stmmac_priv *priv)
1040 {
1041         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1042         int mode = priv->plat->phy_interface;
1043         struct phylink *phylink;
1044
1045         priv->phylink_config.dev = &priv->dev->dev;
1046         priv->phylink_config.type = PHYLINK_NETDEV;
1047
1048         phylink = phylink_create(&priv->phylink_config, fwnode,
1049                                  mode, &stmmac_phylink_mac_ops);
1050         if (IS_ERR(phylink))
1051                 return PTR_ERR(phylink);
1052
1053         priv->phylink = phylink;
1054         return 0;
1055 }
1056
1057 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1058 {
1059         u32 rx_cnt = priv->plat->rx_queues_to_use;
1060         void *head_rx;
1061         u32 queue;
1062
1063         /* Display RX rings */
1064         for (queue = 0; queue < rx_cnt; queue++) {
1065                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1066
1067                 pr_info("\tRX Queue %u rings\n", queue);
1068
1069                 if (priv->extend_desc)
1070                         head_rx = (void *)rx_q->dma_erx;
1071                 else
1072                         head_rx = (void *)rx_q->dma_rx;
1073
1074                 /* Display RX ring */
1075                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1076         }
1077 }
1078
1079 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1080 {
1081         u32 tx_cnt = priv->plat->tx_queues_to_use;
1082         void *head_tx;
1083         u32 queue;
1084
1085         /* Display TX rings */
1086         for (queue = 0; queue < tx_cnt; queue++) {
1087                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1088
1089                 pr_info("\tTX Queue %d rings\n", queue);
1090
1091                 if (priv->extend_desc)
1092                         head_tx = (void *)tx_q->dma_etx;
1093                 else
1094                         head_tx = (void *)tx_q->dma_tx;
1095
1096                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1097         }
1098 }
1099
1100 static void stmmac_display_rings(struct stmmac_priv *priv)
1101 {
1102         /* Display RX ring */
1103         stmmac_display_rx_rings(priv);
1104
1105         /* Display TX ring */
1106         stmmac_display_tx_rings(priv);
1107 }
1108
1109 static int stmmac_set_bfsize(int mtu, int bufsize)
1110 {
1111         int ret = bufsize;
1112
1113         if (mtu >= BUF_SIZE_8KiB)
1114                 ret = BUF_SIZE_16KiB;
1115         else if (mtu >= BUF_SIZE_4KiB)
1116                 ret = BUF_SIZE_8KiB;
1117         else if (mtu >= BUF_SIZE_2KiB)
1118                 ret = BUF_SIZE_4KiB;
1119         else if (mtu > DEFAULT_BUFSIZE)
1120                 ret = BUF_SIZE_2KiB;
1121         else
1122                 ret = DEFAULT_BUFSIZE;
1123
1124         return ret;
1125 }
1126
1127 /**
1128  * stmmac_clear_rx_descriptors - clear RX descriptors
1129  * @priv: driver private structure
1130  * @queue: RX queue index
1131  * Description: this function is called to clear the RX descriptors
1132  * in case of both basic and extended descriptors are used.
1133  */
1134 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1135 {
1136         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1137         int i;
1138
1139         /* Clear the RX descriptors */
1140         for (i = 0; i < DMA_RX_SIZE; i++)
1141                 if (priv->extend_desc)
1142                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1143                                         priv->use_riwt, priv->mode,
1144                                         (i == DMA_RX_SIZE - 1),
1145                                         priv->dma_buf_sz);
1146                 else
1147                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1148                                         priv->use_riwt, priv->mode,
1149                                         (i == DMA_RX_SIZE - 1),
1150                                         priv->dma_buf_sz);
1151 }
1152
1153 /**
1154  * stmmac_clear_tx_descriptors - clear tx descriptors
1155  * @priv: driver private structure
1156  * @queue: TX queue index.
1157  * Description: this function is called to clear the TX descriptors
1158  * in case of both basic and extended descriptors are used.
1159  */
1160 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1161 {
1162         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1163         int i;
1164
1165         /* Clear the TX descriptors */
1166         for (i = 0; i < DMA_TX_SIZE; i++)
1167                 if (priv->extend_desc)
1168                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1169                                         priv->mode, (i == DMA_TX_SIZE - 1));
1170                 else
1171                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1172                                         priv->mode, (i == DMA_TX_SIZE - 1));
1173 }
1174
1175 /**
1176  * stmmac_clear_descriptors - clear descriptors
1177  * @priv: driver private structure
1178  * Description: this function is called to clear the TX and RX descriptors
1179  * in case of both basic and extended descriptors are used.
1180  */
1181 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1182 {
1183         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1184         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1185         u32 queue;
1186
1187         /* Clear the RX descriptors */
1188         for (queue = 0; queue < rx_queue_cnt; queue++)
1189                 stmmac_clear_rx_descriptors(priv, queue);
1190
1191         /* Clear the TX descriptors */
1192         for (queue = 0; queue < tx_queue_cnt; queue++)
1193                 stmmac_clear_tx_descriptors(priv, queue);
1194 }
1195
1196 /**
1197  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1198  * @priv: driver private structure
1199  * @p: descriptor pointer
1200  * @i: descriptor index
1201  * @flags: gfp flag
1202  * @queue: RX queue index
1203  * Description: this function is called to allocate a receive buffer, perform
1204  * the DMA mapping and init the descriptor.
1205  */
1206 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1207                                   int i, gfp_t flags, u32 queue)
1208 {
1209         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1210         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1211
1212         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1213         if (!buf->page)
1214                 return -ENOMEM;
1215
1216         if (priv->sph) {
1217                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1218                 if (!buf->sec_page)
1219                         return -ENOMEM;
1220
1221                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1222                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1223         } else {
1224                 buf->sec_page = NULL;
1225         }
1226
1227         buf->addr = page_pool_get_dma_addr(buf->page);
1228         stmmac_set_desc_addr(priv, p, buf->addr);
1229         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1230                 stmmac_init_desc3(priv, p);
1231
1232         return 0;
1233 }
1234
1235 /**
1236  * stmmac_free_rx_buffer - free RX dma buffers
1237  * @priv: private structure
1238  * @queue: RX queue index
1239  * @i: buffer index.
1240  */
1241 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1242 {
1243         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1244         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1245
1246         if (buf->page)
1247                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1248         buf->page = NULL;
1249
1250         if (buf->sec_page)
1251                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1252         buf->sec_page = NULL;
1253 }
1254
1255 /**
1256  * stmmac_free_tx_buffer - free RX dma buffers
1257  * @priv: private structure
1258  * @queue: RX queue index
1259  * @i: buffer index.
1260  */
1261 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1262 {
1263         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1264
1265         if (tx_q->tx_skbuff_dma[i].buf) {
1266                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1267                         dma_unmap_page(priv->device,
1268                                        tx_q->tx_skbuff_dma[i].buf,
1269                                        tx_q->tx_skbuff_dma[i].len,
1270                                        DMA_TO_DEVICE);
1271                 else
1272                         dma_unmap_single(priv->device,
1273                                          tx_q->tx_skbuff_dma[i].buf,
1274                                          tx_q->tx_skbuff_dma[i].len,
1275                                          DMA_TO_DEVICE);
1276         }
1277
1278         if (tx_q->tx_skbuff[i]) {
1279                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1280                 tx_q->tx_skbuff[i] = NULL;
1281                 tx_q->tx_skbuff_dma[i].buf = 0;
1282                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1283         }
1284 }
1285
1286 /**
1287  * init_dma_rx_desc_rings - init the RX descriptor rings
1288  * @dev: net device structure
1289  * @flags: gfp flag.
1290  * Description: this function initializes the DMA RX descriptors
1291  * and allocates the socket buffers. It supports the chained and ring
1292  * modes.
1293  */
1294 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1295 {
1296         struct stmmac_priv *priv = netdev_priv(dev);
1297         u32 rx_count = priv->plat->rx_queues_to_use;
1298         int ret = -ENOMEM;
1299         int queue;
1300         int i;
1301
1302         /* RX INITIALIZATION */
1303         netif_dbg(priv, probe, priv->dev,
1304                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1305
1306         for (queue = 0; queue < rx_count; queue++) {
1307                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1308
1309                 netif_dbg(priv, probe, priv->dev,
1310                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1311                           (u32)rx_q->dma_rx_phy);
1312
1313                 stmmac_clear_rx_descriptors(priv, queue);
1314
1315                 for (i = 0; i < DMA_RX_SIZE; i++) {
1316                         struct dma_desc *p;
1317
1318                         if (priv->extend_desc)
1319                                 p = &((rx_q->dma_erx + i)->basic);
1320                         else
1321                                 p = rx_q->dma_rx + i;
1322
1323                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1324                                                      queue);
1325                         if (ret)
1326                                 goto err_init_rx_buffers;
1327                 }
1328
1329                 rx_q->cur_rx = 0;
1330                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1331
1332                 /* Setup the chained descriptor addresses */
1333                 if (priv->mode == STMMAC_CHAIN_MODE) {
1334                         if (priv->extend_desc)
1335                                 stmmac_mode_init(priv, rx_q->dma_erx,
1336                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1337                         else
1338                                 stmmac_mode_init(priv, rx_q->dma_rx,
1339                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1340                 }
1341         }
1342
1343         return 0;
1344
1345 err_init_rx_buffers:
1346         while (queue >= 0) {
1347                 while (--i >= 0)
1348                         stmmac_free_rx_buffer(priv, queue, i);
1349
1350                 if (queue == 0)
1351                         break;
1352
1353                 i = DMA_RX_SIZE;
1354                 queue--;
1355         }
1356
1357         return ret;
1358 }
1359
1360 /**
1361  * init_dma_tx_desc_rings - init the TX descriptor rings
1362  * @dev: net device structure.
1363  * Description: this function initializes the DMA TX descriptors
1364  * and allocates the socket buffers. It supports the chained and ring
1365  * modes.
1366  */
1367 static int init_dma_tx_desc_rings(struct net_device *dev)
1368 {
1369         struct stmmac_priv *priv = netdev_priv(dev);
1370         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1371         u32 queue;
1372         int i;
1373
1374         for (queue = 0; queue < tx_queue_cnt; queue++) {
1375                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376
1377                 netif_dbg(priv, probe, priv->dev,
1378                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1379                          (u32)tx_q->dma_tx_phy);
1380
1381                 /* Setup the chained descriptor addresses */
1382                 if (priv->mode == STMMAC_CHAIN_MODE) {
1383                         if (priv->extend_desc)
1384                                 stmmac_mode_init(priv, tx_q->dma_etx,
1385                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1386                         else
1387                                 stmmac_mode_init(priv, tx_q->dma_tx,
1388                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1389                 }
1390
1391                 for (i = 0; i < DMA_TX_SIZE; i++) {
1392                         struct dma_desc *p;
1393                         if (priv->extend_desc)
1394                                 p = &((tx_q->dma_etx + i)->basic);
1395                         else
1396                                 p = tx_q->dma_tx + i;
1397
1398                         stmmac_clear_desc(priv, p);
1399
1400                         tx_q->tx_skbuff_dma[i].buf = 0;
1401                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1402                         tx_q->tx_skbuff_dma[i].len = 0;
1403                         tx_q->tx_skbuff_dma[i].last_segment = false;
1404                         tx_q->tx_skbuff[i] = NULL;
1405                 }
1406
1407                 tx_q->dirty_tx = 0;
1408                 tx_q->cur_tx = 0;
1409                 tx_q->mss = 0;
1410
1411                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1412         }
1413
1414         return 0;
1415 }
1416
1417 /**
1418  * init_dma_desc_rings - init the RX/TX descriptor rings
1419  * @dev: net device structure
1420  * @flags: gfp flag.
1421  * Description: this function initializes the DMA RX/TX descriptors
1422  * and allocates the socket buffers. It supports the chained and ring
1423  * modes.
1424  */
1425 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1426 {
1427         struct stmmac_priv *priv = netdev_priv(dev);
1428         int ret;
1429
1430         ret = init_dma_rx_desc_rings(dev, flags);
1431         if (ret)
1432                 return ret;
1433
1434         ret = init_dma_tx_desc_rings(dev);
1435
1436         stmmac_clear_descriptors(priv);
1437
1438         if (netif_msg_hw(priv))
1439                 stmmac_display_rings(priv);
1440
1441         return ret;
1442 }
1443
1444 /**
1445  * dma_free_rx_skbufs - free RX dma buffers
1446  * @priv: private structure
1447  * @queue: RX queue index
1448  */
1449 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451         int i;
1452
1453         for (i = 0; i < DMA_RX_SIZE; i++)
1454                 stmmac_free_rx_buffer(priv, queue, i);
1455 }
1456
1457 /**
1458  * dma_free_tx_skbufs - free TX dma buffers
1459  * @priv: private structure
1460  * @queue: TX queue index
1461  */
1462 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1463 {
1464         int i;
1465
1466         for (i = 0; i < DMA_TX_SIZE; i++)
1467                 stmmac_free_tx_buffer(priv, queue, i);
1468 }
1469
1470 /**
1471  * free_dma_rx_desc_resources - free RX dma desc resources
1472  * @priv: private structure
1473  */
1474 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1475 {
1476         u32 rx_count = priv->plat->rx_queues_to_use;
1477         u32 queue;
1478
1479         /* Free RX queue resources */
1480         for (queue = 0; queue < rx_count; queue++) {
1481                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1482
1483                 /* Release the DMA RX socket buffers */
1484                 dma_free_rx_skbufs(priv, queue);
1485
1486                 /* Free DMA regions of consistent memory previously allocated */
1487                 if (!priv->extend_desc)
1488                         dma_free_coherent(priv->device,
1489                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1490                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1491                 else
1492                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1493                                           sizeof(struct dma_extended_desc),
1494                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1495
1496                 kfree(rx_q->buf_pool);
1497                 if (rx_q->page_pool)
1498                         page_pool_destroy(rx_q->page_pool);
1499         }
1500 }
1501
1502 /**
1503  * free_dma_tx_desc_resources - free TX dma desc resources
1504  * @priv: private structure
1505  */
1506 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1507 {
1508         u32 tx_count = priv->plat->tx_queues_to_use;
1509         u32 queue;
1510
1511         /* Free TX queue resources */
1512         for (queue = 0; queue < tx_count; queue++) {
1513                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1514
1515                 /* Release the DMA TX socket buffers */
1516                 dma_free_tx_skbufs(priv, queue);
1517
1518                 /* Free DMA regions of consistent memory previously allocated */
1519                 if (!priv->extend_desc)
1520                         dma_free_coherent(priv->device,
1521                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1522                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1523                 else
1524                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1525                                           sizeof(struct dma_extended_desc),
1526                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1527
1528                 kfree(tx_q->tx_skbuff_dma);
1529                 kfree(tx_q->tx_skbuff);
1530         }
1531 }
1532
1533 /**
1534  * alloc_dma_rx_desc_resources - alloc RX resources.
