Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
5  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
6  */
7
8 #include "e1000.h"
9
10 /* A table for the GG82563 cable length where the range is defined
11  * with a lower bound at "index" and the upper bound at
12  * "index + 5".
13  */
14 static const u16 e1000_gg82563_cable_length_table[] = {
15         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
16 };
17
18 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
19                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
20
21 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
22 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
23 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
24 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
25 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
26 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
27 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
28 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
29                                            u16 *data);
30 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
31                                             u16 data);
32 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
33
34 /**
35  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
36  *  @hw: pointer to the HW structure
37  **/
38 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
39 {
40         struct e1000_phy_info *phy = &hw->phy;
41         s32 ret_val;
42
43         if (hw->phy.media_type != e1000_media_type_copper) {
44                 phy->type = e1000_phy_none;
45                 return 0;
46         } else {
47                 phy->ops.power_up = e1000_power_up_phy_copper;
48                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
49         }
50
51         phy->addr = 1;
52         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
53         phy->reset_delay_us = 100;
54         phy->type = e1000_phy_gg82563;
55
56         /* This can only be done after all function pointers are setup. */
57         ret_val = e1000e_get_phy_id(hw);
58
59         /* Verify phy id */
60         if (phy->id != GG82563_E_PHY_ID)
61                 return -E1000_ERR_PHY;
62
63         return ret_val;
64 }
65
66 /**
67  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
71 {
72         struct e1000_nvm_info *nvm = &hw->nvm;
73         u32 eecd = er32(EECD);
74         u16 size;
75
76         nvm->opcode_bits = 8;
77         nvm->delay_usec = 1;
78         switch (nvm->override) {
79         case e1000_nvm_override_spi_large:
80                 nvm->page_size = 32;
81                 nvm->address_bits = 16;
82                 break;
83         case e1000_nvm_override_spi_small:
84                 nvm->page_size = 8;
85                 nvm->address_bits = 8;
86                 break;
87         default:
88                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
89                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
90                 break;
91         }
92
93         nvm->type = e1000_nvm_eeprom_spi;
94
95         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
96                      E1000_EECD_SIZE_EX_SHIFT);
97
98         /* Added to a constant, "size" becomes the left-shift value
99          * for setting word_size.
100          */
101         size += NVM_WORD_SIZE_BASE_SHIFT;
102
103         /* EEPROM access above 16k is unsupported */
104         if (size > 14)
105                 size = 14;
106         nvm->word_size = BIT(size);
107
108         return 0;
109 }
110
111 /**
112  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
113  *  @hw: pointer to the HW structure
114  **/
115 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
116 {
117         struct e1000_mac_info *mac = &hw->mac;
118
119         /* Set media type and media-dependent function pointers */
120         switch (hw->adapter->pdev->device) {
121         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
122                 hw->phy.media_type = e1000_media_type_internal_serdes;
123                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
124                 mac->ops.setup_physical_interface =
125                     e1000e_setup_fiber_serdes_link;
126                 break;
127         default:
128                 hw->phy.media_type = e1000_media_type_copper;
129                 mac->ops.check_for_link = e1000e_check_for_copper_link;
130                 mac->ops.setup_physical_interface =
131                     e1000_setup_copper_link_80003es2lan;
132                 break;
133         }
134
135         /* Set mta register count */
136         mac->mta_reg_count = 128;
137         /* Set rar entry count */
138         mac->rar_entry_count = E1000_RAR_ENTRIES;
139         /* FWSM register */
140         mac->has_fwsm = true;
141         /* ARC supported; valid only if manageability features are enabled. */
142         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
143         /* Adaptive IFS not supported */
144         mac->adaptive_ifs = false;
145
146         /* set lan id for port to determine which phy lock to use */
147         hw->mac.ops.set_lan_id(hw);
148
149         return 0;
150 }
151
152 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
153 {
154         struct e1000_hw *hw = &adapter->hw;
155         s32 rc;
156
157         rc = e1000_init_mac_params_80003es2lan(hw);
158         if (rc)
159                 return rc;
160
161         rc = e1000_init_nvm_params_80003es2lan(hw);
162         if (rc)
163                 return rc;
164
165         rc = e1000_init_phy_params_80003es2lan(hw);
166         if (rc)
167                 return rc;
168
169         return 0;
170 }
171
172 /**
173  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
174  *  @hw: pointer to the HW structure
175  *
176  *  A wrapper to acquire access rights to the correct PHY.
177  **/
178 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
179 {
180         u16 mask;
181
182         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
183         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
184 }
185
186 /**
187  *  e1000_release_phy_80003es2lan - Release rights to access PHY
188  *  @hw: pointer to the HW structure
189  *
190  *  A wrapper to release access rights to the correct PHY.
