Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / qlogic / qed / qed_init_fw_funcs.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <linux/crc8.h>
35 #include <linux/delay.h>
36 #include <linux/kernel.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include "qed_hsi.h"
40 #include "qed_hw.h"
41 #include "qed_init_ops.h"
42 #include "qed_reg_addr.h"
43
44 #define CDU_VALIDATION_DEFAULT_CFG      61
45
46 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
47         {400, 336, 352, 304, 304, 384, 416, 352},       /* region 3 offsets */
48         {528, 496, 416, 448, 448, 512, 544, 480},       /* region 4 offsets */
49         {608, 544, 496, 512, 576, 592, 624, 560}        /* region 5 offsets */
50 };
51
52 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
53         {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
54 };
55
56 /* General constants */
57 #define QM_PQ_MEM_4KB(pq_size)  (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
58                                                         QM_PQ_ELEMENT_SIZE, \
59                                                         0x1000) : 0)
60 #define QM_PQ_SIZE_256B(pq_size)        (pq_size ? DIV_ROUND_UP(pq_size, \
61                                                                 0x100) - 1 : 0)
62 #define QM_INVALID_PQ_ID                0xffff
63
64 /* Feature enable */
65 #define QM_BYPASS_EN    1
66 #define QM_BYTE_CRD_EN  1
67
68 /* Other PQ constants */
69 #define QM_OTHER_PQS_PER_PF     4
70
71 /* WFQ constants */
72
73 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
74 #define QM_WFQ_UPPER_BOUND      62500000
75
76 /* Bit  of VOQ in WFQ VP PQ map */
77 #define QM_WFQ_VP_PQ_VOQ_SHIFT  0
78
79 /* Bit  of PF in WFQ VP PQ map */
80 #define QM_WFQ_VP_PQ_PF_E4_SHIFT        5
81
82 /* 0x9000 = 4*9*1024 */
83 #define QM_WFQ_INC_VAL(weight)  ((weight) * 0x9000)
84
85 /* Max WFQ increment value is 0.7 * upper bound */
86 #define QM_WFQ_MAX_INC_VAL      ((QM_WFQ_UPPER_BOUND * 7) / 10)
87
88 /* RL constants */
89
90 /* Period in us */
91 #define QM_RL_PERIOD    5
92
93 /* Period in 25MHz cycles */
94 #define QM_RL_PERIOD_CLK_25M    (25 * QM_RL_PERIOD)
95
96 /* RL increment value - rate is specified in mbps */
97 #define QM_RL_INC_VAL(rate) ({ \
98         typeof(rate) __rate = (rate); \
99         max_t(u32, \
100               (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
101                     (8 * 100)), \
102               1); })
103
104 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
105 #define QM_PF_RL_UPPER_BOUND    62500000
106
107 /* Max PF RL increment value is 0.7 * upper bound */
108 #define QM_PF_RL_MAX_INC_VAL    ((QM_PF_RL_UPPER_BOUND * 7) / 10)
109
110 /* Vport RL Upper bound, link speed is in Mpbs */
111 #define QM_VP_RL_UPPER_BOUND(speed)     ((u32)max_t(u32, \
112                                                     QM_RL_INC_VAL(speed), \
113                                                     9700 + 1000))
114
115 /* Max Vport RL increment value is the Vport RL upper bound */
116 #define QM_VP_RL_MAX_INC_VAL(speed)     QM_VP_RL_UPPER_BOUND(speed)
117
118 /* Vport RL credit threshold in case of QM bypass */
119 #define QM_VP_RL_BYPASS_THRESH_SPEED    (QM_VP_RL_UPPER_BOUND(10000) - 1)
120
121 /* AFullOprtnstcCrdMask constants */
122 #define QM_OPPOR_LINE_VOQ_DEF   1
123 #define QM_OPPOR_FW_STOP_DEF    0
124 #define QM_OPPOR_PQ_EMPTY_DEF   1
125
126 /* Command Queue constants */
127
128 /* Pure LB CmdQ lines (+spare) */
129 #define PBF_CMDQ_PURE_LB_LINES  150
130
131 #define PBF_CMDQ_LINES_E5_RSVD_RATIO    8
132
133 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
134         (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
135          (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
136                 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
137
138 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
139         (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
140          (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
141                 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
142
143 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
144         ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
145
146 /* BTB: blocks constants (block size = 256B) */
147
148 /* 256B blocks in 9700B packet */
149 #define BTB_JUMBO_PKT_BLOCKS    38
150
151 /* Headroom per-port */
152 #define BTB_HEADROOM_BLOCKS     BTB_JUMBO_PKT_BLOCKS
153 #define BTB_PURE_LB_FACTOR      10
154
155 /* Factored (hence really 0.7) */
156 #define BTB_PURE_LB_RATIO       7
157
158 /* QM stop command constants */
159 #define QM_STOP_PQ_MASK_WIDTH           32
160 #define QM_STOP_CMD_ADDR                2
161 #define QM_STOP_CMD_STRUCT_SIZE         2
162 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
163 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
164 #define QM_STOP_CMD_PAUSE_MASK_MASK     -1
165 #define QM_STOP_CMD_GROUP_ID_OFFSET     1
166 #define QM_STOP_CMD_GROUP_ID_SHIFT      16
167 #define QM_STOP_CMD_GROUP_ID_MASK       15
168 #define QM_STOP_CMD_PQ_TYPE_OFFSET      1
169 #define QM_STOP_CMD_PQ_TYPE_SHIFT       24
170 #define QM_STOP_CMD_PQ_TYPE_MASK        1
171 #define QM_STOP_CMD_MAX_POLL_COUNT      100
172 #define QM_STOP_CMD_POLL_PERIOD_US      500
173
174 /* QM command macros */
175 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
176 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
177         SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
178                   cmd ## _ ## field, \
179                   value)
180
181 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, \
182                           ext_voq, wrr) \
183         do { \
184                 typeof(map) __map; \
185                 memset(&__map, 0, sizeof(__map)); \
186                 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \
187                 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \
188                           rl_valid); \
189                 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \
190                           vp_pq_id); \
191                 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \
192                 SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \
193                 SET_FIELD(__map.reg, \