1535  * @priv: private structure
1536  * Description: according to which descriptor can be used (extend or basic)
1537  * this function allocates the resources for TX and RX paths. In case of
1538  * reception, for example, it pre-allocated the RX socket buffer in order to
1539  * allow zero-copy mechanism.
1540  */
1541 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1542 {
1543         u32 rx_count = priv->plat->rx_queues_to_use;
1544         int ret = -ENOMEM;
1545         u32 queue;
1546
1547         /* RX queues buffers and DMA */
1548         for (queue = 0; queue < rx_count; queue++) {
1549                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1550                 struct page_pool_params pp_params = { 0 };
1551                 unsigned int num_pages;
1552
1553                 rx_q->queue_index = queue;
1554                 rx_q->priv_data = priv;
1555
1556                 pp_params.flags = PP_FLAG_DMA_MAP;
1557                 pp_params.pool_size = DMA_RX_SIZE;
1558                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1559                 pp_params.order = ilog2(num_pages);
1560                 pp_params.nid = dev_to_node(priv->device);
1561                 pp_params.dev = priv->device;
1562                 pp_params.dma_dir = DMA_FROM_DEVICE;
1563
1564                 rx_q->page_pool = page_pool_create(&pp_params);
1565                 if (IS_ERR(rx_q->page_pool)) {
1566                         ret = PTR_ERR(rx_q->page_pool);
1567                         rx_q->page_pool = NULL;
1568                         goto err_dma;
1569                 }
1570
1571                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1572                                          GFP_KERNEL);
1573                 if (!rx_q->buf_pool)
1574                         goto err_dma;
1575
1576                 if (priv->extend_desc) {
1577                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1578                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1579                                                            &rx_q->dma_rx_phy,
1580                                                            GFP_KERNEL);
1581                         if (!rx_q->dma_erx)
1582                                 goto err_dma;
1583
1584                 } else {
1585                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1586                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1587                                                           &rx_q->dma_rx_phy,
1588                                                           GFP_KERNEL);
1589                         if (!rx_q->dma_rx)
1590                                 goto err_dma;
1591                 }
1592         }
1593
1594         return 0;
1595
1596 err_dma:
1597         free_dma_rx_desc_resources(priv);
1598
1599         return ret;
1600 }
1601
1602 /**
1603  * alloc_dma_tx_desc_resources - alloc TX resources.
1604  * @priv: private structure
1605  * Description: according to which descriptor can be used (extend or basic)
1606  * this function allocates the resources for TX and RX paths. In case of
1607  * reception, for example, it pre-allocated the RX socket buffer in order to
1608  * allow zero-copy mechanism.
1609  */
1610 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1611 {
1612         u32 tx_count = priv->plat->tx_queues_to_use;
1613         int ret = -ENOMEM;
1614         u32 queue;
1615
1616         /* TX queues buffers and DMA */
1617         for (queue = 0; queue < tx_count; queue++) {
1618                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1619
1620                 tx_q->queue_index = queue;
1621                 tx_q->priv_data = priv;
1622
1623                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1624                                               sizeof(*tx_q->tx_skbuff_dma),
1625                                               GFP_KERNEL);
1626                 if (!tx_q->tx_skbuff_dma)
1627                         goto err_dma;
1628
1629                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1630                                           sizeof(struct sk_buff *),
1631                                           GFP_KERNEL);
1632                 if (!tx_q->tx_skbuff)
1633                         goto err_dma;
1634
1635                 if (priv->extend_desc) {
1636                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1637                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1638                                                            &tx_q->dma_tx_phy,
1639                                                            GFP_KERNEL);
1640                         if (!tx_q->dma_etx)
1641                                 goto err_dma;
1642                 } else {
1643                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1644                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1645                                                           &tx_q->dma_tx_phy,
1646                                                           GFP_KERNEL);
1647                         if (!tx_q->dma_tx)
1648                                 goto err_dma;
1649                 }
1650         }
1651
1652         return 0;
1653
1654 err_dma:
1655         free_dma_tx_desc_resources(priv);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * alloc_dma_desc_resources - alloc TX/RX resources.
1662  * @priv: private structure
1663  * Description: according to which descriptor can be used (extend or basic)
1664  * this function allocates the resources for TX and RX paths. In case of
1665  * reception, for example, it pre-allocated the RX socket buffer in order to
1666  * allow zero-copy mechanism.
1667  */
1668 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1669 {
1670         /* RX Allocation */
1671         int ret = alloc_dma_rx_desc_resources(priv);
1672
1673         if (ret)
1674                 return ret;
1675
1676         ret = alloc_dma_tx_desc_resources(priv);
1677
1678         return ret;
1679 }
1680
1681 /**
1682  * free_dma_desc_resources - free dma desc resources
1683  * @priv: private structure
1684  */
1685 static void free_dma_desc_resources(struct stmmac_priv *priv)
1686 {
1687         /* Release the DMA RX socket buffers */
1688         free_dma_rx_desc_resources(priv);
1689
1690         /* Release the DMA TX socket buffers */
1691         free_dma_tx_desc_resources(priv);
1692 }
1693
1694 /**
1695  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1696  *  @priv: driver private structure
1697  *  Description: It is used for enabling the rx queues in the MAC
1698  */
1699 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1700 {
1701         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1702         int queue;
1703         u8 mode;
1704
1705         for (queue = 0; queue < rx_queues_count; queue++) {
1706                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1707                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1708         }
1709 }
1710
1711 /**
1712  * stmmac_start_rx_dma - start RX DMA channel
1713  * @priv: driver private structure
1714  * @chan: RX channel index
1715  * Description:
1716  * This starts a RX DMA channel
1717  */
1718 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1719 {
1720         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1721         stmmac_start_rx(priv, priv->ioaddr, chan);
1722 }
1723
1724 /**
1725  * stmmac_start_tx_dma - start TX DMA channel
1726  * @priv: driver private structure
1727  * @chan: TX channel index
1728  * Description:
1729  * This starts a TX DMA channel
1730  */
1731 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1732 {
1733         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1734         stmmac_start_tx(priv, priv->ioaddr, chan);
1735 }
1736
1737 /**
1738  * stmmac_stop_rx_dma - stop RX DMA channel
1739  * @priv: driver private structure
1740  * @chan: RX channel index
1741  * Description:
1742  * This stops a RX DMA channel
1743  */
1744 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1745 {
1746         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1747         stmmac_stop_rx(priv, priv->ioaddr, chan);
1748 }
1749
1750 /**
1751  * stmmac_stop_tx_dma - stop TX DMA channel
1752  * @priv: driver private structure
1753  * @chan: TX channel index
1754  * Description:
1755  * This stops a TX DMA channel
1756  */
1757 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1758 {
1759         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1760         stmmac_stop_tx(priv, priv->ioaddr, chan);
1761 }
1762
1763 /**
1764  * stmmac_start_all_dma - start all RX and TX DMA channels
1765  * @priv: driver private structure
1766  * Description:
1767  * This starts all the RX and TX DMA channels
1768  */
1769 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1770 {
1771         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1772         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1773         u32 chan = 0;
1774
1775         for (chan = 0; chan < rx_channels_count; chan++)
1776                 stmmac_start_rx_dma(priv, chan);
1777
1778         for (chan = 0; chan < tx_channels_count; chan++)
1779                 stmmac_start_tx_dma(priv, chan);
1780 }
1781
1782 /**
1783  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1784  * @priv: driver private structure
1785  * Description:
1786  * This stops the RX and TX DMA channels
1787  */
1788 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1789 {
1790         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1791         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1792         u32 chan = 0;
1793
1794         for (chan = 0; chan < rx_channels_count; chan++)
1795                 stmmac_stop_rx_dma(priv, chan);
1796
1797         for (chan = 0; chan < tx_channels_count; chan++)
1798                 stmmac_stop_tx_dma(priv, chan);
1799 }
1800
1801 /**
1802  *  stmmac_dma_operation_mode - HW DMA operation mode
1803  *  @priv: driver private structure
1804  *  Description: it is used for configuring the DMA operation mode register in
1805  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1806  */
1807 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1808 {
1809         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1810         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1811         int rxfifosz = priv->plat->rx_fifo_size;
1812         int txfifosz = priv->plat->tx_fifo_size;
1813         u32 txmode = 0;
1814         u32 rxmode = 0;
1815         u32 chan = 0;
1816         u8 qmode = 0;
1817
1818         if (rxfifosz == 0)
1819                 rxfifosz = priv->dma_cap.rx_fifo_size;
1820         if (txfifosz == 0)
1821                 txfifosz = priv->dma_cap.tx_fifo_size;
1822
1823         /* Adjust for real per queue fifo size */
1824         rxfifosz /= rx_channels_count;
1825         txfifosz /= tx_channels_count;
1826
1827         if (priv->plat->force_thresh_dma_mode) {
1828                 txmode = tc;
1829                 rxmode = tc;
1830         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1831                 /*
1832                  * In case of GMAC, SF mode can be enabled
1833                  * to perform the TX COE in HW. This depends on:
1834                  * 1) TX COE if actually supported
1835                  * 2) There is no bugged Jumbo frame support
1836                  *    that needs to not insert csum in the TDES.
1837                  */
1838                 txmode = SF_DMA_MODE;
1839                 rxmode = SF_DMA_MODE;
1840                 priv->xstats.threshold = SF_DMA_MODE;
1841         } else {
1842                 txmode = tc;
1843                 rxmode = SF_DMA_MODE;
1844         }
1845
1846         /* configure all channels */
1847         for (chan = 0; chan < rx_channels_count; chan++) {
1848                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1849
1850                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1851                                 rxfifosz, qmode);
1852                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1853                                 chan);
1854         }
1855
1856         for (chan = 0; chan < tx_channels_count; chan++) {
1857                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1858
1859                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1860                                 txfifosz, qmode);
1861         }
1862 }
1863
1864 /**
1865  * stmmac_tx_clean - to manage the transmission completion
1866  * @priv: driver private structure
1867  * @queue: TX queue index
1868  * Description: it reclaims the transmit resources after transmission completes.
1869  */
1870 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1871 {
1872         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1873         unsigned int bytes_compl = 0, pkts_compl = 0;
1874         unsigned int entry, count = 0;
1875
1876         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1877
1878         priv->xstats.tx_clean++;
1879
1880         entry = tx_q->dirty_tx;
1881         while ((entry != tx_q->cur_tx) && (count < budget)) {
1882                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1883                 struct dma_desc *p;
1884                 int status;
1885
1886                 if (priv->extend_desc)
1887                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1888                 else
1889                         p = tx_q->dma_tx + entry;
1890
1891                 status = stmmac_tx_status(priv, &priv->dev->stats,
1892                                 &priv->xstats, p, priv->ioaddr);
1893                 /* Check if the descriptor is owned by the DMA */
1894                 if (unlikely(status & tx_dma_own))
1895                         break;
1896
1897                 count++;
1898
1899                 /* Make sure descriptor fields are read after reading
1900                  * the own bit.
1901                  */
1902                 dma_rmb();
1903
1904                 /* Just consider the last segment and ...*/
1905                 if (likely(!(status & tx_not_ls))) {
1906                         /* ... verify the status error condition */
1907                         if (unlikely(status & tx_err)) {
1908                                 priv->dev->stats.tx_errors++;
1909                         } else {
1910                                 priv->dev->stats.tx_packets++;
1911                                 priv->xstats.tx_pkt_n++;
1912                         }
1913                         stmmac_get_tx_hwtstamp(priv, p, skb);
1914                 }
1915
1916                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1917                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1918                                 dma_unmap_page(priv->device,
1919                                                tx_q->tx_skbuff_dma[entry].buf,
1920                                                tx_q->tx_skbuff_dma[entry].len,
1921                                                DMA_TO_DEVICE);
1922                         else
1923                                 dma_unmap_single(priv->device,
1924                                                  tx_q->tx_skbuff_dma[entry].buf,
1925                                                  tx_q->tx_skbuff_dma[entry].len,
1926                                                  DMA_TO_DEVICE);
1927                         tx_q->tx_skbuff_dma[entry].buf = 0;
1928                         tx_q->tx_skbuff_dma[entry].len = 0;
1929                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1930                 }
1931
1932                 stmmac_clean_desc3(priv, tx_q, p);
1933
1934                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1935                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1936
1937                 if (likely(skb != NULL)) {
1938                         pkts_compl++;
1939                         bytes_compl += skb->len;
1940                         dev_consume_skb_any(skb);
1941                         tx_q->tx_skbuff[entry] = NULL;
1942                 }
1943
1944                 stmmac_release_tx_desc(priv, p, priv->mode);
1945
1946                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1947         }
1948         tx_q->dirty_tx = entry;
1949
1950         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1951                                   pkts_compl, bytes_compl);
1952
1953         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1954                                                                 queue))) &&
1955             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1956
1957                 netif_dbg(priv, tx_done, priv->dev,
1958                           "%s: restart transmit\n", __func__);
1959                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1960         }
1961
1962         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1963                 stmmac_enable_eee_mode(priv);
1964                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1965         }
1966
1967         /* We still have pending packets, let's call for a new scheduling */
1968         if (tx_q->dirty_tx != tx_q->cur_tx)
1969                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1970
1971         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1972
1973         return count;
1974 }
1975
1976 /**
1977  * stmmac_tx_err - to manage the tx error
1978  * @priv: driver private structure
1979  * @chan: channel index
1980  * Description: it cleans the descriptors and restarts the transmission
1981  * in case of transmission errors.
1982  */
1983 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1984 {
1985         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1986         int i;
1987
1988         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1989
1990         stmmac_stop_tx_dma(priv, chan);
1991         dma_free_tx_skbufs(priv, chan);
1992         for (i = 0; i < DMA_TX_SIZE; i++)
1993                 if (priv->extend_desc)
1994                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1995                                         priv->mode, (i == DMA_TX_SIZE - 1));
1996                 else
1997                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1998                                         priv->mode, (i == DMA_TX_SIZE - 1));
1999         tx_q->dirty_tx = 0;
2000         tx_q->cur_tx = 0;
2001         tx_q->mss = 0;
2002         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2003         stmmac_start_tx_dma(priv, chan);
2004
2005         priv->dev->stats.tx_errors++;
2006         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2007 }
2008
2009 /**
2010  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2011  *  @priv: driver private structure
2012  *  @txmode: TX operating mode
2013  *  @rxmode: RX operating mode
2014  *  @chan: channel index
2015  *  Description: it is used for configuring of the DMA operation mode in
2016  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2017  *  mode.