191  **/
192 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
193 {
194         u16 mask;
195
196         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
197         e1000_release_swfw_sync_80003es2lan(hw, mask);
198 }
199
200 /**
201  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
202  *  @hw: pointer to the HW structure
203  *
204  *  Acquire the semaphore to access the Kumeran interface.
205  *
206  **/
207 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
208 {
209         u16 mask;
210
211         mask = E1000_SWFW_CSR_SM;
212
213         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
214 }
215
216 /**
217  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
218  *  @hw: pointer to the HW structure
219  *
220  *  Release the semaphore used to access the Kumeran interface
221  **/
222 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
223 {
224         u16 mask;
225
226         mask = E1000_SWFW_CSR_SM;
227
228         e1000_release_swfw_sync_80003es2lan(hw, mask);
229 }
230
231 /**
232  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
233  *  @hw: pointer to the HW structure
234  *
235  *  Acquire the semaphore to access the EEPROM.
236  **/
237 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
238 {
239         s32 ret_val;
240
241         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
242         if (ret_val)
243                 return ret_val;
244
245         ret_val = e1000e_acquire_nvm(hw);
246
247         if (ret_val)
248                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
249
250         return ret_val;
251 }
252
253 /**
254  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
255  *  @hw: pointer to the HW structure
256  *
257  *  Release the semaphore used to access the EEPROM.
258  **/
259 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
260 {
261         e1000e_release_nvm(hw);
262         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
263 }
264
265 /**
266  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
267  *  @hw: pointer to the HW structure
268  *  @mask: specifies which semaphore to acquire
269  *
270  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
271  *  will also specify which port we're acquiring the lock for.
272  **/
273 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
274 {
275         u32 swfw_sync;
276         u32 swmask = mask;
277         u32 fwmask = mask << 16;
278         s32 i = 0;
279         s32 timeout = 50;
280
281         while (i < timeout) {
282                 if (e1000e_get_hw_semaphore(hw))
283                         return -E1000_ERR_SWFW_SYNC;
284
285                 swfw_sync = er32(SW_FW_SYNC);
286                 if (!(swfw_sync & (fwmask | swmask)))
287                         break;
288
289                 /* Firmware currently using resource (fwmask)
290                  * or other software thread using resource (swmask)
291                  */
292                 e1000e_put_hw_semaphore(hw);
293                 mdelay(5);
294                 i++;
295         }
296
297         if (i == timeout) {
298                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
299                 return -E1000_ERR_SWFW_SYNC;
300         }
301
302         swfw_sync |= swmask;
303         ew32(SW_FW_SYNC, swfw_sync);
304
305         e1000e_put_hw_semaphore(hw);
306
307         return 0;
308 }
309
310 /**
311  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
312  *  @hw: pointer to the HW structure
313  *  @mask: specifies which semaphore to acquire
314  *
315  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
316  *  will also specify which port we're releasing the lock for.
317  **/
318 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
319 {
320         u32 swfw_sync;
321
322         while (e1000e_get_hw_semaphore(hw) != 0)
323                 ; /* Empty */
324
325         swfw_sync = er32(SW_FW_SYNC);
326         swfw_sync &= ~mask;
327         ew32(SW_FW_SYNC, swfw_sync);
328
329         e1000e_put_hw_semaphore(hw);
330 }
331
332 /**
333  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
334  *  @hw: pointer to the HW structure
335  *  @offset: offset of the register to read
336  *  @data: pointer to the data returned from the operation
337  *
338  *  Read the GG82563 PHY register.
339  **/
340 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
341                                                   u32 offset, u16 *data)
342 {
343         s32 ret_val;
344         u32 page_select;
345         u16 temp;
346
347         ret_val = e1000_acquire_phy_80003es2lan(hw);
348         if (ret_val)
349                 return ret_val;
350
351         /* Select Configuration Page */
352         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
353                 page_select = GG82563_PHY_PAGE_SELECT;
354         } else {
355                 /* Use Alternative Page Select register to access
356                  * registers 30 and 31
357                  */
358                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
359         }
360
361         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
362         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
363         if (ret_val) {
364                 e1000_release_phy_80003es2lan(hw);
365                 return ret_val;
366         }
367
368         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
369                 /* The "ready" bit in the MDIC register may be incorrectly set
370                  * before the device has completed the "Page Select" MDI
371                  * transaction.  So we wait 200us after each MDI command...
