Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 #define DRV_VERSION "7.3.21-k8-NAPI"
14 const char e1000_driver_version[] = DRV_VERSION;
15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
16
17 /* e1000_pci_tbl - PCI Device ID Table
18  *
19  * Last entry must be all 0s
20  *
21  * Macro expands to...
22  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
23  */
24 static const struct pci_device_id e1000_pci_tbl[] = {
25         INTEL_E1000_ETHERNET_DEVICE(0x1000),
26         INTEL_E1000_ETHERNET_DEVICE(0x1001),
27         INTEL_E1000_ETHERNET_DEVICE(0x1004),
28         INTEL_E1000_ETHERNET_DEVICE(0x1008),
29         INTEL_E1000_ETHERNET_DEVICE(0x1009),
30         INTEL_E1000_ETHERNET_DEVICE(0x100C),
31         INTEL_E1000_ETHERNET_DEVICE(0x100D),
32         INTEL_E1000_ETHERNET_DEVICE(0x100E),
33         INTEL_E1000_ETHERNET_DEVICE(0x100F),
34         INTEL_E1000_ETHERNET_DEVICE(0x1010),
35         INTEL_E1000_ETHERNET_DEVICE(0x1011),
36         INTEL_E1000_ETHERNET_DEVICE(0x1012),
37         INTEL_E1000_ETHERNET_DEVICE(0x1013),
38         INTEL_E1000_ETHERNET_DEVICE(0x1014),
39         INTEL_E1000_ETHERNET_DEVICE(0x1015),
40         INTEL_E1000_ETHERNET_DEVICE(0x1016),
41         INTEL_E1000_ETHERNET_DEVICE(0x1017),
42         INTEL_E1000_ETHERNET_DEVICE(0x1018),
43         INTEL_E1000_ETHERNET_DEVICE(0x1019),
44         INTEL_E1000_ETHERNET_DEVICE(0x101A),
45         INTEL_E1000_ETHERNET_DEVICE(0x101D),
46         INTEL_E1000_ETHERNET_DEVICE(0x101E),
47         INTEL_E1000_ETHERNET_DEVICE(0x1026),
48         INTEL_E1000_ETHERNET_DEVICE(0x1027),
49         INTEL_E1000_ETHERNET_DEVICE(0x1028),
50         INTEL_E1000_ETHERNET_DEVICE(0x1075),
51         INTEL_E1000_ETHERNET_DEVICE(0x1076),
52         INTEL_E1000_ETHERNET_DEVICE(0x1077),
53         INTEL_E1000_ETHERNET_DEVICE(0x1078),
54         INTEL_E1000_ETHERNET_DEVICE(0x1079),
55         INTEL_E1000_ETHERNET_DEVICE(0x107A),
56         INTEL_E1000_ETHERNET_DEVICE(0x107B),
57         INTEL_E1000_ETHERNET_DEVICE(0x107C),
58         INTEL_E1000_ETHERNET_DEVICE(0x108A),
59         INTEL_E1000_ETHERNET_DEVICE(0x1099),
60         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
61         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
62         /* required last entry */
63         {0,}
64 };
65
66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
67
68 int e1000_up(struct e1000_adapter *adapter);
69 void e1000_down(struct e1000_adapter *adapter);
70 void e1000_reinit_locked(struct e1000_adapter *adapter);
71 void e1000_reset(struct e1000_adapter *adapter);
72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
77                                     struct e1000_tx_ring *txdr);
78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
79                                     struct e1000_rx_ring *rxdr);
80 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
81                                     struct e1000_tx_ring *tx_ring);
82 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
83                                     struct e1000_rx_ring *rx_ring);
84 void e1000_update_stats(struct e1000_adapter *adapter);
85
86 static int e1000_init_module(void);
87 static void e1000_exit_module(void);
88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
89 static void e1000_remove(struct pci_dev *pdev);
90 static int e1000_alloc_queues(struct e1000_adapter *adapter);
91 static int e1000_sw_init(struct e1000_adapter *adapter);
92 int e1000_open(struct net_device *netdev);
93 int e1000_close(struct net_device *netdev);
94 static void e1000_configure_tx(struct e1000_adapter *adapter);
95 static void e1000_configure_rx(struct e1000_adapter *adapter);
96 static void e1000_setup_rctl(struct e1000_adapter *adapter);
97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
100                                 struct e1000_tx_ring *tx_ring);
101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
102                                 struct e1000_rx_ring *rx_ring);
103 static void e1000_set_rx_mode(struct net_device *netdev);
104 static void e1000_update_phy_info_task(struct work_struct *work);
105 static void e1000_watchdog(struct work_struct *work);
106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
108                                     struct net_device *netdev);
109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
110 static int e1000_set_mac(struct net_device *netdev, void *p);
111 static irqreturn_t e1000_intr(int irq, void *data);
112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
113                                struct e1000_tx_ring *tx_ring);
114 static int e1000_clean(struct napi_struct *napi, int budget);
115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
116                                struct e1000_rx_ring *rx_ring,
117                                int *work_done, int work_to_do);
118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
119                                      struct e1000_rx_ring *rx_ring,
120                                      int *work_done, int work_to_do);
121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
122                                          struct e1000_rx_ring *rx_ring,
123                                          int cleaned_count)
124 {
125 }
126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
127                                    struct e1000_rx_ring *rx_ring,
128                                    int cleaned_count);
129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
130                                          struct e1000_rx_ring *rx_ring,
131                                          int cleaned_count);
132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
134                            int cmd);
135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
137 static void e1000_tx_timeout(struct net_device *dev);
138 static void e1000_reset_task(struct work_struct *work);
139 static void e1000_smartspeed(struct e1000_adapter *adapter);
140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
141                                        struct sk_buff *skb);
142
143 static bool e1000_vlan_used(struct e1000_adapter *adapter);
144 static void e1000_vlan_mode(struct net_device *netdev,
145                             netdev_features_t features);
146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
147                                      bool filter_on);
148 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
149                                  __be16 proto, u16 vid);
150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
151                                   __be16 proto, u16 vid);
152 static void e1000_restore_vlan(struct e1000_adapter *adapter);
153
154 #ifdef CONFIG_PM
155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
156 static int e1000_resume(struct pci_dev *pdev);
157 #endif
158 static void e1000_shutdown(struct pci_dev *pdev);
159
160 #ifdef CONFIG_NET_POLL_CONTROLLER
161 /* for netdump / net console */
162 static void e1000_netpoll (struct net_device *netdev);
163 #endif
164
165 #define COPYBREAK_DEFAULT 256
166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
167 module_param(copybreak, uint, 0644);
168 MODULE_PARM_DESC(copybreak,
169         "Maximum size of packet that is copied to a new buffer on receive");
170
171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
172                                                 pci_channel_state_t state);
173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
174 static void e1000_io_resume(struct pci_dev *pdev);
175
176 static const struct pci_error_handlers e1000_err_handler = {
177         .error_detected = e1000_io_error_detected,
178         .slot_reset = e1000_io_slot_reset,
179         .resume = e1000_io_resume,
180 };
181
182 static struct pci_driver e1000_driver = {
183         .name     = e1000_driver_name,
184         .id_table = e1000_pci_tbl,
185         .probe    = e1000_probe,
186         .remove   = e1000_remove,
187 #ifdef CONFIG_PM
188         /* Power Management Hooks */
189         .suspend  = e1000_suspend,
190         .resume   = e1000_resume,
191 #endif
192         .shutdown = e1000_shutdown,
193         .err_handler = &e1000_err_handler
194 };
195
196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
198 MODULE_LICENSE("GPL v2");
199 MODULE_VERSION(DRV_VERSION);
200
201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
202 static int debug = -1;
203 module_param(debug, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205
206 /**
207  * e1000_get_hw_dev - return device
208  * used by hardware layer to print debugging information
209  *
210  **/
211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
212 {
213         struct e1000_adapter *adapter = hw->back;
214         return adapter->netdev;
215 }
216
217 /**
218  * e1000_init_module - Driver Registration Routine
219  *
220  * e1000_init_module is the first routine called when the driver is
221  * loaded. All it does is register with the PCI subsystem.
222  **/
223 static int __init e1000_init_module(void)
224 {
225         int ret;
226         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
227
228         pr_info("%s\n", e1000_copyright);
229
230         ret = pci_register_driver(&e1000_driver);
231         if (copybreak != COPYBREAK_DEFAULT) {
232                 if (copybreak == 0)
233                         pr_info("copybreak disabled\n");
234                 else
235                         pr_info("copybreak enabled for "
236                                    "packets <= %u bytes\n", copybreak);
237         }
238         return ret;
239 }
240
241 module_init(e1000_init_module);
242
243 /**
244  * e1000_exit_module - Driver Exit Cleanup Routine
245  *
246  * e1000_exit_module is called just before the driver is removed
247  * from memory.
248  **/
249 static void __exit e1000_exit_module(void)
250 {
251         pci_unregister_driver(&e1000_driver);
252 }
253
254 module_exit(e1000_exit_module);
255
256 static int e1000_request_irq(struct e1000_adapter *adapter)
257 {
258         struct net_device *netdev = adapter->netdev;
259         irq_handler_t handler = e1000_intr;
260         int irq_flags = IRQF_SHARED;
261         int err;
262
263         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
264                           netdev);
265         if (err) {
266                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
267         }
268
269         return err;
270 }
271
272 static void e1000_free_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275
276         free_irq(adapter->pdev->irq, netdev);
277 }
278
279 /**
280  * e1000_irq_disable - Mask off interrupt generation on the NIC
281  * @adapter: board private structure
282  **/
283 static void e1000_irq_disable(struct e1000_adapter *adapter)
284 {
285         struct e1000_hw *hw = &adapter->hw;
286
287         ew32(IMC, ~0);
288         E1000_WRITE_FLUSH();
289         synchronize_irq(adapter->pdev->irq);
290 }
291
292 /**
293  * e1000_irq_enable - Enable default interrupt generation settings
294  * @adapter: board private structure
295  **/
296 static void e1000_irq_enable(struct e1000_adapter *adapter)
297 {
298         struct e1000_hw *hw = &adapter->hw;
299
300         ew32(IMS, IMS_ENABLE_MASK);
301         E1000_WRITE_FLUSH();
302 }
303
304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
305 {
306         struct e1000_hw *hw = &adapter->hw;
307         struct net_device *netdev = adapter->netdev;
308         u16 vid = hw->mng_cookie.vlan_id;
309         u16 old_vid = adapter->mng_vlan_id;
310
311         if (!e1000_vlan_used(adapter))
312                 return;
313
314         if (!test_bit(vid, adapter->active_vlans)) {
315                 if (hw->mng_cookie.status &
316                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
317                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
318                         adapter->mng_vlan_id = vid;
319                 } else {
320                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
321                 }
322                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
323                     (vid != old_vid) &&
324                     !test_bit(old_vid, adapter->active_vlans))
325                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
326                                                old_vid);
327         } else {
328                 adapter->mng_vlan_id = vid;
329         }
330 }
331
332 static void e1000_init_manageability(struct e1000_adapter *adapter)
333 {
334         struct e1000_hw *hw = &adapter->hw;
335
336         if (adapter->en_mng_pt) {
337                 u32 manc = er32(MANC);
338
339                 /* disable hardware interception of ARP */
340                 manc &= ~(E1000_MANC_ARP_EN);
341
342                 ew32(MANC, manc);
343         }
344 }
345
346 static void e1000_release_manageability(struct e1000_adapter *adapter)
347 {
348         struct e1000_hw *hw = &adapter->hw;
349
350         if (adapter->en_mng_pt) {
351                 u32 manc = er32(MANC);
352
353                 /* re-enable hardware interception of ARP */
354                 manc |= E1000_MANC_ARP_EN;
355
356                 ew32(MANC, manc);
357         }
358 }
359
360 /**
361  * e1000_configure - configure the hardware for RX and TX
362  * @adapter = private board structure
363  **/
364 static void e1000_configure(struct e1000_adapter *adapter)
365 {
366         struct net_device *netdev = adapter->netdev;
367         int i;
368
369         e1000_set_rx_mode(netdev);
370
371         e1000_restore_vlan(adapter);
372         e1000_init_manageability(adapter);
373
374         e1000_configure_tx(adapter);
375         e1000_setup_rctl(adapter);
376         e1000_configure_rx(adapter);
377         /* call E1000_DESC_UNUSED which always leaves
378          * at least 1 descriptor unused to make sure
379          * next_to_use != next_to_clean
380          */
381         for (i = 0; i < adapter->num_rx_queues; i++) {
382                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383                 adapter->alloc_rx_buf(adapter, ring,
384                                       E1000_DESC_UNUSED(ring));
385         }
386 }
387
388 int e1000_up(struct e1000_adapter *adapter)
389 {
390         struct e1000_hw *hw = &adapter->hw;
391
392         /* hardware has been reset, we need to reload some things */
393         e1000_configure(adapter);
394
395         clear_bit(__E1000_DOWN, &adapter->flags);
396
397         napi_enable(&adapter->napi);
398
399         e1000_irq_enable(adapter);
400
401         netif_wake_queue(adapter->netdev);
402
403         /* fire a link change interrupt to start the watchdog */
404         ew32(ICS, E1000_ICS_LSC);
405         return 0;
406 }
407
408 /**
409  * e1000_power_up_phy - restore link in case the phy was powered down
410  * @adapter: address of board private structure
411  *
412  * The phy may be powered down to save power and turn off link when the
413  * driver is unloaded and wake on lan is not enabled (among others)
414  * *** this routine MUST be followed by a call to e1000_reset ***
415  **/
416 void e1000_power_up_phy(struct e1000_adapter *adapter)
417 {
418         struct e1000_hw *hw = &adapter->hw;
419         u16 mii_reg = 0;
420
421         /* Just clear the power down bit to wake the phy back up */
422         if (hw->media_type == e1000_media_type_copper) {
423                 /* according to the manual, the phy will retain its
424                  * settings across a power-down/up cycle
425                  */
426                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
427                 mii_reg &= ~MII_CR_POWER_DOWN;
428                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
429         }
430 }
431
432 static void e1000_power_down_phy(struct e1000_adapter *adapter)
433 {
434         struct e1000_hw *hw = &adapter->hw;
435
436         /* Power down the PHY so no link is implied when interface is down *
437          * The PHY cannot be powered down if any of the following is true *
438          * (a) WoL is enabled
439          * (b) AMT is active
440          * (c) SoL/IDER session is active
441          */
442         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443            hw->media_type == e1000_media_type_copper) {
444                 u16 mii_reg = 0;
445
446                 switch (hw->mac_type) {
447                 case e1000_82540:
448                 case e1000_82545:
449                 case e1000_82545_rev_3:
450                 case e1000_82546:
451                 case e1000_ce4100:
452                 case e1000_82546_rev_3:
453                 case e1000_82541:
454                 case e1000_82541_rev_2:
455                 case e1000_82547:
456                 case e1000_82547_rev_2:
457                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
458                                 goto out;
459                         break;
460                 default:
461                         goto out;
462                 }
463                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
464                 mii_reg |= MII_CR_POWER_DOWN;
465                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
466                 msleep(1);
467         }
468 out:
469         return;
470 }
471
472 static void e1000_down_and_stop(struct e1000_adapter *adapter)
473 {
474         set_bit(__E1000_DOWN, &adapter->flags);
475
476         cancel_delayed_work_sync(&adapter->watchdog_task);
477
478         /*
479          * Since the watchdog task can reschedule other tasks, we should cancel
480          * it first, otherwise we can run into the situation when a work is
481          * still running after the adapter has been turned down.
482          */
483
484         cancel_delayed_work_sync(&adapter->phy_info_task);
485         cancel_delayed_work_sync(&adapter->fifo_stall_task);
486
487         /* Only kill reset task if adapter is not resetting */
488         if (!test_bit(__E1000_RESETTING, &adapter->flags))
489                 cancel_work_sync(&adapter->reset_task);
490 }
491
492 void e1000_down(struct e1000_adapter *adapter)
493 {
494         struct e1000_hw *hw = &adapter->hw;
495         struct net_device *netdev = adapter->netdev;
496         u32 rctl, tctl;
497
498         /* disable receives in the hardware */
499         rctl = er32(RCTL);
500         ew32(RCTL, rctl & ~E1000_RCTL_EN);
501         /* flush and sleep below */
502
503         netif_tx_disable(netdev);
504
505         /* disable transmits in the hardware */
506         tctl = er32(TCTL);
507         tctl &= ~E1000_TCTL_EN;
508         ew32(TCTL, tctl);
509         /* flush both disables and wait for them to finish */
510         E1000_WRITE_FLUSH();
511         msleep(10);
512
513         /* Set the carrier off after transmits have been disabled in the
514          * hardware, to avoid race conditions with e1000_watchdog() (which
515          * may be running concurrently to us, checking for the carrier
516          * bit to decide whether it should enable transmits again). Such
517          * a race condition would result into transmission being disabled
518          * in the hardware until the next IFF_DOWN+IFF_UP cycle.
519          */
520         netif_carrier_off(netdev);
521
522         napi_disable(&adapter->napi);
523
524         e1000_irq_disable(adapter);
525
526         /* Setting DOWN must be after irq_disable to prevent
527          * a screaming interrupt.  Setting DOWN also prevents
528          * tasks from rescheduling.
529          */
530         e1000_down_and_stop(adapter);
531
532         adapter->link_speed = 0;
533         adapter->link_duplex = 0;
534
535         e1000_reset(adapter);
536         e1000_clean_all_tx_rings(adapter);
537         e1000_clean_all_rx_rings(adapter);
538 }
539
540 void e1000_reinit_locked(struct e1000_adapter *adapter)
541 {
542         WARN_ON(in_interrupt());
543         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544                 msleep(1);
545         e1000_down(adapter);
546         e1000_up(adapter);
547         clear_bit(__E1000_RESETTING, &adapter->flags);
548 }
549
550 void e1000_reset(struct e1000_adapter *adapter)
551 {
552         struct e1000_hw *hw = &adapter->hw;
553         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554         bool legacy_pba_adjust = false;
555         u16 hwm;
556
557         /* Repartition Pba for greater than 9k mtu
558          * To take effect CTRL.RST is required.
559          */
560
561         switch (hw->mac_type) {
562         case e1000_82542_rev2_0:
563         case e1000_82542_rev2_1:
564         case e1000_82543:
565         case e1000_82544:
566         case e1000_82540:
567         case e1000_82541:
568         case e1000_82541_rev_2:
569                 legacy_pba_adjust = true;
570                 pba = E1000_PBA_48K;
571                 break;
572         case e1000_82545:
573         case e1000_82545_rev_3:
574         case e1000_82546:
575         case e1000_ce4100:
576         case e1000_82546_rev_3:
577                 pba = E1000_PBA_48K;
578                 break;
579         case e1000_82547:
580         case e1000_82547_rev_2:
581                 legacy_pba_adjust = true;
582                 pba = E1000_PBA_30K;
583                 break;
584         case e1000_undefined:
585         case e1000_num_macs:
586                 break;
587         }
588
589         if (legacy_pba_adjust) {
590                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591                         pba -= 8; /* allocate more FIFO for Tx */
592
593                 if (hw->mac_type == e1000_82547) {
594                         adapter->tx_fifo_head = 0;
595                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596                         adapter->tx_fifo_size =
597                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598                         atomic_set(&adapter->tx_fifo_stall, 0);
599                 }
600         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601                 /* adjust PBA for jumbo frames */
602                 ew32(PBA, pba);
603
604                 /* To maintain wire speed transmits, the Tx FIFO should be
605                  * large enough to accommodate two full transmit packets,
606                  * rounded up to the next 1KB and expressed in KB.  Likewise,
607                  * the Rx FIFO should be large enough to accommodate at least
608                  * one full receive packet and is similarly rounded up and
609                  * expressed in KB.
610                  */
611                 pba = er32(PBA);
612                 /* upper 16 bits has Tx packet buffer allocation size in KB */
613                 tx_space = pba >> 16;
614                 /* lower 16 bits has Rx packet buffer allocation size in KB */
615                 pba &= 0xffff;
616                 /* the Tx fifo also stores 16 bytes of information about the Tx
617                  * but don't include ethernet FCS because hardware appends it
618                  */
619                 min_tx_space = (hw->max_frame_size +
620                                 sizeof(struct e1000_tx_desc) -
621                                 ETH_FCS_LEN) * 2;
622                 min_tx_space = ALIGN(min_tx_space, 1024);
623                 min_tx_space >>= 10;
624                 /* software strips receive CRC, so leave room for it */
625                 min_rx_space = hw->max_frame_size;
626                 min_rx_space = ALIGN(min_rx_space, 1024);
627                 min_rx_space >>= 10;
628
629                 /* If current Tx allocation is less than the min Tx FIFO size,
630                  * and the min Tx FIFO size is less than the current Rx FIFO
631                  * allocation, take space away from current Rx allocation
632                  */
633                 if (tx_space < min_tx_space &&
634                     ((min_tx_space - tx_space) < pba)) {
635                         pba = pba - (min_tx_space - tx_space);
636
637                         /* PCI/PCIx hardware has PBA alignment constraints */
638                         switch (hw->mac_type) {
639                         case e1000_82545 ... e1000_82546_rev_3:
640                                 pba &= ~(E1000_PBA_8K - 1);
641                                 break;
642                         default:
643                                 break;
644                         }
645
646                         /* if short on Rx space, Rx wins and must trump Tx
647                          * adjustment or use Early Receive if available
648                          */
649                         if (pba < min_rx_space)
650                                 pba = min_rx_space;
651                 }
652         }
653
654         ew32(PBA, pba);
655
656         /* flow control settings:
657          * The high water mark must be low enough to fit one full frame
658          * (or the size used for early receive) above it in the Rx FIFO.