2018  */
2019 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2020                                           u32 rxmode, u32 chan)
2021 {
2022         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2023         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2024         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2025         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2026         int rxfifosz = priv->plat->rx_fifo_size;
2027         int txfifosz = priv->plat->tx_fifo_size;
2028
2029         if (rxfifosz == 0)
2030                 rxfifosz = priv->dma_cap.rx_fifo_size;
2031         if (txfifosz == 0)
2032                 txfifosz = priv->dma_cap.tx_fifo_size;
2033
2034         /* Adjust for real per queue fifo size */
2035         rxfifosz /= rx_channels_count;
2036         txfifosz /= tx_channels_count;
2037
2038         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2039         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2040 }
2041
2042 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2043 {
2044         int ret;
2045
2046         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2047                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2048         if (ret && (ret != -EINVAL)) {
2049                 stmmac_global_err(priv);
2050                 return true;
2051         }
2052
2053         return false;
2054 }
2055
2056 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2057 {
2058         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2059                                                  &priv->xstats, chan);
2060         struct stmmac_channel *ch = &priv->channel[chan];
2061
2062         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2063                 if (napi_schedule_prep(&ch->rx_napi)) {
2064                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2065                         __napi_schedule_irqoff(&ch->rx_napi);
2066                         status |= handle_tx;
2067                 }
2068         }
2069
2070         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2071                 napi_schedule_irqoff(&ch->tx_napi);
2072
2073         return status;
2074 }
2075
2076 /**
2077  * stmmac_dma_interrupt - DMA ISR
2078  * @priv: driver private structure
2079  * Description: this is the DMA ISR. It is called by the main ISR.
2080  * It calls the dwmac dma routine and schedule poll method in case of some
2081  * work can be done.
2082  */
2083 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2084 {
2085         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2086         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2087         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2088                                 tx_channel_count : rx_channel_count;
2089         u32 chan;
2090         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2091
2092         /* Make sure we never check beyond our status buffer. */
2093         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2094                 channels_to_check = ARRAY_SIZE(status);
2095
2096         for (chan = 0; chan < channels_to_check; chan++)
2097                 status[chan] = stmmac_napi_check(priv, chan);
2098
2099         for (chan = 0; chan < tx_channel_count; chan++) {
2100                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2101                         /* Try to bump up the dma threshold on this failure */
2102                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2103                             (tc <= 256)) {
2104                                 tc += 64;
2105                                 if (priv->plat->force_thresh_dma_mode)
2106                                         stmmac_set_dma_operation_mode(priv,
2107                                                                       tc,
2108                                                                       tc,
2109                                                                       chan);
2110                                 else
2111                                         stmmac_set_dma_operation_mode(priv,
2112                                                                     tc,
2113                                                                     SF_DMA_MODE,
2114                                                                     chan);
2115                                 priv->xstats.threshold = tc;
2116                         }
2117                 } else if (unlikely(status[chan] == tx_hard_error)) {
2118                         stmmac_tx_err(priv, chan);
2119                 }
2120         }
2121 }
2122
2123 /**
2124  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2125  * @priv: driver private structure
2126  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2127  */
2128 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2129 {
2130         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2131                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2132
2133         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2134
2135         if (priv->dma_cap.rmon) {
2136                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2137                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2138         } else
2139                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2140 }
2141
2142 /**
2143  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2144  * @priv: driver private structure
2145  * Description:
2146  *  new GMAC chip generations have a new register to indicate the
2147  *  presence of the optional feature/functions.
2148  *  This can be also used to override the value passed through the
2149  *  platform and necessary for old MAC10/100 and GMAC chips.
2150  */
2151 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2152 {
2153         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2154 }
2155
2156 /**
2157  * stmmac_check_ether_addr - check if the MAC addr is valid
2158  * @priv: driver private structure
2159  * Description:
2160  * it is to verify if the MAC address is valid, in case of failures it
2161  * generates a random MAC address
2162  */
2163 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2164 {
2165         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2166                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2167                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2168                         eth_hw_addr_random(priv->dev);
2169                 dev_info(priv->device, "device MAC address %pM\n",
2170                          priv->dev->dev_addr);
2171         }
2172 }
2173
2174 /**
2175  * stmmac_init_dma_engine - DMA init.
2176  * @priv: driver private structure
2177  * Description:
2178  * It inits the DMA invoking the specific MAC/GMAC callback.
2179  * Some DMA parameters can be passed from the platform;
2180  * in case of these are not passed a default is kept for the MAC or GMAC.
2181  */
2182 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2183 {
2184         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2185         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2186         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2187         struct stmmac_rx_queue *rx_q;
2188         struct stmmac_tx_queue *tx_q;
2189         u32 chan = 0;
2190         int atds = 0;
2191         int ret = 0;
2192
2193         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2194                 dev_err(priv->device, "Invalid DMA configuration\n");
2195                 return -EINVAL;
2196         }
2197
2198         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2199                 atds = 1;
2200
2201         ret = stmmac_reset(priv, priv->ioaddr);
2202         if (ret) {
2203                 dev_err(priv->device, "Failed to reset the dma\n");
2204                 return ret;
2205         }
2206
2207         /* DMA Configuration */
2208         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2209
2210         if (priv->plat->axi)
2211                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2212
2213         /* DMA CSR Channel configuration */
2214         for (chan = 0; chan < dma_csr_ch; chan++)
2215                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2216
2217         /* DMA RX Channel Configuration */
2218         for (chan = 0; chan < rx_channels_count; chan++) {
2219                 rx_q = &priv->rx_queue[chan];
2220
2221                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2222                                     rx_q->dma_rx_phy, chan);
2223
2224                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2225                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2226                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2227                                        rx_q->rx_tail_addr, chan);
2228         }
2229
2230         /* DMA TX Channel Configuration */
2231         for (chan = 0; chan < tx_channels_count; chan++) {
2232                 tx_q = &priv->tx_queue[chan];
2233
2234                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2235                                     tx_q->dma_tx_phy, chan);
2236
2237                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2238                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2239                                        tx_q->tx_tail_addr, chan);
2240         }
2241
2242         return ret;
2243 }
2244
2245 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2246 {
2247         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2248
2249         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2250 }
2251
2252 /**
2253  * stmmac_tx_timer - mitigation sw timer for tx.
2254  * @data: data pointer
2255  * Description:
2256  * This is the timer handler to directly invoke the stmmac_tx_clean.
2257  */
2258 static void stmmac_tx_timer(struct timer_list *t)
2259 {
2260         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2261         struct stmmac_priv *priv = tx_q->priv_data;
2262         struct stmmac_channel *ch;
2263
2264         ch = &priv->channel[tx_q->queue_index];
2265
2266         /*
2267          * If NAPI is already running we can miss some events. Let's rearm
2268          * the timer and try again.
2269          */
2270         if (likely(napi_schedule_prep(&ch->tx_napi)))
2271                 __napi_schedule(&ch->tx_napi);
2272         else
2273                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2274 }
2275
2276 /**
2277  * stmmac_init_coalesce - init mitigation options.
2278  * @priv: driver private structure
2279  * Description:
2280  * This inits the coalesce parameters: i.e. timer rate,
2281  * timer handler and default threshold used for enabling the
2282  * interrupt on completion bit.
2283  */
2284 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2285 {
2286         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2287         u32 chan;
2288
2289         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2290         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2291         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2292
2293         for (chan = 0; chan < tx_channel_count; chan++) {
2294                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2295
2296                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2297         }
2298 }
2299
2300 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2301 {
2302         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304         u32 chan;
2305
2306         /* set TX ring length */
2307         for (chan = 0; chan < tx_channels_count; chan++)
2308                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2309                                 (DMA_TX_SIZE - 1), chan);
2310
2311         /* set RX ring length */
2312         for (chan = 0; chan < rx_channels_count; chan++)
2313                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2314                                 (DMA_RX_SIZE - 1), chan);
2315 }
2316
2317 /**
2318  *  stmmac_set_tx_queue_weight - Set TX queue weight
2319  *  @priv: driver private structure
2320  *  Description: It is used for setting TX queues weight
2321  */
2322 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2323 {
2324         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2325         u32 weight;
2326         u32 queue;
2327
2328         for (queue = 0; queue < tx_queues_count; queue++) {
2329                 weight = priv->plat->tx_queues_cfg[queue].weight;
2330                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2331         }
2332 }
2333
2334 /**
2335  *  stmmac_configure_cbs - Configure CBS in TX queue
2336  *  @priv: driver private structure
2337  *  Description: It is used for configuring CBS in AVB TX queues
2338  */
2339 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2340 {
2341         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2342         u32 mode_to_use;
2343         u32 queue;
2344
2345         /* queue 0 is reserved for legacy traffic */
2346         for (queue = 1; queue < tx_queues_count; queue++) {
2347                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2348                 if (mode_to_use == MTL_QUEUE_DCB)
2349                         continue;
2350
2351                 stmmac_config_cbs(priv, priv->hw,
2352                                 priv->plat->tx_queues_cfg[queue].send_slope,
2353                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2354                                 priv->plat->tx_queues_cfg[queue].high_credit,
2355                                 priv->plat->tx_queues_cfg[queue].low_credit,
2356                                 queue);
2357         }
2358 }
2359
2360 /**
2361  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2362  *  @priv: driver private structure
2363  *  Description: It is used for mapping RX queues to RX dma channels
2364  */
2365 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2366 {
2367         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2368         u32 queue;
2369         u32 chan;
2370
2371         for (queue = 0; queue < rx_queues_count; queue++) {
2372                 chan = priv->plat->rx_queues_cfg[queue].chan;
2373                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2374         }
2375 }
2376
2377 /**
2378  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2379  *  @priv: driver private structure
2380  *  Description: It is used for configuring the RX Queue Priority
2381  */
2382 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2383 {
2384         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2385         u32 queue;
2386         u32 prio;
2387
2388         for (queue = 0; queue < rx_queues_count; queue++) {
2389                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2390                         continue;
2391
2392                 prio = priv->plat->rx_queues_cfg[queue].prio;
2393                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2394         }
2395 }
2396
2397 /**
2398  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2399  *  @priv: driver private structure
2400  *  Description: It is used for configuring the TX Queue Priority
2401  */
2402 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2403 {
2404         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2405         u32 queue;
2406         u32 prio;
2407
2408         for (queue = 0; queue < tx_queues_count; queue++) {
2409                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2410                         continue;
2411
2412                 prio = priv->plat->tx_queues_cfg[queue].prio;
2413                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2414         }
2415 }
2416
2417 /**
2418  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2419  *  @priv: driver private structure
2420  *  Description: It is used for configuring the RX queue routing
2421  */
2422 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2423 {
2424         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2425         u32 queue;
2426         u8 packet;
2427
2428         for (queue = 0; queue < rx_queues_count; queue++) {
2429                 /* no specific packet type routing specified for the queue */
2430                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2431                         continue;
2432
2433                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2434                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2435         }
2436 }
2437
2438 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2439 {
2440         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2441                 priv->rss.enable = false;
2442                 return;
2443         }
2444
2445         if (priv->dev->features & NETIF_F_RXHASH)
2446                 priv->rss.enable = true;
2447         else
2448                 priv->rss.enable = false;
2449
2450         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2451                              priv->plat->rx_queues_to_use);
2452 }
2453
2454 /**
2455  *  stmmac_mtl_configuration - Configure MTL
2456  *  @priv: driver private structure
2457  *  Description: It is used for configurring MTL
2458  */
2459 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2460 {
2461         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2462         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2463
2464         if (tx_queues_count > 1)
2465                 stmmac_set_tx_queue_weight(priv);
2466
2467         /* Configure MTL RX algorithms */
2468         if (rx_queues_count > 1)
2469                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2470                                 priv->plat->rx_sched_algorithm);
2471
2472         /* Configure MTL TX algorithms */
2473         if (tx_queues_count > 1)
2474                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2475                                 priv->plat->tx_sched_algorithm);
2476
2477         /* Configure CBS in AVB TX queues */
2478         if (tx_queues_count > 1)
2479                 stmmac_configure_cbs(priv);
2480
2481         /* Map RX MTL to DMA channels */
2482         stmmac_rx_queue_dma_chan_map(priv);
2483
2484         /* Enable MAC RX Queues */
2485         stmmac_mac_enable_rx_queues(priv);
2486
2487         /* Set RX priorities */
2488         if (rx_queues_count > 1)
2489                 stmmac_mac_config_rx_queues_prio(priv);
2490
2491         /* Set TX priorities */
2492         if (tx_queues_count > 1)
2493                 stmmac_mac_config_tx_queues_prio(priv);
2494
2495         /* Set RX routing */
2496         if (rx_queues_count > 1)
2497                 stmmac_mac_config_rx_queues_routing(priv);
2498
2499         /* Receive Side Scaling */
2500         if (rx_queues_count > 1)
2501                 stmmac_mac_config_rss(priv);
2502 }
2503
2504 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2505 {
2506         if (priv->dma_cap.asp) {
2507                 netdev_info(priv->dev, "Enabling Safety Features\n");
2508                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2509         } else {
2510                 netdev_info(priv->dev, "No Safety Features support found\n");
2511         }
2512 }
2513
2514 /**
2515  * stmmac_hw_setup - setup mac in a usable state.
2516  *  @dev : pointer to the device structure.
2517  *  Description:
2518  *  this is the main function to setup the HW in a usable state because the
2519  *  dma engine is reset, the core registers are configured (e.g. AXI,
2520  *  Checksum features, timers). The DMA is ready to start receiving and
2521  *  transmitting.
2522  *  Return value:
2523  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2524  *  file on failure.