372                  */
373                 usleep_range(200, 400);
374
375                 /* ...and verify the command was successful. */
376                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
377
378                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
379                         e1000_release_phy_80003es2lan(hw);
380                         return -E1000_ERR_PHY;
381                 }
382
383                 usleep_range(200, 400);
384
385                 ret_val = e1000e_read_phy_reg_mdic(hw,
386                                                    MAX_PHY_REG_ADDRESS & offset,
387                                                    data);
388
389                 usleep_range(200, 400);
390         } else {
391                 ret_val = e1000e_read_phy_reg_mdic(hw,
392                                                    MAX_PHY_REG_ADDRESS & offset,
393                                                    data);
394         }
395
396         e1000_release_phy_80003es2lan(hw);
397
398         return ret_val;
399 }
400
401 /**
402  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
403  *  @hw: pointer to the HW structure
404  *  @offset: offset of the register to read
405  *  @data: value to write to the register
406  *
407  *  Write to the GG82563 PHY register.
408  **/
409 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
410                                                    u32 offset, u16 data)
411 {
412         s32 ret_val;
413         u32 page_select;
414         u16 temp;
415
416         ret_val = e1000_acquire_phy_80003es2lan(hw);
417         if (ret_val)
418                 return ret_val;
419
420         /* Select Configuration Page */
421         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
422                 page_select = GG82563_PHY_PAGE_SELECT;
423         } else {
424                 /* Use Alternative Page Select register to access
425                  * registers 30 and 31
426                  */
427                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
428         }
429
430         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
431         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
432         if (ret_val) {
433                 e1000_release_phy_80003es2lan(hw);
434                 return ret_val;
435         }
436
437         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
438                 /* The "ready" bit in the MDIC register may be incorrectly set
439                  * before the device has completed the "Page Select" MDI
440                  * transaction.  So we wait 200us after each MDI command...
441                  */
442                 usleep_range(200, 400);
443
444                 /* ...and verify the command was successful. */
445                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
446
447                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
448                         e1000_release_phy_80003es2lan(hw);
449                         return -E1000_ERR_PHY;
450                 }
451
452                 usleep_range(200, 400);
453
454                 ret_val = e1000e_write_phy_reg_mdic(hw,
455                                                     MAX_PHY_REG_ADDRESS &
456                                                     offset, data);
457
458                 usleep_range(200, 400);
459         } else {
460                 ret_val = e1000e_write_phy_reg_mdic(hw,
461                                                     MAX_PHY_REG_ADDRESS &
462                                                     offset, data);
463         }
464
465         e1000_release_phy_80003es2lan(hw);
466
467         return ret_val;
468 }
469
470 /**
471  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
472  *  @hw: pointer to the HW structure
473  *  @offset: offset of the register to read
474  *  @words: number of words to write
475  *  @data: buffer of data to write to the NVM
476  *
477  *  Write "words" of data to the ESB2 NVM.
478  **/
479 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
480                                        u16 words, u16 *data)
481 {
482         return e1000e_write_nvm_spi(hw, offset, words, data);
483 }
484
485 /**
486  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
487  *  @hw: pointer to the HW structure
488  *
489  *  Wait a specific amount of time for manageability processes to complete.
490  *  This is a function pointer entry point called by the phy module.
491  **/
492 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
493 {
494         s32 timeout = PHY_CFG_TIMEOUT;
495         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
496
497         if (hw->bus.func == 1)
498                 mask = E1000_NVM_CFG_DONE_PORT_1;
499
500         while (timeout) {
501                 if (er32(EEMNGCTL) & mask)
502                         break;
503                 usleep_range(1000, 2000);
504                 timeout--;
505         }
506         if (!timeout) {
507                 e_dbg("MNG configuration cycle has not completed.\n");
508                 return -E1000_ERR_RESET;
509         }
510
511         return 0;
512 }
513
514 /**
515  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
516  *  @hw: pointer to the HW structure
517  *
518  *  Force the speed and duplex settings onto the PHY.  This is a
519  *  function pointer entry point called by the phy module.
520  **/
521 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
522 {
523         s32 ret_val;
524         u16 phy_data;
525         bool link;
526
527         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
528          * forced whenever speed and duplex are forced.
529          */
530         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
531         if (ret_val)
532                 return ret_val;
533
534         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
535         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
536         if (ret_val)
537                 return ret_val;
538
539         e_dbg("GG82563 PSCR: %X\n", phy_data);
540
541         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
542         if (ret_val)
543                 return ret_val;
544
545         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
546
547         /* Reset the phy to commit changes. */
548         phy_data |= BMCR_RESET;
549
550         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
551         if (ret_val)
552                 return ret_val;
553
554         udelay(1);
555
556         if (hw->phy.autoneg_wait_to_complete) {
557                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
558
559                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
560                                                       100000, &link);
561                 if (ret_val)
562                         return ret_val;
563
564                 if (!link) {
565                         /* We didn't get link.
566                          * Reset the DSP and cross our fingers.