194                           QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \
195                 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
196                              *((u32 *)&__map)); \
197                 (map) = __map; \
198         } while (0)
199
200 #define WRITE_PQ_INFO_TO_RAM    1
201 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
202         (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
203         ((rl_valid) << 22) | ((rl) << 24))
204 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
205         (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4)
206
207 /******************** INTERNAL IMPLEMENTATION *********************/
208
209 /* Returns the external VOQ number */
210 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
211                           u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
212 {
213         if (tc == PURE_LB_TC)
214                 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
215         else
216                 return port_id * max_phys_tcs_per_port + tc;
217 }
218
219 /* Prepare PF RL enable/disable runtime init values */
220 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
221 {
222         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
223         if (pf_rl_en) {
224                 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
225                 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
226
227                 /* Enable RLs for all VOQs */
228                 STORE_RT_REG(p_hwfn,
229                              QM_REG_RLPFVOQENABLE_RT_OFFSET,
230                              (u32)voq_bit_mask);
231                 if (num_ext_voqs >= 32)
232                         STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET,
233                                      (u32)(voq_bit_mask >> 32));
234
235                 /* Write RL period */
236                 STORE_RT_REG(p_hwfn,
237                              QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
238                 STORE_RT_REG(p_hwfn,
239                              QM_REG_RLPFPERIODTIMER_RT_OFFSET,
240                              QM_RL_PERIOD_CLK_25M);
241
242                 /* Set credit threshold for QM bypass flow */
243                 if (QM_BYPASS_EN)
244                         STORE_RT_REG(p_hwfn,
245                                      QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
246                                      QM_PF_RL_UPPER_BOUND);
247         }
248 }
249
250 /* Prepare PF WFQ enable/disable runtime init values */
251 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
252 {
253         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
254
255         /* Set credit threshold for QM bypass flow */
256         if (pf_wfq_en && QM_BYPASS_EN)
257                 STORE_RT_REG(p_hwfn,
258                              QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
259                              QM_WFQ_UPPER_BOUND);
260 }
261
262 /* Prepare VPORT RL enable/disable runtime init values */
263 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
264 {
265         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
266                      vport_rl_en ? 1 : 0);
267         if (vport_rl_en) {
268                 /* Write RL period (use timer 0 only) */
269                 STORE_RT_REG(p_hwfn,
270                              QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
271                              QM_RL_PERIOD_CLK_25M);
272                 STORE_RT_REG(p_hwfn,
273                              QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
274                              QM_RL_PERIOD_CLK_25M);
275
276                 /* Set credit threshold for QM bypass flow */
277                 if (QM_BYPASS_EN)
278                         STORE_RT_REG(p_hwfn,
279                                      QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
280                                      QM_VP_RL_BYPASS_THRESH_SPEED);
281         }
282 }
283
284 /* Prepare VPORT WFQ enable/disable runtime init values */
285 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
286 {
287         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
288                      vport_wfq_en ? 1 : 0);
289
290         /* Set credit threshold for QM bypass flow */
291         if (vport_wfq_en && QM_BYPASS_EN)
292                 STORE_RT_REG(p_hwfn,
293                              QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
294                              QM_WFQ_UPPER_BOUND);
295 }
296
297 /* Prepare runtime init values to allocate PBF command queue lines for
298  * the specified VOQ.
299  */
300 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
301                                        u8 ext_voq, u16 cmdq_lines)
302 {
303         u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
304
305         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
306                          (u32)cmdq_lines);
307         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
308                      qm_line_crd);
309         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
310                      qm_line_crd);
311 }
312
313 /* Prepare runtime init values to allocate PBF command queue lines. */
314 static void qed_cmdq_lines_rt_init(
315         struct qed_hwfn *p_hwfn,
316         u8 max_ports_per_engine,
317         u8 max_phys_tcs_per_port,
318         struct init_qm_port_params port_params[MAX_NUM_PORTS])
319 {
320         u8 tc, ext_voq, port_id, num_tcs_in_port;
321         u8 num_ext_voqs = MAX_NUM_VOQS_E4;
322
323         /* Clear PBF lines of all VOQs */
324         for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
325                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
326
327         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
328                 u16 phys_lines, phys_lines_per_tc;
329
330                 if (!port_params[port_id].active)
331                         continue;
332
333                 /* Find number of command queue lines to divide between the
334                  * active physical TCs. In E5, 1/8 of the lines are reserved.
335                  * the lines for pure LB TC are subtracted.
