Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
56
57 struct qed_ptt {
58         struct list_head        list_entry;
59         unsigned int            idx;
60         struct pxp_ptt_entry    pxp;
61         u8                      hwfn_id;
62 };
63
64 struct qed_ptt_pool {
65         struct list_head        free_list;
66         spinlock_t              lock; /* ptt synchronized access */
67         struct qed_ptt          ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69
70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72         struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73         int i;
74
75         if (!p_pool)
76                 return -ENOMEM;
77
78         INIT_LIST_HEAD(&p_pool->free_list);
79         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80                 p_pool->ptts[i].idx = i;
81                 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82                 p_pool->ptts[i].pxp.pretend.control = 0;
83                 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84                 if (i >= RESERVED_PTT_MAX)
85                         list_add(&p_pool->ptts[i].list_entry,
86                                  &p_pool->free_list);
87         }
88
89         p_hwfn->p_ptt_pool = p_pool;
90         spin_lock_init(&p_pool->lock);
91
92         return 0;
93 }
94
95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97         struct qed_ptt *p_ptt;
98         int i;
99
100         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101                 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102                 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103         }
104 }
105
106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108         kfree(p_hwfn->p_ptt_pool);
109         p_hwfn->p_ptt_pool = NULL;
110 }
111
112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114         struct qed_ptt *p_ptt;
115         unsigned int i;
116
117         /* Take the free PTT from the list */
118         for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119                 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120
121                 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122                         p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123                                                  struct qed_ptt, list_entry);
124                         list_del(&p_ptt->list_entry);
125
126                         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127
128                         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129                                    "allocated ptt %d\n", p_ptt->idx);
130                         return p_ptt;
131                 }
132
133                 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134                 usleep_range(1000, 2000);
135         }
136
137         DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138         return NULL;
139 }
140
141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143         spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144         list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147
148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150         /* The HW is using DWORDS and we need to translate it to Bytes */
151         return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153
154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156         return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157                p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159
160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162         return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163                p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165
166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167                      struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169         u32 prev_hw_addr;
170
171         prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172
173         if (new_hw_addr == prev_hw_addr)
174                 return;
175
176         /* Update PTT entery in admin window */
177         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178                    "Updating PTT entry %d to offset 0x%x\n",
179                    p_ptt->idx, new_hw_addr);
180
181         /* The HW is using DWORDS and the address is in Bytes */
182         p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183
184         REG_WR(p_hwfn,
185                qed_ptt_config_addr(p_ptt) +
186                offsetof(struct pxp_ptt_entry, offset),
187                le32_to_cpu(p_ptt->pxp.offset));
188 }
189
190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191                        struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193         u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194         u32 offset;
195
196         offset = hw_addr - win_hw_addr;
197
198         if (p_ptt->hwfn_id != p_hwfn->my_id)
199                 DP_NOTICE(p_hwfn,
200                           "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201                           p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202
203         /* Verify the address is within the window */
204         if (hw_addr < win_hw_addr ||
205             offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207                 offset = 0;
208         }
209
210         return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212
213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214                                      enum reserved_ptts ptt_idx)
215 {
216         if (ptt_idx >= RESERVED_PTT_MAX) {
217                 DP_NOTICE(p_hwfn,
218                           "Requested PTT %d is out of range\n", ptt_idx);
219                 return NULL;
220         }
221
222         return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224
225 void qed_wr(struct qed_hwfn *p_hwfn,
226             struct qed_ptt *p_ptt,
227             u32 hw_addr, u32 val)
228 {
229         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230
231         REG_WR(p_hwfn, bar_addr, val);
232         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234                    bar_addr, hw_addr, val);
235 }
236
237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238            struct qed_ptt *p_ptt,
239            u32 hw_addr)
240 {
241         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242         u32 val = REG_RD(p_hwfn, bar_addr);
243
244         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246                    bar_addr, hw_addr, val);
247
248         return val;
249 }
250
251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252                           struct qed_ptt *p_ptt,
253                           void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255         u32 dw_count, *host_addr, hw_offset;
256         size_t quota, done = 0;
257         u32 __iomem *reg_addr;
258
259         while (done < n) {
260                 quota = min_t(size_t, n - done,
261                               PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262
263                 if (IS_PF(p_hwfn->cdev)) {
264                         qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265                         hw_offset = qed_ptt_get_bar_addr(p_ptt);
266                 } else {
267                         hw_offset = hw_addr + done;
268                 }
269
270                 dw_count = quota / 4;
271                 host_addr = (u32 *)((u8 *)addr + done);
272                 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273                 if (to_device)
274                         while (dw_count--)
275                                 DIRECT_REG_WR(reg_addr++, *host_addr++);
276                 else
277                         while (dw_count--)
278                                 *host_addr++ = DIRECT_REG_RD(reg_addr++);
279
280                 done += quota;
281         }
282 }
283
284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285                      struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288                    "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289                    hw_addr, dest, hw_addr, (unsigned long)n);
290
291         qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293
294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295                    struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298                    "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299                    hw_addr, hw_addr, src, (unsigned long)n);
300
301         qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303
304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306         u16 control = 0;
307
308         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310
311         /* Every pretend undos previous pretends, including
312          * previous port pretend.