567                          */
568                         ret_val = e1000e_phy_reset_dsp(hw);
569                         if (ret_val)
570                                 return ret_val;
571                 }
572
573                 /* Try once more */
574                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
575                                                       100000, &link);
576                 if (ret_val)
577                         return ret_val;
578         }
579
580         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
581         if (ret_val)
582                 return ret_val;
583
584         /* Resetting the phy means we need to verify the TX_CLK corresponds
585          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
586          */
587         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
588         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
589                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
590         else
591                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
592
593         /* In addition, we must re-enable CRS on Tx for both half and full
594          * duplex.
595          */
596         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
597         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
598
599         return ret_val;
600 }
601
602 /**
603  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
604  *  @hw: pointer to the HW structure
605  *
606  *  Find the approximate cable length as measured by the GG82563 PHY.
607  *  This is a function pointer entry point called by the phy module.
608  **/
609 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
610 {
611         struct e1000_phy_info *phy = &hw->phy;
612         s32 ret_val;
613         u16 phy_data, index;
614
615         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
616         if (ret_val)
617                 return ret_val;
618
619         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
620
621         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
622                 return -E1000_ERR_PHY;
623
624         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
625         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
626
627         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
628
629         return 0;
630 }
631
632 /**
633  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
634  *  @hw: pointer to the HW structure
635  *  @speed: pointer to speed buffer
636  *  @duplex: pointer to duplex buffer
637  *
638  *  Retrieve the current speed and duplex configuration.
639  **/
640 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
641                                               u16 *duplex)
642 {
643         s32 ret_val;
644
645         if (hw->phy.media_type == e1000_media_type_copper) {
646                 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
647                 hw->phy.ops.cfg_on_link_up(hw);
648         } else {
649                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
650                                                                    speed,
651                                                                    duplex);
652         }
653
654         return ret_val;
655 }
656
657 /**
658  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
659  *  @hw: pointer to the HW structure
660  *
661  *  Perform a global reset to the ESB2 controller.
662  **/
663 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
664 {
665         u32 ctrl;
666         s32 ret_val;
667         u16 kum_reg_data;
668
669         /* Prevent the PCI-E bus from sticking if there is no TLP connection
670          * on the last TLP read/write transaction when MAC is reset.
671          */
672         ret_val = e1000e_disable_pcie_master(hw);
673         if (ret_val)
674                 e_dbg("PCI-E Master disable polling has failed.\n");
675
676         e_dbg("Masking off all interrupts\n");
677         ew32(IMC, 0xffffffff);
678
679         ew32(RCTL, 0);
680         ew32(TCTL, E1000_TCTL_PSP);
681         e1e_flush();
682
683         usleep_range(10000, 11000);
684
685         ctrl = er32(CTRL);
686
687         ret_val = e1000_acquire_phy_80003es2lan(hw);
688         if (ret_val)
689                 return ret_val;
690
691         e_dbg("Issuing a global reset to MAC\n");
692         ew32(CTRL, ctrl | E1000_CTRL_RST);
693         e1000_release_phy_80003es2lan(hw);
694
695         /* Disable IBIST slave mode (far-end loopback) */
696         ret_val =
697             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
698                                             &kum_reg_data);
699         if (!ret_val) {
700                 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
701                 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
702                                                  E1000_KMRNCTRLSTA_INBAND_PARAM,
703                                                  kum_reg_data);
704                 if (ret_val)
705                         e_dbg("Error disabling far-end loopback\n");
706         } else {
707                 e_dbg("Error disabling far-end loopback\n");
708         }
709
710         ret_val = e1000e_get_auto_rd_done(hw);
711         if (ret_val)
712                 /* We don't want to continue accessing MAC registers. */
713                 return ret_val;
714
715         /* Clear any pending interrupt events. */
716         ew32(IMC, 0xffffffff);
717         er32(ICR);
718
719         return e1000_check_alt_mac_addr_generic(hw);
720 }
721
722 /**