659          * Set it to the lower of:
660          * - 90% of the Rx FIFO size, and
661          * - the full Rx FIFO size minus the early receive size (for parts
662          *   with ERT support assuming ERT set to E1000_ERT_2048), or
663          * - the full Rx FIFO size minus one full frame
664          */
665         hwm = min(((pba << 10) * 9 / 10),
666                   ((pba << 10) - hw->max_frame_size));
667
668         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
669         hw->fc_low_water = hw->fc_high_water - 8;
670         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671         hw->fc_send_xon = 1;
672         hw->fc = hw->original_fc;
673
674         /* Allow time for pending master requests to run */
675         e1000_reset_hw(hw);
676         if (hw->mac_type >= e1000_82544)
677                 ew32(WUC, 0);
678
679         if (e1000_init_hw(hw))
680                 e_dev_err("Hardware Error\n");
681         e1000_update_mng_vlan(adapter);
682
683         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684         if (hw->mac_type >= e1000_82544 &&
685             hw->autoneg == 1 &&
686             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687                 u32 ctrl = er32(CTRL);
688                 /* clear phy power management bit if we are in gig only mode,
689                  * which if enabled will attempt negotiation to 100Mb, which
690                  * can cause a loss of link at power off or driver unload
691                  */
692                 ctrl &= ~E1000_CTRL_SWDPIN3;
693                 ew32(CTRL, ctrl);
694         }
695
696         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699         e1000_reset_adaptive(hw);
700         e1000_phy_get_info(hw, &adapter->phy_info);
701
702         e1000_release_manageability(adapter);
703 }
704
705 /* Dump the eeprom for users having checksum issues */
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708         struct net_device *netdev = adapter->netdev;
709         struct ethtool_eeprom eeprom;
710         const struct ethtool_ops *ops = netdev->ethtool_ops;
711         u8 *data;
712         int i;
713         u16 csum_old, csum_new = 0;
714
715         eeprom.len = ops->get_eeprom_len(netdev);
716         eeprom.offset = 0;
717
718         data = kmalloc(eeprom.len, GFP_KERNEL);
719         if (!data)
720                 return;
721
722         ops->get_eeprom(netdev, &eeprom, data);
723
724         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727                 csum_new += data[i] + (data[i + 1] << 8);
728         csum_new = EEPROM_SUM - csum_new;
729
730         pr_err("/*********************/\n");
731         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732         pr_err("Calculated              : 0x%04x\n", csum_new);
733
734         pr_err("Offset    Values\n");
735         pr_err("========  ======\n");
736         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738         pr_err("Include this output when contacting your support provider.\n");
739         pr_err("This is not a software error! Something bad happened to\n");
740         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741         pr_err("result in further problems, possibly loss of data,\n");
742         pr_err("corruption or system hangs!\n");
743         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744         pr_err("which is invalid and requires you to set the proper MAC\n");
745         pr_err("address manually before continuing to enable this network\n");
746         pr_err("device. Please inspect the EEPROM dump and report the\n");
747         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748         pr_err("/*********************/\n");
749
750         kfree(data);
751 }
752
753 /**
754  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755  * @pdev: PCI device information struct
756  *
757  * Return true if an adapter needs ioport resources
758  **/
759 static int e1000_is_need_ioport(struct pci_dev *pdev)
760 {
761         switch (pdev->device) {
762         case E1000_DEV_ID_82540EM:
763         case E1000_DEV_ID_82540EM_LOM:
764         case E1000_DEV_ID_82540EP:
765         case E1000_DEV_ID_82540EP_LOM:
766         case E1000_DEV_ID_82540EP_LP:
767         case E1000_DEV_ID_82541EI:
768         case E1000_DEV_ID_82541EI_MOBILE:
769         case E1000_DEV_ID_82541ER:
770         case E1000_DEV_ID_82541ER_LOM:
771         case E1000_DEV_ID_82541GI:
772         case E1000_DEV_ID_82541GI_LF:
773         case E1000_DEV_ID_82541GI_MOBILE:
774         case E1000_DEV_ID_82544EI_COPPER:
775         case E1000_DEV_ID_82544EI_FIBER:
776         case E1000_DEV_ID_82544GC_COPPER:
777         case E1000_DEV_ID_82544GC_LOM:
778         case E1000_DEV_ID_82545EM_COPPER:
779         case E1000_DEV_ID_82545EM_FIBER:
780         case E1000_DEV_ID_82546EB_COPPER:
781         case E1000_DEV_ID_82546EB_FIBER:
782         case E1000_DEV_ID_82546EB_QUAD_COPPER:
783                 return true;
784         default:
785                 return false;
786         }
787 }
788
789 static netdev_features_t e1000_fix_features(struct net_device *netdev,
790         netdev_features_t features)
791 {
792         /* Since there is no support for separate Rx/Tx vlan accel
793          * enable/disable make sure Tx flag is always in same state as Rx.
794          */
795         if (features & NETIF_F_HW_VLAN_CTAG_RX)
796                 features |= NETIF_F_HW_VLAN_CTAG_TX;
797         else
798                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800         return features;
801 }
802
803 static int e1000_set_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         struct e1000_adapter *adapter = netdev_priv(netdev);
807         netdev_features_t changed = features ^ netdev->features;
808
809         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810                 e1000_vlan_mode(netdev, features);
811
812         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813                 return 0;
814
815         netdev->features = features;
816         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818         if (netif_running(netdev))
819                 e1000_reinit_locked(adapter);
820         else
821                 e1000_reset(adapter);
822
823         return 1;
824 }
825
826 static const struct net_device_ops e1000_netdev_ops = {
827         .ndo_open               = e1000_open,
828         .ndo_stop               = e1000_close,
829         .ndo_start_xmit         = e1000_xmit_frame,
830         .ndo_set_rx_mode        = e1000_set_rx_mode,
831         .ndo_set_mac_address    = e1000_set_mac,
832         .ndo_tx_timeout         = e1000_tx_timeout,
833         .ndo_change_mtu         = e1000_change_mtu,
834         .ndo_do_ioctl           = e1000_ioctl,
835         .ndo_validate_addr      = eth_validate_addr,
836         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
837         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
838 #ifdef CONFIG_NET_POLL_CONTROLLER
839         .ndo_poll_controller    = e1000_netpoll,
840 #endif
841         .ndo_fix_features       = e1000_fix_features,
842         .ndo_set_features       = e1000_set_features,
843 };
844
845 /**
846  * e1000_init_hw_struct - initialize members of hw struct
847  * @adapter: board private struct
848  * @hw: structure used by e1000_hw.c
849  *
850  * Factors out initialization of the e1000_hw struct to its own function
851  * that can be called very early at init (just after struct allocation).
852  * Fields are initialized based on PCI device information and
853  * OS network device settings (MTU size).
854  * Returns negative error codes if MAC type setup fails.
855  */
856 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857                                 struct e1000_hw *hw)
858 {
859         struct pci_dev *pdev = adapter->pdev;
860
861         /* PCI config space info */
862         hw->vendor_id = pdev->vendor;
863         hw->device_id = pdev->device;
864         hw->subsystem_vendor_id = pdev->subsystem_vendor;
865         hw->subsystem_id = pdev->subsystem_device;
866         hw->revision_id = pdev->revision;
867
868         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870         hw->max_frame_size = adapter->netdev->mtu +
871                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874         /* identify the MAC */
875         if (e1000_set_mac_type(hw)) {
876                 e_err(probe, "Unknown MAC Type\n");
877                 return -EIO;
878         }
879
880         switch (hw->mac_type) {
881         default:
882                 break;
883         case e1000_82541:
884         case e1000_82547:
885         case e1000_82541_rev_2:
886         case e1000_82547_rev_2:
887                 hw->phy_init_script = 1;
888                 break;
889         }
890
891         e1000_set_media_type(hw);
892         e1000_get_bus_info(hw);
893
894         hw->wait_autoneg_complete = false;
895         hw->tbi_compatibility_en = true;
896         hw->adaptive_ifs = true;
897
898         /* Copper options */
899
900         if (hw->media_type == e1000_media_type_copper) {
901                 hw->mdix = AUTO_ALL_MODES;
902                 hw->disable_polarity_correction = false;
903                 hw->master_slave = E1000_MASTER_SLAVE;
904         }
905
906         return 0;
907 }
908
909 /**
910  * e1000_probe - Device Initialization Routine
911  * @pdev: PCI device information struct
912  * @ent: entry in e1000_pci_tbl
913  *
914  * Returns 0 on success, negative on failure
915  *
916  * e1000_probe initializes an adapter identified by a pci_dev structure.
917  * The OS initialization, configuring of the adapter private structure,
918  * and a hardware reset occur.
919  **/
920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921 {
922         struct net_device *netdev;
923         struct e1000_adapter *adapter = NULL;
924         struct e1000_hw *hw;
925
926         static int cards_found;
927         static int global_quad_port_a; /* global ksp3 port a indication */
928         int i, err, pci_using_dac;
929         u16 eeprom_data = 0;
930         u16 tmp = 0;
931         u16 eeprom_apme_mask = E1000_EEPROM_APME;
932         int bars, need_ioport;
933         bool disable_dev = false;
934
935         /* do not allocate ioport bars when not needed */
936         need_ioport = e1000_is_need_ioport(pdev);
937         if (need_ioport) {
938                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939                 err = pci_enable_device(pdev);
940         } else {
941                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942                 err = pci_enable_device_mem(pdev);
943         }
944         if (err)
945                 return err;
946
947         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948         if (err)
949                 goto err_pci_reg;
950
951         pci_set_master(pdev);
952         err = pci_save_state(pdev);
953         if (err)
954                 goto err_alloc_etherdev;
955
956         err = -ENOMEM;
957         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958         if (!netdev)
959                 goto err_alloc_etherdev;
960
961         SET_NETDEV_DEV(netdev, &pdev->dev);
962
963         pci_set_drvdata(pdev, netdev);
964         adapter = netdev_priv(netdev);
965         adapter->netdev = netdev;
966         adapter->pdev = pdev;
967         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968         adapter->bars = bars;
969         adapter->need_ioport = need_ioport;
970
971         hw = &adapter->hw;
972         hw->back = adapter;
973
974         err = -EIO;
975         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976         if (!hw->hw_addr)
977                 goto err_ioremap;
978
979         if (adapter->need_ioport) {
980                 for (i = BAR_1; i <= BAR_5; i++) {
981                         if (pci_resource_len(pdev, i) == 0)
982                                 continue;
983                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984                                 hw->io_base = pci_resource_start(pdev, i);
985                                 break;
986                         }
987                 }
988         }
989
990         /* make ready for any if (hw->...) below */
991         err = e1000_init_hw_struct(adapter, hw);
992         if (err)
993                 goto err_sw_init;
994
995         /* there is a workaround being applied below that limits
996          * 64-bit DMA addresses to 64-bit hardware.  There are some
997          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998          */
999         pci_using_dac = 0;
1000         if ((hw->bus_type == e1000_bus_type_pcix) &&
1001             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002                 pci_using_dac = 1;
1003         } else {
1004                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005                 if (err) {
1006                         pr_err("No usable DMA config, aborting\n");
1007                         goto err_dma;
1008                 }
1009         }
1010
1011         netdev->netdev_ops = &e1000_netdev_ops;
1012         e1000_set_ethtool_ops(netdev);
1013         netdev->watchdog_timeo = 5 * HZ;
1014         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015
1016         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017
1018         adapter->bd_number = cards_found;
1019
1020         /* setup the private structure */
1021
1022         err = e1000_sw_init(adapter);
1023         if (err)
1024                 goto err_sw_init;
1025
1026         err = -EIO;
1027         if (hw->mac_type == e1000_ce4100) {
1028                 hw->ce4100_gbe_mdio_base_virt =
1029                                         ioremap(pci_resource_start(pdev, BAR_1),
1030                                                 pci_resource_len(pdev, BAR_1));
1031
1032                 if (!hw->ce4100_gbe_mdio_base_virt)
1033                         goto err_mdio_ioremap;
1034         }
1035
1036         if (hw->mac_type >= e1000_82543) {
1037                 netdev->hw_features = NETIF_F_SG |
1038                                    NETIF_F_HW_CSUM |
1039                                    NETIF_F_HW_VLAN_CTAG_RX;
1040                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1042         }
1043
1044         if ((hw->mac_type >= e1000_82544) &&
1045            (hw->mac_type != e1000_82547))
1046                 netdev->hw_features |= NETIF_F_TSO;
1047
1048         netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050         netdev->features |= netdev->hw_features;
1051         netdev->hw_features |= (NETIF_F_RXCSUM |
1052                                 NETIF_F_RXALL |
1053                                 NETIF_F_RXFCS);
1054
1055         if (pci_using_dac) {
1056                 netdev->features |= NETIF_F_HIGHDMA;
1057                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058         }
1059
1060         netdev->vlan_features |= (NETIF_F_TSO |
1061                                   NETIF_F_HW_CSUM |
1062                                   NETIF_F_SG);
1063
1064         /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065         if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066             hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067                 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069         /* MTU range: 46 - 16110 */
1070         netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071         netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075         /* initialize eeprom parameters */
1076         if (e1000_init_eeprom_params(hw)) {
1077                 e_err(probe, "EEPROM initialization failed\n");
1078                 goto err_eeprom;
1079         }
1080
1081         /* before reading the EEPROM, reset the controller to
1082          * put the device in a known good starting state
1083          */
1084
1085         e1000_reset_hw(hw);
1086
1087         /* make sure the EEPROM is good */
1088         if (e1000_validate_eeprom_checksum(hw) < 0) {
1089                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090                 e1000_dump_eeprom(adapter);
1091                 /* set MAC address to all zeroes to invalidate and temporary
1092                  * disable this device for the user. This blocks regular
1093                  * traffic while still permitting ethtool ioctls from reaching
1094                  * the hardware as well as allowing the user to run the
1095                  * interface after manually setting a hw addr using
1096                  * `ip set address`
1097                  */
1098                 memset(hw->mac_addr, 0, netdev->addr_len);
1099         } else {
1100                 /* copy the MAC address out of the EEPROM */
1101                 if (e1000_read_mac_addr(hw))
1102                         e_err(probe, "EEPROM Read Error\n");
1103         }
1104         /* don't block initialization here due to bad MAC address */
1105         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106
1107         if (!is_valid_ether_addr(netdev->dev_addr))
1108                 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113                           e1000_82547_tx_fifo_stall_task);
1114         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117         e1000_check_options(adapter);
1118
1119         /* Initial Wake on LAN setting
1120          * If APM wake is enabled in the EEPROM,
1121          * enable the ACPI Magic Packet filter
1122          */
1123
1124         switch (hw->mac_type) {
1125         case e1000_82542_rev2_0:
1126         case e1000_82542_rev2_1:
1127         case e1000_82543:
1128                 break;
1129         case e1000_82544:
1130                 e1000_read_eeprom(hw,
1131                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133                 break;
1134         case e1000_82546:
1135         case e1000_82546_rev_3:
1136                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137                         e1000_read_eeprom(hw,
1138                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139                         break;
1140                 }
1141                 /* Fall Through */
1142         default:
1143                 e1000_read_eeprom(hw,
1144                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145                 break;
1146         }
1147         if (eeprom_data & eeprom_apme_mask)
1148                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150         /* now that we have the eeprom settings, apply the special cases
1151          * where the eeprom may be wrong or the board simply won't support
1152          * wake on lan on a particular port
1153          */
1154         switch (pdev->device) {
1155         case E1000_DEV_ID_82546GB_PCIE:
1156                 adapter->eeprom_wol = 0;
1157                 break;
1158         case E1000_DEV_ID_82546EB_FIBER:
1159         case E1000_DEV_ID_82546GB_FIBER:
1160                 /* Wake events only supported on port A for dual fiber
1161                  * regardless of eeprom setting
1162                  */
1163                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164                         adapter->eeprom_wol = 0;
1165                 break;
1166         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167                 /* if quad port adapter, disable WoL on all but port A */
1168                 if (global_quad_port_a != 0)
1169                         adapter->eeprom_wol = 0;
1170                 else
1171                         adapter->quad_port_a = true;
1172                 /* Reset for multiple quad port adapters */
1173                 if (++global_quad_port_a == 4)
1174                         global_quad_port_a = 0;
1175                 break;
1176         }
1177
1178         /* initialize the wol settings based on the eeprom settings */
1179         adapter->wol = adapter->eeprom_wol;
1180         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182         /* Auto detect PHY address */
1183         if (hw->mac_type == e1000_ce4100) {
1184                 for (i = 0; i < 32; i++) {
1185                         hw->phy_addr = i;
1186                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188                         if (tmp != 0 && tmp != 0xFF)
1189                                 break;
1190                 }
1191
1192                 if (i >= 32)
1193                         goto err_eeprom;
1194         }
1195
1196         /* reset the hardware with the new settings */
1197         e1000_reset(adapter);
1198
1199         strcpy(netdev->name, "eth%d");
1200         err = register_netdev(netdev);
1201         if (err)
1202                 goto err_register;
1203
1204         e1000_vlan_filter_on_off(adapter, false);
1205
1206         /* print bus type/speed/width info */
1207         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214                netdev->dev_addr);
1215
1216         /* carrier off reporting is important to ethtool even BEFORE open */
1217         netif_carrier_off(netdev);
1218
1219         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221         cards_found++;
1222         return 0;
1223
1224 err_register:
1225 err_eeprom:
1226         e1000_phy_hw_reset(hw);
1227
1228         if (hw->flash_address)
1229                 iounmap(hw->flash_address);
1230         kfree(adapter->tx_ring);
1231         kfree(adapter->rx_ring);
1232 err_dma:
1233 err_sw_init:
1234 err_mdio_ioremap:
1235         iounmap(hw->ce4100_gbe_mdio_base_virt);
1236         iounmap(hw->hw_addr);
1237 err_ioremap:
1238         disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239         free_netdev(netdev);
1240 err_alloc_etherdev:
1241         pci_release_selected_regions(pdev, bars);
1242 err_pci_reg:
1243         if (!adapter || disable_dev)
1244                 pci_disable_device(pdev);
1245         return err;
1246 }
1247
1248 /**
1249  * e1000_remove - Device Removal Routine
1250  * @pdev: PCI device information struct
1251  *
1252  * e1000_remove is called by the PCI subsystem to alert the driver
1253  * that it should release a PCI device. That could be caused by a
1254  * Hot-Plug event, or because the driver is going to be removed from
1255  * memory.
1256  **/
1257 static void e1000_remove(struct pci_dev *pdev)
1258 {
1259         struct net_device *netdev = pci_get_drvdata(pdev);
1260         struct e1000_adapter *adapter = netdev_priv(netdev);
1261         struct e1000_hw *hw = &adapter->hw;
1262         bool disable_dev;
1263
1264         e1000_down_and_stop(adapter);
1265         e1000_release_manageability(adapter);
1266
1267         unregister_netdev(netdev);
1268
1269         e1000_phy_hw_reset(hw);
1270
1271         kfree(adapter->tx_ring);
1272         kfree(adapter->rx_ring);
1273
1274         if (hw->mac_type == e1000_ce4100)
1275                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276         iounmap(hw->hw_addr);
1277         if (hw->flash_address)
1278                 iounmap(hw->flash_address);
1279         pci_release_selected_regions(pdev, adapter->bars);
1280
1281         disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282         free_netdev(netdev);
1283
1284         if (disable_dev)
1285                 pci_disable_device(pdev);
1286 }
1287
1288 /**
1289  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290  * @adapter: board private structure to initialize
1291  *
1292  * e1000_sw_init initializes the Adapter private data structure.
1293  * e1000_init_hw_struct MUST be called before this function
1294  **/
1295 static int e1000_sw_init(struct e1000_adapter *adapter)
1296 {
1297         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299         adapter->num_tx_queues = 1;
1300         adapter->num_rx_queues = 1;
1301
1302         if (e1000_alloc_queues(adapter)) {
1303                 e_err(probe, "Unable to allocate memory for queues\n");
1304                 return -ENOMEM;
1305         }
1306
1307         /* Explicitly disable IRQ since the NIC can be in any state. */
1308         e1000_irq_disable(adapter);
1309
1310         spin_lock_init(&adapter->stats_lock);
1311
1312         set_bit(__E1000_DOWN, &adapter->flags);
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * e1000_alloc_queues - Allocate memory for all rings
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one ring per queue at run-time since we don't know the
1322  * number of queues at compile-time.
1323  **/
1324 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325 {
1326         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328         if (!adapter->tx_ring)
1329                 return -ENOMEM;
1330
1331         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333         if (!adapter->rx_ring) {
1334                 kfree(adapter->tx_ring);
1335                 return -ENOMEM;
1336         }
1337
1338         return E1000_SUCCESS;
1339 }
1340
1341 /**
1342  * e1000_open - Called when a network interface is made active
1343  * @netdev: network interface device structure
1344  *
1345  * Returns 0 on success, negative value on failure
1346  *
1347  * The open entry point is called when a network interface is made
1348  * active by the system (IFF_UP).  At this point all resources needed
1349  * for transmit and receive operations are allocated, the interrupt
1350  * handler is registered with the OS, the watchdog task is started,
1351  * and the stack is notified that the interface is ready.