313          */
314         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317
318         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320
321         p_ptt->pxp.pretend.control = cpu_to_le16(control);
322         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323
324         REG_WR(p_hwfn,
325                qed_ptt_config_addr(p_ptt) +
326                offsetof(struct pxp_ptt_entry, pretend),
327                *(u32 *)&p_ptt->pxp.pretend);
328 }
329
330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331                       struct qed_ptt *p_ptt, u8 port_id)
332 {
333         u16 control = 0;
334
335         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338
339         p_ptt->pxp.pretend.control = cpu_to_le16(control);
340
341         REG_WR(p_hwfn,
342                qed_ptt_config_addr(p_ptt) +
343                offsetof(struct pxp_ptt_entry, pretend),
344                *(u32 *)&p_ptt->pxp.pretend);
345 }
346
347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349         u16 control = 0;
350
351         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354
355         p_ptt->pxp.pretend.control = cpu_to_le16(control);
356
357         REG_WR(p_hwfn,
358                qed_ptt_config_addr(p_ptt) +
359                offsetof(struct pxp_ptt_entry, pretend),
360                *(u32 *)&p_ptt->pxp.pretend);
361 }
362
363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
364                           struct qed_ptt *p_ptt, u8 port_id, u16 fid)
365 {
366         u16 control = 0;
367
368         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
369         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
370         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
371         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
372         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
373         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
374                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
375         p_ptt->pxp.pretend.control = cpu_to_le16(control);
376         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
377         REG_WR(p_hwfn,
378                qed_ptt_config_addr(p_ptt) +
379                offsetof(struct pxp_ptt_entry, pretend),
380                *(u32 *)&p_ptt->pxp.pretend);
381 }
382
383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
384 {
385         u32 concrete_fid = 0;
386
387         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
388         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
389         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
390
391         return concrete_fid;
392 }
393
394 /* DMAE */
395 #define QED_DMAE_FLAGS_IS_SET(params, flag) \
396         ((params) != NULL && ((params)->flags & QED_DMAE_FLAG_##flag))
397
398 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
399                             const u8 is_src_type_grc,
400                             const u8 is_dst_type_grc,
401                             struct qed_dmae_params *p_params)
402 {
403         u8 src_pfid, dst_pfid, port_id;
404         u16 opcode_b = 0;
405         u32 opcode = 0;
406
407         /* Whether the source is the PCIe or the GRC.
408          * 0- The source is the PCIe
409          * 1- The source is the GRC.
410          */
411         opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
412                                    : DMAE_CMD_SRC_MASK_PCIE) <<
413                    DMAE_CMD_SRC_SHIFT;
414         src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
415                    p_params->src_pfid : p_hwfn->rel_pf_id;
416         opcode |= ((src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
417                    DMAE_CMD_SRC_PF_ID_SHIFT);
418
419         /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
420         opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
421                                    : DMAE_CMD_DST_MASK_PCIE) <<
422                    DMAE_CMD_DST_SHIFT;
423         dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
424                    p_params->dst_pfid : p_hwfn->rel_pf_id;
425         opcode |= ((dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
426                    DMAE_CMD_DST_PF_ID_SHIFT);
427
428         /* Whether to write a completion word to the completion destination:
429          * 0-Do not write a completion word
430          * 1-Write the completion word
431          */
432         opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
433         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
434                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
435
436         if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
437                 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
438
439         opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
440
441         port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
442                    p_params->port_id : p_hwfn->port_id;
443         opcode |= (port_id << DMAE_CMD_PORT_ID_SHIFT);
444
445         /* reset source address in next go */
446         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
447                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
448
449         /* reset dest address in next go */
450         opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
451                    DMAE_CMD_DST_ADDR_RESET_SHIFT);
452
453         /* SRC/DST VFID: all 1's - pf, otherwise VF id */
454         if (QED_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
455                 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
456                 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
457         } else {
458                 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
459                             DMAE_CMD_SRC_VF_ID_SHIFT;
460         }
461
462         if (QED_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
463                 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
464                 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
465         } else {
466                 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