723  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
724  *  @hw: pointer to the HW structure
725  *
726  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
727  **/
728 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
729 {
730         struct e1000_mac_info *mac = &hw->mac;
731         u32 reg_data;
732         s32 ret_val;
733         u16 kum_reg_data;
734         u16 i;
735
736         e1000_initialize_hw_bits_80003es2lan(hw);
737
738         /* Initialize identification LED */
739         ret_val = mac->ops.id_led_init(hw);
740         /* An error is not fatal and we should not stop init due to this */
741         if (ret_val)
742                 e_dbg("Error initializing identification LED\n");
743
744         /* Disabling VLAN filtering */
745         e_dbg("Initializing the IEEE VLAN\n");
746         mac->ops.clear_vfta(hw);
747
748         /* Setup the receive address. */
749         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
750
751         /* Zero out the Multicast HASH table */
752         e_dbg("Zeroing the MTA\n");
753         for (i = 0; i < mac->mta_reg_count; i++)
754                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
755
756         /* Setup link and flow control */
757         ret_val = mac->ops.setup_link(hw);
758         if (ret_val)
759                 return ret_val;
760
761         /* Disable IBIST slave mode (far-end loopback) */
762         ret_val =
763             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
764                                             &kum_reg_data);
765         if (!ret_val) {
766                 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
767                 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
768                                                  E1000_KMRNCTRLSTA_INBAND_PARAM,
769                                                  kum_reg_data);
770                 if (ret_val)
771                         e_dbg("Error disabling far-end loopback\n");
772         } else {
773                 e_dbg("Error disabling far-end loopback\n");
774         }
775
776         /* Set the transmit descriptor write-back policy */
777         reg_data = er32(TXDCTL(0));
778         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
779                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
780         ew32(TXDCTL(0), reg_data);
781
782         /* ...for both queues. */
783         reg_data = er32(TXDCTL(1));
784         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
785                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
786         ew32(TXDCTL(1), reg_data);
787
788         /* Enable retransmit on late collisions */
789         reg_data = er32(TCTL);
790         reg_data |= E1000_TCTL_RTLC;
791         ew32(TCTL, reg_data);
792
793         /* Configure Gigabit Carry Extend Padding */
794         reg_data = er32(TCTL_EXT);
795         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
796         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
797         ew32(TCTL_EXT, reg_data);
798
799         /* Configure Transmit Inter-Packet Gap */
800         reg_data = er32(TIPG);
801         reg_data &= ~E1000_TIPG_IPGT_MASK;
802         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
803         ew32(TIPG, reg_data);
804
805         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
806         reg_data &= ~0x00100000;
807         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
808
809         /* default to true to enable the MDIC W/A */
810         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
811
812         ret_val =
813             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
814                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
815         if (!ret_val) {
816                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
817                     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
818                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
819         }
820
821         /* Clear all of the statistics registers (clear on read).  It is
822          * important that we do this after we have tried to establish link
823          * because the symbol error count will increment wildly if there
824          * is no link.
825          */
826         e1000_clear_hw_cntrs_80003es2lan(hw);
827
828         return ret_val;
829 }
830
831 /**
832  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
833  *  @hw: pointer to the HW structure
834  *
835  *  Initializes required hardware-dependent bits needed for normal operation.
836  **/
837 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
838 {
839         u32 reg;
840
841         /* Transmit Descriptor Control 0 */
842         reg = er32(TXDCTL(0));
843         reg |= BIT(22);
844         ew32(TXDCTL(0), reg);
845
846         /* Transmit Descriptor Control 1 */
847         reg = er32(TXDCTL(1));
848         reg |= BIT(22);
849         ew32(TXDCTL(1), reg);
850
851         /* Transmit Arbitration Control 0 */
852         reg = er32(TARC(0));
853         reg &= ~(0xF << 27);    /* 30:27 */
854         if (hw->phy.media_type != e1000_media_type_copper)
855                 reg &= ~BIT(20);
856         ew32(TARC(0), reg);
857
858         /* Transmit Arbitration Control 1 */
859         reg = er32(TARC(1));
860         if (er32(TCTL) & E1000_TCTL_MULR)
861                 reg &= ~BIT(28);
862         else
863                 reg |= BIT(28);
864         ew32(TARC(1), reg);
865
866         /* Disable IPv6 extension header parsing because some malformed
867          * IPv6 headers can hang the Rx.