1352  **/
1353 int e1000_open(struct net_device *netdev)
1354 {
1355         struct e1000_adapter *adapter = netdev_priv(netdev);
1356         struct e1000_hw *hw = &adapter->hw;
1357         int err;
1358
1359         /* disallow open during test */
1360         if (test_bit(__E1000_TESTING, &adapter->flags))
1361                 return -EBUSY;
1362
1363         netif_carrier_off(netdev);
1364
1365         /* allocate transmit descriptors */
1366         err = e1000_setup_all_tx_resources(adapter);
1367         if (err)
1368                 goto err_setup_tx;
1369
1370         /* allocate receive descriptors */
1371         err = e1000_setup_all_rx_resources(adapter);
1372         if (err)
1373                 goto err_setup_rx;
1374
1375         e1000_power_up_phy(adapter);
1376
1377         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378         if ((hw->mng_cookie.status &
1379                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380                 e1000_update_mng_vlan(adapter);
1381         }
1382
1383         /* before we allocate an interrupt, we must be ready to handle it.
1384          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385          * as soon as we call pci_request_irq, so we have to setup our
1386          * clean_rx handler before we do so.
1387          */
1388         e1000_configure(adapter);
1389
1390         err = e1000_request_irq(adapter);
1391         if (err)
1392                 goto err_req_irq;
1393
1394         /* From here on the code is the same as e1000_up() */
1395         clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397         napi_enable(&adapter->napi);
1398
1399         e1000_irq_enable(adapter);
1400
1401         netif_start_queue(netdev);
1402
1403         /* fire a link status change interrupt to start the watchdog */
1404         ew32(ICS, E1000_ICS_LSC);
1405
1406         return E1000_SUCCESS;
1407
1408 err_req_irq:
1409         e1000_power_down_phy(adapter);
1410         e1000_free_all_rx_resources(adapter);
1411 err_setup_rx:
1412         e1000_free_all_tx_resources(adapter);
1413 err_setup_tx:
1414         e1000_reset(adapter);
1415
1416         return err;
1417 }
1418
1419 /**
1420  * e1000_close - Disables a network interface
1421  * @netdev: network interface device structure
1422  *
1423  * Returns 0, this is not allowed to fail
1424  *
1425  * The close entry point is called when an interface is de-activated
1426  * by the OS.  The hardware is still under the drivers control, but
1427  * needs to be disabled.  A global MAC reset is issued to stop the
1428  * hardware, and all transmit and receive resources are freed.
1429  **/
1430 int e1000_close(struct net_device *netdev)
1431 {
1432         struct e1000_adapter *adapter = netdev_priv(netdev);
1433         struct e1000_hw *hw = &adapter->hw;
1434         int count = E1000_CHECK_RESET_COUNT;
1435
1436         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437                 usleep_range(10000, 20000);
1438
1439         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1440         e1000_down(adapter);
1441         e1000_power_down_phy(adapter);
1442         e1000_free_irq(adapter);
1443
1444         e1000_free_all_tx_resources(adapter);
1445         e1000_free_all_rx_resources(adapter);
1446
1447         /* kill manageability vlan ID if supported, but not if a vlan with
1448          * the same ID is registered on the host OS (let 8021q kill it)
1449          */
1450         if ((hw->mng_cookie.status &
1451              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1452             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1453                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1454                                        adapter->mng_vlan_id);
1455         }
1456
1457         return 0;
1458 }
1459
1460 /**
1461  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1462  * @adapter: address of board private structure
1463  * @start: address of beginning of memory
1464  * @len: length of memory
1465  **/
1466 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1467                                   unsigned long len)
1468 {
1469         struct e1000_hw *hw = &adapter->hw;
1470         unsigned long begin = (unsigned long)start;
1471         unsigned long end = begin + len;
1472
1473         /* First rev 82545 and 82546 need to not allow any memory
1474          * write location to cross 64k boundary due to errata 23
1475          */
1476         if (hw->mac_type == e1000_82545 ||
1477             hw->mac_type == e1000_ce4100 ||
1478             hw->mac_type == e1000_82546) {
1479                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1480         }
1481
1482         return true;
1483 }
1484
1485 /**
1486  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1487  * @adapter: board private structure
1488  * @txdr:    tx descriptor ring (for a specific queue) to setup
1489  *
1490  * Return 0 on success, negative on failure
1491  **/
1492 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1493                                     struct e1000_tx_ring *txdr)
1494 {
1495         struct pci_dev *pdev = adapter->pdev;
1496         int size;
1497
1498         size = sizeof(struct e1000_tx_buffer) * txdr->count;
1499         txdr->buffer_info = vzalloc(size);
1500         if (!txdr->buffer_info)
1501                 return -ENOMEM;
1502
1503         /* round up to nearest 4K */
1504
1505         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1506         txdr->size = ALIGN(txdr->size, 4096);
1507
1508         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1509                                         GFP_KERNEL);
1510         if (!txdr->desc) {
1511 setup_tx_desc_die:
1512                 vfree(txdr->buffer_info);
1513                 return -ENOMEM;
1514         }
1515
1516         /* Fix for errata 23, can't cross 64kB boundary */
1517         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1518                 void *olddesc = txdr->desc;
1519                 dma_addr_t olddma = txdr->dma;
1520                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1521                       txdr->size, txdr->desc);
1522                 /* Try again, without freeing the previous */
1523                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1524                                                 &txdr->dma, GFP_KERNEL);
1525                 /* Failed allocation, critical failure */
1526                 if (!txdr->desc) {
1527                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1528                                           olddma);
1529                         goto setup_tx_desc_die;
1530                 }
1531
1532                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1533                         /* give up */
1534                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1535                                           txdr->dma);
1536                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1537                                           olddma);
1538                         e_err(probe, "Unable to allocate aligned memory "
1539                               "for the transmit descriptor ring\n");
1540                         vfree(txdr->buffer_info);
1541                         return -ENOMEM;
1542                 } else {
1543                         /* Free old allocation, new allocation was successful */
1544                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545                                           olddma);
1546                 }
1547         }
1548         memset(txdr->desc, 0, txdr->size);
1549
1550         txdr->next_to_use = 0;
1551         txdr->next_to_clean = 0;
1552
1553         return 0;
1554 }
1555
1556 /**
1557  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1558  *                                (Descriptors) for all queues
1559  * @adapter: board private structure
1560  *
1561  * Return 0 on success, negative on failure
1562  **/
1563 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1564 {
1565         int i, err = 0;
1566
1567         for (i = 0; i < adapter->num_tx_queues; i++) {
1568                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1569                 if (err) {
1570                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1571                         for (i-- ; i >= 0; i--)
1572                                 e1000_free_tx_resources(adapter,
1573                                                         &adapter->tx_ring[i]);
1574                         break;
1575                 }
1576         }
1577
1578         return err;
1579 }
1580
1581 /**
1582  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1583  * @adapter: board private structure
1584  *
1585  * Configure the Tx unit of the MAC after a reset.
1586  **/
1587 static void e1000_configure_tx(struct e1000_adapter *adapter)
1588 {
1589         u64 tdba;
1590         struct e1000_hw *hw = &adapter->hw;
1591         u32 tdlen, tctl, tipg;
1592         u32 ipgr1, ipgr2;
1593
1594         /* Setup the HW Tx Head and Tail descriptor pointers */
1595
1596         switch (adapter->num_tx_queues) {
1597         case 1:
1598         default:
1599                 tdba = adapter->tx_ring[0].dma;
1600                 tdlen = adapter->tx_ring[0].count *
1601                         sizeof(struct e1000_tx_desc);
1602                 ew32(TDLEN, tdlen);
1603                 ew32(TDBAH, (tdba >> 32));
1604                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1605                 ew32(TDT, 0);
1606                 ew32(TDH, 0);
1607                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1608                                            E1000_TDH : E1000_82542_TDH);
1609                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1610                                            E1000_TDT : E1000_82542_TDT);
1611                 break;
1612         }
1613
1614         /* Set the default values for the Tx Inter Packet Gap timer */
1615         if ((hw->media_type == e1000_media_type_fiber ||
1616              hw->media_type == e1000_media_type_internal_serdes))
1617                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1618         else
1619                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1620
1621         switch (hw->mac_type) {
1622         case e1000_82542_rev2_0:
1623         case e1000_82542_rev2_1:
1624                 tipg = DEFAULT_82542_TIPG_IPGT;
1625                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1626                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1627                 break;
1628         default:
1629                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1630                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1631                 break;
1632         }
1633         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1634         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1635         ew32(TIPG, tipg);
1636
1637         /* Set the Tx Interrupt Delay register */
1638
1639         ew32(TIDV, adapter->tx_int_delay);
1640         if (hw->mac_type >= e1000_82540)
1641                 ew32(TADV, adapter->tx_abs_int_delay);
1642
1643         /* Program the Transmit Control Register */
1644
1645         tctl = er32(TCTL);
1646         tctl &= ~E1000_TCTL_CT;
1647         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1648                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1649
1650         e1000_config_collision_dist(hw);
1651
1652         /* Setup Transmit Descriptor Settings for eop descriptor */
1653         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1654
1655         /* only set IDE if we are delaying interrupts using the timers */
1656         if (adapter->tx_int_delay)
1657                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1658
1659         if (hw->mac_type < e1000_82543)
1660                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1661         else
1662                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1663
1664         /* Cache if we're 82544 running in PCI-X because we'll
1665          * need this to apply a workaround later in the send path.
1666          */
1667         if (hw->mac_type == e1000_82544 &&
1668             hw->bus_type == e1000_bus_type_pcix)
1669                 adapter->pcix_82544 = true;
1670
1671         ew32(TCTL, tctl);
1672
1673 }
1674
1675 /**
1676  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1677  * @adapter: board private structure
1678  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1679  *
1680  * Returns 0 on success, negative on failure
1681  **/
1682 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1683                                     struct e1000_rx_ring *rxdr)
1684 {
1685         struct pci_dev *pdev = adapter->pdev;
1686         int size, desc_len;
1687
1688         size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1689         rxdr->buffer_info = vzalloc(size);
1690         if (!rxdr->buffer_info)
1691                 return -ENOMEM;
1692
1693         desc_len = sizeof(struct e1000_rx_desc);
1694
1695         /* Round up to nearest 4K */
1696
1697         rxdr->size = rxdr->count * desc_len;
1698         rxdr->size = ALIGN(rxdr->size, 4096);
1699
1700         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1701                                         GFP_KERNEL);
1702         if (!rxdr->desc) {
1703 setup_rx_desc_die:
1704                 vfree(rxdr->buffer_info);
1705                 return -ENOMEM;
1706         }
1707
1708         /* Fix for errata 23, can't cross 64kB boundary */
1709         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1710                 void *olddesc = rxdr->desc;
1711                 dma_addr_t olddma = rxdr->dma;
1712                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1713                       rxdr->size, rxdr->desc);
1714                 /* Try again, without freeing the previous */
1715                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1716                                                 &rxdr->dma, GFP_KERNEL);
1717                 /* Failed allocation, critical failure */
1718                 if (!rxdr->desc) {
1719                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1720                                           olddma);
1721                         goto setup_rx_desc_die;
1722                 }
1723
1724                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1725                         /* give up */
1726                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1727                                           rxdr->dma);
1728                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1729                                           olddma);
1730                         e_err(probe, "Unable to allocate aligned memory for "
1731                               "the Rx descriptor ring\n");
1732                         goto setup_rx_desc_die;
1733                 } else {
1734                         /* Free old allocation, new allocation was successful */
1735                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736                                           olddma);
1737                 }
1738         }
1739         memset(rxdr->desc, 0, rxdr->size);
1740
1741         rxdr->next_to_clean = 0;
1742         rxdr->next_to_use = 0;
1743         rxdr->rx_skb_top = NULL;
1744
1745         return 0;
1746 }
1747
1748 /**
1749  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1750  *                                (Descriptors) for all queues
1751  * @adapter: board private structure
1752  *
1753  * Return 0 on success, negative on failure
1754  **/
1755 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1756 {
1757         int i, err = 0;
1758
1759         for (i = 0; i < adapter->num_rx_queues; i++) {
1760                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1761                 if (err) {
1762                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1763                         for (i-- ; i >= 0; i--)
1764                                 e1000_free_rx_resources(adapter,
1765                                                         &adapter->rx_ring[i]);
1766                         break;
1767                 }
1768         }
1769
1770         return err;
1771 }
1772
1773 /**
1774  * e1000_setup_rctl - configure the receive control registers
1775  * @adapter: Board private structure
1776  **/
1777 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1778 {
1779         struct e1000_hw *hw = &adapter->hw;
1780         u32 rctl;
1781
1782         rctl = er32(RCTL);
1783
1784         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785
1786         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1787                 E1000_RCTL_RDMTS_HALF |
1788                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1789
1790         if (hw->tbi_compatibility_on == 1)
1791                 rctl |= E1000_RCTL_SBP;
1792         else
1793                 rctl &= ~E1000_RCTL_SBP;
1794
1795         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1796                 rctl &= ~E1000_RCTL_LPE;
1797         else
1798                 rctl |= E1000_RCTL_LPE;
1799
1800         /* Setup buffer sizes */
1801         rctl &= ~E1000_RCTL_SZ_4096;
1802         rctl |= E1000_RCTL_BSEX;
1803         switch (adapter->rx_buffer_len) {
1804         case E1000_RXBUFFER_2048:
1805         default:
1806                 rctl |= E1000_RCTL_SZ_2048;
1807                 rctl &= ~E1000_RCTL_BSEX;
1808                 break;
1809         case E1000_RXBUFFER_4096:
1810                 rctl |= E1000_RCTL_SZ_4096;
1811                 break;
1812         case E1000_RXBUFFER_8192:
1813                 rctl |= E1000_RCTL_SZ_8192;
1814                 break;
1815         case E1000_RXBUFFER_16384:
1816                 rctl |= E1000_RCTL_SZ_16384;
1817                 break;
1818         }
1819
1820         /* This is useful for sniffing bad packets. */
1821         if (adapter->netdev->features & NETIF_F_RXALL) {
1822                 /* UPE and MPE will be handled by normal PROMISC logic
1823                  * in e1000e_set_rx_mode
1824                  */
1825                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1826                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1827                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1828
1829                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1830                           E1000_RCTL_DPF | /* Allow filtered pause */
1831                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1832                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1833                  * and that breaks VLANs.
1834                  */
1835         }
1836
1837         ew32(RCTL, rctl);
1838 }
1839
1840 /**
1841  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1842  * @adapter: board private structure
1843  *
1844  * Configure the Rx unit of the MAC after a reset.
1845  **/
1846 static void e1000_configure_rx(struct e1000_adapter *adapter)
1847 {
1848         u64 rdba;
1849         struct e1000_hw *hw = &adapter->hw;
1850         u32 rdlen, rctl, rxcsum;
1851
1852         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1853                 rdlen = adapter->rx_ring[0].count *
1854                         sizeof(struct e1000_rx_desc);
1855                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1856                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1857         } else {
1858                 rdlen = adapter->rx_ring[0].count *
1859                         sizeof(struct e1000_rx_desc);
1860                 adapter->clean_rx = e1000_clean_rx_irq;
1861                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1862         }
1863
1864         /* disable receives while setting up the descriptors */
1865         rctl = er32(RCTL);
1866         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867
1868         /* set the Receive Delay Timer Register */
1869         ew32(RDTR, adapter->rx_int_delay);
1870
1871         if (hw->mac_type >= e1000_82540) {
1872                 ew32(RADV, adapter->rx_abs_int_delay);
1873                 if (adapter->itr_setting != 0)
1874                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1875         }
1876
1877         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1878          * the Base and Length of the Rx Descriptor Ring
1879          */
1880         switch (adapter->num_rx_queues) {
1881         case 1:
1882         default:
1883                 rdba = adapter->rx_ring[0].dma;
1884                 ew32(RDLEN, rdlen);
1885                 ew32(RDBAH, (rdba >> 32));
1886                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1887                 ew32(RDT, 0);
1888                 ew32(RDH, 0);
1889                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1890                                            E1000_RDH : E1000_82542_RDH);
1891                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1892                                            E1000_RDT : E1000_82542_RDT);
1893                 break;
1894         }
1895
1896         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1897         if (hw->mac_type >= e1000_82543) {
1898                 rxcsum = er32(RXCSUM);
1899                 if (adapter->rx_csum)
1900                         rxcsum |= E1000_RXCSUM_TUOFL;
1901                 else
1902                         /* don't need to clear IPPCSE as it defaults to 0 */
1903                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1904                 ew32(RXCSUM, rxcsum);
1905         }
1906
1907         /* Enable Receives */
1908         ew32(RCTL, rctl | E1000_RCTL_EN);
1909 }
1910
1911 /**
1912  * e1000_free_tx_resources - Free Tx Resources per Queue
1913  * @adapter: board private structure
1914  * @tx_ring: Tx descriptor ring for a specific queue
1915  *
1916  * Free all transmit software resources
1917  **/
1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1919                                     struct e1000_tx_ring *tx_ring)
1920 {
1921         struct pci_dev *pdev = adapter->pdev;
1922
1923         e1000_clean_tx_ring(adapter, tx_ring);
1924
1925         vfree(tx_ring->buffer_info);
1926         tx_ring->buffer_info = NULL;
1927
1928         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1929                           tx_ring->dma);
1930
1931         tx_ring->desc = NULL;
1932 }
1933
1934 /**
1935  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936  * @adapter: board private structure
1937  *
1938  * Free all transmit software resources
1939  **/
1940 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1941 {
1942         int i;
1943
1944         for (i = 0; i < adapter->num_tx_queues; i++)
1945                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1946 }
1947
1948 static void
1949 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1950                                  struct e1000_tx_buffer *buffer_info)
1951 {
1952         if (buffer_info->dma) {
1953                 if (buffer_info->mapped_as_page)
1954                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1955                                        buffer_info->length, DMA_TO_DEVICE);
1956                 else
1957                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1958                                          buffer_info->length,
1959                                          DMA_TO_DEVICE);
1960                 buffer_info->dma = 0;
1961         }
1962         if (buffer_info->skb) {
1963                 dev_kfree_skb_any(buffer_info->skb);
1964                 buffer_info->skb = NULL;
1965         }
1966         buffer_info->time_stamp = 0;
1967         /* buffer_info must be completely set up in the transmit path */
1968 }
1969
1970 /**
1971  * e1000_clean_tx_ring - Free Tx Buffers
1972  * @adapter: board private structure
1973  * @tx_ring: ring to be cleaned
1974  **/
1975 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1976                                 struct e1000_tx_ring *tx_ring)
1977 {
1978         struct e1000_hw *hw = &adapter->hw;
1979         struct e1000_tx_buffer *buffer_info;
1980         unsigned long size;
1981         unsigned int i;
1982
1983         /* Free all the Tx ring sk_buffs */
1984
1985         for (i = 0; i < tx_ring->count; i++) {
1986                 buffer_info = &tx_ring->buffer_info[i];
1987                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1988         }
1989
1990         netdev_reset_queue(adapter->netdev);
1991         size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1992         memset(tx_ring->buffer_info, 0, size);
1993
1994         /* Zero out the descriptor ring */
1995
1996         memset(tx_ring->desc, 0, tx_ring->size);
1997
1998         tx_ring->next_to_use = 0;
1999         tx_ring->next_to_clean = 0;
2000         tx_ring->last_tx_tso = false;
2001
2002         writel(0, hw->hw_addr + tx_ring->tdh);
2003         writel(0, hw->hw_addr + tx_ring->tdt);
2004 }
2005
2006 /**
2007  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2008  * @adapter: board private structure
2009  **/
2010 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2011 {
2012         int i;
2013
2014         for (i = 0; i < adapter->num_tx_queues; i++)
2015                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2016 }
2017
2018 /**
2019  * e1000_free_rx_resources - Free Rx Resources
2020  * @adapter: board private structure
2021  * @rx_ring: ring to clean the resources from
2022  *
2023  * Free all receive software resources
2024  **/
2025 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2026                                     struct e1000_rx_ring *rx_ring)
2027 {
2028         struct pci_dev *pdev = adapter->pdev;
2029
2030         e1000_clean_rx_ring(adapter, rx_ring);
2031
2032         vfree(rx_ring->buffer_info);
2033         rx_ring->buffer_info = NULL;
2034
2035         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2036                           rx_ring->dma);
2037
2038         rx_ring->desc = NULL;
2039 }
2040
2041 /**
2042  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2043  * @adapter: board private structure
2044  *
2045  * Free all receive software resources
2046  **/
2047 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2048 {
2049         int i;
2050
2051         for (i = 0; i < adapter->num_rx_queues; i++)
2052                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2053 }
2054
2055 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2056 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2057 {
2058         return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2059                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2060 }
2061
2062 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2063 {
2064         unsigned int len = e1000_frag_len(a);
2065         u8 *data = netdev_alloc_frag(len);
2066
2067         if (likely(data))
2068                 data += E1000_HEADROOM;
2069         return data;
2070 }
2071
2072 /**
2073  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2074  * @adapter: board private structure
2075  * @rx_ring: ring to free buffers from
2076  **/
2077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2078                                 struct e1000_rx_ring *rx_ring)
2079 {
2080         struct e1000_hw *hw = &adapter->hw;
2081         struct e1000_rx_buffer *buffer_info;
2082         struct pci_dev *pdev = adapter->pdev;
2083         unsigned long size;
2084         unsigned int i;
2085
2086         /* Free all the Rx netfrags */
2087         for (i = 0; i < rx_ring->count; i++) {
2088                 buffer_info = &rx_ring->buffer_info[i];
2089                 if (adapter->clean_rx == e1000_clean_rx_irq) {
2090                         if (buffer_info->dma)
2091                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
2092                                                  adapter->rx_buffer_len,
2093                                                  DMA_FROM_DEVICE);
2094                         if (buffer_info->rxbuf.data) {
2095                                 skb_free_frag(buffer_info->rxbuf.data);
2096                                 buffer_info->rxbuf.data = NULL;
2097                         }
2098                 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2099                         if (buffer_info->dma)
2100                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
2101                                                adapter->rx_buffer_len,
2102                                                DMA_FROM_DEVICE);
2103                         if (buffer_info->rxbuf.page) {
2104                                 put_page(buffer_info->rxbuf.page);
2105                                 buffer_info->rxbuf.page = NULL;
2106                         }
2107                 }
2108
2109                 buffer_info->dma = 0;
2110         }
2111
2112         /* there also may be some cached data from a chained receive */
2113         napi_free_frags(&adapter->napi);
2114         rx_ring->rx_skb_top = NULL;
2115
2116         size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2117         memset(rx_ring->buffer_info, 0, size);
2118
2119         /* Zero out the descriptor ring */
2120         memset(rx_ring->desc, 0, rx_ring->size);
2121
2122         rx_ring->next_to_clean = 0;
2123         rx_ring->next_to_use = 0;
2124
2125         writel(0, hw->hw_addr + rx_ring->rdh);
2126         writel(0, hw->hw_addr + rx_ring->rdt);
2127 }
2128
2129 /**
2130  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131  * @adapter: board private structure
2132  **/
2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2134 {
2135         int i;
2136
2137         for (i = 0; i < adapter->num_rx_queues; i++)
2138                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2139 }
2140
2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2142  * and memory write and invalidate disabled for certain operations
2143  */
2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2145 {
2146         struct e1000_hw *hw = &adapter->hw;
2147         struct net_device *netdev = adapter->netdev;
2148         u32 rctl;
2149
2150         e1000_pci_clear_mwi(hw);
2151
2152         rctl = er32(RCTL);
2153         rctl |= E1000_RCTL_RST;
2154         ew32(RCTL, rctl);
2155         E1000_WRITE_FLUSH();
2156         mdelay(5);
2157
2158         if (netif_running(netdev))
2159                 e1000_clean_all_rx_rings(adapter);
2160 }
2161
2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2163 {
2164         struct e1000_hw *hw = &adapter->hw;
2165         struct net_device *netdev = adapter->netdev;
2166         u32 rctl;
2167
2168         rctl = er32(RCTL);
2169         rctl &= ~E1000_RCTL_RST;
2170         ew32(RCTL, rctl);
2171         E1000_WRITE_FLUSH();
2172         mdelay(5);
2173
2174         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2175                 e1000_pci_set_mwi(hw);
2176
2177         if (netif_running(netdev)) {
2178                 /* No need to loop, because 82542 supports only 1 queue */
2179                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2180                 e1000_configure_rx(adapter);
2181                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2182         }
2183 }
2184
2185 /**
2186  * e1000_set_mac - Change the Ethernet Address of the NIC
2187  * @netdev: network interface device structure
2188  * @p: pointer to an address structure
2189  *
2190  * Returns 0 on success, negative on failure
2191  **/
2192 static int e1000_set_mac(struct net_device *netdev, void *p)
2193 {
2194         struct e1000_adapter *adapter = netdev_priv(netdev);
2195         struct e1000_hw *hw = &adapter->hw;
2196         struct sockaddr *addr = p;
2197
2198         if (!is_valid_ether_addr(addr->sa_data))
2199                 return -EADDRNOTAVAIL;
2200
2201         /* 82542 2.0 needs to be in reset to write receive address registers */
2202
2203         if (hw->mac_type == e1000_82542_rev2_0)
2204                 e1000_enter_82542_rst(adapter);
2205
2206         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2207         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2208
2209         e1000_rar_set(hw, hw->mac_addr, 0);
2210
2211         if (hw->mac_type == e1000_82542_rev2_0)
2212                 e1000_leave_82542_rst(adapter);
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2219  * @netdev: network interface device structure
2220  *
2221  * The set_rx_mode entry point is called whenever the unicast or multicast
2222  * address lists or the network interface flags are updated. This routine is
2223  * responsible for configuring the hardware for proper unicast, multicast,
2224  * promiscuous mode, and all-multi behavior.