2525  */
2526 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2527 {
2528         struct stmmac_priv *priv = netdev_priv(dev);
2529         u32 rx_cnt = priv->plat->rx_queues_to_use;
2530         u32 tx_cnt = priv->plat->tx_queues_to_use;
2531         u32 chan;
2532         int ret;
2533
2534         /* DMA initialization and SW reset */
2535         ret = stmmac_init_dma_engine(priv);
2536         if (ret < 0) {
2537                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2538                            __func__);
2539                 return ret;
2540         }
2541
2542         /* Copy the MAC addr into the HW  */
2543         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2544
2545         /* PS and related bits will be programmed according to the speed */
2546         if (priv->hw->pcs) {
2547                 int speed = priv->plat->mac_port_sel_speed;
2548
2549                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2550                     (speed == SPEED_1000)) {
2551                         priv->hw->ps = speed;
2552                 } else {
2553                         dev_warn(priv->device, "invalid port speed\n");
2554                         priv->hw->ps = 0;
2555                 }
2556         }
2557
2558         /* Initialize the MAC Core */
2559         stmmac_core_init(priv, priv->hw, dev);
2560
2561         /* Initialize MTL*/
2562         stmmac_mtl_configuration(priv);
2563
2564         /* Initialize Safety Features */
2565         stmmac_safety_feat_configuration(priv);
2566
2567         ret = stmmac_rx_ipc(priv, priv->hw);
2568         if (!ret) {
2569                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2570                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2571                 priv->hw->rx_csum = 0;
2572         }
2573
2574         /* Enable the MAC Rx/Tx */
2575         stmmac_mac_set(priv, priv->ioaddr, true);
2576
2577         /* Set the HW DMA mode and the COE */
2578         stmmac_dma_operation_mode(priv);
2579
2580         stmmac_mmc_setup(priv);
2581
2582         if (init_ptp) {
2583                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2584                 if (ret < 0)
2585                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2586
2587                 ret = stmmac_init_ptp(priv);
2588                 if (ret == -EOPNOTSUPP)
2589                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2590                 else if (ret)
2591                         netdev_warn(priv->dev, "PTP init failed\n");
2592         }
2593
2594         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2595
2596         if (priv->use_riwt) {
2597                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2598                 if (!ret)
2599                         priv->rx_riwt = MIN_DMA_RIWT;
2600         }
2601
2602         if (priv->hw->pcs)
2603                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2604
2605         /* set TX and RX rings length */
2606         stmmac_set_rings_length(priv);
2607
2608         /* Enable TSO */
2609         if (priv->tso) {
2610                 for (chan = 0; chan < tx_cnt; chan++)
2611                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2612         }
2613
2614         /* Enable Split Header */
2615         if (priv->sph && priv->hw->rx_csum) {
2616                 for (chan = 0; chan < rx_cnt; chan++)
2617                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2618         }
2619
2620         /* VLAN Tag Insertion */
2621         if (priv->dma_cap.vlins)
2622                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2623
2624         /* Start the ball rolling... */
2625         stmmac_start_all_dma(priv);
2626
2627         return 0;
2628 }
2629
2630 static void stmmac_hw_teardown(struct net_device *dev)
2631 {
2632         struct stmmac_priv *priv = netdev_priv(dev);
2633
2634         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2635 }
2636
2637 /**
2638  *  stmmac_open - open entry point of the driver
2639  *  @dev : pointer to the device structure.
2640  *  Description:
2641  *  This function is the open entry point of the driver.
2642  *  Return value:
2643  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2644  *  file on failure.
2645  */
2646 static int stmmac_open(struct net_device *dev)
2647 {
2648         struct stmmac_priv *priv = netdev_priv(dev);
2649         int bfsize = 0;
2650         u32 chan;
2651         int ret;
2652
2653         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2654             priv->hw->pcs != STMMAC_PCS_TBI &&
2655             priv->hw->pcs != STMMAC_PCS_RTBI) {
2656                 ret = stmmac_init_phy(dev);
2657                 if (ret) {
2658                         netdev_err(priv->dev,
2659                                    "%s: Cannot attach to PHY (error: %d)\n",
2660                                    __func__, ret);
2661                         return ret;
2662                 }
2663         }
2664
2665         /* Extra statistics */
2666         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2667         priv->xstats.threshold = tc;
2668
2669         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2670         if (bfsize < 0)
2671                 bfsize = 0;
2672
2673         if (bfsize < BUF_SIZE_16KiB)
2674                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2675
2676         priv->dma_buf_sz = bfsize;
2677         buf_sz = bfsize;
2678
2679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680
2681         ret = alloc_dma_desc_resources(priv);
2682         if (ret < 0) {
2683                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684                            __func__);
2685                 goto dma_desc_error;
2686         }
2687
2688         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689         if (ret < 0) {
2690                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691                            __func__);
2692                 goto init_error;
2693         }
2694
2695         ret = stmmac_hw_setup(dev, true);
2696         if (ret < 0) {
2697                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698                 goto init_error;
2699         }
2700
2701         stmmac_init_coalesce(priv);
2702
2703         phylink_start(priv->phylink);
2704
2705         /* Request the IRQ lines */
2706         ret = request_irq(dev->irq, stmmac_interrupt,
2707                           IRQF_SHARED, dev->name, dev);
2708         if (unlikely(ret < 0)) {
2709                 netdev_err(priv->dev,
2710                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711                            __func__, dev->irq, ret);
2712                 goto irq_error;
2713         }
2714
2715         /* Request the Wake IRQ in case of another line is used for WoL */
2716         if (priv->wol_irq != dev->irq) {
2717                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718                                   IRQF_SHARED, dev->name, dev);
2719                 if (unlikely(ret < 0)) {
2720                         netdev_err(priv->dev,
2721                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722                                    __func__, priv->wol_irq, ret);
2723                         goto wolirq_error;
2724                 }
2725         }
2726
2727         /* Request the IRQ lines */
2728         if (priv->lpi_irq > 0) {
2729                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730                                   dev->name, dev);
2731                 if (unlikely(ret < 0)) {
2732                         netdev_err(priv->dev,
2733                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734                                    __func__, priv->lpi_irq, ret);
2735                         goto lpiirq_error;
2736                 }
2737         }
2738
2739         stmmac_enable_all_queues(priv);
2740         stmmac_start_all_queues(priv);
2741
2742         return 0;
2743
2744 lpiirq_error:
2745         if (priv->wol_irq != dev->irq)
2746                 free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748         free_irq(dev->irq, dev);
2749 irq_error:
2750         phylink_stop(priv->phylink);
2751
2752         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2754
2755         stmmac_hw_teardown(dev);
2756 init_error:
2757         free_dma_desc_resources(priv);
2758 dma_desc_error:
2759         phylink_disconnect_phy(priv->phylink);
2760         return ret;
2761 }
2762
2763 /**
2764  *  stmmac_release - close entry point of the driver
2765  *  @dev : device pointer.
2766  *  Description:
2767  *  This is the stop entry point of the driver.
2768  */
2769 static int stmmac_release(struct net_device *dev)
2770 {
2771         struct stmmac_priv *priv = netdev_priv(dev);
2772         u32 chan;
2773
2774         if (priv->eee_enabled)
2775                 del_timer_sync(&priv->eee_ctrl_timer);
2776
2777         /* Stop and disconnect the PHY */
2778         phylink_stop(priv->phylink);
2779         phylink_disconnect_phy(priv->phylink);
2780
2781         stmmac_stop_all_queues(priv);
2782
2783         stmmac_disable_all_queues(priv);
2784
2785         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2787
2788         /* Free the IRQ lines */
2789         free_irq(dev->irq, dev);
2790         if (priv->wol_irq != dev->irq)
2791                 free_irq(priv->wol_irq, dev);
2792         if (priv->lpi_irq > 0)
2793                 free_irq(priv->lpi_irq, dev);
2794
2795         /* Stop TX/RX DMA and clear the descriptors */
2796         stmmac_stop_all_dma(priv);
2797
2798         /* Release and free the Rx/Tx resources */
2799         free_dma_desc_resources(priv);
2800
2801         /* Disable the MAC Rx/Tx */
2802         stmmac_mac_set(priv, priv->ioaddr, false);
2803
2804         netif_carrier_off(dev);
2805
2806         stmmac_release_ptp(priv);
2807
2808         return 0;
2809 }
2810
2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812                                struct stmmac_tx_queue *tx_q)
2813 {
2814         u16 tag = 0x0, inner_tag = 0x0;
2815         u32 inner_type = 0x0;
2816         struct dma_desc *p;
2817
2818         if (!priv->dma_cap.vlins)
2819                 return false;
2820         if (!skb_vlan_tag_present(skb))
2821                 return false;
2822         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823                 inner_tag = skb_vlan_tag_get(skb);
2824                 inner_type = STMMAC_VLAN_INSERT;
2825         }
2826
2827         tag = skb_vlan_tag_get(skb);
2828
2829         p = tx_q->dma_tx + tx_q->cur_tx;
2830         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831                 return false;
2832
2833         stmmac_set_tx_owner(priv, p);
2834         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835         return true;
2836 }
2837
2838 /**
2839  *  stmmac_tso_allocator - close entry point of the driver
2840  *  @priv: driver private structure
2841  *  @des: buffer start address
2842  *  @total_len: total length to fill in descriptors
2843  *  @last_segmant: condition for the last descriptor
2844  *  @queue: TX queue index
2845  *  Description:
2846  *  This function fills descriptor and request new descriptors according to
2847  *  buffer length to fill
2848  */
2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850                                  int total_len, bool last_segment, u32 queue)
2851 {
2852         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853         struct dma_desc *desc;
2854         u32 buff_size;
2855         int tmp_len;
2856
2857         tmp_len = total_len;
2858
2859         while (tmp_len > 0) {
2860                 dma_addr_t curr_addr;
2861
2862                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864                 desc = tx_q->dma_tx + tx_q->cur_tx;
2865
2866                 curr_addr = des + (total_len - tmp_len);
2867                 if (priv->dma_cap.addr64 <= 32)
2868                         desc->des0 = cpu_to_le32(curr_addr);
2869                 else
2870                         stmmac_set_desc_addr(priv, desc, curr_addr);
2871
2872                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873                             TSO_MAX_BUFF_SIZE : tmp_len;
2874
2875                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876                                 0, 1,
2877                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878                                 0, 0);
2879
2880                 tmp_len -= TSO_MAX_BUFF_SIZE;
2881         }
2882 }
2883
2884 /**
2885  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886  *  @skb : the socket buffer
2887  *  @dev : device pointer
2888  *  Description: this is the transmit function that is called on TSO frames
2889  *  (support available on GMAC4 and newer chips).
2890  *  Diagram below show the ring programming in case of TSO frames:
2891  *
2892  *  First Descriptor
2893  *   --------
2894  *   | DES0 |---> buffer1 = L2/L3/L4 header
2895  *   | DES1 |---> TCP Payload (can continue on next descr...)
2896  *   | DES2 |---> buffer 1 and 2 len
2897  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898  *   --------
2899  *      |
2900  *     ...
2901  *      |
2902  *   --------
2903  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904  *   | DES1 | --|
2905  *   | DES2 | --> buffer 1 and 2 len
2906  *   | DES3 |
2907  *   --------
2908  *
2909  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910  */
2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913         struct dma_desc *desc, *first, *mss_desc = NULL;
2914         struct stmmac_priv *priv = netdev_priv(dev);
2915         int nfrags = skb_shinfo(skb)->nr_frags;
2916         u32 queue = skb_get_queue_mapping(skb);
2917         struct stmmac_tx_queue *tx_q;
2918         unsigned int first_entry;
2919         int tmp_pay_len = 0;
2920         u32 pay_len, mss;
2921         u8 proto_hdr_len;
2922         dma_addr_t des;
2923         bool has_vlan;
2924         int i;
2925
2926         tx_q = &priv->tx_queue[queue];
2927
2928         /* Compute header lengths */
2929         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2930
2931         /* Desc availability based on threshold should be enough safe */
2932         if (unlikely(stmmac_tx_avail(priv, queue) <
2933                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2934                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2935                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2936                                                                 queue));
2937                         /* This is a hard error, log it. */
2938                         netdev_err(priv->dev,
2939                                    "%s: Tx Ring full when queue awake\n",
2940                                    __func__);
2941                 }
2942                 return NETDEV_TX_BUSY;
2943         }
2944
2945         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2946
2947         mss = skb_shinfo(skb)->gso_size;
2948
2949         /* set new MSS value if needed */
2950         if (mss != tx_q->mss) {
2951                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2952                 stmmac_set_mss(priv, mss_desc, mss);
2953                 tx_q->mss = mss;
2954                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2955                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2956         }
2957
2958         if (netif_msg_tx_queued(priv)) {
2959                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2960                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2961                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2962                         skb->data_len);
2963         }
2964
2965         /* Check if VLAN can be inserted by HW */
2966         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2967
2968         first_entry = tx_q->cur_tx;
2969         WARN_ON(tx_q->tx_skbuff[first_entry]);
2970
2971         desc = tx_q->dma_tx + first_entry;
2972         first = desc;
2973
2974         if (has_vlan)
2975                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2976
2977         /* first descriptor: fill Headers on Buf1 */
2978         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2979                              DMA_TO_DEVICE);
2980         if (dma_mapping_error(priv->device, des))
2981                 goto dma_map_err;
2982
2983         tx_q->tx_skbuff_dma[first_entry].buf = des;
2984         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2985
2986         if (priv->dma_cap.addr64 <= 32) {
2987                 first->des0 = cpu_to_le32(des);
2988
2989                 /* Fill start of payload in buff2 of first descriptor */
2990                 if (pay_len)
2991                         first->des1 = cpu_to_le32(des + proto_hdr_len);
2992
2993                 /* If needed take extra descriptors to fill the remaining payload */
2994                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2995         } else {
2996                 stmmac_set_desc_addr(priv, first, des);
2997                 tmp_pay_len = pay_len;
2998                 des += proto_hdr_len;
2999                 pay_len = 0;
3000         }
3001
3002         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3003
3004         /* Prepare fragments */
3005         for (i = 0; i < nfrags; i++) {
3006                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3007
3008                 des = skb_frag_dma_map(priv->device, frag, 0,
3009                                        skb_frag_size(frag),
3010                                        DMA_TO_DEVICE);
3011                 if (dma_mapping_error(priv->device, des))
3012                         goto dma_map_err;
3013
3014                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3015                                      (i == nfrags - 1), queue);
3016
3017                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3018                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3019                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3020         }
3021
3022         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3023
3024         /* Only the last descriptor gets to point to the skb. */
3025         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3026
3027         /* Manage tx mitigation */
3028         tx_q->tx_count_frames += nfrags + 1;
3029         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3030             !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3031               priv->hwts_tx_en)) {
3032                 stmmac_tx_timer_arm(priv, queue);
3033         } else {
3034                 desc = &tx_q->dma_tx[tx_q->cur_tx];
3035                 tx_q->tx_count_frames = 0;
3036                 stmmac_set_tx_ic(priv, desc);
3037                 priv->xstats.tx_set_ic_bit++;
3038         }
3039
3040         /* We've used all descriptors we need for this skb, however,
3041          * advance cur_tx so that it references a fresh descriptor.
3042          * ndo_start_xmit will fill this descriptor the next time it's
3043          * called and stmmac_tx_clean may clean up to this descriptor.
3044          */
3045         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3046
3047         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3048                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3049                           __func__);
3050                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3051         }
3052
3053         dev->stats.tx_bytes += skb->len;
3054         priv->xstats.tx_tso_frames++;
3055         priv->xstats.tx_tso_nfrags += nfrags;
3056
3057         if (priv->sarc_type)
3058                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3059
3060         skb_tx_timestamp(skb);
3061
3062         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3063                      priv->hwts_tx_en)) {
3064                 /* declare that device is doing timestamping */
3065                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3066                 stmmac_enable_tx_timestamp(priv, first);
3067         }
3068
3069         /* Complete the first descriptor before granting the DMA */
3070         stmmac_prepare_tso_tx_desc(priv, first, 1,
3071                         proto_hdr_len,
3072                         pay_len,
3073                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3074                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3075
3076         /* If context desc is used to change MSS */
3077         if (mss_desc) {
3078                 /* Make sure that first descriptor has been completely
3079                  * written, including its own bit. This is because MSS is
3080                  * actually before first descriptor, so we need to make
3081                  * sure that MSS's own bit is the last thing written.