336                  */
337                 phys_lines = port_params[port_id].num_pbf_cmd_lines;
338                 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
339
340                 /* Find #lines per active physical TC */
341                 num_tcs_in_port = 0;
342                 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
343                         if (((port_params[port_id].active_phys_tcs >>
344                               tc) & 0x1) == 1)
345                                 num_tcs_in_port++;
346                 phys_lines_per_tc = phys_lines / num_tcs_in_port;
347
348                 /* Init registers per active TC */
349                 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
350                         ext_voq = qed_get_ext_voq(p_hwfn,
351                                                   port_id,
352                                                   tc, max_phys_tcs_per_port);
353                         if (((port_params[port_id].active_phys_tcs >>
354                               tc) & 0x1) == 1)
355                                 qed_cmdq_lines_voq_rt_init(p_hwfn,
356                                                            ext_voq,
357                                                            phys_lines_per_tc);
358                 }
359
360                 /* Init registers for pure LB TC */
361                 ext_voq = qed_get_ext_voq(p_hwfn,
362                                           port_id,
363                                           PURE_LB_TC, max_phys_tcs_per_port);
364                 qed_cmdq_lines_voq_rt_init(p_hwfn,
365                                            ext_voq, PBF_CMDQ_PURE_LB_LINES);
366         }
367 }
368
369 static void qed_btb_blocks_rt_init(
370         struct qed_hwfn *p_hwfn,
371         u8 max_ports_per_engine,
372         u8 max_phys_tcs_per_port,
373         struct init_qm_port_params port_params[MAX_NUM_PORTS])
374 {
375         u32 usable_blocks, pure_lb_blocks, phys_blocks;
376         u8 tc, ext_voq, port_id, num_tcs_in_port;
377
378         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
379                 if (!port_params[port_id].active)
380                         continue;
381
382                 /* Subtract headroom blocks */
383                 usable_blocks = port_params[port_id].num_btb_blocks -
384                                 BTB_HEADROOM_BLOCKS;
385
386                 /* Find blocks per physical TC. Use factor to avoid floating
387                  * arithmethic.
388                  */
389                 num_tcs_in_port = 0;
390                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
391                         if (((port_params[port_id].active_phys_tcs >>
392                               tc) & 0x1) == 1)
393                                 num_tcs_in_port++;
394
395                 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
396                                  (num_tcs_in_port * BTB_PURE_LB_FACTOR +
397                                   BTB_PURE_LB_RATIO);
398                 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
399                                        pure_lb_blocks / BTB_PURE_LB_FACTOR);
400                 phys_blocks = (usable_blocks - pure_lb_blocks) /
401                               num_tcs_in_port;
402
403                 /* Init physical TCs */
404                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
405                         if (((port_params[port_id].active_phys_tcs >>
406                               tc) & 0x1) == 1) {
407                                 ext_voq =
408                                         qed_get_ext_voq(p_hwfn,
409                                                         port_id,
410                                                         tc,
411                                                         max_phys_tcs_per_port);
412                                 STORE_RT_REG(p_hwfn,
413                                              PBF_BTB_GUARANTEED_RT_OFFSET
414                                              (ext_voq), phys_blocks);
415                         }
416                 }
417
418                 /* Init pure LB TC */
419                 ext_voq = qed_get_ext_voq(p_hwfn,
420                                           port_id,
421                                           PURE_LB_TC, max_phys_tcs_per_port);
422                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
423                              pure_lb_blocks);
424         }
425 }
426
427 /* Prepare Tx PQ mapping runtime init values for the specified PF */
428 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
429                                   struct qed_ptt *p_ptt,
430                                   struct qed_qm_pf_rt_init_params *p_params,
431                                   u32 base_mem_addr_4kb)
432 {
433         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
434         struct init_qm_vport_params *vport_params = p_params->vport_params;
435         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
436         u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
437         struct init_qm_pq_params *pq_params = p_params->pq_params;
438         u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
439
440         num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
441
442         first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
443         last_pq_group = (p_params->start_pq + num_pqs - 1) /
444                         QM_PF_QUEUE_GROUP_SIZE;
445
446         pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
447         vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
448         mem_addr_4kb = base_mem_addr_4kb;
449
450         /* Set mapping from PQ group to PF */
451         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
452                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
453                              (u32)(p_params->pf_id));
454
455         /* Set PQ sizes */
456         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
457                      QM_PQ_SIZE_256B(p_params->num_pf_cids));
458         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
459                      QM_PQ_SIZE_256B(p_params->num_vf_cids));
460
461         /* Go over all Tx PQs */
462         for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
463                 u8 ext_voq, vport_id_in_pf, tc_id = pq_params[i].tc_id;
464                 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
465                 struct qm_rf_pq_map_e4 tx_pq_map;
466                 bool is_vf_pq, rl_valid;
467                 u16 *p_first_tx_pq_id;
468
469                 ext_voq = qed_get_ext_voq(p_hwfn,
470                                           pq_params[i].port_id,
471                                           tc_id,
472                                           p_params->max_phys_tcs_per_port);
473                 is_vf_pq = (i >= p_params->num_pf_pqs);
474                 rl_valid = pq_params[i].rl_valid > 0;
475
476                 /* Update first Tx PQ of VPORT/TC */
477                 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
478                 p_first_tx_pq_id =
479                     &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
480                 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
481                         u32 map_val =
482                                 (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
483                                 (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
484
485                         /* Create new VP PQ */
486                         *p_first_tx_pq_id = pq_id;
487
488                         /* Map VP PQ to VOQ and PF */
489                         STORE_RT_REG(p_hwfn,
490                                      QM_REG_WFQVPMAP_RT_OFFSET +
491                                      *p_first_tx_pq_id,
492                                      map_val);
493                 }
494
495                 /* Check RL ID */
496                 if (rl_valid && pq_params[i].vport_id >= max_qm_global_rls) {
497                         DP_NOTICE(p_hwfn,
498                                   "Invalid VPORT ID for rate limiter configuration\n");
499                         rl_valid = false;
500                 }
501
502                 /* Prepare PQ map entry */
503                 QM_INIT_TX_PQ_MAP(p_hwfn,
504                                   tx_pq_map,
505                                   E4,
506                                   pq_id,
507                                   rl_valid ? 1 : 0,
508                                   *p_first_tx_pq_id,
509                                   rl_valid ? pq_params[i].vport_id : 0,
510                                   ext_voq, pq_params[i].wrr_group);
511
512                 /* Set PQ base address */
513                 STORE_RT_REG(p_hwfn,
514                              QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
515                              mem_addr_4kb);
516
517                 /* Clear PQ pointer table entry (64 bit) */
518                 if (p_params->is_pf_loading)
519                         for (j = 0; j < 2; j++)
520                                 STORE_RT_REG(p_hwfn,
521                                              QM_REG_PTRTBLTX_RT_OFFSET +
522                                              (pq_id * 2) + j, 0);
523
524                 /* Write PQ info to RAM */
525                 if (WRITE_PQ_INFO_TO_RAM != 0) {
526                         u32 pq_info = 0;
527
528                         pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
529                                                   p_params->pf_id,
530                                                   tc_id,
531                                                   pq_params[i].port_id,
532                                                   rl_valid ? 1 : 0,
533                                                   rl_valid ?