2225  **/
2226 static void e1000_set_rx_mode(struct net_device *netdev)
2227 {
2228         struct e1000_adapter *adapter = netdev_priv(netdev);
2229         struct e1000_hw *hw = &adapter->hw;
2230         struct netdev_hw_addr *ha;
2231         bool use_uc = false;
2232         u32 rctl;
2233         u32 hash_value;
2234         int i, rar_entries = E1000_RAR_ENTRIES;
2235         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2236         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2237
2238         if (!mcarray)
2239                 return;
2240
2241         /* Check for Promiscuous and All Multicast modes */
2242
2243         rctl = er32(RCTL);
2244
2245         if (netdev->flags & IFF_PROMISC) {
2246                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2247                 rctl &= ~E1000_RCTL_VFE;
2248         } else {
2249                 if (netdev->flags & IFF_ALLMULTI)
2250                         rctl |= E1000_RCTL_MPE;
2251                 else
2252                         rctl &= ~E1000_RCTL_MPE;
2253                 /* Enable VLAN filter if there is a VLAN */
2254                 if (e1000_vlan_used(adapter))
2255                         rctl |= E1000_RCTL_VFE;
2256         }
2257
2258         if (netdev_uc_count(netdev) > rar_entries - 1) {
2259                 rctl |= E1000_RCTL_UPE;
2260         } else if (!(netdev->flags & IFF_PROMISC)) {
2261                 rctl &= ~E1000_RCTL_UPE;
2262                 use_uc = true;
2263         }
2264
2265         ew32(RCTL, rctl);
2266
2267         /* 82542 2.0 needs to be in reset to write receive address registers */
2268
2269         if (hw->mac_type == e1000_82542_rev2_0)
2270                 e1000_enter_82542_rst(adapter);
2271
2272         /* load the first 14 addresses into the exact filters 1-14. Unicast
2273          * addresses take precedence to avoid disabling unicast filtering
2274          * when possible.
2275          *
2276          * RAR 0 is used for the station MAC address
2277          * if there are not 14 addresses, go ahead and clear the filters
2278          */
2279         i = 1;
2280         if (use_uc)
2281                 netdev_for_each_uc_addr(ha, netdev) {
2282                         if (i == rar_entries)
2283                                 break;
2284                         e1000_rar_set(hw, ha->addr, i++);
2285                 }
2286
2287         netdev_for_each_mc_addr(ha, netdev) {
2288                 if (i == rar_entries) {
2289                         /* load any remaining addresses into the hash table */
2290                         u32 hash_reg, hash_bit, mta;
2291                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2292                         hash_reg = (hash_value >> 5) & 0x7F;
2293                         hash_bit = hash_value & 0x1F;
2294                         mta = (1 << hash_bit);
2295                         mcarray[hash_reg] |= mta;
2296                 } else {
2297                         e1000_rar_set(hw, ha->addr, i++);
2298                 }
2299         }
2300
2301         for (; i < rar_entries; i++) {
2302                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2303                 E1000_WRITE_FLUSH();
2304                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2305                 E1000_WRITE_FLUSH();
2306         }
2307
2308         /* write the hash table completely, write from bottom to avoid
2309          * both stupid write combining chipsets, and flushing each write
2310          */
2311         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2312                 /* If we are on an 82544 has an errata where writing odd
2313                  * offsets overwrites the previous even offset, but writing
2314                  * backwards over the range solves the issue by always
2315                  * writing the odd offset first
2316                  */
2317                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2318         }
2319         E1000_WRITE_FLUSH();
2320
2321         if (hw->mac_type == e1000_82542_rev2_0)
2322                 e1000_leave_82542_rst(adapter);
2323
2324         kfree(mcarray);
2325 }
2326
2327 /**
2328  * e1000_update_phy_info_task - get phy info
2329  * @work: work struct contained inside adapter struct
2330  *
2331  * Need to wait a few seconds after link up to get diagnostic information from
2332  * the phy
2333  */
2334 static void e1000_update_phy_info_task(struct work_struct *work)
2335 {
2336         struct e1000_adapter *adapter = container_of(work,
2337                                                      struct e1000_adapter,
2338                                                      phy_info_task.work);
2339
2340         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2341 }
2342
2343 /**
2344  * e1000_82547_tx_fifo_stall_task - task to complete work
2345  * @work: work struct contained inside adapter struct
2346  **/
2347 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2348 {
2349         struct e1000_adapter *adapter = container_of(work,
2350                                                      struct e1000_adapter,
2351                                                      fifo_stall_task.work);
2352         struct e1000_hw *hw = &adapter->hw;
2353         struct net_device *netdev = adapter->netdev;
2354         u32 tctl;
2355
2356         if (atomic_read(&adapter->tx_fifo_stall)) {
2357                 if ((er32(TDT) == er32(TDH)) &&
2358                    (er32(TDFT) == er32(TDFH)) &&
2359                    (er32(TDFTS) == er32(TDFHS))) {
2360                         tctl = er32(TCTL);
2361                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362                         ew32(TDFT, adapter->tx_head_addr);
2363                         ew32(TDFH, adapter->tx_head_addr);
2364                         ew32(TDFTS, adapter->tx_head_addr);
2365                         ew32(TDFHS, adapter->tx_head_addr);
2366                         ew32(TCTL, tctl);
2367                         E1000_WRITE_FLUSH();
2368
2369                         adapter->tx_fifo_head = 0;
2370                         atomic_set(&adapter->tx_fifo_stall, 0);
2371                         netif_wake_queue(netdev);
2372                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374                 }
2375         }
2376 }
2377
2378 bool e1000_has_link(struct e1000_adapter *adapter)
2379 {
2380         struct e1000_hw *hw = &adapter->hw;
2381         bool link_active = false;
2382
2383         /* get_link_status is set on LSC (link status) interrupt or rx
2384          * sequence error interrupt (except on intel ce4100).
2385          * get_link_status will stay false until the
2386          * e1000_check_for_link establishes link for copper adapters
2387          * ONLY
2388          */
2389         switch (hw->media_type) {
2390         case e1000_media_type_copper:
2391                 if (hw->mac_type == e1000_ce4100)
2392                         hw->get_link_status = 1;
2393                 if (hw->get_link_status) {
2394                         e1000_check_for_link(hw);
2395                         link_active = !hw->get_link_status;
2396                 } else {
2397                         link_active = true;
2398                 }
2399                 break;
2400         case e1000_media_type_fiber:
2401                 e1000_check_for_link(hw);
2402                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2403                 break;
2404         case e1000_media_type_internal_serdes:
2405                 e1000_check_for_link(hw);
2406                 link_active = hw->serdes_has_link;
2407                 break;
2408         default:
2409                 break;
2410         }
2411
2412         return link_active;
2413 }
2414
2415 /**
2416  * e1000_watchdog - work function
2417  * @work: work struct contained inside adapter struct
2418  **/
2419 static void e1000_watchdog(struct work_struct *work)
2420 {
2421         struct e1000_adapter *adapter = container_of(work,
2422                                                      struct e1000_adapter,
2423                                                      watchdog_task.work);
2424         struct e1000_hw *hw = &adapter->hw;
2425         struct net_device *netdev = adapter->netdev;
2426         struct e1000_tx_ring *txdr = adapter->tx_ring;
2427         u32 link, tctl;
2428
2429         link = e1000_has_link(adapter);
2430         if ((netif_carrier_ok(netdev)) && link)
2431                 goto link_up;
2432
2433         if (link) {
2434                 if (!netif_carrier_ok(netdev)) {
2435                         u32 ctrl;
2436                         /* update snapshot of PHY registers on LSC */
2437                         e1000_get_speed_and_duplex(hw,
2438                                                    &adapter->link_speed,
2439                                                    &adapter->link_duplex);
2440
2441                         ctrl = er32(CTRL);
2442                         pr_info("%s NIC Link is Up %d Mbps %s, "
2443                                 "Flow Control: %s\n",
2444                                 netdev->name,
2445                                 adapter->link_speed,
2446                                 adapter->link_duplex == FULL_DUPLEX ?
2447                                 "Full Duplex" : "Half Duplex",
2448                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2449                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2450                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2451                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2452
2453                         /* adjust timeout factor according to speed/duplex */
2454                         adapter->tx_timeout_factor = 1;
2455                         switch (adapter->link_speed) {
2456                         case SPEED_10:
2457                                 adapter->tx_timeout_factor = 16;
2458                                 break;
2459                         case SPEED_100:
2460                                 /* maybe add some timeout factor ? */
2461                                 break;
2462                         }
2463
2464                         /* enable transmits in the hardware */
2465                         tctl = er32(TCTL);
2466                         tctl |= E1000_TCTL_EN;
2467                         ew32(TCTL, tctl);
2468
2469                         netif_carrier_on(netdev);
2470                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2471                                 schedule_delayed_work(&adapter->phy_info_task,
2472                                                       2 * HZ);
2473                         adapter->smartspeed = 0;
2474                 }
2475         } else {
2476                 if (netif_carrier_ok(netdev)) {
2477                         adapter->link_speed = 0;
2478                         adapter->link_duplex = 0;
2479                         pr_info("%s NIC Link is Down\n",
2480                                 netdev->name);
2481                         netif_carrier_off(netdev);
2482
2483                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2484                                 schedule_delayed_work(&adapter->phy_info_task,
2485                                                       2 * HZ);
2486                 }
2487
2488                 e1000_smartspeed(adapter);
2489         }
2490
2491 link_up:
2492         e1000_update_stats(adapter);
2493
2494         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2495         adapter->tpt_old = adapter->stats.tpt;
2496         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2497         adapter->colc_old = adapter->stats.colc;
2498
2499         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2500         adapter->gorcl_old = adapter->stats.gorcl;
2501         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2502         adapter->gotcl_old = adapter->stats.gotcl;
2503
2504         e1000_update_adaptive(hw);
2505
2506         if (!netif_carrier_ok(netdev)) {
2507                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2508                         /* We've lost link, so the controller stops DMA,
2509                          * but we've got queued Tx work that's never going
2510                          * to get done, so reset controller to flush Tx.
2511                          * (Do the reset outside of interrupt context).
2512                          */
2513                         adapter->tx_timeout_count++;
2514                         schedule_work(&adapter->reset_task);
2515                         /* exit immediately since reset is imminent */
2516                         return;
2517                 }
2518         }
2519
2520         /* Simple mode for Interrupt Throttle Rate (ITR) */
2521         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2522                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2523                  * Total asymmetrical Tx or Rx gets ITR=8000;
2524                  * everyone else is between 2000-8000.
2525                  */
2526                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2527                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2528                             adapter->gotcl - adapter->gorcl :
2529                             adapter->gorcl - adapter->gotcl) / 10000;
2530                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2531
2532                 ew32(ITR, 1000000000 / (itr * 256));
2533         }
2534
2535         /* Cause software interrupt to ensure rx ring is cleaned */
2536         ew32(ICS, E1000_ICS_RXDMT0);
2537
2538         /* Force detection of hung controller every watchdog period */
2539         adapter->detect_tx_hung = true;
2540
2541         /* Reschedule the task */
2542         if (!test_bit(__E1000_DOWN, &adapter->flags))
2543                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2544 }
2545
2546 enum latency_range {
2547         lowest_latency = 0,
2548         low_latency = 1,
2549         bulk_latency = 2,
2550         latency_invalid = 255
2551 };
2552
2553 /**
2554  * e1000_update_itr - update the dynamic ITR value based on statistics
2555  * @adapter: pointer to adapter
2556  * @itr_setting: current adapter->itr
2557  * @packets: the number of packets during this measurement interval
2558  * @bytes: the number of bytes during this measurement interval
2559  *
2560  *      Stores a new ITR value based on packets and byte
2561  *      counts during the last interrupt.  The advantage of per interrupt
2562  *      computation is faster updates and more accurate ITR for the current
2563  *      traffic pattern.  Constants in this function were computed
2564  *      based on theoretical maximum wire speed and thresholds were set based
2565  *      on testing data as well as attempting to minimize response time
2566  *      while increasing bulk throughput.
2567  *      this functionality is controlled by the InterruptThrottleRate module
2568  *      parameter (see e1000_param.c)
2569  **/
2570 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2571                                      u16 itr_setting, int packets, int bytes)
2572 {
2573         unsigned int retval = itr_setting;
2574         struct e1000_hw *hw = &adapter->hw;
2575
2576         if (unlikely(hw->mac_type < e1000_82540))
2577                 goto update_itr_done;
2578
2579         if (packets == 0)
2580                 goto update_itr_done;
2581
2582         switch (itr_setting) {
2583         case lowest_latency:
2584                 /* jumbo frames get bulk treatment*/
2585                 if (bytes/packets > 8000)
2586                         retval = bulk_latency;
2587                 else if ((packets < 5) && (bytes > 512))
2588                         retval = low_latency;
2589                 break;
2590         case low_latency:  /* 50 usec aka 20000 ints/s */
2591                 if (bytes > 10000) {
2592                         /* jumbo frames need bulk latency setting */
2593                         if (bytes/packets > 8000)
2594                                 retval = bulk_latency;
2595                         else if ((packets < 10) || ((bytes/packets) > 1200))
2596                                 retval = bulk_latency;
2597                         else if ((packets > 35))
2598                                 retval = lowest_latency;
2599                 } else if (bytes/packets > 2000)
2600                         retval = bulk_latency;
2601                 else if (packets <= 2 && bytes < 512)
2602                         retval = lowest_latency;
2603                 break;
2604         case bulk_latency: /* 250 usec aka 4000 ints/s */
2605                 if (bytes > 25000) {
2606                         if (packets > 35)
2607                                 retval = low_latency;
2608                 } else if (bytes < 6000) {
2609                         retval = low_latency;
2610                 }
2611                 break;
2612         }
2613
2614 update_itr_done:
2615         return retval;
2616 }
2617
2618 static void e1000_set_itr(struct e1000_adapter *adapter)
2619 {
2620         struct e1000_hw *hw = &adapter->hw;
2621         u16 current_itr;
2622         u32 new_itr = adapter->itr;
2623
2624         if (unlikely(hw->mac_type < e1000_82540))
2625                 return;
2626
2627         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2628         if (unlikely(adapter->link_speed != SPEED_1000)) {
2629                 current_itr = 0;
2630                 new_itr = 4000;
2631                 goto set_itr_now;
2632         }
2633
2634         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2635                                            adapter->total_tx_packets,
2636                                            adapter->total_tx_bytes);
2637         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2638         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2639                 adapter->tx_itr = low_latency;
2640
2641         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2642                                            adapter->total_rx_packets,
2643                                            adapter->total_rx_bytes);
2644         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2645         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2646                 adapter->rx_itr = low_latency;
2647
2648         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2649
2650         switch (current_itr) {
2651         /* counts and packets in update_itr are dependent on these numbers */
2652         case lowest_latency:
2653                 new_itr = 70000;
2654                 break;
2655         case low_latency:
2656                 new_itr = 20000; /* aka hwitr = ~200 */
2657                 break;
2658         case bulk_latency:
2659                 new_itr = 4000;
2660                 break;
2661         default:
2662                 break;
2663         }
2664
2665 set_itr_now:
2666         if (new_itr != adapter->itr) {
2667                 /* this attempts to bias the interrupt rate towards Bulk
2668                  * by adding intermediate steps when interrupt rate is
2669                  * increasing
2670                  */
2671                 new_itr = new_itr > adapter->itr ?
