Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13         char stat_string[ETH_GSTRING_LEN];
14         int type;
15         int sizeof_stat;
16         int stat_offset;
17 };
18
19 #define E1000_STAT(m)           E1000_STATS, \
20                                 sizeof(((struct e1000_adapter *)0)->m), \
21                                 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
23                                 sizeof(((struct net_device *)0)->m), \
24                                 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27         { "rx_packets", E1000_STAT(stats.gprc) },
28         { "tx_packets", E1000_STAT(stats.gptc) },
29         { "rx_bytes", E1000_STAT(stats.gorcl) },
30         { "tx_bytes", E1000_STAT(stats.gotcl) },
31         { "rx_broadcast", E1000_STAT(stats.bprc) },
32         { "tx_broadcast", E1000_STAT(stats.bptc) },
33         { "rx_multicast", E1000_STAT(stats.mprc) },
34         { "tx_multicast", E1000_STAT(stats.mptc) },
35         { "rx_errors", E1000_STAT(stats.rxerrc) },
36         { "tx_errors", E1000_STAT(stats.txerrc) },
37         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38         { "multicast", E1000_STAT(stats.mprc) },
39         { "collisions", E1000_STAT(stats.colc) },
40         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45         { "rx_missed_errors", E1000_STAT(stats.mpc) },
46         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50         { "tx_window_errors", E1000_STAT(stats.latecol) },
51         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52         { "tx_deferred_ok", E1000_STAT(stats.dc) },
53         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56         { "tx_restart_queue", E1000_STAT(restart_queue) },
57         { "rx_long_length_errors", E1000_STAT(stats.roc) },
58         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70         { "tx_smbus", E1000_STAT(stats.mgptc) },
71         { "rx_smbus", E1000_STAT(stats.mgprc) },
72         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79         "Register test  (offline)", "Eeprom test    (offline)",
80         "Interrupt test (offline)", "Loopback test  (offline)",
81         "Link test   (on/offline)"
82 };
83
84 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
85
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87                                     struct ethtool_link_ksettings *cmd)
88 {
89         struct e1000_adapter *adapter = netdev_priv(netdev);
90         struct e1000_hw *hw = &adapter->hw;
91         u32 supported, advertising;
92
93         if (hw->media_type == e1000_media_type_copper) {
94                 supported = (SUPPORTED_10baseT_Half |
95                              SUPPORTED_10baseT_Full |
96                              SUPPORTED_100baseT_Half |
97                              SUPPORTED_100baseT_Full |
98                              SUPPORTED_1000baseT_Full|
99                              SUPPORTED_Autoneg |
100                              SUPPORTED_TP);
101                 advertising = ADVERTISED_TP;
102
103                 if (hw->autoneg == 1) {
104                         advertising |= ADVERTISED_Autoneg;
105                         /* the e1000 autoneg seems to match ethtool nicely */
106                         advertising |= hw->autoneg_advertised;
107                 }
108
109                 cmd->base.port = PORT_TP;
110                 cmd->base.phy_address = hw->phy_addr;
111         } else {
112                 supported   = (SUPPORTED_1000baseT_Full |
113                                SUPPORTED_FIBRE |
114                                SUPPORTED_Autoneg);
115
116                 advertising = (ADVERTISED_1000baseT_Full |
117                                ADVERTISED_FIBRE |
118                                ADVERTISED_Autoneg);
119
120                 cmd->base.port = PORT_FIBRE;
121         }
122
123         if (er32(STATUS) & E1000_STATUS_LU) {
124                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125                                            &adapter->link_duplex);
126                 cmd->base.speed = adapter->link_speed;
127
128                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129                  * and HALF_DUPLEX != DUPLEX_HALF
130                  */
131                 if (adapter->link_duplex == FULL_DUPLEX)
132                         cmd->base.duplex = DUPLEX_FULL;
133                 else
134                         cmd->base.duplex = DUPLEX_HALF;
135         } else {
136                 cmd->base.speed = SPEED_UNKNOWN;
137                 cmd->base.duplex = DUPLEX_UNKNOWN;
138         }
139
140         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143         /* MDI-X => 1; MDI => 0 */
144         if ((hw->media_type == e1000_media_type_copper) &&
145             netif_carrier_ok(netdev))
146                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147                                      ETH_TP_MDI_X : ETH_TP_MDI);
148         else
149                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151         if (hw->mdix == AUTO_ALL_MODES)
152                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153         else
154                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157                                                 supported);
158         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159                                                 advertising);
160
161         return 0;
162 }
163
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165                                     const struct ethtool_link_ksettings *cmd)
166 {
167         struct e1000_adapter *adapter = netdev_priv(netdev);
168         struct e1000_hw *hw = &adapter->hw;
169         u32 advertising;
170
171         ethtool_convert_link_mode_to_legacy_u32(&advertising,
172                                                 cmd->link_modes.advertising);
173
174         /* MDI setting is only allowed when autoneg enabled because
175          * some hardware doesn't allow MDI setting when speed or
176          * duplex is forced.