534                                                   pq_params[i].vport_id : 0);
535                         qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
536                                pq_info);
537                 }
538
539                 /* If VF PQ, add indication to PQ VF mask */
540                 if (is_vf_pq) {
541                         tx_pq_vf_mask[pq_id /
542                                       QM_PF_QUEUE_GROUP_SIZE] |=
543                             BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
544                         mem_addr_4kb += vport_pq_mem_4kb;
545                 } else {
546                         mem_addr_4kb += pq_mem_4kb;
547                 }
548         }
549
550         /* Store Tx PQ VF mask to size select register */
551         for (i = 0; i < num_tx_pq_vf_masks; i++)
552                 if (tx_pq_vf_mask[i])
553                         STORE_RT_REG(p_hwfn,
554                                      QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
555                                      tx_pq_vf_mask[i]);
556 }
557
558 /* Prepare Other PQ mapping runtime init values for the specified PF */
559 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
560                                      u8 pf_id,
561                                      bool is_pf_loading,
562                                      u32 num_pf_cids,
563                                      u32 num_tids, u32 base_mem_addr_4kb)
564 {
565         u32 pq_size, pq_mem_4kb, mem_addr_4kb;
566         u16 i, j, pq_id, pq_group;
567
568         /* A single other PQ group is used in each PF, where PQ group i is used
569          * in PF i.
570          */
571         pq_group = pf_id;
572         pq_size = num_pf_cids + num_tids;
573         pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
574         mem_addr_4kb = base_mem_addr_4kb;
575
576         /* Map PQ group to PF */
577         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
578                      (u32)(pf_id));
579
580         /* Set PQ sizes */
581         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
582                      QM_PQ_SIZE_256B(pq_size));
583
584         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
585              i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
586                 /* Set PQ base address */
587                 STORE_RT_REG(p_hwfn,
588                              QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
589                              mem_addr_4kb);
590
591                 /* Clear PQ pointer table entry */
592                 if (is_pf_loading)
593                         for (j = 0; j < 2; j++)
594                                 STORE_RT_REG(p_hwfn,
595                                              QM_REG_PTRTBLOTHER_RT_OFFSET +
596                                              (pq_id * 2) + j, 0);
597
598                 mem_addr_4kb += pq_mem_4kb;
599         }
600 }
601
602 /* Prepare PF WFQ runtime init values for the specified PF.
603  * Return -1 on error.
604  */
605 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
606
607                               struct qed_qm_pf_rt_init_params *p_params)
608 {
609         u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
610         struct init_qm_pq_params *pq_params = p_params->pq_params;
611         u32 inc_val, crd_reg_offset;
612         u8 ext_voq;
613         u16 i;
614
615         inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
616         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
617                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
618                 return -1;
619         }
620
621         for (i = 0; i < num_tx_pqs; i++) {
622                 ext_voq = qed_get_ext_voq(p_hwfn,
623                                           pq_params[i].port_id,
624                                           pq_params[i].tc_id,
625                                           p_params->max_phys_tcs_per_port);
626                 crd_reg_offset =
627                         (p_params->pf_id < MAX_NUM_PFS_BB ?
628                          QM_REG_WFQPFCRD_RT_OFFSET :
629                          QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
630                         ext_voq * MAX_NUM_PFS_BB +
631                         (p_params->pf_id % MAX_NUM_PFS_BB);
632                 OVERWRITE_RT_REG(p_hwfn,
633                                  crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
634         }
635
636         STORE_RT_REG(p_hwfn,
637                      QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
638                      QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
639         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
640                      inc_val);
641
642         return 0;
643 }
644
645 /* Prepare PF RL runtime init values for the specified PF.
646  * Return -1 on error.
647  */
648 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
649 {
650         u32 inc_val = QM_RL_INC_VAL(pf_rl);
651
652         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
653                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
654                 return -1;
655         }
656
657         STORE_RT_REG(p_hwfn,
658                      QM_REG_RLPFCRD_RT_OFFSET + pf_id,
659                      (u32)QM_RL_CRD_REG_SIGN_BIT);
660         STORE_RT_REG(p_hwfn,
661                      QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
662                      QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
663         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
664
665         return 0;
666 }
667
668 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
669  * Return -1 on error.