2672                           min(adapter->itr + (new_itr >> 2), new_itr) :
2673                           new_itr;
2674                 adapter->itr = new_itr;
2675                 ew32(ITR, 1000000000 / (new_itr * 256));
2676         }
2677 }
2678
2679 #define E1000_TX_FLAGS_CSUM             0x00000001
2680 #define E1000_TX_FLAGS_VLAN             0x00000002
2681 #define E1000_TX_FLAGS_TSO              0x00000004
2682 #define E1000_TX_FLAGS_IPV4             0x00000008
2683 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2684 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2685 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2686
2687 static int e1000_tso(struct e1000_adapter *adapter,
2688                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2689                      __be16 protocol)
2690 {
2691         struct e1000_context_desc *context_desc;
2692         struct e1000_tx_buffer *buffer_info;
2693         unsigned int i;
2694         u32 cmd_length = 0;
2695         u16 ipcse = 0, tucse, mss;
2696         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2697
2698         if (skb_is_gso(skb)) {
2699                 int err;
2700
2701                 err = skb_cow_head(skb, 0);
2702                 if (err < 0)
2703                         return err;
2704
2705                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2706                 mss = skb_shinfo(skb)->gso_size;
2707                 if (protocol == htons(ETH_P_IP)) {
2708                         struct iphdr *iph = ip_hdr(skb);
2709                         iph->tot_len = 0;
2710                         iph->check = 0;
2711                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2712                                                                  iph->daddr, 0,
2713                                                                  IPPROTO_TCP,
2714                                                                  0);
2715                         cmd_length = E1000_TXD_CMD_IP;
2716                         ipcse = skb_transport_offset(skb) - 1;
2717                 } else if (skb_is_gso_v6(skb)) {
2718                         ipv6_hdr(skb)->payload_len = 0;
2719                         tcp_hdr(skb)->check =
2720                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2721                                                  &ipv6_hdr(skb)->daddr,
2722                                                  0, IPPROTO_TCP, 0);
2723                         ipcse = 0;
2724                 }
2725                 ipcss = skb_network_offset(skb);
2726                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2727                 tucss = skb_transport_offset(skb);
2728                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2729                 tucse = 0;
2730
2731                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2732                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2733
2734                 i = tx_ring->next_to_use;
2735                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2736                 buffer_info = &tx_ring->buffer_info[i];
2737
2738                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2739                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2740                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2741                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2742                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2743                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2744                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2745                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2746                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2747
2748                 buffer_info->time_stamp = jiffies;
2749                 buffer_info->next_to_watch = i;
2750
2751                 if (++i == tx_ring->count)
2752                         i = 0;
2753
2754                 tx_ring->next_to_use = i;
2755
2756                 return true;
2757         }
2758         return false;
2759 }
2760
2761 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2762                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2763                           __be16 protocol)
2764 {
2765         struct e1000_context_desc *context_desc;
2766         struct e1000_tx_buffer *buffer_info;
2767         unsigned int i;
2768         u8 css;
2769         u32 cmd_len = E1000_TXD_CMD_DEXT;
2770
2771         if (skb->ip_summed != CHECKSUM_PARTIAL)
2772                 return false;
2773
2774         switch (protocol) {
2775         case cpu_to_be16(ETH_P_IP):
2776                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2777                         cmd_len |= E1000_TXD_CMD_TCP;
2778                 break;
2779         case cpu_to_be16(ETH_P_IPV6):
2780                 /* XXX not handling all IPV6 headers */
2781                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2782                         cmd_len |= E1000_TXD_CMD_TCP;
2783                 break;
2784         default:
2785                 if (unlikely(net_ratelimit()))
2786                         e_warn(drv, "checksum_partial proto=%x!\n",
2787                                skb->protocol);
2788                 break;
2789         }
2790
2791         css = skb_checksum_start_offset(skb);
2792
2793         i = tx_ring->next_to_use;
2794         buffer_info = &tx_ring->buffer_info[i];
2795         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2796
2797         context_desc->lower_setup.ip_config = 0;
2798         context_desc->upper_setup.tcp_fields.tucss = css;
2799         context_desc->upper_setup.tcp_fields.tucso =
2800                 css + skb->csum_offset;
2801         context_desc->upper_setup.tcp_fields.tucse = 0;
2802         context_desc->tcp_seg_setup.data = 0;
2803         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2804
2805         buffer_info->time_stamp = jiffies;
2806         buffer_info->next_to_watch = i;
2807
2808         if (unlikely(++i == tx_ring->count))
2809                 i = 0;
2810
2811         tx_ring->next_to_use = i;
2812
2813         return true;
2814 }
2815
2816 #define E1000_MAX_TXD_PWR       12
2817 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2818
2819 static int e1000_tx_map(struct e1000_adapter *adapter,
2820                         struct e1000_tx_ring *tx_ring,
2821                         struct sk_buff *skb, unsigned int first,
2822                         unsigned int max_per_txd, unsigned int nr_frags,
2823                         unsigned int mss)
2824 {
2825         struct e1000_hw *hw = &adapter->hw;
2826         struct pci_dev *pdev = adapter->pdev;
2827         struct e1000_tx_buffer *buffer_info;
2828         unsigned int len = skb_headlen(skb);
2829         unsigned int offset = 0, size, count = 0, i;
2830         unsigned int f, bytecount, segs;
2831
2832         i = tx_ring->next_to_use;
2833
2834         while (len) {
2835                 buffer_info = &tx_ring->buffer_info[i];
2836                 size = min(len, max_per_txd);
2837                 /* Workaround for Controller erratum --
2838                  * descriptor for non-tso packet in a linear SKB that follows a
2839                  * tso gets written back prematurely before the data is fully
2840                  * DMA'd to the controller
2841                  */
2842                 if (!skb->data_len && tx_ring->last_tx_tso &&
2843                     !skb_is_gso(skb)) {
2844                         tx_ring->last_tx_tso = false;
2845                         size -= 4;
2846                 }
2847
2848                 /* Workaround for premature desc write-backs
2849                  * in TSO mode.  Append 4-byte sentinel desc
2850                  */
2851                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2852                         size -= 4;
2853                 /* work-around for errata 10 and it applies
2854                  * to all controllers in PCI-X mode
2855                  * The fix is to make sure that the first descriptor of a
2856                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2857                  */
2858                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2859                              (size > 2015) && count == 0))
2860                         size = 2015;
2861
2862                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2863                  * terminating buffers within evenly-aligned dwords.
2864                  */
2865                 if (unlikely(adapter->pcix_82544 &&
2866                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2867                    size > 4))
2868                         size -= 4;
2869
2870                 buffer_info->length = size;
2871                 /* set time_stamp *before* dma to help avoid a possible race */
2872                 buffer_info->time_stamp = jiffies;
2873                 buffer_info->mapped_as_page = false;
2874                 buffer_info->dma = dma_map_single(&pdev->dev,
2875                                                   skb->data + offset,
2876                                                   size, DMA_TO_DEVICE);
2877                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2878                         goto dma_error;
2879                 buffer_info->next_to_watch = i;
2880
2881                 len -= size;
2882                 offset += size;
2883                 count++;
2884                 if (len) {
2885                         i++;
2886                         if (unlikely(i == tx_ring->count))
2887                                 i = 0;
2888                 }
2889         }
2890
2891         for (f = 0; f < nr_frags; f++) {
2892                 const struct skb_frag_struct *frag;
2893
2894                 frag = &skb_shinfo(skb)->frags[f];
2895                 len = skb_frag_size(frag);
2896                 offset = 0;
2897
2898                 while (len) {
2899                         unsigned long bufend;
2900                         i++;
2901                         if (unlikely(i == tx_ring->count))
2902                                 i = 0;
2903
2904                         buffer_info = &tx_ring->buffer_info[i];
2905                         size = min(len, max_per_txd);
2906                         /* Workaround for premature desc write-backs
2907                          * in TSO mode.  Append 4-byte sentinel desc
2908                          */
2909                         if (unlikely(mss && f == (nr_frags-1) &&
2910                             size == len && size > 8))
2911                                 size -= 4;
2912                         /* Workaround for potential 82544 hang in PCI-X.
2913                          * Avoid terminating buffers within evenly-aligned
2914                          * dwords.
2915                          */
2916                         bufend = (unsigned long)
2917                                 page_to_phys(skb_frag_page(frag));
2918                         bufend += offset + size - 1;
2919                         if (unlikely(adapter->pcix_82544 &&
2920                                      !(bufend & 4) &&
2921                                      size > 4))
2922                                 size -= 4;
2923
2924                         buffer_info->length = size;
2925                         buffer_info->time_stamp = jiffies;
2926                         buffer_info->mapped_as_page = true;
2927                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928                                                 offset, size, DMA_TO_DEVICE);
2929                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930                                 goto dma_error;
2931                         buffer_info->next_to_watch = i;
2932
2933                         len -= size;
2934                         offset += size;
2935                         count++;
2936                 }
2937         }
2938
2939         segs = skb_shinfo(skb)->gso_segs ?: 1;
2940         /* multiply data chunks by size of headers */
2941         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943         tx_ring->buffer_info[i].skb = skb;
2944         tx_ring->buffer_info[i].segs = segs;
2945         tx_ring->buffer_info[i].bytecount = bytecount;
2946         tx_ring->buffer_info[first].next_to_watch = i;
2947
2948         return count;
2949
2950 dma_error:
2951         dev_err(&pdev->dev, "TX DMA map failed\n");
2952         buffer_info->dma = 0;
2953         if (count)
2954                 count--;
2955
2956         while (count--) {
2957                 if (i == 0)
2958                         i += tx_ring->count;
2959                 i--;
2960                 buffer_info = &tx_ring->buffer_info[i];
2961                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962         }
2963
2964         return 0;
2965 }
2966
2967 static void e1000_tx_queue(struct e1000_adapter *adapter,
2968                            struct e1000_tx_ring *tx_ring, int tx_flags,
2969                            int count)
2970 {
2971         struct e1000_tx_desc *tx_desc = NULL;
2972         struct e1000_tx_buffer *buffer_info;
2973         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974         unsigned int i;
2975
2976         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978                              E1000_TXD_CMD_TSE;
2979                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980
2981                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983         }
2984
2985         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988         }
2989
2990         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991                 txd_lower |= E1000_TXD_CMD_VLE;
2992                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993         }
2994
2995         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997
2998         i = tx_ring->next_to_use;
2999
3000         while (count--) {
3001                 buffer_info = &tx_ring->buffer_info[i];
3002                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3003                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004                 tx_desc->lower.data =
3005                         cpu_to_le32(txd_lower | buffer_info->length);
3006                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3007                 if (unlikely(++i == tx_ring->count))
3008                         i = 0;
3009         }
3010
3011         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012
3013         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016
3017         /* Force memory writes to complete before letting h/w
3018          * know there are new descriptors to fetch.  (Only
3019          * applicable for weak-ordered memory model archs,
3020          * such as IA-64).
3021          */
3022         dma_wmb();
3023
3024         tx_ring->next_to_use = i;
3025 }
3026
3027 /* 82547 workaround to avoid controller hang in half-duplex environment.
3028  * The workaround is to avoid queuing a large packet that would span
3029  * the internal Tx FIFO ring boundary by notifying the stack to resend
3030  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3031  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3032  * to the beginning of the Tx FIFO.
3033  */
3034
3035 #define E1000_FIFO_HDR                  0x10
3036 #define E1000_82547_PAD_LEN             0x3E0
3037
3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039                                        struct sk_buff *skb)
3040 {
3041         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043
3044         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045
3046         if (adapter->link_duplex != HALF_DUPLEX)
3047                 goto no_fifo_stall_required;
3048
3049         if (atomic_read(&adapter->tx_fifo_stall))
3050                 return 1;
3051
3052         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053                 atomic_set(&adapter->tx_fifo_stall, 1);
3054                 return 1;
3055         }
3056
3057 no_fifo_stall_required:
3058         adapter->tx_fifo_head += skb_fifo_len;
3059         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061         return 0;
3062 }
3063
3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065 {
3066         struct e1000_adapter *adapter = netdev_priv(netdev);
3067         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068
3069         netif_stop_queue(netdev);
3070         /* Herbert's original patch had:
3071          *  smp_mb__after_netif_stop_queue();
3072          * but since that doesn't exist yet, just open code it.
3073          */
3074         smp_mb();
3075
3076         /* We need to check again in a case another CPU has just
3077          * made room available.
3078          */
3079         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080                 return -EBUSY;
3081
3082         /* A reprieve! */
3083         netif_start_queue(netdev);
3084         ++adapter->restart_queue;
3085         return 0;
3086 }
3087
3088 static int e1000_maybe_stop_tx(struct net_device *netdev,
3089                                struct e1000_tx_ring *tx_ring, int size)
3090 {
3091         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092                 return 0;
3093         return __e1000_maybe_stop_tx(netdev, size);
3094 }
3095
3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098                                     struct net_device *netdev)
3099 {
3100         struct e1000_adapter *adapter = netdev_priv(netdev);
3101         struct e1000_hw *hw = &adapter->hw;
3102         struct e1000_tx_ring *tx_ring;
3103         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105         unsigned int tx_flags = 0;
3106         unsigned int len = skb_headlen(skb);
3107         unsigned int nr_frags;
3108         unsigned int mss;
3109         int count = 0;
3110         int tso;
3111         unsigned int f;
3112         __be16 protocol = vlan_get_protocol(skb);
3113
3114         /* This goes back to the question of how to logically map a Tx queue
3115          * to a flow.  Right now, performance is impacted slightly negatively
3116          * if using multiple Tx queues.  If the stack breaks away from a
3117          * single qdisc implementation, we can look at this again.
3118          */
3119         tx_ring = adapter->tx_ring;
3120
3121         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122          * packets may get corrupted during padding by HW.
3123          * To WA this issue, pad all small packets manually.
3124          */
3125         if (eth_skb_pad(skb))
3126                 return NETDEV_TX_OK;
3127
3128         mss = skb_shinfo(skb)->gso_size;
3129         /* The controller does a simple calculation to
3130          * make sure there is enough room in the FIFO before
3131          * initiating the DMA for each buffer.  The calc is:
3132          * 4 = ceil(buffer len/mss).  To make sure we don't
3133          * overrun the FIFO, adjust the max buffer len if mss
3134          * drops.
3135          */
3136         if (mss) {
3137                 u8 hdr_len;
3138                 max_per_txd = min(mss << 2, max_per_txd);
3139                 max_txd_pwr = fls(max_per_txd) - 1;
3140
3141                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142                 if (skb->data_len && hdr_len == len) {
3143                         switch (hw->mac_type) {
3144                                 unsigned int pull_size;
3145                         case e1000_82544:
3146                                 /* Make sure we have room to chop off 4 bytes,
3147                                  * and that the end alignment will work out to
3148                                  * this hardware's requirements
3149                                  * NOTE: this is a TSO only workaround
3150                                  * if end byte alignment not correct move us
3151                                  * into the next dword
3152                                  */
3153                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3154                                     & 4)
3155                                         break;
3156                                 /* fall through */
3157                                 pull_size = min((unsigned int)4, skb->data_len);
3158                                 if (!__pskb_pull_tail(skb, pull_size)) {
3159                                         e_err(drv, "__pskb_pull_tail "
3160                                               "failed.\n");
3161                                         dev_kfree_skb_any(skb);
3162                                         return NETDEV_TX_OK;
3163                                 }
3164                                 len = skb_headlen(skb);
3165                                 break;
3166                         default:
3167                                 /* do nothing */
3168                                 break;
3169                         }
3170                 }
3171         }
3172
3173         /* reserve a descriptor for the offload context */
3174         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3175                 count++;
3176         count++;
3177
3178         /* Controller Erratum workaround */
3179         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3180                 count++;
3181
3182         count += TXD_USE_COUNT(len, max_txd_pwr);
3183
3184         if (adapter->pcix_82544)
3185                 count++;
3186
3187         /* work-around for errata 10 and it applies to all controllers
3188          * in PCI-X mode, so add one more descriptor to the count
3189          */
3190         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3191                         (len > 2015)))
3192                 count++;
3193
3194         nr_frags = skb_shinfo(skb)->nr_frags;
3195         for (f = 0; f < nr_frags; f++)
3196                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3197                                        max_txd_pwr);
3198         if (adapter->pcix_82544)
3199                 count += nr_frags;
3200
3201         /* need: count + 2 desc gap to keep tail from touching
3202          * head, otherwise try next time
3203          */
3204         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3205                 return NETDEV_TX_BUSY;
3206
3207         if (unlikely((hw->mac_type == e1000_82547) &&
3208                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3209                 netif_stop_queue(netdev);
3210                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3211                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3212                 return NETDEV_TX_BUSY;
3213         }
3214
3215         if (skb_vlan_tag_present(skb)) {
3216                 tx_flags |= E1000_TX_FLAGS_VLAN;
3217                 tx_flags |= (skb_vlan_tag_get(skb) <<
3218                              E1000_TX_FLAGS_VLAN_SHIFT);
3219         }
3220
3221         first = tx_ring->next_to_use;
3222
3223         tso = e1000_tso(adapter, tx_ring, skb, protocol);
3224         if (tso < 0) {
3225                 dev_kfree_skb_any(skb);
3226                 return NETDEV_TX_OK;
3227         }
3228
3229         if (likely(tso)) {
3230                 if (likely(hw->mac_type != e1000_82544))
3231                         tx_ring->last_tx_tso = true;
3232                 tx_flags |= E1000_TX_FLAGS_TSO;
3233         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3234                 tx_flags |= E1000_TX_FLAGS_CSUM;
3235
3236         if (protocol == htons(ETH_P_IP))
3237                 tx_flags |= E1000_TX_FLAGS_IPV4;
3238
3239         if (unlikely(skb->no_fcs))
3240                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3241
3242         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3243                              nr_frags, mss);
3244
3245         if (count) {
3246                 /* The descriptors needed is higher than other Intel drivers
3247                  * due to a number of workarounds.  The breakdown is below:
3248                  * Data descriptors: MAX_SKB_FRAGS + 1
3249                  * Context Descriptor: 1
3250                  * Keep head from touching tail: 2
3251                  * Workarounds: 3
3252                  */
3253                 int desc_needed = MAX_SKB_FRAGS + 7;
3254
3255                 netdev_sent_queue(netdev, skb->len);
3256                 skb_tx_timestamp(skb);
3257
3258                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3259
3260                 /* 82544 potentially requires twice as many data descriptors
3261                  * in order to guarantee buffers don't end on evenly-aligned
3262                  * dwords
3263                  */
3264                 if (adapter->pcix_82544)
3265                         desc_needed += MAX_SKB_FRAGS + 1;
3266
3267                 /* Make sure there is space in the ring for the next send. */
3268                 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3269
3270                 if (!netdev_xmit_more() ||
3271                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3272                         writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3273                 }
3274         } else {
3275                 dev_kfree_skb_any(skb);
3276                 tx_ring->buffer_info[first].time_stamp = 0;
3277                 tx_ring->next_to_use = first;
3278         }
3279
3280         return NETDEV_TX_OK;
3281 }
3282
3283 #define NUM_REGS 38 /* 1 based count */
3284 static void e1000_regdump(struct e1000_adapter *adapter)
3285 {
3286         struct e1000_hw *hw = &adapter->hw;
3287         u32 regs[NUM_REGS];
3288         u32 *regs_buff = regs;
3289         int i = 0;
3290
3291         static const char * const reg_name[] = {
3292                 "CTRL",  "STATUS",
3293                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295                 "TIDV", "TXDCTL", "TADV", "TARC0",
3296                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297                 "TXDCTL1", "TARC1",
3298                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301         };
3302
3303         regs_buff[0]  = er32(CTRL);
3304         regs_buff[1]  = er32(STATUS);
3305
3306         regs_buff[2]  = er32(RCTL);
3307         regs_buff[3]  = er32(RDLEN);
3308         regs_buff[4]  = er32(RDH);
3309         regs_buff[5]  = er32(RDT);
3310         regs_buff[6]  = er32(RDTR);
3311
3312         regs_buff[7]  = er32(TCTL);
3313         regs_buff[8]  = er32(TDBAL);
3314         regs_buff[9]  = er32(TDBAH);
3315         regs_buff[10] = er32(TDLEN);
3316         regs_buff[11] = er32(TDH);
3317         regs_buff[12] = er32(TDT);
3318         regs_buff[13] = er32(TIDV);
3319         regs_buff[14] = er32(TXDCTL);
3320         regs_buff[15] = er32(TADV);
3321         regs_buff[16] = er32(TARC0);
3322
3323         regs_buff[17] = er32(TDBAL1);
3324         regs_buff[18] = er32(TDBAH1);
3325         regs_buff[19] = er32(TDLEN1);
3326         regs_buff[20] = er32(TDH1);
3327         regs_buff[21] = er32(TDT1);
3328         regs_buff[22] = er32(TXDCTL1);
3329         regs_buff[23] = er32(TARC1);
3330         regs_buff[24] = er32(CTRL_EXT);
3331         regs_buff[25] = er32(ERT);
3332         regs_buff[26] = er32(RDBAL0);
3333         regs_buff[27] = er32(RDBAH0);
3334         regs_buff[28] = er32(TDFH);
3335         regs_buff[29] = er32(TDFT);
3336         regs_buff[30] = er32(TDFHS);
3337         regs_buff[31] = er32(TDFTS);
3338         regs_buff[32] = er32(TDFPC);
3339         regs_buff[33] = er32(RDFH);
3340         regs_buff[34] = er32(RDFT);
3341         regs_buff[35] = er32(RDFHS);
3342         regs_buff[36] = er32(RDFTS);
3343         regs_buff[37] = er32(RDFPC);
3344
3345         pr_info("Register dump\n");
3346         for (i = 0; i < NUM_REGS; i++)
3347                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3348 }
3349
3350 /*
3351  * e1000_dump: Print registers, tx ring and rx ring
3352  */
3353 static void e1000_dump(struct e1000_adapter *adapter)
3354 {
3355         /* this code doesn't handle multiple rings */
3356         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358         int i;
3359
3360         if (!netif_msg_hw(adapter))
3361                 return;
3362
3363         /* Print Registers */
3364         e1000_regdump(adapter);
3365
3366         /* transmit dump */
3367         pr_info("TX Desc ring0 dump\n");
3368
3369         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3370          *
3371          * Legacy Transmit Descriptor
3372          *   +--------------------------------------------------------------+
3373          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3374          *   +--------------------------------------------------------------+
3375          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3376          *   +--------------------------------------------------------------+
3377          *   63       48 47        36 35    32 31     24 23    16 15        0
3378          *
3379          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3380          *   63      48 47    40 39       32 31             16 15    8 7      0
3381          *   +----------------------------------------------------------------+
3382          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3383          *   +----------------------------------------------------------------+
3384          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3385          *   +----------------------------------------------------------------+
3386          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3387          *
3388          * Extended Data Descriptor (DTYP=0x1)
3389          *   +----------------------------------------------------------------+
3390          * 0 |                     Buffer Address [63:0]                      |
3391          *   +----------------------------------------------------------------+
3392          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3393          *   +----------------------------------------------------------------+
3394          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3395          */
3396         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3397         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398
3399         if (!netif_msg_tx_done(adapter))
3400                 goto rx_ring_summary;
3401
3402         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3403                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3404                 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3405                 struct my_u { __le64 a; __le64 b; };
3406                 struct my_u *u = (struct my_u *)tx_desc;
3407                 const char *type;
3408
3409                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3410                         type = "NTC/U";
3411                 else if (i == tx_ring->next_to_use)
3412                         type = "NTU";
3413                 else if (i == tx_ring->next_to_clean)
3414                         type = "NTC";
3415                 else
3416                         type = "";
3417
3418                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3419                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3420                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3421                         (u64)buffer_info->dma, buffer_info->length,
3422                         buffer_info->next_to_watch,
3423                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3424         }
3425
3426 rx_ring_summary:
3427         /* receive dump */
3428         pr_info("\nRX Desc ring dump\n");
3429
3430         /* Legacy Receive Descriptor Format
3431          *
3432          * +-----------------------------------------------------+
3433          * |                Buffer Address [63:0]                |
3434          * +-----------------------------------------------------+
3435          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3436          * +-----------------------------------------------------+
3437          * 63       48 47    40 39      32 31         16 15      0
3438          */
3439         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3440
3441         if (!netif_msg_rx_status(adapter))
3442                 goto exit;
3443
3444         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3445                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3446                 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3447                 struct my_u { __le64 a; __le64 b; };
3448                 struct my_u *u = (struct my_u *)rx_desc;
3449                 const char *type;
3450
3451                 if (i == rx_ring->next_to_use)
3452                         type = "NTU";
3453                 else if (i == rx_ring->next_to_clean)
3454                         type = "NTC";
3455                 else
3456                         type = "";
3457
3458                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3459                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3460                         (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3461         } /* for */
3462
3463         /* dump the descriptor caches */
3464         /* rx */
3465         pr_info("Rx descriptor cache in 64bit format\n");
3466         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3467                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3468                         i,
3469                         readl(adapter->hw.hw_addr + i+4),
3470                         readl(adapter->hw.hw_addr + i),
3471                         readl(adapter->hw.hw_addr + i+12),
3472                         readl(adapter->hw.hw_addr + i+8));
3473         }
3474         /* tx */
3475         pr_info("Tx descriptor cache in 64bit format\n");
3476         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3477                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3478                         i,
3479                         readl(adapter->hw.hw_addr + i+4),
3480                         readl(adapter->hw.hw_addr + i),
3481                         readl(adapter->hw.hw_addr + i+12),
3482                         readl(adapter->hw.hw_addr + i+8));
3483         }
3484 exit:
3485         return;
3486 }
3487
3488 /**
3489  * e1000_tx_timeout - Respond to a Tx Hang
3490  * @netdev: network interface device structure
3491  **/
3492 static void e1000_tx_timeout(struct net_device *netdev)
3493 {
3494         struct e1000_adapter *adapter = netdev_priv(netdev);
3495
3496         /* Do the reset outside of interrupt context */
3497         adapter->tx_timeout_count++;
3498         schedule_work(&adapter->reset_task);
3499 }
3500
3501 static void e1000_reset_task(struct work_struct *work)
3502 {
3503         struct e1000_adapter *adapter =
3504                 container_of(work, struct e1000_adapter, reset_task);
3505
3506         e_err(drv, "Reset adapter\n");
3507         e1000_reinit_locked(adapter);
3508 }
3509
3510 /**
3511  * e1000_change_mtu - Change the Maximum Transfer Unit
3512  * @netdev: network interface device structure
3513  * @new_mtu: new value for maximum frame size
3514  *
3515  * Returns 0 on success, negative on failure
3516  **/
3517 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3518 {
3519         struct e1000_adapter *adapter = netdev_priv(netdev);
3520         struct e1000_hw *hw = &adapter->hw;
3521         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3522
3523         /* Adapter-specific max frame size limits. */
3524         switch (hw->mac_type) {
3525         case e1000_undefined ... e1000_82542_rev2_1:
3526                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3527                         e_err(probe, "Jumbo Frames not supported.\n");
3528                         return -EINVAL;
3529                 }
3530                 break;
3531         default:
3532                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3533                 break;
3534         }
3535
3536         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3537                 msleep(1);
3538         /* e1000_down has a dependency on max_frame_size */
3539         hw->max_frame_size = max_frame;
3540         if (netif_running(netdev)) {
3541                 /* prevent buffers from being reallocated */
3542                 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3543                 e1000_down(adapter);
3544         }
3545
3546         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3547          * means we reserve 2 more, this pushes us to allocate from the next
3548          * larger slab size.