467         }
468
469         p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
470         p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
471 }
472
473 u32 qed_dmae_idx_to_go_cmd(u8 idx)
474 {
475         /* All the DMAE 'go' registers form an array in internal memory */
476         return DMAE_REG_GO_C0 + (idx << 2);
477 }
478
479 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
480                                  struct qed_ptt *p_ptt)
481 {
482         struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
483         u8 idx_cmd = p_hwfn->dmae_info.channel, i;
484         int qed_status = 0;
485
486         /* verify address is not NULL */
487         if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
488              ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
489                 DP_NOTICE(p_hwfn,
490                           "source or destination address 0 idx_cmd=%d\n"
491                           "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
492                           idx_cmd,
493                           le32_to_cpu(p_command->opcode),
494                           le16_to_cpu(p_command->opcode_b),
495                           le16_to_cpu(p_command->length_dw),
496                           le32_to_cpu(p_command->src_addr_hi),
497                           le32_to_cpu(p_command->src_addr_lo),
498                           le32_to_cpu(p_command->dst_addr_hi),
499                           le32_to_cpu(p_command->dst_addr_lo));
500
501                 return -EINVAL;
502         }
503
504         DP_VERBOSE(p_hwfn,
505                    NETIF_MSG_HW,
506                    "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
507                    idx_cmd,
508                    le32_to_cpu(p_command->opcode),
509                    le16_to_cpu(p_command->opcode_b),
510                    le16_to_cpu(p_command->length_dw),
511                    le32_to_cpu(p_command->src_addr_hi),
512                    le32_to_cpu(p_command->src_addr_lo),
513                    le32_to_cpu(p_command->dst_addr_hi),
514                    le32_to_cpu(p_command->dst_addr_lo));
515
516         /* Copy the command to DMAE - need to do it before every call
517          * for source/dest address no reset.
518          * The first 9 DWs are the command registers, the 10 DW is the
519          * GO register, and the rest are result registers
520          * (which are read only by the client).
521          */
522         for (i = 0; i < DMAE_CMD_SIZE; i++) {
523                 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
524                            *(((u32 *)p_command) + i) : 0;
525
526                 qed_wr(p_hwfn, p_ptt,
527                        DMAE_REG_CMD_MEM +
528                        (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
529                        (i * sizeof(u32)), data);
530         }
531
532         qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
533
534         return qed_status;
535 }
536
537 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
538 {
539         dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
540         struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
541         u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
542         u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
543
544         *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
545                                      sizeof(u32), p_addr, GFP_KERNEL);
546         if (!*p_comp)
547                 goto err;
548
549         p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
550         *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
551                                     sizeof(struct dmae_cmd),
552                                     p_addr, GFP_KERNEL);
553         if (!*p_cmd)
554                 goto err;
555
556         p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
557         *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
558                                      sizeof(u32) * DMAE_MAX_RW_SIZE,
559                                      p_addr, GFP_KERNEL);
560         if (!*p_buff)
561                 goto err;
562
563         p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
564
565         return 0;
566 err:
567         qed_dmae_info_free(p_hwfn);
568         return -ENOMEM;
569 }
570
571 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
572 {
573         dma_addr_t p_phys;
574
575         /* Just make sure no one is in the middle */
576         mutex_lock(&p_hwfn->dmae_info.mutex);
577
578         if (p_hwfn->dmae_info.p_completion_word) {
579                 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
580                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
581                                   sizeof(u32),
582                                   p_hwfn->dmae_info.p_completion_word, p_phys);
583                 p_hwfn->dmae_info.p_completion_word = NULL;
584         }
585
586         if (p_hwfn->dmae_info.p_dmae_cmd) {
587                 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
588                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
589                                   sizeof(struct dmae_cmd),
590                                   p_hwfn->dmae_info.p_dmae_cmd, p_phys);
591                 p_hwfn->dmae_info.p_dmae_cmd = NULL;
592         }
593
594         if (p_hwfn->dmae_info.p_intermediate_buffer) {
595                 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
596                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
597                                   sizeof(u32) * DMAE_MAX_RW_SIZE,
598                                   p_hwfn->dmae_info.p_intermediate_buffer,
599                                   p_phys);
600                 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
601         }
602
603         mutex_unlock(&p_hwfn->dmae_info.mutex);
604 }
605
606 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
607 {
608         u32 wait_cnt_limit = 10000, wait_cnt = 0;
609         int qed_status = 0;
610
611         barrier();
612         while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