670  */
671 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
672                               u8 num_vports,
673                               struct init_qm_vport_params *vport_params)
674 {
675         u16 vport_pq_id;
676         u32 inc_val;
677         u8 tc, i;
678
679         /* Go over all PF VPORTs */
680         for (i = 0; i < num_vports; i++) {
681                 if (!vport_params[i].vport_wfq)
682                         continue;
683
684                 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
685                 if (inc_val > QM_WFQ_MAX_INC_VAL) {
686                         DP_NOTICE(p_hwfn,
687                                   "Invalid VPORT WFQ weight configuration\n");
688                         return -1;
689                 }
690
691                 /* Each VPORT can have several VPORT PQ IDs for various TCs */
692                 for (tc = 0; tc < NUM_OF_TCS; tc++) {
693                         vport_pq_id = vport_params[i].first_tx_pq_id[tc];
694                         if (vport_pq_id != QM_INVALID_PQ_ID) {
695                                 STORE_RT_REG(p_hwfn,
696                                              QM_REG_WFQVPCRD_RT_OFFSET +
697                                              vport_pq_id,
698                                              (u32)QM_WFQ_CRD_REG_SIGN_BIT);
699                                 STORE_RT_REG(p_hwfn,
700                                              QM_REG_WFQVPWEIGHT_RT_OFFSET +
701                                              vport_pq_id, inc_val);
702                         }
703                 }
704         }
705
706         return 0;
707 }
708
709 /* Prepare VPORT RL runtime init values for the specified VPORTs.
710  * Return -1 on error.
711  */
712 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
713                                 u8 start_vport,
714                                 u8 num_vports,
715                                 u32 link_speed,
716                                 struct init_qm_vport_params *vport_params)
717 {
718         u8 i, vport_id;
719         u32 inc_val;
720
721         if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
722                 DP_NOTICE(p_hwfn,
723                           "Invalid VPORT ID for rate limiter configuration\n");
724                 return -1;
725         }
726
727         /* Go over all PF VPORTs */
728         for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
729                 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ?
730                           vport_params[i].vport_rl :
731                           link_speed);
732                 if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
733                         DP_NOTICE(p_hwfn,
734                                   "Invalid VPORT rate-limit configuration\n");
735                         return -1;
736                 }
737
738                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
739                              (u32)QM_RL_CRD_REG_SIGN_BIT);
740                 STORE_RT_REG(p_hwfn,
741                              QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
742                              QM_VP_RL_UPPER_BOUND(link_speed) |
743                              (u32)QM_RL_CRD_REG_SIGN_BIT);
744                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
745                              inc_val);
746         }
747
748         return 0;
749 }
750
751 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
752                                      struct qed_ptt *p_ptt)
753 {
754         u32 reg_val, i;
755
756         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
757              i++) {
758                 udelay(QM_STOP_CMD_POLL_PERIOD_US);
759                 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
760         }
761
762         /* Check if timeout while waiting for SDM command ready */
763         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
764                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
765                            "Timeout when waiting for QM SDM command ready signal\n");
766                 return false;
767         }
768
769         return true;
770 }
771
772 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
773                             struct qed_ptt *p_ptt,
774                             u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
775 {
776         if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
777                 return false;
778
779         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
780         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
781         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
782         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
783         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
784
785         return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
786 }
787
788 /******************** INTERFACE IMPLEMENTATION *********************/
789
790 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
791                        u32 num_vf_cids,
792                        u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
793 {
794         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
795                QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
796                QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
797 }
798
799 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
800                           struct qed_qm_common_rt_init_params *p_params)
801 {
802         /* Init AFullOprtnstcCrdMask */
803         u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
804                     QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
805                    (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
806                    (p_params->pf_wfq_en <<
807                     QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
808                    (p_params->vport_wfq_en <<
809                     QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
810                    (p_params->pf_rl_en <<
811                     QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
812                    (p_params->vport_rl_en <<
813                     QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
814                    (QM_OPPOR_FW_STOP_DEF <<
815                     QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
816                    (QM_OPPOR_PQ_EMPTY_DEF <<
817                     QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
818
819         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
820
821         /* Enable/disable PF RL */
822         qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
823
824         /* Enable/disable PF WFQ */
825         qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
826
827         /* Enable/disable VPORT RL */
828         qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
829
830         /* Enable/disable VPORT WFQ */
831         qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
832
833         /* Init PBF CMDQ line credit */
834         qed_cmdq_lines_rt_init(p_hwfn,
835                                p_params->max_ports_per_engine,
836                                p_params->max_phys_tcs_per_port,
837                                p_params->port_params);
838
839         /* Init BTB blocks in PBF */
840         qed_btb_blocks_rt_init(p_hwfn,
841                                p_params->max_ports_per_engine,
842                                p_params->max_phys_tcs_per_port,
843                                p_params->port_params);
844
845         return 0;
846 }
847
848 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
849                       struct qed_ptt *p_ptt,
850                       struct qed_qm_pf_rt_init_params *p_params)
851 {
852         struct init_qm_vport_params *vport_params = p_params->vport_params;
853         u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
854                                                p_params->num_tids) *
855                                  QM_OTHER_PQS_PER_PF;
856         u8 tc, i;
857
858         /* Clear first Tx PQ ID array for each VPORT */
859         for (i = 0; i < p_params->num_vports; i++)
860                 for (tc = 0; tc < NUM_OF_TCS; tc++)
861                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
862
863         /* Map Other PQs (if any) */
864         qed_other_pq_map_rt_init(p_hwfn,
865                                  p_params->pf_id,
866                                  p_params->is_pf_loading, p_params->num_pf_cids,
867                                  p_params->num_tids, 0);
868
869         /* Map Tx PQs */
870         qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
871
872         /* Init PF WFQ */
873         if (p_params->pf_wfq)
874                 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
875                         return -1;
876
877         /* Init PF RL */
878         if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
879                 return -1;