3549          * i.e. RXBUFFER_2048 --> size-4096 slab
3550          * however with the new *_jumbo_rx* routines, jumbo receives will use
3551          * fragmented skbs
3552          */
3553
3554         if (max_frame <= E1000_RXBUFFER_2048)
3555                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3556         else
3557 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3558                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3559 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3560                 adapter->rx_buffer_len = PAGE_SIZE;
3561 #endif
3562
3563         /* adjust allocation if LPE protects us, and we aren't using SBP */
3564         if (!hw->tbi_compatibility_on &&
3565             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3566              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3567                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3568
3569         pr_info("%s changing MTU from %d to %d\n",
3570                 netdev->name, netdev->mtu, new_mtu);
3571         netdev->mtu = new_mtu;
3572
3573         if (netif_running(netdev))
3574                 e1000_up(adapter);
3575         else
3576                 e1000_reset(adapter);
3577
3578         clear_bit(__E1000_RESETTING, &adapter->flags);
3579
3580         return 0;
3581 }
3582
3583 /**
3584  * e1000_update_stats - Update the board statistics counters
3585  * @adapter: board private structure
3586  **/
3587 void e1000_update_stats(struct e1000_adapter *adapter)
3588 {
3589         struct net_device *netdev = adapter->netdev;
3590         struct e1000_hw *hw = &adapter->hw;
3591         struct pci_dev *pdev = adapter->pdev;
3592         unsigned long flags;
3593         u16 phy_tmp;
3594
3595 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3596
3597         /* Prevent stats update while adapter is being reset, or if the pci
3598          * connection is down.
3599          */
3600         if (adapter->link_speed == 0)
3601                 return;
3602         if (pci_channel_offline(pdev))
3603                 return;
3604
3605         spin_lock_irqsave(&adapter->stats_lock, flags);
3606
3607         /* these counters are modified from e1000_tbi_adjust_stats,
3608          * called from the interrupt context, so they must only
3609          * be written while holding adapter->stats_lock
3610          */
3611
3612         adapter->stats.crcerrs += er32(CRCERRS);
3613         adapter->stats.gprc += er32(GPRC);
3614         adapter->stats.gorcl += er32(GORCL);
3615         adapter->stats.gorch += er32(GORCH);
3616         adapter->stats.bprc += er32(BPRC);
3617         adapter->stats.mprc += er32(MPRC);
3618         adapter->stats.roc += er32(ROC);
3619
3620         adapter->stats.prc64 += er32(PRC64);
3621         adapter->stats.prc127 += er32(PRC127);
3622         adapter->stats.prc255 += er32(PRC255);
3623         adapter->stats.prc511 += er32(PRC511);
3624         adapter->stats.prc1023 += er32(PRC1023);
3625         adapter->stats.prc1522 += er32(PRC1522);
3626
3627         adapter->stats.symerrs += er32(SYMERRS);
3628         adapter->stats.mpc += er32(MPC);
3629         adapter->stats.scc += er32(SCC);
3630         adapter->stats.ecol += er32(ECOL);
3631         adapter->stats.mcc += er32(MCC);
3632         adapter->stats.latecol += er32(LATECOL);
3633         adapter->stats.dc += er32(DC);
3634         adapter->stats.sec += er32(SEC);
3635         adapter->stats.rlec += er32(RLEC);
3636         adapter->stats.xonrxc += er32(XONRXC);
3637         adapter->stats.xontxc += er32(XONTXC);
3638         adapter->stats.xoffrxc += er32(XOFFRXC);
3639         adapter->stats.xofftxc += er32(XOFFTXC);
3640         adapter->stats.fcruc += er32(FCRUC);
3641         adapter->stats.gptc += er32(GPTC);
3642         adapter->stats.gotcl += er32(GOTCL);
3643         adapter->stats.gotch += er32(GOTCH);
3644         adapter->stats.rnbc += er32(RNBC);
3645         adapter->stats.ruc += er32(RUC);
3646         adapter->stats.rfc += er32(RFC);
3647         adapter->stats.rjc += er32(RJC);
3648         adapter->stats.torl += er32(TORL);
3649         adapter->stats.torh += er32(TORH);
3650         adapter->stats.totl += er32(TOTL);
3651         adapter->stats.toth += er32(TOTH);
3652         adapter->stats.tpr += er32(TPR);
3653
3654         adapter->stats.ptc64 += er32(PTC64);
3655         adapter->stats.ptc127 += er32(PTC127);
3656         adapter->stats.ptc255 += er32(PTC255);
3657         adapter->stats.ptc511 += er32(PTC511);
3658         adapter->stats.ptc1023 += er32(PTC1023);
3659         adapter->stats.ptc1522 += er32(PTC1522);
3660
3661         adapter->stats.mptc += er32(MPTC);
3662         adapter->stats.bptc += er32(BPTC);
3663
3664         /* used for adaptive IFS */
3665
3666         hw->tx_packet_delta = er32(TPT);
3667         adapter->stats.tpt += hw->tx_packet_delta;
3668         hw->collision_delta = er32(COLC);
3669         adapter->stats.colc += hw->collision_delta;
3670
3671         if (hw->mac_type >= e1000_82543) {
3672                 adapter->stats.algnerrc += er32(ALGNERRC);
3673                 adapter->stats.rxerrc += er32(RXERRC);
3674                 adapter->stats.tncrs += er32(TNCRS);
3675                 adapter->stats.cexterr += er32(CEXTERR);
3676                 adapter->stats.tsctc += er32(TSCTC);
3677                 adapter->stats.tsctfc += er32(TSCTFC);
3678         }
3679
3680         /* Fill out the OS statistics structure */
3681         netdev->stats.multicast = adapter->stats.mprc;
3682         netdev->stats.collisions = adapter->stats.colc;
3683
3684         /* Rx Errors */
3685
3686         /* RLEC on some newer hardware can be incorrect so build
3687          * our own version based on RUC and ROC
3688          */
3689         netdev->stats.rx_errors = adapter->stats.rxerrc +
3690                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3691                 adapter->stats.ruc + adapter->stats.roc +
3692                 adapter->stats.cexterr;
3693         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3694         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3695         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3696         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3697         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3698
3699         /* Tx Errors */
3700         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3701         netdev->stats.tx_errors = adapter->stats.txerrc;
3702         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3703         netdev->stats.tx_window_errors = adapter->stats.latecol;
3704         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3705         if (hw->bad_tx_carr_stats_fd &&
3706             adapter->link_duplex == FULL_DUPLEX) {
3707                 netdev->stats.tx_carrier_errors = 0;
3708                 adapter->stats.tncrs = 0;
3709         }
3710
3711         /* Tx Dropped needs to be maintained elsewhere */
3712
3713         /* Phy Stats */
3714         if (hw->media_type == e1000_media_type_copper) {
3715                 if ((adapter->link_speed == SPEED_1000) &&
3716                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3717                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3718                         adapter->phy_stats.idle_errors += phy_tmp;
3719                 }
3720
3721                 if ((hw->mac_type <= e1000_82546) &&
3722                    (hw->phy_type == e1000_phy_m88) &&
3723                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3724                         adapter->phy_stats.receive_errors += phy_tmp;
3725         }
3726
3727         /* Management Stats */
3728         if (hw->has_smbus) {
3729                 adapter->stats.mgptc += er32(MGTPTC);
3730                 adapter->stats.mgprc += er32(MGTPRC);
3731                 adapter->stats.mgpdc += er32(MGTPDC);
3732         }
3733
3734         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3735 }
3736
3737 /**
3738  * e1000_intr - Interrupt Handler
3739  * @irq: interrupt number
3740  * @data: pointer to a network interface device structure
3741  **/
3742 static irqreturn_t e1000_intr(int irq, void *data)
3743 {
3744         struct net_device *netdev = data;
3745         struct e1000_adapter *adapter = netdev_priv(netdev);
3746         struct e1000_hw *hw = &adapter->hw;
3747         u32 icr = er32(ICR);
3748
3749         if (unlikely((!icr)))
3750                 return IRQ_NONE;  /* Not our interrupt */
3751
3752         /* we might have caused the interrupt, but the above
3753          * read cleared it, and just in case the driver is
3754          * down there is nothing to do so return handled
3755          */
3756         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3757                 return IRQ_HANDLED;
3758
3759         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3760                 hw->get_link_status = 1;
3761                 /* guard against interrupt when we're going down */
3762                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3763                         schedule_delayed_work(&adapter->watchdog_task, 1);
3764         }
3765
3766         /* disable interrupts, without the synchronize_irq bit */
3767         ew32(IMC, ~0);
3768         E1000_WRITE_FLUSH();
3769
3770         if (likely(napi_schedule_prep(&adapter->napi))) {
3771                 adapter->total_tx_bytes = 0;
3772                 adapter->total_tx_packets = 0;
3773                 adapter->total_rx_bytes = 0;
3774                 adapter->total_rx_packets = 0;
3775                 __napi_schedule(&adapter->napi);
3776         } else {
3777                 /* this really should not happen! if it does it is basically a
3778                  * bug, but not a hard error, so enable ints and continue
3779                  */
3780                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3781                         e1000_irq_enable(adapter);
3782         }
3783
3784         return IRQ_HANDLED;
3785 }
3786
3787 /**
3788  * e1000_clean - NAPI Rx polling callback
3789  * @adapter: board private structure
3790  **/
3791 static int e1000_clean(struct napi_struct *napi, int budget)
3792 {
3793         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3794                                                      napi);
3795         int tx_clean_complete = 0, work_done = 0;
3796
3797         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3798
3799         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3800
3801         if (!tx_clean_complete || work_done == budget)
3802                 return budget;
3803
3804         /* Exit the polling mode, but don't re-enable interrupts if stack might
3805          * poll us due to busy-polling
3806          */
3807         if (likely(napi_complete_done(napi, work_done))) {
3808                 if (likely(adapter->itr_setting & 3))
3809                         e1000_set_itr(adapter);
3810                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3811                         e1000_irq_enable(adapter);
3812         }
3813
3814         return work_done;
3815 }
3816
3817 /**
3818  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3819  * @adapter: board private structure
3820  **/
3821 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3822                                struct e1000_tx_ring *tx_ring)
3823 {
3824         struct e1000_hw *hw = &adapter->hw;
3825         struct net_device *netdev = adapter->netdev;
3826         struct e1000_tx_desc *tx_desc, *eop_desc;
3827         struct e1000_tx_buffer *buffer_info;
3828         unsigned int i, eop;
3829         unsigned int count = 0;
3830         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3831         unsigned int bytes_compl = 0, pkts_compl = 0;
3832
3833         i = tx_ring->next_to_clean;
3834         eop = tx_ring->buffer_info[i].next_to_watch;
3835         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3836
3837         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3838                (count < tx_ring->count)) {
3839                 bool cleaned = false;
3840                 dma_rmb();      /* read buffer_info after eop_desc */
3841                 for ( ; !cleaned; count++) {
3842                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3843                         buffer_info = &tx_ring->buffer_info[i];
3844                         cleaned = (i == eop);
3845
3846                         if (cleaned) {
3847                                 total_tx_packets += buffer_info->segs;
3848                                 total_tx_bytes += buffer_info->bytecount;
3849                                 if (buffer_info->skb) {
3850                                         bytes_compl += buffer_info->skb->len;
3851                                         pkts_compl++;
3852                                 }
3853
3854                         }
3855                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3856                         tx_desc->upper.data = 0;
3857
3858                         if (unlikely(++i == tx_ring->count))
3859                                 i = 0;
3860                 }
3861
3862                 eop = tx_ring->buffer_info[i].next_to_watch;
3863                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3864         }
3865
3866         /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3867          * which will reuse the cleaned buffers.
3868          */
3869         smp_store_release(&tx_ring->next_to_clean, i);
3870
3871         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3872
3873 #define TX_WAKE_THRESHOLD 32
3874         if (unlikely(count && netif_carrier_ok(netdev) &&
3875                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3876                 /* Make sure that anybody stopping the queue after this
3877                  * sees the new next_to_clean.
3878                  */
3879                 smp_mb();
3880
3881                 if (netif_queue_stopped(netdev) &&
3882                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3883                         netif_wake_queue(netdev);
3884                         ++adapter->restart_queue;
3885                 }
3886         }
3887
3888         if (adapter->detect_tx_hung) {
3889                 /* Detect a transmit hang in hardware, this serializes the
3890                  * check with the clearing of time_stamp and movement of i
3891                  */
3892                 adapter->detect_tx_hung = false;
3893                 if (tx_ring->buffer_info[eop].time_stamp &&
3894                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3895                                (adapter->tx_timeout_factor * HZ)) &&
3896                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3897
3898                         /* detected Tx unit hang */
3899                         e_err(drv, "Detected Tx Unit Hang\n"
3900                               "  Tx Queue             <%lu>\n"
3901                               "  TDH                  <%x>\n"
3902                               "  TDT                  <%x>\n"
3903                               "  next_to_use          <%x>\n"
3904                               "  next_to_clean        <%x>\n"
3905                               "buffer_info[next_to_clean]\n"
3906                               "  time_stamp           <%lx>\n"
3907                               "  next_to_watch        <%x>\n"
3908                               "  jiffies              <%lx>\n"
3909                               "  next_to_watch.status <%x>\n",
3910                                 (unsigned long)(tx_ring - adapter->tx_ring),
3911                                 readl(hw->hw_addr + tx_ring->tdh),
3912                                 readl(hw->hw_addr + tx_ring->tdt),
3913                                 tx_ring->next_to_use,
3914                                 tx_ring->next_to_clean,
3915                                 tx_ring->buffer_info[eop].time_stamp,
3916                                 eop,
3917                                 jiffies,
3918                                 eop_desc->upper.fields.status);
3919                         e1000_dump(adapter);
3920                         netif_stop_queue(netdev);
3921                 }
3922         }
3923         adapter->total_tx_bytes += total_tx_bytes;
3924         adapter->total_tx_packets += total_tx_packets;
3925         netdev->stats.tx_bytes += total_tx_bytes;
3926         netdev->stats.tx_packets += total_tx_packets;
3927         return count < tx_ring->count;
3928 }
3929
3930 /**
3931  * e1000_rx_checksum - Receive Checksum Offload for 82543
3932  * @adapter:     board private structure
3933  * @status_err:  receive descriptor status and error fields
3934  * @csum:        receive descriptor csum field
3935  * @sk_buff:     socket buffer with received data
3936  **/
3937 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3938                               u32 csum, struct sk_buff *skb)
3939 {
3940         struct e1000_hw *hw = &adapter->hw;
3941         u16 status = (u16)status_err;
3942         u8 errors = (u8)(status_err >> 24);
3943
3944         skb_checksum_none_assert(skb);
3945
3946         /* 82543 or newer only */
3947         if (unlikely(hw->mac_type < e1000_82543))
3948                 return;
3949         /* Ignore Checksum bit is set */
3950         if (unlikely(status & E1000_RXD_STAT_IXSM))
3951                 return;
3952         /* TCP/UDP checksum error bit is set */
3953         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3954                 /* let the stack verify checksum errors */
3955                 adapter->hw_csum_err++;
3956                 return;
3957         }
3958         /* TCP/UDP Checksum has not been calculated */
3959         if (!(status & E1000_RXD_STAT_TCPCS))
3960                 return;
3961
3962         /* It must be a TCP or UDP packet with a valid checksum */
3963         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3964                 /* TCP checksum is good */
3965                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3966         }
3967         adapter->hw_csum_good++;
3968 }
3969
3970 /**
3971  * e1000_consume_page - helper function for jumbo Rx path
3972  **/
3973 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3974                                u16 length)
3975 {
3976         bi->rxbuf.page = NULL;
3977         skb->len += length;
3978         skb->data_len += length;
3979         skb->truesize += PAGE_SIZE;
3980 }
3981
3982 /**
3983  * e1000_receive_skb - helper function to handle rx indications
3984  * @adapter: board private structure
3985  * @status: descriptor status field as written by hardware
3986  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3987  * @skb: pointer to sk_buff to be indicated to stack
3988  */
3989 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3990                               __le16 vlan, struct sk_buff *skb)
3991 {
3992         skb->protocol = eth_type_trans(skb, adapter->netdev);
3993
3994         if (status & E1000_RXD_STAT_VP) {
3995                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3996
3997                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3998         }
3999         napi_gro_receive(&adapter->napi, skb);
4000 }
4001
4002 /**
4003  * e1000_tbi_adjust_stats
4004  * @hw: Struct containing variables accessed by shared code
4005  * @frame_len: The length of the frame in question
4006  * @mac_addr: The Ethernet destination address of the frame in question
4007  *
4008  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4009  */
4010 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4011                                    struct e1000_hw_stats *stats,
4012                                    u32 frame_len, const u8 *mac_addr)
4013 {
4014         u64 carry_bit;
4015
4016         /* First adjust the frame length. */
4017         frame_len--;
4018         /* We need to adjust the statistics counters, since the hardware
4019          * counters overcount this packet as a CRC error and undercount
4020          * the packet as a good packet
4021          */
4022         /* This packet should not be counted as a CRC error. */
4023         stats->crcerrs--;
4024         /* This packet does count as a Good Packet Received. */
4025         stats->gprc++;
4026
4027         /* Adjust the Good Octets received counters */
4028         carry_bit = 0x80000000 & stats->gorcl;
4029         stats->gorcl += frame_len;
4030         /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4031          * Received Count) was one before the addition,
4032          * AND it is zero after, then we lost the carry out,
4033          * need to add one to Gorch (Good Octets Received Count High).