3082                  */
3083                 dma_wmb();
3084                 stmmac_set_tx_owner(priv, mss_desc);
3085         }
3086
3087         /* The own bit must be the latest setting done when prepare the
3088          * descriptor and then barrier is needed to make sure that
3089          * all is coherent before granting the DMA engine.
3090          */
3091         wmb();
3092
3093         if (netif_msg_pktdata(priv)) {
3094                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3095                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3096                         tx_q->cur_tx, first, nfrags);
3097
3098                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3099
3100                 pr_info(">>> frame to be transmitted: ");
3101                 print_pkt(skb->data, skb_headlen(skb));
3102         }
3103
3104         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3105
3106         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3107         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3108         stmmac_tx_timer_arm(priv, queue);
3109
3110         return NETDEV_TX_OK;
3111
3112 dma_map_err:
3113         dev_err(priv->device, "Tx dma map failed\n");
3114         dev_kfree_skb(skb);
3115         priv->dev->stats.tx_dropped++;
3116         return NETDEV_TX_OK;
3117 }
3118
3119 /**
3120  *  stmmac_xmit - Tx entry point of the driver
3121  *  @skb : the socket buffer
3122  *  @dev : device pointer
3123  *  Description : this is the tx entry point of the driver.
3124  *  It programs the chain or the ring and supports oversized frames
3125  *  and SG feature.
3126  */
3127 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3128 {
3129         struct stmmac_priv *priv = netdev_priv(dev);
3130         unsigned int nopaged_len = skb_headlen(skb);
3131         int i, csum_insertion = 0, is_jumbo = 0;
3132         u32 queue = skb_get_queue_mapping(skb);
3133         int nfrags = skb_shinfo(skb)->nr_frags;
3134         struct dma_desc *desc, *first;
3135         struct stmmac_tx_queue *tx_q;
3136         unsigned int first_entry;
3137         unsigned int enh_desc;
3138         dma_addr_t des;
3139         bool has_vlan;
3140         int entry;
3141
3142         tx_q = &priv->tx_queue[queue];
3143
3144         if (priv->tx_path_in_lpi_mode)
3145                 stmmac_disable_eee_mode(priv);
3146
3147         /* Manage oversized TCP frames for GMAC4 device */
3148         if (skb_is_gso(skb) && priv->tso) {
3149                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3150                         return stmmac_tso_xmit(skb, dev);
3151         }
3152
3153         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3154                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3155                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3156                                                                 queue));
3157                         /* This is a hard error, log it. */
3158                         netdev_err(priv->dev,
3159                                    "%s: Tx Ring full when queue awake\n",
3160                                    __func__);
3161                 }
3162                 return NETDEV_TX_BUSY;
3163         }
3164
3165         /* Check if VLAN can be inserted by HW */
3166         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3167
3168         entry = tx_q->cur_tx;
3169         first_entry = entry;
3170         WARN_ON(tx_q->tx_skbuff[first_entry]);
3171
3172         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3173
3174         if (likely(priv->extend_desc))
3175                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3176         else
3177                 desc = tx_q->dma_tx + entry;
3178
3179         first = desc;
3180
3181         if (has_vlan)
3182                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3183
3184         enh_desc = priv->plat->enh_desc;
3185         /* To program the descriptors according to the size of the frame */
3186         if (enh_desc)
3187                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3188
3189         if (unlikely(is_jumbo)) {
3190                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3191                 if (unlikely(entry < 0) && (entry != -EINVAL))
3192                         goto dma_map_err;
3193         }
3194
3195         for (i = 0; i < nfrags; i++) {
3196                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3197                 int len = skb_frag_size(frag);
3198                 bool last_segment = (i == (nfrags - 1));
3199
3200                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3201                 WARN_ON(tx_q->tx_skbuff[entry]);
3202
3203                 if (likely(priv->extend_desc))
3204                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3205                 else
3206                         desc = tx_q->dma_tx + entry;
3207
3208                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3209                                        DMA_TO_DEVICE);
3210                 if (dma_mapping_error(priv->device, des))
3211                         goto dma_map_err; /* should reuse desc w/o issues */
3212
3213                 tx_q->tx_skbuff_dma[entry].buf = des;
3214
3215                 stmmac_set_desc_addr(priv, desc, des);
3216
3217                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3218                 tx_q->tx_skbuff_dma[entry].len = len;
3219                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3220
3221                 /* Prepare the descriptor and set the own bit too */
3222                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3223                                 priv->mode, 1, last_segment, skb->len);
3224         }
3225
3226         /* Only the last descriptor gets to point to the skb. */
3227         tx_q->tx_skbuff[entry] = skb;
3228
3229         /* According to the coalesce parameter the IC bit for the latest
3230          * segment is reset and the timer re-started to clean the tx status.
3231          * This approach takes care about the fragments: desc is the first
3232          * element in case of no SG.
3233          */
3234         tx_q->tx_count_frames += nfrags + 1;
3235         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3236             !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3237               priv->hwts_tx_en)) {
3238                 stmmac_tx_timer_arm(priv, queue);
3239         } else {
3240                 if (likely(priv->extend_desc))
3241                         desc = &tx_q->dma_etx[entry].basic;
3242                 else
3243                         desc = &tx_q->dma_tx[entry];
3244
3245                 tx_q->tx_count_frames = 0;
3246                 stmmac_set_tx_ic(priv, desc);
3247                 priv->xstats.tx_set_ic_bit++;
3248         }
3249
3250         /* We've used all descriptors we need for this skb, however,
3251          * advance cur_tx so that it references a fresh descriptor.
3252          * ndo_start_xmit will fill this descriptor the next time it's
3253          * called and stmmac_tx_clean may clean up to this descriptor.
3254          */
3255         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3256         tx_q->cur_tx = entry;
3257
3258         if (netif_msg_pktdata(priv)) {
3259                 void *tx_head;
3260
3261                 netdev_dbg(priv->dev,
3262                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3263                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3264                            entry, first, nfrags);
3265
3266                 if (priv->extend_desc)
3267                         tx_head = (void *)tx_q->dma_etx;
3268                 else
3269                         tx_head = (void *)tx_q->dma_tx;
3270
3271                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3272
3273                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3274                 print_pkt(skb->data, skb->len);
3275         }
3276
3277         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3278                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3279                           __func__);
3280                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3281         }
3282
3283         dev->stats.tx_bytes += skb->len;
3284
3285         if (priv->sarc_type)
3286                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3287
3288         skb_tx_timestamp(skb);
3289
3290         /* Ready to fill the first descriptor and set the OWN bit w/o any
3291          * problems because all the descriptors are actually ready to be
3292          * passed to the DMA engine.
3293          */
3294         if (likely(!is_jumbo)) {
3295                 bool last_segment = (nfrags == 0);
3296
3297                 des = dma_map_single(priv->device, skb->data,
3298                                      nopaged_len, DMA_TO_DEVICE);
3299                 if (dma_mapping_error(priv->device, des))
3300                         goto dma_map_err;
3301
3302                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3303
3304                 stmmac_set_desc_addr(priv, first, des);
3305
3306                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3307                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3308
3309                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3310                              priv->hwts_tx_en)) {
3311                         /* declare that device is doing timestamping */
3312                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3313                         stmmac_enable_tx_timestamp(priv, first);
3314                 }
3315
3316                 /* Prepare the first descriptor setting the OWN bit too */
3317                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3318                                 csum_insertion, priv->mode, 1, last_segment,
3319                                 skb->len);
3320         } else {
3321                 stmmac_set_tx_owner(priv, first);
3322         }
3323
3324         /* The own bit must be the latest setting done when prepare the
3325          * descriptor and then barrier is needed to make sure that
3326          * all is coherent before granting the DMA engine.
3327          */
3328         wmb();
3329
3330         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3331
3332         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3333
3334         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3335         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3336         stmmac_tx_timer_arm(priv, queue);
3337
3338         return NETDEV_TX_OK;
3339
3340 dma_map_err:
3341         netdev_err(priv->dev, "Tx DMA map failed\n");
3342         dev_kfree_skb(skb);
3343         priv->dev->stats.tx_dropped++;
3344         return NETDEV_TX_OK;
3345 }
3346
3347 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3348 {
3349         struct vlan_ethhdr *veth;
3350         __be16 vlan_proto;
3351         u16 vlanid;
3352
3353         veth = (struct vlan_ethhdr *)skb->data;
3354         vlan_proto = veth->h_vlan_proto;
3355
3356         if ((vlan_proto == htons(ETH_P_8021Q) &&
3357              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3358             (vlan_proto == htons(ETH_P_8021AD) &&
3359              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3360                 /* pop the vlan tag */
3361                 vlanid = ntohs(veth->h_vlan_TCI);
3362                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3363                 skb_pull(skb, VLAN_HLEN);
3364                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3365         }
3366 }
3367
3368
3369 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3370 {
3371         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3372                 return 0;
3373
3374         return 1;
3375 }
3376
3377 /**
3378  * stmmac_rx_refill - refill used skb preallocated buffers
3379  * @priv: driver private structure
3380  * @queue: RX queue index
3381  * Description : this is to reallocate the skb for the reception process
3382  * that is based on zero-copy.
3383  */
3384 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3385 {
3386         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3387         int len, dirty = stmmac_rx_dirty(priv, queue);
3388         unsigned int entry = rx_q->dirty_rx;
3389
3390         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3391
3392         while (dirty-- > 0) {
3393                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3394                 struct dma_desc *p;
3395                 bool use_rx_wd;
3396
3397                 if (priv->extend_desc)
3398                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3399                 else
3400                         p = rx_q->dma_rx + entry;
3401
3402                 if (!buf->page) {
3403                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3404                         if (!buf->page)
3405                                 break;
3406                 }
3407
3408                 if (priv->sph && !buf->sec_page) {
3409                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3410                         if (!buf->sec_page)
3411                                 break;
3412
3413                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3414
3415                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3416                                                    len, DMA_FROM_DEVICE);
3417                 }
3418
3419                 buf->addr = page_pool_get_dma_addr(buf->page);
3420
3421                 /* Sync whole allocation to device. This will invalidate old
3422                  * data.
3423                  */
3424                 dma_sync_single_for_device(priv->device, buf->addr, len,
3425                                            DMA_FROM_DEVICE);
3426
3427                 stmmac_set_desc_addr(priv, p, buf->addr);
3428                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3429                 stmmac_refill_desc3(priv, rx_q, p);
3430
3431                 rx_q->rx_count_frames++;
3432                 rx_q->rx_count_frames += priv->rx_coal_frames;
3433                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3434                         rx_q->rx_count_frames = 0;
3435                 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3436
3437                 dma_wmb();
3438                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3439
3440                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3441         }
3442         rx_q->dirty_rx = entry;
3443         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3444                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3445         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3446 }
3447
3448 /**
3449  * stmmac_rx - manage the receive process
3450  * @priv: driver private structure
3451  * @limit: napi bugget
3452  * @queue: RX queue index.
3453  * Description :  this the function called by the napi poll method.
3454  * It gets all the frames inside the ring.
3455  */
3456 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3457 {
3458         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3459         struct stmmac_channel *ch = &priv->channel[queue];
3460         unsigned int count = 0, error = 0, len = 0;
3461         int status = 0, coe = priv->hw->rx_csum;
3462         unsigned int next_entry = rx_q->cur_rx;
3463         struct sk_buff *skb = NULL;
3464
3465         if (netif_msg_rx_status(priv)) {
3466                 void *rx_head;
3467
3468                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3469                 if (priv->extend_desc)
3470                         rx_head = (void *)rx_q->dma_erx;
3471                 else
3472                         rx_head = (void *)rx_q->dma_rx;
3473
3474                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3475         }
3476         while (count < limit) {
3477                 unsigned int hlen = 0, prev_len = 0;
3478                 enum pkt_hash_types hash_type;
3479                 struct stmmac_rx_buffer *buf;
3480                 struct dma_desc *np, *p;
3481                 unsigned int sec_len;
3482                 int entry;
3483                 u32 hash;
3484
3485                 if (!count && rx_q->state_saved) {
3486                         skb = rx_q->state.skb;
3487                         error = rx_q->state.error;
3488                         len = rx_q->state.len;
3489                 } else {
3490                         rx_q->state_saved = false;
3491                         skb = NULL;
3492                         error = 0;
3493                         len = 0;
3494                 }
3495
3496                 if (count >= limit)
3497                         break;
3498
3499 read_again:
3500                 sec_len = 0;
3501                 entry = next_entry;
3502                 buf = &rx_q->buf_pool[entry];
3503
3504                 if (priv->extend_desc)
3505                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3506                 else
3507                         p = rx_q->dma_rx + entry;
3508
3509                 /* read the status of the incoming frame */
3510                 status = stmmac_rx_status(priv, &priv->dev->stats,
3511                                 &priv->xstats, p);
3512                 /* check if managed by the DMA otherwise go ahead */
3513                 if (unlikely(status & dma_own))
3514                         break;
3515
3516                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3517                 next_entry = rx_q->cur_rx;
3518
3519                 if (priv->extend_desc)
3520                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3521                 else
3522                         np = rx_q->dma_rx + next_entry;
3523
3524                 prefetch(np);
3525                 prefetch(page_address(buf->page));
3526
3527                 if (priv->extend_desc)
3528                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3529                                         &priv->xstats, rx_q->dma_erx + entry);
3530                 if (unlikely(status == discard_frame)) {
3531                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3532                         buf->page = NULL;
3533                         error = 1;
3534                         if (!priv->hwts_rx_en)
3535                                 priv->dev->stats.rx_errors++;
3536                 }
3537
3538                 if (unlikely(error && (status & rx_not_ls)))
3539                         goto read_again;
3540                 if (unlikely(error)) {
3541                         dev_kfree_skb(skb);
3542                         count++;
3543                         continue;
3544                 }
3545
3546                 /* Buffer is good. Go on. */
3547
3548                 if (likely(status & rx_not_ls)) {
3549                         len += priv->dma_buf_sz;
3550                 } else {
3551                         prev_len = len;
3552                         len = stmmac_get_rx_frame_len(priv, p, coe);
3553
3554                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3555                          * Type frames (LLC/LLC-SNAP)
3556                          *
3557                          * llc_snap is never checked in GMAC >= 4, so this ACS
3558                          * feature is always disabled and packets need to be
3559                          * stripped manually.