880
881         /* Set VPORT WFQ */
882         if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
883                 return -1;
884
885         /* Set VPORT RL */
886         if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
887                                  p_params->num_vports, p_params->link_speed,
888                                  vport_params))
889                 return -1;
890
891         return 0;
892 }
893
894 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
895                     struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
896 {
897         u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
898
899         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
900                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
901                 return -1;
902         }
903
904         qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
905
906         return 0;
907 }
908
909 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
910                    struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
911 {
912         u32 inc_val = QM_RL_INC_VAL(pf_rl);
913
914         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
915                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
916                 return -1;
917         }
918
919         qed_wr(p_hwfn,
920                p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
921         qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
922
923         return 0;
924 }
925
926 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
927                        struct qed_ptt *p_ptt,
928                        u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
929 {
930         u16 vport_pq_id;
931         u32 inc_val;
932         u8 tc;
933
934         inc_val = QM_WFQ_INC_VAL(vport_wfq);
935         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
936                 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n");
937                 return -1;
938         }
939
940         for (tc = 0; tc < NUM_OF_TCS; tc++) {
941                 vport_pq_id = first_tx_pq_id[tc];
942                 if (vport_pq_id != QM_INVALID_PQ_ID)
943                         qed_wr(p_hwfn,
944                                p_ptt,
945                                QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
946         }
947
948         return 0;
949 }
950
951 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
952                       struct qed_ptt *p_ptt,
953                       u8 vport_id, u32 vport_rl, u32 link_speed)
954 {
955         u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
956
957         if (vport_id >= max_qm_global_rls) {
958                 DP_NOTICE(p_hwfn,
959                           "Invalid VPORT ID for rate limiter configuration\n");
960                 return -1;
961         }
962
963         inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
964         if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
965                 DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n");
966                 return -1;
967         }
968
969         qed_wr(p_hwfn,
970                p_ptt,
971                QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
972         qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
973
974         return 0;
975 }
976
977 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
978                           struct qed_ptt *p_ptt,
979                           bool is_release_cmd,
980                           bool is_tx_pq, u16 start_pq, u16 num_pqs)
981 {
982         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
983         u32 pq_mask = 0, last_pq, pq_id;
984
985         last_pq = start_pq + num_pqs - 1;
986
987         /* Set command's PQ type */
988         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
989
990         /* Go over requested PQs */
991         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
992                 /* Set PQ bit in mask (stop command only) */
993                 if (!is_release_cmd)
994                         pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
995
996                 /* If last PQ or end of PQ mask, write command */
997                 if ((pq_id == last_pq) ||
998                     (pq_id % QM_STOP_PQ_MASK_WIDTH ==
999                      (QM_STOP_PQ_MASK_WIDTH - 1))) {
1000                         QM_CMD_SET_FIELD(cmd_arr,
1001                                          QM_STOP_CMD, PAUSE_MASK, pq_mask);
1002                         QM_CMD_SET_FIELD(cmd_arr,
1003                                          QM_STOP_CMD,
1004                                          GROUP_ID,
1005                                          pq_id / QM_STOP_PQ_MASK_WIDTH);
1006                         if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1007                                              cmd_arr[0], cmd_arr[1]))
1008                                 return false;
1009                         pq_mask = 0;
1010                 }
1011         }
1012
1013         return true;
1014 }
1015
1016
1017 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1018         do { \
1019                 typeof(var) *__p_var = &(var); \
1020                 typeof(offset) __offset = offset; \
1021                 *__p_var = (*__p_var & ~BIT(__offset)) | \
1022                            ((enable) ? BIT(__offset) : 0); \
1023         } while (0)
1024 #define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1025 #define PRS_ETH_OUTPUT_FORMAT             -46832
1026
1027 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1028                              struct qed_ptt *p_ptt, u16 dest_port)
1029 {
1030         /* Update PRS register */
1031         qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1032
1033         /* Update NIG register */
1034         qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1035
1036         /* Update PBF register */
1037         qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1038 }
1039
1040 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1041                           struct qed_ptt *p_ptt, bool vxlan_enable)
1042 {
1043         u32 reg_val;
1044         u8 shift;
1045
1046         /* Update PRS register */
1047         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1048         shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1049         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1050         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1051         if (reg_val) {
1052                 reg_val =
1053                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1054
1055                 /* Update output  only if tunnel blocks not included. */
1056                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1057                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1058                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1059         }
1060
1061         /* Update NIG register */
1062         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1063         shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1064         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1065         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1066
1067         /* Update DORQ register */
1068         qed_wr(p_hwfn,
1069                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1070 }
1071
1072 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1073                         struct qed_ptt *p_ptt,
1074                         bool eth_gre_enable, bool ip_gre_enable)
1075 {
1076         u32 reg_val;
1077         u8 shift;
1078
1079         /* Update PRS register */
1080         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1081         shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1082         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1083         shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1084         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1085         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1086         if (reg_val) {
1087                 reg_val =
1088                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1089
1090                 /* Update output  only if tunnel blocks not included. */
1091                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1092                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1093                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1094         }
1095
1096         /* Update NIG register */
1097         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1098         shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1099         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1100         shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1101         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1102         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1103
1104         /* Update DORQ registers */
1105         qed_wr(p_hwfn,
1106                p_ptt,