868          */
869         reg = er32(RFCTL);
870         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
871         ew32(RFCTL, reg);
872 }
873
874 /**
875  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
876  *  @hw: pointer to the HW structure
877  *
878  *  Setup some GG82563 PHY registers for obtaining link
879  **/
880 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
881 {
882         struct e1000_phy_info *phy = &hw->phy;
883         s32 ret_val;
884         u32 reg;
885         u16 data;
886
887         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
888         if (ret_val)
889                 return ret_val;
890
891         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
892         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
893         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
894
895         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
896         if (ret_val)
897                 return ret_val;
898
899         /* Options:
900          *   MDI/MDI-X = 0 (default)
901          *   0 - Auto for all speeds
902          *   1 - MDI mode
903          *   2 - MDI-X mode
904          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
905          */
906         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
907         if (ret_val)
908                 return ret_val;
909
910         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
911
912         switch (phy->mdix) {
913         case 1:
914                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
915                 break;
916         case 2:
917                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
918                 break;
919         case 0:
920         default:
921                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
922                 break;
923         }
924
925         /* Options:
926          *   disable_polarity_correction = 0 (default)
927          *       Automatic Correction for Reversed Cable Polarity
928          *   0 - Disabled
929          *   1 - Enabled
930          */
931         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
932         if (phy->disable_polarity_correction)
933                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
934
935         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
936         if (ret_val)
937                 return ret_val;
938
939         /* SW Reset the PHY so all changes take effect */
940         ret_val = hw->phy.ops.commit(hw);
941         if (ret_val) {
942                 e_dbg("Error Resetting the PHY\n");
943                 return ret_val;
944         }
945
946         /* Bypass Rx and Tx FIFO's */
947         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
948         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
949                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
950         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
951         if (ret_val)
952                 return ret_val;
953
954         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
955         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
956         if (ret_val)
957                 return ret_val;
958         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
959         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960         if (ret_val)
961                 return ret_val;
962
963         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
964         if (ret_val)
965                 return ret_val;
966
967         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
968         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
969         if (ret_val)
970                 return ret_val;
971
972         reg = er32(CTRL_EXT);
973         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
974         ew32(CTRL_EXT, reg);
975
976         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
977         if (ret_val)
978                 return ret_val;
979
980         /* Do not init these registers when the HW is in IAMT mode, since the
981          * firmware will have already initialized them.  We only initialize
982          * them if the HW is not in IAMT mode.
983          */
984         if (!hw->mac.ops.check_mng_mode(hw)) {
985                 /* Enable Electrical Idle on the PHY */
986                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
987                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
988                 if (ret_val)
989                         return ret_val;
990
991                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
992                 if (ret_val)
993                         return ret_val;
994
995                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
996                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
997                 if (ret_val)
998                         return ret_val;
999         }
1000
1001         /* Workaround: Disable padding in Kumeran interface in the MAC
1002          * and in the PHY to avoid CRC errors.
1003          */
1004         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005         if (ret_val)
1006                 return ret_val;
1007
1008         data |= GG82563_ICR_DIS_PADDING;
1009         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010         if (ret_val)
1011                 return ret_val;
1012
1013         return 0;
1014 }
1015
1016 /**
1017  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018  *  @hw: pointer to the HW structure
1019  *
1020  *  Essentially a wrapper for setting up all things "copper" related.
1021  *  This is a function pointer entry point called by the mac module.
1022  **/
1023 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024 {
1025         u32 ctrl;
1026         s32 ret_val;
1027         u16 reg_data;
1028
1029         ctrl = er32(CTRL);
1030         ctrl |= E1000_CTRL_SLU;
1031         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032         ew32(CTRL, ctrl);
1033
1034         /* Set the mac to wait the maximum time between each
1035          * iteration and increase the max iterations when
1036          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037          */
1038         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039                                                    0xFFFF);
1040         if (ret_val)
1041                 return ret_val;
1042         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043                                                   &reg_data);
1044         if (ret_val)
1045                 return ret_val;
1046         reg_data |= 0x3F;
1047         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048                                                    reg_data);
1049         if (ret_val)
1050                 return ret_val;
1051         ret_val =
1052             e1000_read_kmrn_reg_80003es2lan(hw,
1053                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054                                             &reg_data);
1055         if (ret_val)
1056                 return ret_val;
1057         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058         ret_val =
1059             e1000_write_kmrn_reg_80003es2lan(hw,
1060                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061                                              reg_data);
1062         if (ret_val)
1063                 return ret_val;
1064
1065         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066         if (ret_val)
1067                 return ret_val;
1068
1069         return e1000e_setup_copper_link(hw);
1070 }
1071
1072 /**
1073  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074  *  @hw: pointer to the HW structure
1075  *  @duplex: current duplex setting
1076  *
1077  *  Configure the KMRN interface by applying last minute quirks for
1078  *  10/100 operation.
1079  **/
1080 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1081 {
1082         s32 ret_val = 0;
1083         u16 speed;
1084         u16 duplex;
1085
1086         if (hw->phy.media_type == e1000_media_type_copper) {
1087                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1088                                                              &duplex);
1089                 if (ret_val)
1090                         return ret_val;
1091
1092                 if (speed == SPEED_1000)
1093                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1094                 else
1095                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1096         }
1097
1098         return ret_val;
1099 }
1100
1101 /**
1102  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1103  *  @hw: pointer to the HW structure
1104  *  @duplex: current duplex setting
1105  *
1106  *  Configure the KMRN interface by applying last minute quirks for
1107  *  10/100 operation.