4034          * This could be simplified if all environments supported
4035          * 64-bit integers.
4036          */
4037         if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4038                 stats->gorch++;
4039         /* Is this a broadcast or multicast?  Check broadcast first,
4040          * since the test for a multicast frame will test positive on
4041          * a broadcast frame.
4042          */
4043         if (is_broadcast_ether_addr(mac_addr))
4044                 stats->bprc++;
4045         else if (is_multicast_ether_addr(mac_addr))
4046                 stats->mprc++;
4047
4048         if (frame_len == hw->max_frame_size) {
4049                 /* In this case, the hardware has overcounted the number of
4050                  * oversize frames.
4051                  */
4052                 if (stats->roc > 0)
4053                         stats->roc--;
4054         }
4055
4056         /* Adjust the bin counters when the extra byte put the frame in the
4057          * wrong bin. Remember that the frame_len was adjusted above.
4058          */
4059         if (frame_len == 64) {
4060                 stats->prc64++;
4061                 stats->prc127--;
4062         } else if (frame_len == 127) {
4063                 stats->prc127++;
4064                 stats->prc255--;
4065         } else if (frame_len == 255) {
4066                 stats->prc255++;
4067                 stats->prc511--;
4068         } else if (frame_len == 511) {
4069                 stats->prc511++;
4070                 stats->prc1023--;
4071         } else if (frame_len == 1023) {
4072                 stats->prc1023++;
4073                 stats->prc1522--;
4074         } else if (frame_len == 1522) {
4075                 stats->prc1522++;
4076         }
4077 }
4078
4079 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4080                                     u8 status, u8 errors,
4081                                     u32 length, const u8 *data)
4082 {
4083         struct e1000_hw *hw = &adapter->hw;
4084         u8 last_byte = *(data + length - 1);
4085
4086         if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4087                 unsigned long irq_flags;
4088
4089                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4090                 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4091                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4092
4093                 return true;
4094         }
4095
4096         return false;
4097 }
4098
4099 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4100                                           unsigned int bufsz)
4101 {
4102         struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4103
4104         if (unlikely(!skb))
4105                 adapter->alloc_rx_buff_failed++;
4106         return skb;
4107 }
4108
4109 /**
4110  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4111  * @adapter: board private structure
4112  * @rx_ring: ring to clean
4113  * @work_done: amount of napi work completed this call
4114  * @work_to_do: max amount of work allowed for this call to do
4115  *
4116  * the return value indicates whether actual cleaning was done, there
4117  * is no guarantee that everything was cleaned
4118  */
4119 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4120                                      struct e1000_rx_ring *rx_ring,
4121                                      int *work_done, int work_to_do)
4122 {
4123         struct net_device *netdev = adapter->netdev;
4124         struct pci_dev *pdev = adapter->pdev;
4125         struct e1000_rx_desc *rx_desc, *next_rxd;
4126         struct e1000_rx_buffer *buffer_info, *next_buffer;
4127         u32 length;
4128         unsigned int i;
4129         int cleaned_count = 0;
4130         bool cleaned = false;
4131         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4132
4133         i = rx_ring->next_to_clean;
4134         rx_desc = E1000_RX_DESC(*rx_ring, i);
4135         buffer_info = &rx_ring->buffer_info[i];
4136
4137         while (rx_desc->status & E1000_RXD_STAT_DD) {
4138                 struct sk_buff *skb;
4139                 u8 status;
4140
4141                 if (*work_done >= work_to_do)
4142                         break;
4143                 (*work_done)++;
4144                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4145
4146                 status = rx_desc->status;
4147
4148                 if (++i == rx_ring->count)
4149                         i = 0;
4150
4151                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4152                 prefetch(next_rxd);
4153
4154                 next_buffer = &rx_ring->buffer_info[i];
4155
4156                 cleaned = true;
4157                 cleaned_count++;
4158                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4159                                adapter->rx_buffer_len, DMA_FROM_DEVICE);
4160                 buffer_info->dma = 0;
4161
4162                 length = le16_to_cpu(rx_desc->length);
4163
4164                 /* errors is only valid for DD + EOP descriptors */
4165                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4166                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4167                         u8 *mapped = page_address(buffer_info->rxbuf.page);
4168
4169                         if (e1000_tbi_should_accept(adapter, status,
4170                                                     rx_desc->errors,
4171                                                     length, mapped)) {
4172                                 length--;
4173                         } else if (netdev->features & NETIF_F_RXALL) {
4174                                 goto process_skb;
4175                         } else {
4176                                 /* an error means any chain goes out the window
4177                                  * too
4178                                  */
4179                                 if (rx_ring->rx_skb_top)
4180                                         dev_kfree_skb(rx_ring->rx_skb_top);
4181                                 rx_ring->rx_skb_top = NULL;
4182                                 goto next_desc;
4183                         }
4184                 }
4185
4186 #define rxtop rx_ring->rx_skb_top
4187 process_skb:
4188                 if (!(status & E1000_RXD_STAT_EOP)) {
4189                         /* this descriptor is only the beginning (or middle) */
4190                         if (!rxtop) {
4191                                 /* this is the beginning of a chain */
4192                                 rxtop = napi_get_frags(&adapter->napi);
4193                                 if (!rxtop)
4194                                         break;
4195
4196                                 skb_fill_page_desc(rxtop, 0,
4197                                                    buffer_info->rxbuf.page,
4198                                                    0, length);
4199                         } else {
4200                                 /* this is the middle of a chain */
4201                                 skb_fill_page_desc(rxtop,
4202                                     skb_shinfo(rxtop)->nr_frags,
4203                                     buffer_info->rxbuf.page, 0, length);
4204                         }
4205                         e1000_consume_page(buffer_info, rxtop, length);
4206                         goto next_desc;
4207                 } else {
4208                         if (rxtop) {
4209                                 /* end of the chain */
4210                                 skb_fill_page_desc(rxtop,
4211                                     skb_shinfo(rxtop)->nr_frags,
4212                                     buffer_info->rxbuf.page, 0, length);
4213                                 skb = rxtop;
4214                                 rxtop = NULL;
4215                                 e1000_consume_page(buffer_info, skb, length);
4216                         } else {
4217                                 struct page *p;
4218                                 /* no chain, got EOP, this buf is the packet
4219                                  * copybreak to save the put_page/alloc_page
4220                                  */
4221                                 p = buffer_info->rxbuf.page;
4222                                 if (length <= copybreak) {
4223                                         u8 *vaddr;
4224
4225                                         if (likely(!(netdev->features & NETIF_F_RXFCS)))
4226                                                 length -= 4;
4227                                         skb = e1000_alloc_rx_skb(adapter,
4228                                                                  length);
4229                                         if (!skb)
4230                                                 break;
4231
4232                                         vaddr = kmap_atomic(p);
4233                                         memcpy(skb_tail_pointer(skb), vaddr,
4234                                                length);
4235                                         kunmap_atomic(vaddr);
4236                                         /* re-use the page, so don't erase
4237                                          * buffer_info->rxbuf.page
4238                                          */
4239                                         skb_put(skb, length);
4240                                         e1000_rx_checksum(adapter,
4241                                                           status | rx_desc->errors << 24,
4242                                                           le16_to_cpu(rx_desc->csum), skb);
4243
4244                                         total_rx_bytes += skb->len;
4245                                         total_rx_packets++;
4246
4247                                         e1000_receive_skb(adapter, status,
4248                                                           rx_desc->special, skb);
4249                                         goto next_desc;
4250                                 } else {
4251                                         skb = napi_get_frags(&adapter->napi);
4252                                         if (!skb) {
4253                                                 adapter->alloc_rx_buff_failed++;
4254                                                 break;
4255                                         }
4256                                         skb_fill_page_desc(skb, 0, p, 0,
4257                                                            length);
4258                                         e1000_consume_page(buffer_info, skb,
4259                                                            length);
4260                                 }
4261                         }
4262                 }
4263
4264                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4265                 e1000_rx_checksum(adapter,
4266                                   (u32)(status) |
4267                                   ((u32)(rx_desc->errors) << 24),
4268                                   le16_to_cpu(rx_desc->csum), skb);
4269
4270                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4271                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4272                         pskb_trim(skb, skb->len - 4);
4273                 total_rx_packets++;
4274
4275                 if (status & E1000_RXD_STAT_VP) {
4276                         __le16 vlan = rx_desc->special;
4277                         u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4278
4279                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4280                 }
4281
4282                 napi_gro_frags(&adapter->napi);
4283
4284 next_desc:
4285                 rx_desc->status = 0;
4286
4287                 /* return some buffers to hardware, one at a time is too slow */
4288                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290                         cleaned_count = 0;
4291                 }
4292
4293                 /* use prefetched values */
4294                 rx_desc = next_rxd;
4295                 buffer_info = next_buffer;
4296         }
4297         rx_ring->next_to_clean = i;
4298
4299         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300         if (cleaned_count)
4301                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302
4303         adapter->total_rx_packets += total_rx_packets;
4304         adapter->total_rx_bytes += total_rx_bytes;
4305         netdev->stats.rx_bytes += total_rx_bytes;
4306         netdev->stats.rx_packets += total_rx_packets;
4307         return cleaned;
4308 }
4309
4310 /* this should improve performance for small packets with large amounts
4311  * of reassembly being done in the stack
4312  */
4313 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4314                                        struct e1000_rx_buffer *buffer_info,
4315                                        u32 length, const void *data)
4316 {
4317         struct sk_buff *skb;
4318
4319         if (length > copybreak)
4320                 return NULL;
4321
4322         skb = e1000_alloc_rx_skb(adapter, length);
4323         if (!skb)
4324                 return NULL;
4325
4326         dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4327                                 length, DMA_FROM_DEVICE);
4328
4329         skb_put_data(skb, data, length);
4330
4331         return skb;
4332 }
4333
4334 /**
4335  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4336  * @adapter: board private structure
4337  * @rx_ring: ring to clean
4338  * @work_done: amount of napi work completed this call
4339  * @work_to_do: max amount of work allowed for this call to do
4340  */
4341 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4342                                struct e1000_rx_ring *rx_ring,
4343                                int *work_done, int work_to_do)
4344 {
4345         struct net_device *netdev = adapter->netdev;
4346         struct pci_dev *pdev = adapter->pdev;
4347         struct e1000_rx_desc *rx_desc, *next_rxd;
4348         struct e1000_rx_buffer *buffer_info, *next_buffer;
4349         u32 length;
4350         unsigned int i;
4351         int cleaned_count = 0;
4352         bool cleaned = false;
4353         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4354
4355         i = rx_ring->next_to_clean;
4356         rx_desc = E1000_RX_DESC(*rx_ring, i);
4357         buffer_info = &rx_ring->buffer_info[i];
4358
4359         while (rx_desc->status & E1000_RXD_STAT_DD) {
4360                 struct sk_buff *skb;
4361                 u8 *data;
4362                 u8 status;
4363
4364                 if (*work_done >= work_to_do)
4365                         break;
4366                 (*work_done)++;
4367                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4368
4369                 status = rx_desc->status;
4370                 length = le16_to_cpu(rx_desc->length);
4371
4372                 data = buffer_info->rxbuf.data;
4373                 prefetch(data);
4374                 skb = e1000_copybreak(adapter, buffer_info, length, data);
4375                 if (!skb) {
4376                         unsigned int frag_len = e1000_frag_len(adapter);
4377
4378                         skb = build_skb(data - E1000_HEADROOM, frag_len);
4379                         if (!skb) {
4380                                 adapter->alloc_rx_buff_failed++;
4381                                 break;
4382                         }
4383
4384                         skb_reserve(skb, E1000_HEADROOM);
4385                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4386                                          adapter->rx_buffer_len,
4387                                          DMA_FROM_DEVICE);
4388                         buffer_info->dma = 0;
4389                         buffer_info->rxbuf.data = NULL;
4390                 }
4391
4392                 if (++i == rx_ring->count)
4393                         i = 0;
4394
4395                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4396                 prefetch(next_rxd);
4397
4398                 next_buffer = &rx_ring->buffer_info[i];
4399
4400                 cleaned = true;
4401                 cleaned_count++;
4402
4403                 /* !EOP means multiple descriptors were used to store a single
4404                  * packet, if thats the case we need to toss it.  In fact, we
4405                  * to toss every packet with the EOP bit clear and the next
4406                  * frame that _does_ have the EOP bit set, as it is by
4407                  * definition only a frame fragment
4408                  */
4409                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4410                         adapter->discarding = true;
4411
4412                 if (adapter->discarding) {
4413                         /* All receives must fit into a single buffer */
4414                         netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4415                         dev_kfree_skb(skb);
4416                         if (status & E1000_RXD_STAT_EOP)
4417                                 adapter->discarding = false;
4418                         goto next_desc;
4419                 }
4420
4421                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4422                         if (e1000_tbi_should_accept(adapter, status,
4423                                                     rx_desc->errors,
4424                                                     length, data)) {
4425                                 length--;
4426                         } else if (netdev->features & NETIF_F_RXALL) {
4427                                 goto process_skb;
4428                         } else {
4429                                 dev_kfree_skb(skb);
4430                                 goto next_desc;
4431                         }
4432                 }
4433
4434 process_skb:
4435                 total_rx_bytes += (length - 4); /* don't count FCS */
4436                 total_rx_packets++;
4437
4438                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4439                         /* adjust length to remove Ethernet CRC, this must be
4440                          * done after the TBI_ACCEPT workaround above
4441                          */
4442                         length -= 4;
4443
4444                 if (buffer_info->rxbuf.data == NULL)
4445                         skb_put(skb, length);
4446                 else /* copybreak skb */
4447                         skb_trim(skb, length);
4448
4449                 /* Receive Checksum Offload */
4450                 e1000_rx_checksum(adapter,
4451                                   (u32)(status) |
4452                                   ((u32)(rx_desc->errors) << 24),
4453                                   le16_to_cpu(rx_desc->csum), skb);
4454
4455                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4456
4457 next_desc:
4458                 rx_desc->status = 0;
4459
4460                 /* return some buffers to hardware, one at a time is too slow */
4461                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4462                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4463                         cleaned_count = 0;
4464                 }
4465
4466                 /* use prefetched values */
4467                 rx_desc = next_rxd;
4468                 buffer_info = next_buffer;
4469         }
4470         rx_ring->next_to_clean = i;
4471
4472         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4473         if (cleaned_count)
4474                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475
4476         adapter->total_rx_packets += total_rx_packets;
4477         adapter->total_rx_bytes += total_rx_bytes;
4478         netdev->stats.rx_bytes += total_rx_bytes;
4479         netdev->stats.rx_packets += total_rx_packets;
4480         return cleaned;
4481 }
4482
4483 /**
4484  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4485  * @adapter: address of board private structure
4486  * @rx_ring: pointer to receive ring structure
4487  * @cleaned_count: number of buffers to allocate this pass
4488  **/
4489 static void
4490 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4491                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4492 {
4493         struct pci_dev *pdev = adapter->pdev;
4494         struct e1000_rx_desc *rx_desc;
4495         struct e1000_rx_buffer *buffer_info;
4496         unsigned int i;
4497
4498         i = rx_ring->next_to_use;
4499         buffer_info = &rx_ring->buffer_info[i];
4500
4501         while (cleaned_count--) {
4502                 /* allocate a new page if necessary */
4503                 if (!buffer_info->rxbuf.page) {
4504                         buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4505                         if (unlikely(!buffer_info->rxbuf.page)) {
4506                                 adapter->alloc_rx_buff_failed++;
4507                                 break;
4508                         }
4509                 }
4510
4511                 if (!buffer_info->dma) {
4512                         buffer_info->dma = dma_map_page(&pdev->dev,
4513                                                         buffer_info->rxbuf.page, 0,
4514                                                         adapter->rx_buffer_len,
4515                                                         DMA_FROM_DEVICE);
4516                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517                                 put_page(buffer_info->rxbuf.page);
4518                                 buffer_info->rxbuf.page = NULL;
4519                                 buffer_info->dma = 0;
4520                                 adapter->alloc_rx_buff_failed++;
4521                                 break;
4522                         }
4523                 }
4524
4525                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4526                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527
4528                 if (unlikely(++i == rx_ring->count))
4529                         i = 0;
4530                 buffer_info = &rx_ring->buffer_info[i];
4531         }
4532
4533         if (likely(rx_ring->next_to_use != i)) {
4534                 rx_ring->next_to_use = i;
4535                 if (unlikely(i-- == 0))
4536                         i = (rx_ring->count - 1);
4537
4538                 /* Force memory writes to complete before letting h/w
4539                  * know there are new descriptors to fetch.  (Only
4540                  * applicable for weak-ordered memory model archs,
4541                  * such as IA-64).
4542                  */
4543                 dma_wmb();
4544                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4545         }
4546 }
4547
4548 /**
4549  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4550  * @adapter: address of board private structure
4551  **/
4552 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4553                                    struct e1000_rx_ring *rx_ring,
4554                                    int cleaned_count)
4555 {
4556         struct e1000_hw *hw = &adapter->hw;
4557         struct pci_dev *pdev = adapter->pdev;
4558         struct e1000_rx_desc *rx_desc;
4559         struct e1000_rx_buffer *buffer_info;
4560         unsigned int i;
4561         unsigned int bufsz = adapter->rx_buffer_len;
4562
4563         i = rx_ring->next_to_use;
4564         buffer_info = &rx_ring->buffer_info[i];
4565
4566         while (cleaned_count--) {
4567                 void *data;
4568
4569                 if (buffer_info->rxbuf.data)
4570                         goto skip;
4571
4572                 data = e1000_alloc_frag(adapter);
4573                 if (!data) {
4574                         /* Better luck next round */
4575                         adapter->alloc_rx_buff_failed++;
4576                         break;
4577                 }
4578
4579                 /* Fix for errata 23, can't cross 64kB boundary */
4580                 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4581                         void *olddata = data;
4582                         e_err(rx_err, "skb align check failed: %u bytes at "
4583                               "%p\n", bufsz, data);
4584                         /* Try again, without freeing the previous */
4585                         data = e1000_alloc_frag(adapter);
4586                         /* Failed allocation, critical failure */
4587                         if (!data) {
4588                                 skb_free_frag(olddata);
4589                                 adapter->alloc_rx_buff_failed++;
4590                                 break;
4591                         }
4592
4593                         if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4594                                 /* give up */
4595                                 skb_free_frag(data);
4596                                 skb_free_frag(olddata);
4597                                 adapter->alloc_rx_buff_failed++;
4598                                 break;
4599                         }
4600
4601                         /* Use new allocation */
4602                         skb_free_frag(olddata);
4603                 }
4604                 buffer_info->dma = dma_map_single(&pdev->dev,
4605                                                   data,
4606                                                   adapter->rx_buffer_len,
4607                                                   DMA_FROM_DEVICE);
4608                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4609                         skb_free_frag(data);
4610                         buffer_info->dma = 0;
4611                         adapter->alloc_rx_buff_failed++;
4612                         break;
4613                 }
4614
4615                 /* XXX if it was allocated cleanly it will never map to a
4616                  * boundary crossing
4617                  */
4618
4619                 /* Fix for errata 23, can't cross 64kB boundary */
4620                 if (!e1000_check_64k_bound(adapter,
4621                                         (void *)(unsigned long)buffer_info->dma,
4622                                         adapter->rx_buffer_len)) {
4623                         e_err(rx_err, "dma align check failed: %u bytes at "
4624                               "%p\n", adapter->rx_buffer_len,
4625                               (void *)(unsigned long)buffer_info->dma);
4626
4627                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4628                                          adapter->rx_buffer_len,
4629                                          DMA_FROM_DEVICE);
4630
4631                         skb_free_frag(data);
4632                         buffer_info->rxbuf.data = NULL;
4633                         buffer_info->dma = 0;
4634
4635                         adapter->alloc_rx_buff_failed++;
4636                         break;
4637                 }
4638                 buffer_info->rxbuf.data = data;
4639  skip:
4640                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4641                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4642
4643                 if (unlikely(++i == rx_ring->count))
4644                         i = 0;
4645                 buffer_info = &rx_ring->buffer_info[i];
4646         }
4647
4648         if (likely(rx_ring->next_to_use != i)) {
4649                 rx_ring->next_to_use = i;
4650                 if (unlikely(i-- == 0))
4651                         i = (rx_ring->count - 1);
4652
4653                 /* Force memory writes to complete before letting h/w
4654                  * know there are new descriptors to fetch.  (Only
4655                  * applicable for weak-ordered memory model archs,
4656                  * such as IA-64).