1107                DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1108         qed_wr(p_hwfn,
1109                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1110 }
1111
1112 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1113                               struct qed_ptt *p_ptt, u16 dest_port)
1114 {
1115         /* Update PRS register */
1116         qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1117
1118         /* Update NIG register */
1119         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1120
1121         /* Update PBF register */
1122         qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1123 }
1124
1125 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1126                            struct qed_ptt *p_ptt,
1127                            bool eth_geneve_enable, bool ip_geneve_enable)
1128 {
1129         u32 reg_val;
1130         u8 shift;
1131
1132         /* Update PRS register */
1133         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1134         shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1135         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1136         shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1137         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1138         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1139         if (reg_val) {
1140                 reg_val =
1141                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1142
1143                 /* Update output  only if tunnel blocks not included. */
1144                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1145                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1146                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1147         }
1148
1149         /* Update NIG register */
1150         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1151                eth_geneve_enable ? 1 : 0);
1152         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1153
1154         /* EDPM with geneve tunnel not supported in BB */
1155         if (QED_IS_BB_B0(p_hwfn->cdev))
1156                 return;
1157
1158         /* Update DORQ registers */
1159         qed_wr(p_hwfn,
1160                p_ptt,
1161                DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1162                eth_geneve_enable ? 1 : 0);
1163         qed_wr(p_hwfn,
1164                p_ptt,
1165                DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1166                ip_geneve_enable ? 1 : 0);
1167 }
1168
1169 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1170 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1171
1172 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1173                                 struct qed_ptt *p_ptt, bool enable)
1174 {
1175         u32 reg_val, cfg_mask;
1176
1177         /* read PRS config register */
1178         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1179
1180         /* set VXLAN_NO_L2_ENABLE mask */
1181         cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1182
1183         if (enable) {
1184                 /* set VXLAN_NO_L2_ENABLE flag */
1185                 reg_val |= cfg_mask;
1186
1187                 /* update PRS FIC  register */
1188                 qed_wr(p_hwfn,
1189                        p_ptt,
1190                        PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1191                        (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1192         } else {
1193                 /* clear VXLAN_NO_L2_ENABLE flag */
1194                 reg_val &= ~cfg_mask;
1195         }
1196
1197         /* write PRS config register */
1198         qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1199 }
1200
1201 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1202 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1203 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1204 #define PARSER_ETH_CONN_CM_HDR 0
1205 #define CAM_LINE_SIZE sizeof(u32)
1206 #define RAM_LINE_SIZE sizeof(u64)
1207 #define REG_SIZE sizeof(u32)
1208
1209 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1210 {
1211         /* Disable gft search for PF */
1212         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1213
1214         /* Clean ram & cam for next gft session */
1215
1216         /* Zero camline */
1217         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1218
1219         /* Zero ramline */
1220         qed_wr(p_hwfn,
1221                p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 0);
1222         qed_wr(p_hwfn,
1223                p_ptt,
1224                PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1225                0);
1226 }
1227
1228 void qed_gft_config(struct qed_hwfn *p_hwfn,
1229                     struct qed_ptt *p_ptt,
1230                     u16 pf_id,
1231                     bool tcp,
1232                     bool udp,
1233                     bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1234 {
1235         u32 reg_val, cam_line, ram_line_lo, ram_line_hi, search_non_ip_as_gft;
1236
1237         if (!ipv6 && !ipv4)
1238                 DP_NOTICE(p_hwfn,
1239                           "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1240         if (!tcp && !udp)
1241                 DP_NOTICE(p_hwfn,
1242                           "gft_config: must accept at least on of - udp or tcp\n");
1243         if (profile_type >= MAX_GFT_PROFILE_TYPE)
1244                 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1245
1246         /* Set RFS event ID to be awakened i Tstorm By Prs */
1247         reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1248                   PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1249         reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1250         qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1251
1252         /* Do not load context only cid in PRS on match. */
1253         qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1254
1255         /* Do not use tenant ID exist bit for gft search */
1256         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1257
1258         /* Set Cam */
1259         cam_line = 0;
1260         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1261
1262         /* Filters are per PF!! */
1263         SET_FIELD(cam_line,
1264                   GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1265                   GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1266         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1267
1268         if (!(tcp && udp)) {
1269                 SET_FIELD(cam_line,
1270                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1271                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1272                 if (tcp)
1273                         SET_FIELD(cam_line,
1274                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1275                                   GFT_PROFILE_TCP_PROTOCOL);
1276                 else
1277                         SET_FIELD(cam_line,
1278                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1279                                   GFT_PROFILE_UDP_PROTOCOL);
1280         }
1281
1282         if (!(ipv4 && ipv6)) {
1283                 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1284                 if (ipv4)
1285                         SET_FIELD(cam_line,
1286                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1287                                   GFT_PROFILE_IPV4);
1288                 else
1289                         SET_FIELD(cam_line,
1290                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1291                                   GFT_PROFILE_IPV6);
1292         }
1293
1294         /* Write characteristics to cam */
1295         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1296                cam_line);
1297         cam_line =
1298             qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1299
1300         /* Write line to RAM - compare to filter 4 tuple */
1301         ram_line_lo = 0;
1302         ram_line_hi = 0;
1303
1304         /* Search no IP as GFT */
1305         search_non_ip_as_gft = 0;
1306
1307         /* Tunnel type */
1308         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1309         SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1310
1311         if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1312                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1313                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1314                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1315                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1316                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1317                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1318         } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1319                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1320                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1321                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1322         } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1323                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1324                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1325         } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1326                 SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1327                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1328         } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1329                 SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1330