3560                          */
3561                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3562                             unlikely(status != llc_snap))
3563                                 len -= ETH_FCS_LEN;
3564                 }
3565
3566                 if (!skb) {
3567                         int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3568
3569                         if (priv->sph && !ret && (hlen > 0)) {
3570                                 sec_len = len;
3571                                 if (!(status & rx_not_ls))
3572                                         sec_len = sec_len - hlen;
3573                                 len = hlen;
3574
3575                                 prefetch(page_address(buf->sec_page));
3576                                 priv->xstats.rx_split_hdr_pkt_n++;
3577                         }
3578
3579                         skb = napi_alloc_skb(&ch->rx_napi, len);
3580                         if (!skb) {
3581                                 priv->dev->stats.rx_dropped++;
3582                                 count++;
3583                                 continue;
3584                         }
3585
3586                         dma_sync_single_for_cpu(priv->device, buf->addr, len,
3587                                                 DMA_FROM_DEVICE);
3588                         skb_copy_to_linear_data(skb, page_address(buf->page),
3589                                                 len);
3590                         skb_put(skb, len);
3591
3592                         /* Data payload copied into SKB, page ready for recycle */
3593                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3594                         buf->page = NULL;
3595                 } else {
3596                         unsigned int buf_len = len - prev_len;
3597
3598                         if (likely(status & rx_not_ls))
3599                                 buf_len = priv->dma_buf_sz;
3600
3601                         dma_sync_single_for_cpu(priv->device, buf->addr,
3602                                                 buf_len, DMA_FROM_DEVICE);
3603                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3604                                         buf->page, 0, buf_len,
3605                                         priv->dma_buf_sz);
3606
3607                         /* Data payload appended into SKB */
3608                         page_pool_release_page(rx_q->page_pool, buf->page);
3609                         buf->page = NULL;
3610                 }
3611
3612                 if (sec_len > 0) {
3613                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3614                                                 sec_len, DMA_FROM_DEVICE);
3615                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3616                                         buf->sec_page, 0, sec_len,
3617                                         priv->dma_buf_sz);
3618
3619                         len += sec_len;
3620
3621                         /* Data payload appended into SKB */
3622                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3623                         buf->sec_page = NULL;
3624                 }
3625
3626                 if (likely(status & rx_not_ls))
3627                         goto read_again;
3628
3629                 /* Got entire packet into SKB. Finish it. */
3630
3631                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3632                 stmmac_rx_vlan(priv->dev, skb);
3633                 skb->protocol = eth_type_trans(skb, priv->dev);
3634
3635                 if (unlikely(!coe))
3636                         skb_checksum_none_assert(skb);
3637                 else
3638                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3639
3640                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3641                         skb_set_hash(skb, hash, hash_type);
3642
3643                 skb_record_rx_queue(skb, queue);
3644                 napi_gro_receive(&ch->rx_napi, skb);
3645
3646                 priv->dev->stats.rx_packets++;
3647                 priv->dev->stats.rx_bytes += len;
3648                 count++;
3649         }
3650
3651         if (status & rx_not_ls) {
3652                 rx_q->state_saved = true;
3653                 rx_q->state.skb = skb;
3654                 rx_q->state.error = error;
3655                 rx_q->state.len = len;
3656         }
3657
3658         stmmac_rx_refill(priv, queue);
3659
3660         priv->xstats.rx_pkt_n += count;
3661
3662         return count;
3663 }
3664
3665 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3666 {
3667         struct stmmac_channel *ch =
3668                 container_of(napi, struct stmmac_channel, rx_napi);
3669         struct stmmac_priv *priv = ch->priv_data;
3670         u32 chan = ch->index;
3671         int work_done;
3672
3673         priv->xstats.napi_poll++;
3674
3675         work_done = stmmac_rx(priv, budget, chan);
3676         if (work_done < budget && napi_complete_done(napi, work_done))
3677                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3678         return work_done;
3679 }
3680
3681 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3682 {
3683         struct stmmac_channel *ch =
3684                 container_of(napi, struct stmmac_channel, tx_napi);
3685         struct stmmac_priv *priv = ch->priv_data;
3686         struct stmmac_tx_queue *tx_q;
3687         u32 chan = ch->index;
3688         int work_done;
3689
3690         priv->xstats.napi_poll++;
3691
3692         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3693         work_done = min(work_done, budget);
3694
3695         if (work_done < budget)
3696                 napi_complete_done(napi, work_done);
3697
3698         /* Force transmission restart */
3699         tx_q = &priv->tx_queue[chan];
3700         if (tx_q->cur_tx != tx_q->dirty_tx) {
3701                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3702                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3703                                        chan);
3704         }
3705
3706         return work_done;
3707 }
3708
3709 /**
3710  *  stmmac_tx_timeout
3711  *  @dev : Pointer to net device structure
3712  *  Description: this function is called when a packet transmission fails to
3713  *   complete within a reasonable time. The driver will mark the error in the
3714  *   netdev structure and arrange for the device to be reset to a sane state
3715  *   in order to transmit a new packet.
3716  */
3717 static void stmmac_tx_timeout(struct net_device *dev)
3718 {
3719         struct stmmac_priv *priv = netdev_priv(dev);
3720
3721         stmmac_global_err(priv);
3722 }
3723
3724 /**
3725  *  stmmac_set_rx_mode - entry point for multicast addressing
3726  *  @dev : pointer to the device structure
3727  *  Description:
3728  *  This function is a driver entry point which gets called by the kernel
3729  *  whenever multicast addresses must be enabled/disabled.
3730  *  Return value:
3731  *  void.
3732  */
3733 static void stmmac_set_rx_mode(struct net_device *dev)
3734 {
3735         struct stmmac_priv *priv = netdev_priv(dev);
3736
3737         stmmac_set_filter(priv, priv->hw, dev);
3738 }
3739
3740 /**
3741  *  stmmac_change_mtu - entry point to change MTU size for the device.
3742  *  @dev : device pointer.
3743  *  @new_mtu : the new MTU size for the device.
3744  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3745  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3746  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3747  *  Return value:
3748  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3749  *  file on failure.
3750  */
3751 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3752 {
3753         struct stmmac_priv *priv = netdev_priv(dev);
3754         int txfifosz = priv->plat->tx_fifo_size;
3755
3756         if (txfifosz == 0)
3757                 txfifosz = priv->dma_cap.tx_fifo_size;
3758
3759         txfifosz /= priv->plat->tx_queues_to_use;
3760
3761         if (netif_running(dev)) {
3762                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3763                 return -EBUSY;
3764         }
3765
3766         new_mtu = STMMAC_ALIGN(new_mtu);
3767
3768         /* If condition true, FIFO is too small or MTU too large */
3769         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3770                 return -EINVAL;
3771
3772         dev->mtu = new_mtu;
3773
3774         netdev_update_features(dev);
3775
3776         return 0;
3777 }
3778
3779 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3780                                              netdev_features_t features)
3781 {
3782         struct stmmac_priv *priv = netdev_priv(dev);
3783
3784         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3785                 features &= ~NETIF_F_RXCSUM;
3786
3787         if (!priv->plat->tx_coe)
3788                 features &= ~NETIF_F_CSUM_MASK;
3789
3790         /* Some GMAC devices have a bugged Jumbo frame support that
3791          * needs to have the Tx COE disabled for oversized frames
3792          * (due to limited buffer sizes). In this case we disable
3793          * the TX csum insertion in the TDES and not use SF.
3794          */
3795         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3796                 features &= ~NETIF_F_CSUM_MASK;
3797
3798         /* Disable tso if asked by ethtool */
3799         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3800                 if (features & NETIF_F_TSO)
3801                         priv->tso = true;
3802                 else
3803                         priv->tso = false;
3804         }
3805
3806         return features;
3807 }
3808
3809 static int stmmac_set_features(struct net_device *netdev,
3810                                netdev_features_t features)
3811 {
3812         struct stmmac_priv *priv = netdev_priv(netdev);
3813         bool sph_en;
3814         u32 chan;
3815
3816         /* Keep the COE Type in case of csum is supporting */
3817         if (features & NETIF_F_RXCSUM)
3818                 priv->hw->rx_csum = priv->plat->rx_coe;
3819         else
3820                 priv->hw->rx_csum = 0;
3821         /* No check needed because rx_coe has been set before and it will be
3822          * fixed in case of issue.
3823          */
3824         stmmac_rx_ipc(priv, priv->hw);
3825
3826         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3827         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3828                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3829
3830         return 0;
3831 }
3832
3833 /**
3834  *  stmmac_interrupt - main ISR
3835  *  @irq: interrupt number.
3836  *  @dev_id: to pass the net device pointer (must be valid).
3837  *  Description: this is the main driver interrupt service routine.
3838  *  It can call:
3839  *  o DMA service routine (to manage incoming frame reception and transmission
3840  *    status)
3841  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3842  *    interrupts.
3843  */
3844 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3845 {
3846         struct net_device *dev = (struct net_device *)dev_id;
3847         struct stmmac_priv *priv = netdev_priv(dev);
3848         u32 rx_cnt = priv->plat->rx_queues_to_use;
3849         u32 tx_cnt = priv->plat->tx_queues_to_use;
3850         u32 queues_count;
3851         u32 queue;
3852         bool xmac;
3853
3854         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3855         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3856
3857         if (priv->irq_wake)
3858                 pm_wakeup_event(priv->device, 0);
3859
3860         /* Check if adapter is up */
3861         if (test_bit(STMMAC_DOWN, &priv->state))
3862                 return IRQ_HANDLED;
3863         /* Check if a fatal error happened */
3864         if (stmmac_safety_feat_interrupt(priv))
3865                 return IRQ_HANDLED;
3866
3867         /* To handle GMAC own interrupts */
3868         if ((priv->plat->has_gmac) || xmac) {
3869                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3870                 int mtl_status;
3871
3872                 if (unlikely(status)) {
3873                         /* For LPI we need to save the tx status */
3874                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3875                                 priv->tx_path_in_lpi_mode = true;
3876                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3877                                 priv->tx_path_in_lpi_mode = false;
3878                 }
3879
3880                 for (queue = 0; queue < queues_count; queue++) {
3881                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3882
3883                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3884                                                                 queue);
3885                         if (mtl_status != -EINVAL)
3886                                 status |= mtl_status;
3887
3888                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3889                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3890                                                        rx_q->rx_tail_addr,
3891                                                        queue);
3892                 }
3893
3894                 /* PCS link status */
3895                 if (priv->hw->pcs) {
3896                         if (priv->xstats.pcs_link)
3897                                 netif_carrier_on(dev);
3898                         else
3899                                 netif_carrier_off(dev);
3900                 }
3901         }
3902
3903         /* To handle DMA interrupts */
3904         stmmac_dma_interrupt(priv);
3905
3906         return IRQ_HANDLED;
3907 }
3908
3909 #ifdef CONFIG_NET_POLL_CONTROLLER
3910 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3911  * to allow network I/O with interrupts disabled.
3912  */
3913 static void stmmac_poll_controller(struct net_device *dev)
3914 {
3915         disable_irq(dev->irq);
3916         stmmac_interrupt(dev->irq, dev);
3917         enable_irq(dev->irq);
3918 }
3919 #endif
3920
3921 /**
3922  *  stmmac_ioctl - Entry point for the Ioctl
3923  *  @dev: Device pointer.
3924  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3925  *  a proprietary structure used to pass information to the driver.
3926  *  @cmd: IOCTL command
3927  *  Description:
3928  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3929  */
3930 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3931 {
3932         struct stmmac_priv *priv = netdev_priv (dev);
3933         int ret = -EOPNOTSUPP;
3934
3935         if (!netif_running(dev))
3936                 return -EINVAL;
3937
3938         switch (cmd) {
3939         case SIOCGMIIPHY:
3940         case SIOCGMIIREG:
3941         case SIOCSMIIREG:
3942                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3943                 break;
3944         case SIOCSHWTSTAMP:
3945                 ret = stmmac_hwtstamp_set(dev, rq);
3946                 break;
3947         case SIOCGHWTSTAMP:
3948                 ret = stmmac_hwtstamp_get(dev, rq);
3949                 break;
3950         default:
3951                 break;
3952         }
3953
3954         return ret;
3955 }
3956
3957 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3958                                     void *cb_priv)
3959 {
3960         struct stmmac_priv *priv = cb_priv;
3961         int ret = -EOPNOTSUPP;
3962
3963         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3964                 return ret;
3965
3966         stmmac_disable_all_queues(priv);
3967
3968         switch (type) {
3969         case TC_SETUP_CLSU32:
3970                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3971                 break;
3972         case TC_SETUP_CLSFLOWER:
3973                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
3974                 break;
3975         default:
3976                 break;
3977         }
3978
3979         stmmac_enable_all_queues(priv);
3980         return ret;
3981 }
3982
3983 static LIST_HEAD(stmmac_block_cb_list);
3984
3985 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3986                            void *type_data)
3987 {
3988         struct stmmac_priv *priv = netdev_priv(ndev);
3989
3990         switch (type) {
3991         case TC_SETUP_BLOCK:
3992                 return flow_block_cb_setup_simple(type_data,
3993                                                   &stmmac_block_cb_list,
3994                                                   stmmac_setup_tc_block_cb,
3995                                                   priv, priv, true);
3996         case TC_SETUP_QDISC_CBS:
3997                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3998         default:
3999                 return -EOPNOTSUPP;
4000         }
4001 }
4002
4003 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4004                                struct net_device *sb_dev)
4005 {
4006         if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4007                 /*
4008                  * There is no way to determine the number of TSO
4009                  * capable Queues. Let's use always the Queue 0
4010                  * because if TSO is supported then at least this
4011                  * one will be capable.