1108  **/
1109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1110 {
1111         s32 ret_val;
1112         u32 tipg;
1113         u32 i = 0;
1114         u16 reg_data, reg_data2;
1115
1116         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1117         ret_val =
1118             e1000_write_kmrn_reg_80003es2lan(hw,
1119                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1120                                              reg_data);
1121         if (ret_val)
1122                 return ret_val;
1123
1124         /* Configure Transmit Inter-Packet Gap */
1125         tipg = er32(TIPG);
1126         tipg &= ~E1000_TIPG_IPGT_MASK;
1127         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1128         ew32(TIPG, tipg);
1129
1130         do {
1131                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1132                 if (ret_val)
1133                         return ret_val;
1134
1135                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1136                 if (ret_val)
1137                         return ret_val;
1138                 i++;
1139         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1140
1141         if (duplex == HALF_DUPLEX)
1142                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1143         else
1144                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1145
1146         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1147 }
1148
1149 /**
1150  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1151  *  @hw: pointer to the HW structure
1152  *
1153  *  Configure the KMRN interface by applying last minute quirks for
1154  *  gigabit operation.
1155  **/
1156 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1157 {
1158         s32 ret_val;
1159         u16 reg_data, reg_data2;
1160         u32 tipg;
1161         u32 i = 0;
1162
1163         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1164         ret_val =
1165             e1000_write_kmrn_reg_80003es2lan(hw,
1166                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1167                                              reg_data);
1168         if (ret_val)
1169                 return ret_val;
1170
1171         /* Configure Transmit Inter-Packet Gap */
1172         tipg = er32(TIPG);
1173         tipg &= ~E1000_TIPG_IPGT_MASK;
1174         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1175         ew32(TIPG, tipg);
1176
1177         do {
1178                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1179                 if (ret_val)
1180                         return ret_val;
1181
1182                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1183                 if (ret_val)
1184                         return ret_val;
1185                 i++;
1186         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1187
1188         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1189
1190         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1191 }
1192
1193 /**
1194  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1195  *  @hw: pointer to the HW structure
1196  *  @offset: register offset to be read
1197  *  @data: pointer to the read data
1198  *
1199  *  Acquire semaphore, then read the PHY register at offset
1200  *  using the kumeran interface.  The information retrieved is stored in data.
1201  *  Release the semaphore before exiting.
1202  **/
1203 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1204                                            u16 *data)
1205 {
1206         u32 kmrnctrlsta;
1207         s32 ret_val;
1208
1209         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1210         if (ret_val)
1211                 return ret_val;
1212
1213         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1214                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1215         ew32(KMRNCTRLSTA, kmrnctrlsta);
1216         e1e_flush();
1217
1218         udelay(2);
1219
1220         kmrnctrlsta = er32(KMRNCTRLSTA);
1221         *data = (u16)kmrnctrlsta;
1222
1223         e1000_release_mac_csr_80003es2lan(hw);
1224
1225         return ret_val;
1226 }
1227
1228 /**
1229  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1230  *  @hw: pointer to the HW structure
1231  *  @offset: register offset to write to
1232  *  @data: data to write at register offset
1233  *
1234  *  Acquire semaphore, then write the data to PHY register
1235  *  at the offset using the kumeran interface.  Release semaphore
1236  *  before exiting.
1237  **/
1238 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1239                                             u16 data)
1240 {
1241         u32 kmrnctrlsta;
1242         s32 ret_val;
1243
1244         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1245         if (ret_val)
1246                 return ret_val;
1247
1248         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1249                        E1000_KMRNCTRLSTA_OFFSET) | data;
1250         ew32(KMRNCTRLSTA, kmrnctrlsta);
1251         e1e_flush();
1252
1253         udelay(2);
1254
1255         e1000_release_mac_csr_80003es2lan(hw);
1256
1257         return ret_val;
1258 }
1259
1260 /**
1261  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1262  *  @hw: pointer to the HW structure
1263  **/
1264 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1265 {
1266         s32 ret_val;
1267
1268         /* If there's an alternate MAC address place it in RAR0
1269          * so that it will override the Si installed default perm
1270          * address.
1271          */
1272         ret_val = e1000_check_alt_mac_addr_generic(hw);
1273         if (ret_val)
1274                 return ret_val;
1275
1276         return e1000_read_mac_addr_generic(hw);
1277 }
1278
1279 /**
1280  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1281  * @hw: pointer to the HW structure
1282  *
1283  * In the case of a PHY power down to save power, or to turn off link during a
1284  * driver unload, or wake on lan is not enabled, remove the link.
1285  **/
1286 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1287 {
1288         /* If the management interface is not enabled, then power down */
1289         if (!(hw->mac.ops.check_mng_mode(hw) ||
1290               hw->phy.ops.check_reset_block(hw)))
1291                 e1000_power_down_phy_copper(hw);
1292 }
1293
1294 /**
1295  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1296  *  @hw: pointer to the HW structure
1297  *
1298  *  Clears the hardware counters by reading the counter registers.