613                 udelay(DMAE_MIN_WAIT_TIME);
614                 if (++wait_cnt > wait_cnt_limit) {
615                         DP_NOTICE(p_hwfn->cdev,
616                                   "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
617                                   *p_hwfn->dmae_info.p_completion_word,
618                                  DMAE_COMPLETION_VAL);
619                         qed_status = -EBUSY;
620                         break;
621                 }
622
623                 /* to sync the completion_word since we are not
624                  * using the volatile keyword for p_completion_word
625                  */
626                 barrier();
627         }
628
629         if (qed_status == 0)
630                 *p_hwfn->dmae_info.p_completion_word = 0;
631
632         return qed_status;
633 }
634
635 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
636                                           struct qed_ptt *p_ptt,
637                                           u64 src_addr,
638                                           u64 dst_addr,
639                                           u8 src_type,
640                                           u8 dst_type,
641                                           u32 length_dw)
642 {
643         dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
644         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
645         int qed_status = 0;
646
647         switch (src_type) {
648         case QED_DMAE_ADDRESS_GRC:
649         case QED_DMAE_ADDRESS_HOST_PHYS:
650                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
651                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
652                 break;
653         /* for virtual source addresses we use the intermediate buffer. */
654         case QED_DMAE_ADDRESS_HOST_VIRT:
655                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
656                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
657                 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
658                        (void *)(uintptr_t)src_addr,
659                        length_dw * sizeof(u32));
660                 break;
661         default:
662                 return -EINVAL;
663         }
664
665         switch (dst_type) {
666         case QED_DMAE_ADDRESS_GRC:
667         case QED_DMAE_ADDRESS_HOST_PHYS:
668                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
669                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
670                 break;
671         /* for virtual source addresses we use the intermediate buffer. */
672         case QED_DMAE_ADDRESS_HOST_VIRT:
673                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
674                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
675                 break;
676         default:
677                 return -EINVAL;
678         }
679
680         cmd->length_dw = cpu_to_le16((u16)length_dw);
681
682         qed_dmae_post_command(p_hwfn, p_ptt);
683
684         qed_status = qed_dmae_operation_wait(p_hwfn);
685
686         if (qed_status) {
687                 DP_NOTICE(p_hwfn,
688                           "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
689                           src_addr, dst_addr, length_dw);
690                 return qed_status;
691         }
692
693         if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
694                 memcpy((void *)(uintptr_t)(dst_addr),
695                        &p_hwfn->dmae_info.p_intermediate_buffer[0],
696                        length_dw * sizeof(u32));
697
698         return 0;
699 }
700
701 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
702                                     struct qed_ptt *p_ptt,
703                                     u64 src_addr, u64 dst_addr,
704                                     u8 src_type, u8 dst_type,
705                                     u32 size_in_dwords,
706                                     struct qed_dmae_params *p_params)
707 {
708         dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
709         u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
710         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
711         u64 src_addr_split = 0, dst_addr_split = 0;
712         u16 length_limit = DMAE_MAX_RW_SIZE;
713         int qed_status = 0;
714         u32 offset = 0;
715
716         if (p_hwfn->cdev->recov_in_prog) {
717                 DP_VERBOSE(p_hwfn,
718                            NETIF_MSG_HW,
719                            "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
720                            src_addr, src_type, dst_addr, dst_type,
721                            size_in_dwords);
722
723                 /* Let the flow complete w/o any error handling */
724                 return 0;
725         }
726
727         qed_dmae_opcode(p_hwfn,
728                         (src_type == QED_DMAE_ADDRESS_GRC),
729                         (dst_type == QED_DMAE_ADDRESS_GRC),
730                         p_params);
731
732         cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
733         cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
734         cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
735
736         /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
737         cnt_split = size_in_dwords / length_limit;
738         length_mod = size_in_dwords % length_limit;
739
740         src_addr_split = src_addr;
741         dst_addr_split = dst_addr;
742
743         for (i = 0; i <= cnt_split; i++) {
744                 offset = length_limit * i;
745
746                 if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
747                         if (src_type == QED_DMAE_ADDRESS_GRC)
748                                 src_addr_split = src_addr + offset;
749                         else
750                                 src_addr_split = src_addr + (offset * 4);
751                 }
752
753                 if (dst_type == QED_DMAE_ADDRESS_GRC)
754                         dst_addr_split = dst_addr + offset;
755                 else
756                         dst_addr_split = dst_addr + (offset * 4);
757