4012                  */
4013                 return 0;
4014         }
4015
4016         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4017 }
4018
4019 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4020 {
4021         struct stmmac_priv *priv = netdev_priv(ndev);
4022         int ret = 0;
4023
4024         ret = eth_mac_addr(ndev, addr);
4025         if (ret)
4026                 return ret;
4027
4028         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4029
4030         return ret;
4031 }
4032
4033 #ifdef CONFIG_DEBUG_FS
4034 static struct dentry *stmmac_fs_dir;
4035
4036 static void sysfs_display_ring(void *head, int size, int extend_desc,
4037                                struct seq_file *seq)
4038 {
4039         int i;
4040         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4041         struct dma_desc *p = (struct dma_desc *)head;
4042
4043         for (i = 0; i < size; i++) {
4044                 if (extend_desc) {
4045                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4046                                    i, (unsigned int)virt_to_phys(ep),
4047                                    le32_to_cpu(ep->basic.des0),
4048                                    le32_to_cpu(ep->basic.des1),
4049                                    le32_to_cpu(ep->basic.des2),
4050                                    le32_to_cpu(ep->basic.des3));
4051                         ep++;
4052                 } else {
4053                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4054                                    i, (unsigned int)virt_to_phys(p),
4055                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4056                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4057                         p++;
4058                 }
4059                 seq_printf(seq, "\n");
4060         }
4061 }
4062
4063 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4064 {
4065         struct net_device *dev = seq->private;
4066         struct stmmac_priv *priv = netdev_priv(dev);
4067         u32 rx_count = priv->plat->rx_queues_to_use;
4068         u32 tx_count = priv->plat->tx_queues_to_use;
4069         u32 queue;
4070
4071         if ((dev->flags & IFF_UP) == 0)
4072                 return 0;
4073
4074         for (queue = 0; queue < rx_count; queue++) {
4075                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4076
4077                 seq_printf(seq, "RX Queue %d:\n", queue);
4078
4079                 if (priv->extend_desc) {
4080                         seq_printf(seq, "Extended descriptor ring:\n");
4081                         sysfs_display_ring((void *)rx_q->dma_erx,
4082                                            DMA_RX_SIZE, 1, seq);
4083                 } else {
4084                         seq_printf(seq, "Descriptor ring:\n");
4085                         sysfs_display_ring((void *)rx_q->dma_rx,
4086                                            DMA_RX_SIZE, 0, seq);
4087                 }
4088         }
4089
4090         for (queue = 0; queue < tx_count; queue++) {
4091                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4092
4093                 seq_printf(seq, "TX Queue %d:\n", queue);
4094
4095                 if (priv->extend_desc) {
4096                         seq_printf(seq, "Extended descriptor ring:\n");
4097                         sysfs_display_ring((void *)tx_q->dma_etx,
4098                                            DMA_TX_SIZE, 1, seq);
4099                 } else {
4100                         seq_printf(seq, "Descriptor ring:\n");
4101                         sysfs_display_ring((void *)tx_q->dma_tx,
4102                                            DMA_TX_SIZE, 0, seq);
4103                 }
4104         }
4105
4106         return 0;
4107 }
4108 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4109
4110 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4111 {
4112         struct net_device *dev = seq->private;
4113         struct stmmac_priv *priv = netdev_priv(dev);
4114
4115         if (!priv->hw_cap_support) {
4116                 seq_printf(seq, "DMA HW features not supported\n");
4117                 return 0;
4118         }
4119
4120         seq_printf(seq, "==============================\n");
4121         seq_printf(seq, "\tDMA HW features\n");
4122         seq_printf(seq, "==============================\n");
4123
4124         seq_printf(seq, "\t10/100 Mbps: %s\n",
4125                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4126         seq_printf(seq, "\t1000 Mbps: %s\n",
4127                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4128         seq_printf(seq, "\tHalf duplex: %s\n",
4129                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4130         seq_printf(seq, "\tHash Filter: %s\n",
4131                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4132         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4133                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4134         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4135                    (priv->dma_cap.pcs) ? "Y" : "N");
4136         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4137                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4138         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4139                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4140         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4141                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4142         seq_printf(seq, "\tRMON module: %s\n",
4143                    (priv->dma_cap.rmon) ? "Y" : "N");
4144         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4145                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4146         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4147                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4148         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4149                    (priv->dma_cap.eee) ? "Y" : "N");
4150         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4151         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4152                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4153         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4154                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4155                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4156         } else {
4157                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4158                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4159                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4160                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4161         }
4162         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4163                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4164         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4165                    priv->dma_cap.number_rx_channel);
4166         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4167                    priv->dma_cap.number_tx_channel);
4168         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4169                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4170
4171         return 0;
4172 }
4173 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4174
4175 /* Use network device events to rename debugfs file entries.
4176  */
4177 static int stmmac_device_event(struct notifier_block *unused,
4178                                unsigned long event, void *ptr)
4179 {
4180         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4181         struct stmmac_priv *priv = netdev_priv(dev);
4182
4183         if (dev->netdev_ops != &stmmac_netdev_ops)
4184                 goto done;
4185
4186         switch (event) {
4187         case NETDEV_CHANGENAME:
4188                 if (priv->dbgfs_dir)
4189                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4190                                                          priv->dbgfs_dir,
4191                                                          stmmac_fs_dir,
4192                                                          dev->name);
4193                 break;
4194         }
4195 done:
4196         return NOTIFY_DONE;
4197 }
4198
4199 static struct notifier_block stmmac_notifier = {
4200         .notifier_call = stmmac_device_event,
4201 };
4202
4203 static void stmmac_init_fs(struct net_device *dev)
4204 {
4205         struct stmmac_priv *priv = netdev_priv(dev);
4206
4207         rtnl_lock();
4208
4209         /* Create per netdev entries */
4210         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4211
4212         /* Entry to report DMA RX/TX rings */
4213         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4214                             &stmmac_rings_status_fops);
4215
4216         /* Entry to report the DMA HW features */
4217         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4218                             &stmmac_dma_cap_fops);
4219
4220         rtnl_unlock();
4221 }
4222
4223 static void stmmac_exit_fs(struct net_device *dev)
4224 {
4225         struct stmmac_priv *priv = netdev_priv(dev);
4226
4227         debugfs_remove_recursive(priv->dbgfs_dir);
4228 }
4229 #endif /* CONFIG_DEBUG_FS */
4230
4231 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4232 {
4233         unsigned char *data = (unsigned char *)&vid_le;
4234         unsigned char data_byte = 0;
4235         u32 crc = ~0x0;
4236         u32 temp = 0;
4237         int i, bits;
4238
4239         bits = get_bitmask_order(VLAN_VID_MASK);
4240         for (i = 0; i < bits; i++) {
4241                 if ((i % 8) == 0)
4242                         data_byte = data[i / 8];
4243
4244                 temp = ((crc & 1) ^ data_byte) & 1;
4245                 crc >>= 1;
4246                 data_byte >>= 1;
4247
4248                 if (temp)
4249                         crc ^= 0xedb88320;
4250         }
4251
4252         return crc;
4253 }
4254
4255 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4256 {
4257         u32 crc, hash = 0;
4258         u16 vid;
4259
4260         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4261                 __le16 vid_le = cpu_to_le16(vid);
4262                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4263                 hash |= (1 << crc);
4264         }
4265
4266         return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4267 }
4268
4269 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4270 {
4271         struct stmmac_priv *priv = netdev_priv(ndev);
4272         bool is_double = false;
4273         int ret;
4274
4275         if (!priv->dma_cap.vlhash)
4276                 return -EOPNOTSUPP;
4277         if (be16_to_cpu(proto) == ETH_P_8021AD)
4278                 is_double = true;
4279
4280         set_bit(vid, priv->active_vlans);
4281         ret = stmmac_vlan_update(priv, is_double);
4282         if (ret) {
4283                 clear_bit(vid, priv->active_vlans);
4284                 return ret;
4285         }
4286
4287         return ret;
4288 }
4289
4290 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4291 {
4292         struct stmmac_priv *priv = netdev_priv(ndev);
4293         bool is_double = false;
4294
4295         if (!priv->dma_cap.vlhash)
4296                 return -EOPNOTSUPP;
4297         if (be16_to_cpu(proto) == ETH_P_8021AD)
4298                 is_double = true;
4299
4300         clear_bit(vid, priv->active_vlans);
4301         return stmmac_vlan_update(priv, is_double);
4302 }
4303
4304 static const struct net_device_ops stmmac_netdev_ops = {
4305         .ndo_open = stmmac_open,
4306         .ndo_start_xmit = stmmac_xmit,
4307         .ndo_stop = stmmac_release,
4308         .ndo_change_mtu = stmmac_change_mtu,
4309         .ndo_fix_features = stmmac_fix_features,
4310         .ndo_set_features = stmmac_set_features,
4311         .ndo_set_rx_mode = stmmac_set_rx_mode,
4312         .ndo_tx_timeout = stmmac_tx_timeout,
4313         .ndo_do_ioctl = stmmac_ioctl,
4314         .ndo_setup_tc = stmmac_setup_tc,
4315         .ndo_select_queue = stmmac_select_queue,
4316 #ifdef CONFIG_NET_POLL_CONTROLLER
4317         .ndo_poll_controller = stmmac_poll_controller,
4318 #endif
4319         .ndo_set_mac_address = stmmac_set_mac_address,
4320         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4321         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4322 };
4323
4324 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4325 {
4326         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4327                 return;
4328         if (test_bit(STMMAC_DOWN, &priv->state))
4329                 return;
4330
4331         netdev_err(priv->dev, "Reset adapter.\n");
4332
4333         rtnl_lock();
4334         netif_trans_update(priv->dev);
4335         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4336                 usleep_range(1000, 2000);
4337
4338         set_bit(STMMAC_DOWN, &priv->state);
4339         dev_close(priv->dev);
4340         dev_open(priv->dev, NULL);
4341         clear_bit(STMMAC_DOWN, &priv->state);
4342         clear_bit(STMMAC_RESETING, &priv->state);
4343         rtnl_unlock();
4344 }
4345
4346 static void stmmac_service_task(struct work_struct *work)
4347 {
4348         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4349                         service_task);
4350
4351         stmmac_reset_subtask(priv);
4352         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4353 }
4354
4355 /**
4356  *  stmmac_hw_init - Init the MAC device
4357  *  @priv: driver private structure
4358  *  Description: this function is to configure the MAC device according to
4359  *  some platform parameters or the HW capability register. It prepares the
4360  *  driver to use either ring or chain modes and to setup either enhanced or
4361  *  normal descriptors.
4362  */
4363 static int stmmac_hw_init(struct stmmac_priv *priv)
4364 {
4365         int ret;
4366
4367         /* dwmac-sun8i only work in chain mode */
4368         if (priv->plat->has_sun8i)
4369                 chain_mode = 1;
4370         priv->chain_mode = chain_mode;
4371
4372         /* Initialize HW Interface */
4373         ret = stmmac_hwif_init(priv);
4374         if (ret)
4375                 return ret;
4376
4377         /* Get the HW capability (new GMAC newer than 3.50a) */
4378         priv->hw_cap_support = stmmac_get_hw_features(priv);
4379         if (priv->hw_cap_support) {
4380                 dev_info(priv->device, "DMA HW capability register supported\n");
4381
4382                 /* We can override some gmac/dma configuration fields: e.g.
4383                  * enh_desc, tx_coe (e.g. that are passed through the
4384                  * platform) with the values from the HW capability
4385                  * register (if supported).
4386                  */
4387                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4388                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4389                 priv->hw->pmt = priv->plat->pmt;
4390                 if (priv->dma_cap.hash_tb_sz) {
4391                         priv->hw->multicast_filter_bins =
4392                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4393                         priv->hw->mcast_bits_log2 =
4394                                         ilog2(priv->hw->multicast_filter_bins);
4395                 }
4396
4397                 /* TXCOE doesn't work in thresh DMA mode */
4398                 if (priv->plat->force_thresh_dma_mode)
4399                         priv->plat->tx_coe = 0;
4400                 else
4401                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4402
4403                 /* In case of GMAC4 rx_coe is from HW cap register. */
4404                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4405
4406                 if (priv->dma_cap.rx_coe_type2)
4407                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4408                 else if (priv->dma_cap.rx_coe_type1)
4409                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4410
4411         } else {
4412                 dev_info(priv->device, "No HW DMA feature register supported\n");
4413         }
4414
4415         if (priv->plat->rx_coe) {
4416                 priv->hw->rx_csum = priv->plat->rx_coe;
4417                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4418                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4419                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4420         }
4421         if (priv->plat->tx_coe)
4422                 dev_info(priv->device, "TX Checksum insertion supported\n");
4423
4424         if (priv->plat->pmt) {
4425                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4426                 device_set_wakeup_capable(priv->device, 1);
4427         }
4428
4429         if (priv->dma_cap.tsoen)
4430                 dev_info(priv->device, "TSO supported\n");
4431
4432         /* Run HW quirks, if any */
4433         if (priv->hwif_quirks) {
4434                 ret = priv->hwif_quirks(priv);
4435                 if (ret)
4436                         return ret;
4437         }
4438
4439         /* Rx Watchdog is available in the COREs newer than the 3.40.
4440          * In some case, for example on bugged HW this feature
4441          * has to be disable and this can be done by passing the
4442          * riwt_off field from the platform.
4443          */
4444         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4445             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4446                 priv->use_riwt = 1;
4447                 dev_info(priv->device,
4448                          "Enable RX Mitigation via HW Watchdog Timer\n");
4449         }
4450
4451         return 0;
4452 }
4453
4454 /**
4455  * stmmac_dvr_probe
4456  * @device: device pointer
4457  * @plat_dat: platform data pointer
4458  * @res: stmmac resource pointer
4459  * Description: this is the main probe function used to
4460  * call the alloc_etherdev, allocate the priv structure.
4461  * Return:
4462  * returns 0 on success, otherwise errno.
4463  */
4464 int stmmac_dvr_probe(struct device *device,
4465                      struct plat_stmmacenet_data *plat_dat,
4466                      struct stmmac_resources *res)
4467 {
4468         struct net_device *ndev = NULL;
4469         struct stmmac_priv *priv;
4470         u32 queue, rxq, maxq;
4471         int i, ret = 0;
4472
4473         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4474                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4475         if (!ndev)
4476                 return -ENOMEM;
4477
4478         SET_NETDEV_DEV(ndev, device);
4479
4480         priv = netdev_priv(ndev);
4481         priv->device = device;
4482         priv->dev = ndev;
4483
4484         stmmac_set_ethtool_ops(ndev);
4485         priv->pause = pause;
4486         priv->plat = plat_dat;
4487         priv->ioaddr = res->addr;
4488         priv->dev->base_addr = (unsigned long)res->addr;
4489
4490         priv->dev->irq = res->irq;
4491         priv->wol_irq = res->wol_irq;
4492         priv->lpi_irq = res->lpi_irq;
4493
4494         if (!IS_ERR_OR_NULL(res->mac))
4495                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4496
4497         dev_set_drvdata(device, priv->dev);
4498
4499         /* Verify driver arguments */
4500         stmmac_verify_args();
4501
4502         /* Allocate workqueue */
4503         priv->wq = create_singlethread_workqueue("stmmac_wq");
4504         if (!priv->wq) {
4505                 dev_err(priv->device, "failed to create workqueue\n");
4506                 return -ENOMEM;
4507         }
4508
4509         INIT_WORK(&priv->service_task, stmmac_service_task);
4510
4511         /* Override with kernel parameters if supplied XXX CRS XXX
4512          * this needs to have multiple instances
4513          */
4514         if ((phyaddr >= 0) && (phyaddr <= 31))
4515                 priv->plat->phy_addr = phyaddr;
4516
4517         if (priv->plat->stmmac_rst) {
4518                 ret = reset_control_assert(priv->plat->stmmac_rst);
4519                 reset_control_deassert(priv->plat->stmmac_rst);
4520                 /* Some reset controllers have only reset callback instead of
4521                  * assert + deassert callbacks pair.