1299  **/
1300 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1301 {
1302         e1000e_clear_hw_cntrs_base(hw);
1303
1304         er32(PRC64);
1305         er32(PRC127);
1306         er32(PRC255);
1307         er32(PRC511);
1308         er32(PRC1023);
1309         er32(PRC1522);
1310         er32(PTC64);
1311         er32(PTC127);
1312         er32(PTC255);
1313         er32(PTC511);
1314         er32(PTC1023);
1315         er32(PTC1522);
1316
1317         er32(ALGNERRC);
1318         er32(RXERRC);
1319         er32(TNCRS);
1320         er32(CEXTERR);
1321         er32(TSCTC);
1322         er32(TSCTFC);
1323
1324         er32(MGTPRC);
1325         er32(MGTPDC);
1326         er32(MGTPTC);
1327
1328         er32(IAC);
1329         er32(ICRXOC);
1330
1331         er32(ICRXPTC);
1332         er32(ICRXATC);
1333         er32(ICTXPTC);
1334         er32(ICTXATC);
1335         er32(ICTXQEC);
1336         er32(ICTXQMTC);
1337         er32(ICRXDMTC);
1338 }
1339
1340 static const struct e1000_mac_operations es2_mac_ops = {
1341         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1342         .id_led_init            = e1000e_id_led_init_generic,
1343         .blink_led              = e1000e_blink_led_generic,
1344         .check_mng_mode         = e1000e_check_mng_mode_generic,
1345         /* check_for_link dependent on media type */
1346         .cleanup_led            = e1000e_cleanup_led_generic,
1347         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1348         .get_bus_info           = e1000e_get_bus_info_pcie,
1349         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1350         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1351         .led_on                 = e1000e_led_on_generic,
1352         .led_off                = e1000e_led_off_generic,
1353         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1354         .write_vfta             = e1000_write_vfta_generic,
1355         .clear_vfta             = e1000_clear_vfta_generic,
1356         .reset_hw               = e1000_reset_hw_80003es2lan,
1357         .init_hw                = e1000_init_hw_80003es2lan,
1358         .setup_link             = e1000e_setup_link_generic,
1359         /* setup_physical_interface dependent on media type */
1360         .setup_led              = e1000e_setup_led_generic,
1361         .config_collision_dist  = e1000e_config_collision_dist_generic,
1362         .rar_set                = e1000e_rar_set_generic,
1363         .rar_get_count          = e1000e_rar_get_count_generic,
1364 };
1365
1366 static const struct e1000_phy_operations es2_phy_ops = {
1367         .acquire                = e1000_acquire_phy_80003es2lan,
1368         .check_polarity         = e1000_check_polarity_m88,
1369         .check_reset_block      = e1000e_check_reset_block_generic,
1370         .commit                 = e1000e_phy_sw_reset,
1371         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1372         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1373         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1374         .get_info               = e1000e_get_phy_info_m88,
1375         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1376         .release                = e1000_release_phy_80003es2lan,
1377         .reset                  = e1000e_phy_hw_reset_generic,
1378         .set_d0_lplu_state      = NULL,
1379         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1380         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1381         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1382 };
1383
1384 static const struct e1000_nvm_operations es2_nvm_ops = {
1385         .acquire                = e1000_acquire_nvm_80003es2lan,
1386         .read                   = e1000e_read_nvm_eerd,
1387         .release                = e1000_release_nvm_80003es2lan,
1388         .reload                 = e1000e_reload_nvm_generic,
1389         .update                 = e1000e_update_nvm_checksum_generic,
1390         .valid_led_default      = e1000e_valid_led_default,
1391         .validate               = e1000e_validate_nvm_checksum_generic,
1392         .write                  = e1000_write_nvm_80003es2lan,
1393 };
1394
1395 const struct e1000_info e1000_es2_info = {
1396         .mac                    = e1000_80003es2lan,
1397         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1398                                   | FLAG_HAS_JUMBO_FRAMES
1399                                   | FLAG_HAS_WOL
1400                                   | FLAG_APME_IN_CTRL3
1401                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1402                                   | FLAG_RX_NEEDS_RESTART /* errata */
1403                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1404                                   | FLAG_APME_CHECK_PORT_B
1405                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1406         .flags2                 = FLAG2_DMA_BURST,
1407         .pba                    = 38,
1408         .max_hw_frame_size      = DEFAULT_JUMBO,
1409         .get_variants           = e1000_get_variants_80003es2lan,
1410         .mac_ops                = &es2_mac_ops,
1411         .phy_ops                = &es2_phy_ops,
1412         .nvm_ops                = &es2_nvm_ops,
1413 };