4657                  */
4658                 dma_wmb();
4659                 writel(i, hw->hw_addr + rx_ring->rdt);
4660         }
4661 }
4662
4663 /**
4664  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4665  * @adapter:
4666  **/
4667 static void e1000_smartspeed(struct e1000_adapter *adapter)
4668 {
4669         struct e1000_hw *hw = &adapter->hw;
4670         u16 phy_status;
4671         u16 phy_ctrl;
4672
4673         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4674            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4675                 return;
4676
4677         if (adapter->smartspeed == 0) {
4678                 /* If Master/Slave config fault is asserted twice,
4679                  * we assume back-to-back
4680                  */
4681                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4682                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4683                         return;
4684                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4685                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4686                         return;
4687                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4688                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4689                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4690                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4691                                             phy_ctrl);
4692                         adapter->smartspeed++;
4693                         if (!e1000_phy_setup_autoneg(hw) &&
4694                            !e1000_read_phy_reg(hw, PHY_CTRL,
4695                                                &phy_ctrl)) {
4696                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4697                                              MII_CR_RESTART_AUTO_NEG);
4698                                 e1000_write_phy_reg(hw, PHY_CTRL,
4699                                                     phy_ctrl);
4700                         }
4701                 }
4702                 return;
4703         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4704                 /* If still no link, perhaps using 2/3 pair cable */
4705                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4706                 phy_ctrl |= CR_1000T_MS_ENABLE;
4707                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4708                 if (!e1000_phy_setup_autoneg(hw) &&
4709                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4710                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4711                                      MII_CR_RESTART_AUTO_NEG);
4712                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4713                 }
4714         }
4715         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4716         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4717                 adapter->smartspeed = 0;
4718 }
4719
4720 /**
4721  * e1000_ioctl -
4722  * @netdev:
4723  * @ifreq:
4724  * @cmd:
4725  **/
4726 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4727 {
4728         switch (cmd) {
4729         case SIOCGMIIPHY:
4730         case SIOCGMIIREG:
4731         case SIOCSMIIREG:
4732                 return e1000_mii_ioctl(netdev, ifr, cmd);
4733         default:
4734                 return -EOPNOTSUPP;
4735         }
4736 }
4737
4738 /**
4739  * e1000_mii_ioctl -
4740  * @netdev:
4741  * @ifreq:
4742  * @cmd:
4743  **/
4744 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4745                            int cmd)
4746 {
4747         struct e1000_adapter *adapter = netdev_priv(netdev);
4748         struct e1000_hw *hw = &adapter->hw;
4749         struct mii_ioctl_data *data = if_mii(ifr);
4750         int retval;
4751         u16 mii_reg;
4752         unsigned long flags;
4753
4754         if (hw->media_type != e1000_media_type_copper)
4755                 return -EOPNOTSUPP;
4756
4757         switch (cmd) {
4758         case SIOCGMIIPHY:
4759                 data->phy_id = hw->phy_addr;
4760                 break;
4761         case SIOCGMIIREG:
4762                 spin_lock_irqsave(&adapter->stats_lock, flags);
4763                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4764                                    &data->val_out)) {
4765                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4766                         return -EIO;
4767                 }
4768                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4769                 break;
4770         case SIOCSMIIREG:
4771                 if (data->reg_num & ~(0x1F))
4772                         return -EFAULT;
4773                 mii_reg = data->val_in;
4774                 spin_lock_irqsave(&adapter->stats_lock, flags);
4775                 if (e1000_write_phy_reg(hw, data->reg_num,
4776                                         mii_reg)) {
4777                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778                         return -EIO;
4779                 }
4780                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781                 if (hw->media_type == e1000_media_type_copper) {
4782                         switch (data->reg_num) {
4783                         case PHY_CTRL:
4784                                 if (mii_reg & MII_CR_POWER_DOWN)
4785                                         break;
4786                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4787                                         hw->autoneg = 1;
4788                                         hw->autoneg_advertised = 0x2F;
4789                                 } else {
4790                                         u32 speed;
4791                                         if (mii_reg & 0x40)
4792                                                 speed = SPEED_1000;
4793                                         else if (mii_reg & 0x2000)
4794                                                 speed = SPEED_100;
4795                                         else
4796                                                 speed = SPEED_10;
4797                                         retval = e1000_set_spd_dplx(
4798                                                 adapter, speed,
4799                                                 ((mii_reg & 0x100)
4800                                                  ? DUPLEX_FULL :
4801                                                  DUPLEX_HALF));
4802                                         if (retval)
4803                                                 return retval;
4804                                 }
4805                                 if (netif_running(adapter->netdev))
4806                                         e1000_reinit_locked(adapter);
4807                                 else
4808                                         e1000_reset(adapter);
4809                                 break;
4810                         case M88E1000_PHY_SPEC_CTRL:
4811                         case M88E1000_EXT_PHY_SPEC_CTRL:
4812                                 if (e1000_phy_reset(hw))
4813                                         return -EIO;
4814                                 break;
4815                         }
4816                 } else {
4817                         switch (data->reg_num) {
4818                         case PHY_CTRL:
4819                                 if (mii_reg & MII_CR_POWER_DOWN)
4820                                         break;
4821                                 if (netif_running(adapter->netdev))
4822                                         e1000_reinit_locked(adapter);
4823                                 else
4824                                         e1000_reset(adapter);
4825                                 break;
4826                         }
4827                 }
4828                 break;
4829         default:
4830                 return -EOPNOTSUPP;
4831         }
4832         return E1000_SUCCESS;
4833 }
4834
4835 void e1000_pci_set_mwi(struct e1000_hw *hw)
4836 {
4837         struct e1000_adapter *adapter = hw->back;
4838         int ret_val = pci_set_mwi(adapter->pdev);
4839
4840         if (ret_val)
4841                 e_err(probe, "Error in setting MWI\n");
4842 }
4843
4844 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4845 {
4846         struct e1000_adapter *adapter = hw->back;
4847
4848         pci_clear_mwi(adapter->pdev);
4849 }
4850
4851 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4852 {
4853         struct e1000_adapter *adapter = hw->back;
4854         return pcix_get_mmrbc(adapter->pdev);
4855 }
4856
4857 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4858 {
4859         struct e1000_adapter *adapter = hw->back;
4860         pcix_set_mmrbc(adapter->pdev, mmrbc);
4861 }
4862
4863 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4864 {
4865         outl(value, port);
4866 }
4867
4868 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4869 {
4870         u16 vid;
4871
4872         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4873                 return true;
4874         return false;
4875 }
4876
4877 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4878                               netdev_features_t features)
4879 {
4880         struct e1000_hw *hw = &adapter->hw;
4881         u32 ctrl;
4882
4883         ctrl = er32(CTRL);
4884         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4885                 /* enable VLAN tag insert/strip */
4886                 ctrl |= E1000_CTRL_VME;
4887         } else {
4888                 /* disable VLAN tag insert/strip */
4889                 ctrl &= ~E1000_CTRL_VME;
4890         }
4891         ew32(CTRL, ctrl);
4892 }
4893 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4894                                      bool filter_on)
4895 {
4896         struct e1000_hw *hw = &adapter->hw;
4897         u32 rctl;
4898
4899         if (!test_bit(__E1000_DOWN, &adapter->flags))
4900                 e1000_irq_disable(adapter);
4901
4902         __e1000_vlan_mode(adapter, adapter->netdev->features);
4903         if (filter_on) {
4904                 /* enable VLAN receive filtering */
4905                 rctl = er32(RCTL);
4906                 rctl &= ~E1000_RCTL_CFIEN;
4907                 if (!(adapter->netdev->flags & IFF_PROMISC))
4908                         rctl |= E1000_RCTL_VFE;
4909                 ew32(RCTL, rctl);
4910                 e1000_update_mng_vlan(adapter);
4911         } else {
4912                 /* disable VLAN receive filtering */
4913                 rctl = er32(RCTL);
4914                 rctl &= ~E1000_RCTL_VFE;
4915                 ew32(RCTL, rctl);
4916         }
4917
4918         if (!test_bit(__E1000_DOWN, &adapter->flags))
4919                 e1000_irq_enable(adapter);
4920 }
4921
4922 static void e1000_vlan_mode(struct net_device *netdev,
4923                             netdev_features_t features)
4924 {
4925         struct e1000_adapter *adapter = netdev_priv(netdev);
4926
4927         if (!test_bit(__E1000_DOWN, &adapter->flags))
4928                 e1000_irq_disable(adapter);
4929
4930         __e1000_vlan_mode(adapter, features);
4931
4932         if (!test_bit(__E1000_DOWN, &adapter->flags))
4933                 e1000_irq_enable(adapter);
4934 }
4935
4936 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4937                                  __be16 proto, u16 vid)
4938 {
4939         struct e1000_adapter *adapter = netdev_priv(netdev);
4940         struct e1000_hw *hw = &adapter->hw;
4941         u32 vfta, index;
4942
4943         if ((hw->mng_cookie.status &
4944              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4945             (vid == adapter->mng_vlan_id))
4946                 return 0;
4947
4948         if (!e1000_vlan_used(adapter))
4949                 e1000_vlan_filter_on_off(adapter, true);
4950
4951         /* add VID to filter table */
4952         index = (vid >> 5) & 0x7F;
4953         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4954         vfta |= (1 << (vid & 0x1F));
4955         e1000_write_vfta(hw, index, vfta);
4956
4957         set_bit(vid, adapter->active_vlans);
4958
4959         return 0;
4960 }
4961
4962 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4963                                   __be16 proto, u16 vid)
4964 {
4965         struct e1000_adapter *adapter = netdev_priv(netdev);
4966         struct e1000_hw *hw = &adapter->hw;
4967         u32 vfta, index;
4968
4969         if (!test_bit(__E1000_DOWN, &adapter->flags))
4970                 e1000_irq_disable(adapter);
4971         if (!test_bit(__E1000_DOWN, &adapter->flags))
4972                 e1000_irq_enable(adapter);
4973
4974         /* remove VID from filter table */
4975         index = (vid >> 5) & 0x7F;
4976         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4977         vfta &= ~(1 << (vid & 0x1F));
4978         e1000_write_vfta(hw, index, vfta);
4979
4980         clear_bit(vid, adapter->active_vlans);
4981
4982         if (!e1000_vlan_used(adapter))
4983                 e1000_vlan_filter_on_off(adapter, false);
4984
4985         return 0;
4986 }
4987
4988 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4989 {
4990         u16 vid;
4991
4992         if (!e1000_vlan_used(adapter))
4993                 return;
4994
4995         e1000_vlan_filter_on_off(adapter, true);
4996         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4997                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4998 }
4999
5000 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5001 {
5002         struct e1000_hw *hw = &adapter->hw;
5003
5004         hw->autoneg = 0;
5005
5006         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5007          * for the switch() below to work
5008          */
5009         if ((spd & 1) || (dplx & ~1))
5010                 goto err_inval;
5011
5012         /* Fiber NICs only allow 1000 gbps Full duplex */
5013         if ((hw->media_type == e1000_media_type_fiber) &&
5014             spd != SPEED_1000 &&
5015             dplx != DUPLEX_FULL)
5016                 goto err_inval;
5017
5018         switch (spd + dplx) {
5019         case SPEED_10 + DUPLEX_HALF:
5020                 hw->forced_speed_duplex = e1000_10_half;
5021                 break;
5022         case SPEED_10 + DUPLEX_FULL:
5023                 hw->forced_speed_duplex = e1000_10_full;
5024                 break;
5025         case SPEED_100 + DUPLEX_HALF:
5026                 hw->forced_speed_duplex = e1000_100_half;
5027                 break;
5028         case SPEED_100 + DUPLEX_FULL:
5029                 hw->forced_speed_duplex = e1000_100_full;
5030                 break;
5031         case SPEED_1000 + DUPLEX_FULL:
5032                 hw->autoneg = 1;
5033                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5034                 break;
5035         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5036         default:
5037                 goto err_inval;
5038         }
5039
5040         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5041         hw->mdix = AUTO_ALL_MODES;
5042
5043         return 0;
5044
5045 err_inval:
5046         e_err(probe, "Unsupported Speed/Duplex configuration\n");
5047         return -EINVAL;
5048 }
5049
5050 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5051 {
5052         struct net_device *netdev = pci_get_drvdata(pdev);
5053         struct e1000_adapter *adapter = netdev_priv(netdev);
5054         struct e1000_hw *hw = &adapter->hw;
5055         u32 ctrl, ctrl_ext, rctl, status;
5056         u32 wufc = adapter->wol;
5057 #ifdef CONFIG_PM
5058         int retval = 0;
5059 #endif
5060
5061         netif_device_detach(netdev);
5062
5063         if (netif_running(netdev)) {
5064                 int count = E1000_CHECK_RESET_COUNT;
5065
5066                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5067                         usleep_range(10000, 20000);
5068
5069                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5070                 e1000_down(adapter);
5071         }
5072
5073 #ifdef CONFIG_PM
5074         retval = pci_save_state(pdev);
5075         if (retval)
5076                 return retval;
5077 #endif
5078
5079         status = er32(STATUS);
5080         if (status & E1000_STATUS_LU)
5081                 wufc &= ~E1000_WUFC_LNKC;
5082
5083         if (wufc) {
5084                 e1000_setup_rctl(adapter);
5085                 e1000_set_rx_mode(netdev);
5086
5087                 rctl = er32(RCTL);
5088
5089                 /* turn on all-multi mode if wake on multicast is enabled */
5090                 if (wufc & E1000_WUFC_MC)
5091                         rctl |= E1000_RCTL_MPE;
5092
5093                 /* enable receives in the hardware */
5094                 ew32(RCTL, rctl | E1000_RCTL_EN);
5095
5096                 if (hw->mac_type >= e1000_82540) {
5097                         ctrl = er32(CTRL);
5098                         /* advertise wake from D3Cold */
5099                         #define E1000_CTRL_ADVD3WUC 0x00100000
5100                         /* phy power management enable */
5101                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5102                         ctrl |= E1000_CTRL_ADVD3WUC |
5103                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5104                         ew32(CTRL, ctrl);
5105                 }
5106
5107                 if (hw->media_type == e1000_media_type_fiber ||
5108                     hw->media_type == e1000_media_type_internal_serdes) {
5109                         /* keep the laser running in D3 */
5110                         ctrl_ext = er32(CTRL_EXT);
5111                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5112                         ew32(CTRL_EXT, ctrl_ext);
5113                 }
5114
5115                 ew32(WUC, E1000_WUC_PME_EN);
5116                 ew32(WUFC, wufc);
5117         } else {
5118                 ew32(WUC, 0);
5119                 ew32(WUFC, 0);
5120         }
5121
5122         e1000_release_manageability(adapter);
5123
5124         *enable_wake = !!wufc;
5125
5126         /* make sure adapter isn't asleep if manageability is enabled */
5127         if (adapter->en_mng_pt)
5128                 *enable_wake = true;
5129
5130         if (netif_running(netdev))
5131                 e1000_free_irq(adapter);
5132
5133         if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5134                 pci_disable_device(pdev);
5135
5136         return 0;
5137 }
5138
5139 #ifdef CONFIG_PM
5140 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5141 {
5142         int retval;
5143         bool wake;
5144
5145         retval = __e1000_shutdown(pdev, &wake);
5146         if (retval)
5147                 return retval;
5148
5149         if (wake) {
5150                 pci_prepare_to_sleep(pdev);
5151         } else {
5152                 pci_wake_from_d3(pdev, false);
5153                 pci_set_power_state(pdev, PCI_D3hot);
5154         }
5155
5156         return 0;
5157 }
5158
5159 static int e1000_resume(struct pci_dev *pdev)
5160 {
5161         struct net_device *netdev = pci_get_drvdata(pdev);
5162         struct e1000_adapter *adapter = netdev_priv(netdev);
5163         struct e1000_hw *hw = &adapter->hw;
5164         u32 err;
5165
5166         pci_set_power_state(pdev, PCI_D0);
5167         pci_restore_state(pdev);
5168         pci_save_state(pdev);
5169
5170         if (adapter->need_ioport)
5171                 err = pci_enable_device(pdev);
5172         else
5173                 err = pci_enable_device_mem(pdev);
5174         if (err) {
5175                 pr_err("Cannot enable PCI device from suspend\n");
5176                 return err;
5177         }
5178
5179         /* flush memory to make sure state is correct */
5180         smp_mb__before_atomic();
5181         clear_bit(__E1000_DISABLED, &adapter->flags);
5182         pci_set_master(pdev);
5183
5184         pci_enable_wake(pdev, PCI_D3hot, 0);
5185         pci_enable_wake(pdev, PCI_D3cold, 0);
5186
5187         if (netif_running(netdev)) {
5188                 err = e1000_request_irq(adapter);
5189                 if (err)
5190                         return err;
5191         }
5192
5193         e1000_power_up_phy(adapter);
5194         e1000_reset(adapter);
5195         ew32(WUS, ~0);
5196
5197         e1000_init_manageability(adapter);
5198
5199         if (netif_running(netdev))
5200                 e1000_up(adapter);
5201
5202         netif_device_attach(netdev);
5203
5204         return 0;
5205 }
5206 #endif
5207
5208 static void e1000_shutdown(struct pci_dev *pdev)
5209 {
5210         bool wake;
5211
5212         __e1000_shutdown(pdev, &wake);
5213
5214         if (system_state == SYSTEM_POWER_OFF) {
5215                 pci_wake_from_d3(pdev, wake);
5216                 pci_set_power_state(pdev, PCI_D3hot);
5217         }
5218 }
5219
5220 #ifdef CONFIG_NET_POLL_CONTROLLER
5221 /* Polling 'interrupt' - used by things like netconsole to send skbs
5222  * without having to re-enable interrupts. It's not called while
5223  * the interrupt routine is executing.
5224  */
5225 static void e1000_netpoll(struct net_device *netdev)
5226 {
5227         struct e1000_adapter *adapter = netdev_priv(netdev);
5228
5229         if (disable_hardirq(adapter->pdev->irq))
5230                 e1000_intr(adapter->pdev->irq, netdev);
5231         enable_irq(adapter->pdev->irq);
5232 }
5233 #endif
5234
5235 /**
5236  * e1000_io_error_detected - called when PCI error is detected
5237  * @pdev: Pointer to PCI device
5238  * @state: The current pci connection state
5239  *
5240  * This function is called after a PCI bus error affecting
5241  * this device has been detected.
5242  */
5243 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5244                                                 pci_channel_state_t state)
5245 {
5246         struct net_device *netdev = pci_get_drvdata(pdev);
5247         struct e1000_adapter *adapter = netdev_priv(netdev);
5248
5249         netif_device_detach(netdev);
5250
5251         if (state == pci_channel_io_perm_failure)
5252                 return PCI_ERS_RESULT_DISCONNECT;
5253
5254         if (netif_running(netdev))
5255                 e1000_down(adapter);
5256
5257         if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5258                 pci_disable_device(pdev);
5259
5260         /* Request a slot slot reset. */
5261         return PCI_ERS_RESULT_NEED_RESET;
5262 }
5263
5264 /**
5265  * e1000_io_slot_reset - called after the pci bus has been reset.
5266  * @pdev: Pointer to PCI device
5267  *
5268  * Restart the card from scratch, as if from a cold-boot. Implementation
5269  * resembles the first-half of the e1000_resume routine.
5270  */
5271 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5272 {
5273         struct net_device *netdev = pci_get_drvdata(pdev);
5274         struct e1000_adapter *adapter = netdev_priv(netdev);
5275         struct e1000_hw *hw = &adapter->hw;
5276         int err;
5277
5278         if (adapter->need_ioport)
5279                 err = pci_enable_device(pdev);
5280         else
5281                 err = pci_enable_device_mem(pdev);
5282         if (err) {
5283                 pr_err("Cannot re-enable PCI device after reset.\n");
5284                 return PCI_ERS_RESULT_DISCONNECT;
5285         }
5286
5287         /* flush memory to make sure state is correct */
5288         smp_mb__before_atomic();
5289         clear_bit(__E1000_DISABLED, &adapter->flags);
5290         pci_set_master(pdev);
5291
5292         pci_enable_wake(pdev, PCI_D3hot, 0);
5293         pci_enable_wake(pdev, PCI_D3cold, 0);
5294
5295         e1000_reset(adapter);
5296         ew32(WUS, ~0);
5297
5298         return PCI_ERS_RESULT_RECOVERED;
5299 }
5300
5301 /**
5302  * e1000_io_resume - called when traffic can start flowing again.
5303  * @pdev: Pointer to PCI device
5304  *
5305  * This callback is called when the error recovery driver tells us that
5306  * its OK to resume normal operation. Implementation resembles the
5307  * second-half of the e1000_resume routine.
5308  */
5309 static void e1000_io_resume(struct pci_dev *pdev)
5310 {
5311         struct net_device *netdev = pci_get_drvdata(pdev);
5312         struct e1000_adapter *adapter = netdev_priv(netdev);
5313
5314         e1000_init_manageability(adapter);
5315
5316         if (netif_running(netdev)) {
5317                 if (e1000_up(adapter)) {
5318                         pr_info("can't bring device back up after reset\n");
5319                         return;
5320                 }
5321         }
5322
5323         netif_device_attach(netdev);
5324 }
5325
5326 /* e1000_main.c */