4522                  */
4523                 if (ret == -ENOTSUPP)
4524                         reset_control_reset(priv->plat->stmmac_rst);
4525         }
4526
4527         /* Init MAC and get the capabilities */
4528         ret = stmmac_hw_init(priv);
4529         if (ret)
4530                 goto error_hw_init;
4531
4532         stmmac_check_ether_addr(priv);
4533
4534         /* Configure real RX and TX queues */
4535         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4536         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4537
4538         ndev->netdev_ops = &stmmac_netdev_ops;
4539
4540         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4541                             NETIF_F_RXCSUM;
4542
4543         ret = stmmac_tc_init(priv, priv);
4544         if (!ret) {
4545                 ndev->hw_features |= NETIF_F_HW_TC;
4546         }
4547
4548         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4549                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4550                 priv->tso = true;
4551                 dev_info(priv->device, "TSO feature enabled\n");
4552         }
4553
4554         if (priv->dma_cap.sphen) {
4555                 ndev->hw_features |= NETIF_F_GRO;
4556                 priv->sph = true;
4557                 dev_info(priv->device, "SPH feature enabled\n");
4558         }
4559
4560         if (priv->dma_cap.addr64) {
4561                 ret = dma_set_mask_and_coherent(device,
4562                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4563                 if (!ret) {
4564                         dev_info(priv->device, "Using %d bits DMA width\n",
4565                                  priv->dma_cap.addr64);
4566                 } else {
4567                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4568                         if (ret) {
4569                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4570                                 goto error_hw_init;
4571                         }
4572
4573                         priv->dma_cap.addr64 = 32;
4574                 }
4575         }
4576
4577         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4578         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4579 #ifdef STMMAC_VLAN_TAG_USED
4580         /* Both mac100 and gmac support receive VLAN tag detection */
4581         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4582         if (priv->dma_cap.vlhash) {
4583                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4584                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4585         }
4586         if (priv->dma_cap.vlins) {
4587                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4588                 if (priv->dma_cap.dvlan)
4589                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4590         }
4591 #endif
4592         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4593
4594         /* Initialize RSS */
4595         rxq = priv->plat->rx_queues_to_use;
4596         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4597         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4598                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4599
4600         if (priv->dma_cap.rssen && priv->plat->rss_en)
4601                 ndev->features |= NETIF_F_RXHASH;
4602
4603         /* MTU range: 46 - hw-specific max */
4604         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4605         if (priv->plat->has_xgmac)
4606                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4607         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4608                 ndev->max_mtu = JUMBO_LEN;
4609         else
4610                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4611         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4612          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4613          */
4614         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4615             (priv->plat->maxmtu >= ndev->min_mtu))
4616                 ndev->max_mtu = priv->plat->maxmtu;
4617         else if (priv->plat->maxmtu < ndev->min_mtu)
4618                 dev_warn(priv->device,
4619                          "%s: warning: maxmtu having invalid value (%d)\n",
4620                          __func__, priv->plat->maxmtu);
4621
4622         if (flow_ctrl)
4623                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4624
4625         /* Setup channels NAPI */
4626         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4627
4628         for (queue = 0; queue < maxq; queue++) {
4629                 struct stmmac_channel *ch = &priv->channel[queue];
4630
4631                 ch->priv_data = priv;
4632                 ch->index = queue;
4633
4634                 if (queue < priv->plat->rx_queues_to_use) {
4635                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4636                                        NAPI_POLL_WEIGHT);
4637                 }
4638                 if (queue < priv->plat->tx_queues_to_use) {
4639                         netif_tx_napi_add(ndev, &ch->tx_napi,
4640                                           stmmac_napi_poll_tx,
4641                                           NAPI_POLL_WEIGHT);
4642                 }
4643         }
4644
4645         mutex_init(&priv->lock);
4646
4647         /* If a specific clk_csr value is passed from the platform
4648          * this means that the CSR Clock Range selection cannot be
4649          * changed at run-time and it is fixed. Viceversa the driver'll try to
4650          * set the MDC clock dynamically according to the csr actual
4651          * clock input.
4652          */
4653         if (priv->plat->clk_csr >= 0)
4654                 priv->clk_csr = priv->plat->clk_csr;
4655         else
4656                 stmmac_clk_csr_set(priv);
4657
4658         stmmac_check_pcs_mode(priv);
4659
4660         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4661             priv->hw->pcs != STMMAC_PCS_TBI &&
4662             priv->hw->pcs != STMMAC_PCS_RTBI) {
4663                 /* MDIO bus Registration */
4664                 ret = stmmac_mdio_register(ndev);
4665                 if (ret < 0) {
4666                         dev_err(priv->device,
4667                                 "%s: MDIO bus (id: %d) registration failed",
4668                                 __func__, priv->plat->bus_id);
4669                         goto error_mdio_register;
4670                 }
4671         }
4672
4673         ret = stmmac_phy_setup(priv);
4674         if (ret) {
4675                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4676                 goto error_phy_setup;
4677         }
4678
4679         ret = register_netdev(ndev);
4680         if (ret) {
4681                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4682                         __func__, ret);
4683                 goto error_netdev_register;
4684         }
4685
4686 #ifdef CONFIG_DEBUG_FS
4687         stmmac_init_fs(ndev);
4688 #endif
4689
4690         return ret;
4691
4692 error_netdev_register:
4693         phylink_destroy(priv->phylink);
4694 error_phy_setup:
4695         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4696             priv->hw->pcs != STMMAC_PCS_TBI &&
4697             priv->hw->pcs != STMMAC_PCS_RTBI)
4698                 stmmac_mdio_unregister(ndev);
4699 error_mdio_register:
4700         for (queue = 0; queue < maxq; queue++) {
4701                 struct stmmac_channel *ch = &priv->channel[queue];
4702
4703                 if (queue < priv->plat->rx_queues_to_use)
4704                         netif_napi_del(&ch->rx_napi);
4705                 if (queue < priv->plat->tx_queues_to_use)
4706                         netif_napi_del(&ch->tx_napi);
4707         }
4708 error_hw_init:
4709         destroy_workqueue(priv->wq);
4710
4711         return ret;
4712 }
4713 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4714
4715 /**
4716  * stmmac_dvr_remove
4717  * @dev: device pointer
4718  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4719  * changes the link status, releases the DMA descriptor rings.
4720  */
4721 int stmmac_dvr_remove(struct device *dev)
4722 {
4723         struct net_device *ndev = dev_get_drvdata(dev);
4724         struct stmmac_priv *priv = netdev_priv(ndev);
4725
4726         netdev_info(priv->dev, "%s: removing driver", __func__);
4727
4728         stmmac_stop_all_dma(priv);
4729
4730         stmmac_mac_set(priv, priv->ioaddr, false);
4731         netif_carrier_off(ndev);
4732         unregister_netdev(ndev);
4733 #ifdef CONFIG_DEBUG_FS
4734         stmmac_exit_fs(ndev);
4735 #endif
4736         phylink_destroy(priv->phylink);
4737         if (priv->plat->stmmac_rst)
4738                 reset_control_assert(priv->plat->stmmac_rst);
4739         clk_disable_unprepare(priv->plat->pclk);
4740         clk_disable_unprepare(priv->plat->stmmac_clk);
4741         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4742             priv->hw->pcs != STMMAC_PCS_TBI &&
4743             priv->hw->pcs != STMMAC_PCS_RTBI)
4744                 stmmac_mdio_unregister(ndev);
4745         destroy_workqueue(priv->wq);
4746         mutex_destroy(&priv->lock);
4747
4748         return 0;
4749 }
4750 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4751
4752 /**
4753  * stmmac_suspend - suspend callback
4754  * @dev: device pointer
4755  * Description: this is the function to suspend the device and it is called
4756  * by the platform driver to stop the network queue, release the resources,
4757  * program the PMT register (for WoL), clean and release driver resources.
4758  */
4759 int stmmac_suspend(struct device *dev)
4760 {
4761         struct net_device *ndev = dev_get_drvdata(dev);
4762         struct stmmac_priv *priv = netdev_priv(ndev);
4763         u32 chan;
4764
4765         if (!ndev || !netif_running(ndev))
4766                 return 0;
4767
4768         phylink_mac_change(priv->phylink, false);
4769
4770         mutex_lock(&priv->lock);
4771
4772         netif_device_detach(ndev);
4773         stmmac_stop_all_queues(priv);
4774
4775         stmmac_disable_all_queues(priv);
4776
4777         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
4778                 del_timer_sync(&priv->tx_queue[chan].txtimer);
4779
4780         /* Stop TX/RX DMA */
4781         stmmac_stop_all_dma(priv);
4782
4783         /* Enable Power down mode by programming the PMT regs */
4784         if (device_may_wakeup(priv->device)) {
4785                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4786                 priv->irq_wake = 1;
4787         } else {
4788                 mutex_unlock(&priv->lock);
4789                 rtnl_lock();
4790                 phylink_stop(priv->phylink);
4791                 rtnl_unlock();
4792                 mutex_lock(&priv->lock);
4793
4794                 stmmac_mac_set(priv, priv->ioaddr, false);
4795                 pinctrl_pm_select_sleep_state(priv->device);
4796                 /* Disable clock in case of PWM is off */
4797                 if (priv->plat->clk_ptp_ref)
4798                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
4799                 clk_disable_unprepare(priv->plat->pclk);
4800                 clk_disable_unprepare(priv->plat->stmmac_clk);
4801         }
4802         mutex_unlock(&priv->lock);
4803
4804         priv->speed = SPEED_UNKNOWN;
4805         return 0;
4806 }
4807 EXPORT_SYMBOL_GPL(stmmac_suspend);
4808
4809 /**
4810  * stmmac_reset_queues_param - reset queue parameters
4811  * @dev: device pointer
4812  */
4813 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4814 {
4815         u32 rx_cnt = priv->plat->rx_queues_to_use;
4816         u32 tx_cnt = priv->plat->tx_queues_to_use;
4817         u32 queue;
4818
4819         for (queue = 0; queue < rx_cnt; queue++) {
4820                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4821
4822                 rx_q->cur_rx = 0;
4823                 rx_q->dirty_rx = 0;
4824         }
4825
4826         for (queue = 0; queue < tx_cnt; queue++) {
4827                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4828
4829                 tx_q->cur_tx = 0;
4830                 tx_q->dirty_tx = 0;
4831                 tx_q->mss = 0;
4832         }
4833 }
4834
4835 /**
4836  * stmmac_resume - resume callback
4837  * @dev: device pointer
4838  * Description: when resume this function is invoked to setup the DMA and CORE
4839  * in a usable state.
4840  */
4841 int stmmac_resume(struct device *dev)
4842 {
4843         struct net_device *ndev = dev_get_drvdata(dev);
4844         struct stmmac_priv *priv = netdev_priv(ndev);
4845
4846         if (!netif_running(ndev))
4847                 return 0;
4848
4849         /* Power Down bit, into the PM register, is cleared
4850          * automatically as soon as a magic packet or a Wake-up frame
4851          * is received. Anyway, it's better to manually clear
4852          * this bit because it can generate problems while resuming
4853          * from another devices (e.g. serial console).
4854          */
4855         if (device_may_wakeup(priv->device)) {
4856                 mutex_lock(&priv->lock);
4857                 stmmac_pmt(priv, priv->hw, 0);
4858                 mutex_unlock(&priv->lock);
4859                 priv->irq_wake = 0;
4860         } else {
4861                 pinctrl_pm_select_default_state(priv->device);
4862                 /* enable the clk previously disabled */
4863                 clk_prepare_enable(priv->plat->stmmac_clk);
4864                 clk_prepare_enable(priv->plat->pclk);
4865                 if (priv->plat->clk_ptp_ref)
4866                         clk_prepare_enable(priv->plat->clk_ptp_ref);
4867                 /* reset the phy so that it's ready */
4868                 if (priv->mii)
4869                         stmmac_mdio_reset(priv->mii);
4870         }
4871
4872         netif_device_attach(ndev);
4873
4874         mutex_lock(&priv->lock);
4875
4876         stmmac_reset_queues_param(priv);
4877
4878         stmmac_clear_descriptors(priv);
4879
4880         stmmac_hw_setup(ndev, false);
4881         stmmac_init_coalesce(priv);
4882         stmmac_set_rx_mode(ndev);
4883
4884         stmmac_enable_all_queues(priv);
4885
4886         stmmac_start_all_queues(priv);
4887
4888         mutex_unlock(&priv->lock);
4889
4890         if (!device_may_wakeup(priv->device)) {
4891                 rtnl_lock();
4892                 phylink_start(priv->phylink);
4893                 rtnl_unlock();
4894         }
4895
4896         phylink_mac_change(priv->phylink, true);
4897
4898         return 0;
4899 }
4900 EXPORT_SYMBOL_GPL(stmmac_resume);
4901
4902 #ifndef MODULE
4903 static int __init stmmac_cmdline_opt(char *str)
4904 {
4905         char *opt;
4906
4907         if (!str || !*str)
4908                 return -EINVAL;
4909         while ((opt = strsep(&str, ",")) != NULL) {
4910                 if (!strncmp(opt, "debug:", 6)) {
4911                         if (kstrtoint(opt + 6, 0, &debug))
4912                                 goto err;
4913                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4914                         if (kstrtoint(opt + 8, 0, &phyaddr))
4915                                 goto err;
4916                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4917                         if (kstrtoint(opt + 7, 0, &buf_sz))
4918                                 goto err;
4919                 } else if (!strncmp(opt, "tc:", 3)) {
4920                         if (kstrtoint(opt + 3, 0, &tc))
4921                                 goto err;
4922                 } else if (!strncmp(opt, "watchdog:", 9)) {
4923                         if (kstrtoint(opt + 9, 0, &watchdog))
4924                                 goto err;
4925                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4926                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4927                                 goto err;
4928                 } else if (!strncmp(opt, "pause:", 6)) {
4929                         if (kstrtoint(opt + 6, 0, &pause))
4930                                 goto err;
4931                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4932                         if (kstrtoint(opt + 10, 0, &eee_timer))
4933                                 goto err;
4934                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4935                         if (kstrtoint(opt + 11, 0, &chain_mode))
4936                                 goto err;
4937                 }
4938         }
4939         return 0;
4940
4941 err:
4942         pr_err("%s: ERROR broken module parameter conversion", __func__);
4943         return -EINVAL;
4944 }
4945
4946 __setup("stmmaceth=", stmmac_cmdline_opt);
4947 #endif /* MODULE */
4948
4949 static int __init stmmac_init(void)
4950 {
4951 #ifdef CONFIG_DEBUG_FS
4952         /* Create debugfs main directory if it doesn't exist yet */
4953         if (!stmmac_fs_dir)
4954                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4955         register_netdevice_notifier(&stmmac_notifier);
4956 #endif
4957
4958         return 0;
4959 }
4960
4961 static void __exit stmmac_exit(void)
4962 {
4963 #ifdef CONFIG_DEBUG_FS
4964         unregister_netdevice_notifier(&stmmac_notifier);
4965         debugfs_remove_recursive(stmmac_fs_dir);
4966 #endif
4967 }
4968
4969 module_init(stmmac_init)
4970 module_exit(stmmac_exit)
4971
4972 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4973 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4974 MODULE_LICENSE("GPL");