758                 length_cur = (cnt_split == i) ? length_mod : length_limit;
759
760                 /* might be zero on last iteration */
761                 if (!length_cur)
762                         continue;
763
764                 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
765                                                             p_ptt,
766                                                             src_addr_split,
767                                                             dst_addr_split,
768                                                             src_type,
769                                                             dst_type,
770                                                             length_cur);
771                 if (qed_status) {
772                         DP_NOTICE(p_hwfn,
773                                   "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
774                                   qed_status, src_addr, dst_addr, length_cur);
775                         break;
776                 }
777         }
778
779         return qed_status;
780 }
781
782 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
783                       struct qed_ptt *p_ptt,
784                       u64 source_addr, u32 grc_addr, u32 size_in_dwords,
785                       struct qed_dmae_params *p_params)
786 {
787         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
788         int rc;
789
790
791         mutex_lock(&p_hwfn->dmae_info.mutex);
792
793         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
794                                       grc_addr_in_dw,
795                                       QED_DMAE_ADDRESS_HOST_VIRT,
796                                       QED_DMAE_ADDRESS_GRC,
797                                       size_in_dwords, p_params);
798
799         mutex_unlock(&p_hwfn->dmae_info.mutex);
800
801         return rc;
802 }
803
804 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
805                       struct qed_ptt *p_ptt,
806                       u32 grc_addr,
807                       dma_addr_t dest_addr, u32 size_in_dwords,
808                       struct qed_dmae_params *p_params)
809 {
810         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
811         int rc;
812
813
814         mutex_lock(&p_hwfn->dmae_info.mutex);
815
816         rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
817                                       dest_addr, QED_DMAE_ADDRESS_GRC,
818                                       QED_DMAE_ADDRESS_HOST_VIRT,
819                                       size_in_dwords, p_params);
820
821         mutex_unlock(&p_hwfn->dmae_info.mutex);
822
823         return rc;
824 }
825
826 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
827                        struct qed_ptt *p_ptt,
828                        dma_addr_t source_addr,
829                        dma_addr_t dest_addr,
830                        u32 size_in_dwords, struct qed_dmae_params *p_params)
831 {
832         int rc;
833
834         mutex_lock(&(p_hwfn->dmae_info.mutex));
835
836         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
837                                       dest_addr,
838                                       QED_DMAE_ADDRESS_HOST_PHYS,
839                                       QED_DMAE_ADDRESS_HOST_PHYS,
840                                       size_in_dwords, p_params);
841
842         mutex_unlock(&(p_hwfn->dmae_info.mutex));
843
844         return rc;
845 }
846
847 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
848                     struct qed_ptt *p_ptt, const char *phase)
849 {
850         u32 size = PAGE_SIZE / 2, val;
851         int rc = 0;
852         dma_addr_t p_phys;
853         void *p_virt;
854         u32 *p_tmp;
855
856         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
857                                     2 * size, &p_phys, GFP_KERNEL);
858         if (!p_virt) {
859                 DP_NOTICE(p_hwfn,
860                           "DMAE sanity [%s]: failed to allocate memory\n",
861                           phase);
862                 return -ENOMEM;
863         }
864
865         /* Fill the bottom half of the allocated memory with a known pattern */
866         for (p_tmp = (u32 *)p_virt;
867              p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
868                 /* Save the address itself as the value */
869                 val = (u32)(uintptr_t)p_tmp;
870                 *p_tmp = val;
871         }
872
873         /* Zero the top half of the allocated memory */
874         memset((u8 *)p_virt + size, 0, size);
875
876         DP_VERBOSE(p_hwfn,
877                    QED_MSG_SP,
878                    "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
879                    phase,
880                    (u64)p_phys,
881                    p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
882
883         rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
884                                 size / 4, NULL);
885         if (rc) {
886                 DP_NOTICE(p_hwfn,
887                           "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
888                           phase, rc);
889                 goto out;
890         }
891
892         /* Verify that the top half of the allocated memory has the pattern */
893         for (p_tmp = (u32 *)((u8 *)p_virt + size);
894              p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
895                 /* The corresponding address in the bottom half */
896                 val = (u32)(uintptr_t)p_tmp - size;
897
898                 if (*p_tmp != val) {
899                         DP_NOTICE(p_hwfn,
900                                   "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
901                                   phase,
902                                   (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
903                                   p_tmp, *p_tmp, val);
904                         rc = -EINVAL;
905                         goto out;
906                 }
907         }
908
909 out:
910         dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
911         return rc;
912 }