1331                 /* Allow tunneled traffic without inner IP */
1332                 search_non_ip_as_gft = 1;
1333         }
1334
1335         qed_wr(p_hwfn,
1336                p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1337         qed_wr(p_hwfn,
1338                p_ptt,
1339                PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1340                ram_line_lo);
1341         qed_wr(p_hwfn,
1342                p_ptt,
1343                PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
1344                ram_line_hi);
1345
1346         /* Set default profile so that no filter match will happen */
1347         qed_wr(p_hwfn,
1348                p_ptt,
1349                PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1350                PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1351         qed_wr(p_hwfn,
1352                p_ptt,
1353                PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1354                PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1355
1356         /* Enable gft search */
1357         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1358 }
1359
1360 DECLARE_CRC8_TABLE(cdu_crc8_table);
1361
1362 /* Calculate and return CDU validation byte per connection type/region/cid */
1363 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1364 {
1365         const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1366         u8 crc, validation_byte = 0;
1367         static u8 crc8_table_valid; /* automatically initialized to 0 */
1368         u32 validation_string = 0;
1369         u32 data_to_crc;
1370
1371         if (!crc8_table_valid) {
1372                 crc8_populate_msb(cdu_crc8_table, 0x07);
1373                 crc8_table_valid = 1;
1374         }
1375
1376         /* The CRC is calculated on the String-to-compress:
1377          * [31:8]  = {CID[31:20],CID[11:0]}
1378          * [7:4]   = Region
1379          * [3:0]   = Type
1380          */
1381         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1382                 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1383
1384         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1385                 validation_string |= ((region & 0xF) << 4);
1386
1387         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1388                 validation_string |= (conn_type & 0xF);
1389
1390         /* Convert to big-endian and calculate CRC8 */
1391         data_to_crc = be32_to_cpu(validation_string);
1392
1393         crc = crc8(cdu_crc8_table,
1394                    (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1395
1396         /* The validation byte [7:0] is composed:
1397          * for type A validation
1398          * [7]          = active configuration bit
1399          * [6:0]        = crc[6:0]
1400          *
1401          * for type B validation
1402          * [7]          = active configuration bit
1403          * [6:3]        = connection_type[3:0]
1404          * [2:0]        = crc[2:0]
1405          */
1406         validation_byte |=
1407             ((validation_cfg >>
1408               CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1409
1410         if ((validation_cfg >>
1411              CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1412                 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1413         else
1414                 validation_byte |= crc & 0x7F;
1415
1416         return validation_byte;
1417 }
1418
1419 /* Calcualte and set validation bytes for session context */
1420 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1421                                      u16 ctx_size, u8 ctx_type, u32 cid)
1422 {
1423         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1424
1425         p_ctx = (u8 * const)p_ctx_mem;
1426         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1427         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1428         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1429
1430         memset(p_ctx, 0, ctx_size);
1431
1432         *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1433         *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1434         *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1435 }
1436
1437 /* Calcualte and set validation bytes for task context */
1438 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1439                                   u16 ctx_size, u8 ctx_type, u32 tid)
1440 {
1441         u8 *p_ctx, *region1_val_ptr;
1442
1443         p_ctx = (u8 * const)p_ctx_mem;
1444         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1445
1446         memset(p_ctx, 0, ctx_size);
1447
1448         *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1449 }
1450
1451 /* Memset session context to 0 while preserving validation bytes */
1452 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1453 {
1454         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1455         u8 x_val, t_val, u_val;
1456
1457         p_ctx = (u8 * const)p_ctx_mem;
1458         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1459         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1460         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1461
1462         x_val = *x_val_ptr;
1463         t_val = *t_val_ptr;
1464         u_val = *u_val_ptr;
1465
1466         memset(p_ctx, 0, ctx_size);
1467
1468         *x_val_ptr = x_val;
1469         *t_val_ptr = t_val;
1470         *u_val_ptr = u_val;
1471 }
1472
1473 /* Memset task context to 0 while preserving validation bytes */
1474 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1475 {
1476         u8 *p_ctx, *region1_val_ptr;
1477         u8 region1_val;
1478
1479         p_ctx = (u8 * const)p_ctx_mem;
1480         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1481
1482         region1_val = *region1_val_ptr;
1483
1484         memset(p_ctx, 0, ctx_size);
1485
1486         *region1_val_ptr = region1_val;
1487 }
1488
1489 /* Enable and configure context validation */
1490 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1491                                    struct qed_ptt *p_ptt)
1492 {
1493         u32 ctx_validation;
1494
1495         /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1496         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1497         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1498
1499         /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1500         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1501         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1502
1503         /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1504         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1505         qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1506 }
1507
1508 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1509 {
1510         switch (storm_id) {
1511         case 0:
1512                 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1513                     TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1514         case 1:
1515                 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1516                     MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1517         case 2:
1518                 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1519                     USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1520         case 3:
1521                 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1522                     XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1523         case 4:
1524                 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1525                     YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1526         case 5:
1527                 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1528                     PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1529
1530         default:
1531                 return 0;
1532         }
1533 }
1534
1535 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1536                               struct qed_ptt *p_ptt,
1537                               u8 assert_level[NUM_STORMS])
1538 {
1539         u8 storm_id;
1540
1541         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1542                 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1543
1544                 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1545         }
1546 }