177          */
178         if (cmd->base.eth_tp_mdix_ctrl) {
179                 if (hw->media_type != e1000_media_type_copper)
180                         return -EOPNOTSUPP;
181
182                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
184                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185                         return -EINVAL;
186                 }
187         }
188
189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190                 msleep(1);
191
192         if (cmd->base.autoneg == AUTONEG_ENABLE) {
193                 hw->autoneg = 1;
194                 if (hw->media_type == e1000_media_type_fiber)
195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                                  ADVERTISED_FIBRE |
197                                                  ADVERTISED_Autoneg;
198                 else
199                         hw->autoneg_advertised = advertising |
200                                                  ADVERTISED_TP |
201                                                  ADVERTISED_Autoneg;
202         } else {
203                 u32 speed = cmd->base.speed;
204                 /* calling this overrides forced MDI setting */
205                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206                         clear_bit(__E1000_RESETTING, &adapter->flags);
207                         return -EINVAL;
208                 }
209         }
210
211         /* MDI-X => 2; MDI => 1; Auto => 3 */
212         if (cmd->base.eth_tp_mdix_ctrl) {
213                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214                         hw->mdix = AUTO_ALL_MODES;
215                 else
216                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217         }
218
219         /* reset the link */
220
221         if (netif_running(adapter->netdev)) {
222                 e1000_down(adapter);
223                 e1000_up(adapter);
224         } else {
225                 e1000_reset(adapter);
226         }
227         clear_bit(__E1000_RESETTING, &adapter->flags);
228         return 0;
229 }
230
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234
235         /* If the link is not reported up to netdev, interrupts are disabled,
236          * and so the physical link state may have changed since we last
237          * looked. Set get_link_status to make sure that the true link
238          * state is interrogated, rather than pulling a cached and possibly
239          * stale link state from the driver.
240          */
241         if (!netif_carrier_ok(netdev))
242                 adapter->hw.get_link_status = 1;
243
244         return e1000_has_link(adapter);
245 }
246
247 static void e1000_get_pauseparam(struct net_device *netdev,
248                                  struct ethtool_pauseparam *pause)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         pause->autoneg =
254                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256         if (hw->fc == E1000_FC_RX_PAUSE) {
257                 pause->rx_pause = 1;
258         } else if (hw->fc == E1000_FC_TX_PAUSE) {
259                 pause->tx_pause = 1;
260         } else if (hw->fc == E1000_FC_FULL) {
261                 pause->rx_pause = 1;
262                 pause->tx_pause = 1;
263         }
264 }
265
266 static int e1000_set_pauseparam(struct net_device *netdev,
267                                 struct ethtool_pauseparam *pause)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         struct e1000_hw *hw = &adapter->hw;
271         int retval = 0;
272
273         adapter->fc_autoneg = pause->autoneg;
274
275         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276                 msleep(1);
277
278         if (pause->rx_pause && pause->tx_pause)
279                 hw->fc = E1000_FC_FULL;
280         else if (pause->rx_pause && !pause->tx_pause)
281                 hw->fc = E1000_FC_RX_PAUSE;
282         else if (!pause->rx_pause && pause->tx_pause)
283                 hw->fc = E1000_FC_TX_PAUSE;
284         else if (!pause->rx_pause && !pause->tx_pause)
285                 hw->fc = E1000_FC_NONE;
286
287         hw->original_fc = hw->fc;
288
289         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290                 if (netif_running(adapter->netdev)) {
291                         e1000_down(adapter);
292                         e1000_up(adapter);
293                 } else {
294                         e1000_reset(adapter);
295                 }
296         } else
297                 retval = ((hw->media_type == e1000_media_type_fiber) ?
298                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300         clear_bit(__E1000_RESETTING, &adapter->flags);
301         return retval;
302 }
303
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307
308         return adapter->msg_enable;
309 }
310
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314
315         adapter->msg_enable = data;
316 }
317
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321         return E1000_REGS_LEN * sizeof(u32);
322 }
323
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325                            void *p)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328         struct e1000_hw *hw = &adapter->hw;
329         u32 *regs_buff = p;
330         u16 phy_data;
331
332         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336         regs_buff[0]  = er32(CTRL);
337         regs_buff[1]  = er32(STATUS);
338
339         regs_buff[2]  = er32(RCTL);
340         regs_buff[3]  = er32(RDLEN);
341         regs_buff[4]  = er32(RDH);
342         regs_buff[5]  = er32(RDT);
343         regs_buff[6]  = er32(RDTR);
344
345         regs_buff[7]  = er32(TCTL);
346         regs_buff[8]  = er32(TDLEN);
347         regs_buff[9]  = er32(TDH);
348         regs_buff[10] = er32(TDT);
349         regs_buff[11] = er32(TIDV);
350
351         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352         if (hw->phy_type == e1000_phy_igp) {
353                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354                                     IGP01E1000_PHY_AGC_A);
355                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357                 regs_buff[13] = (u32)phy_data; /* cable length */
358                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359                                     IGP01E1000_PHY_AGC_B);
360                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362                 regs_buff[14] = (u32)phy_data; /* cable length */
363                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364                                     IGP01E1000_PHY_AGC_C);
365                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367                 regs_buff[15] = (u32)phy_data; /* cable length */
368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369                                     IGP01E1000_PHY_AGC_D);
370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372                 regs_buff[16] = (u32)phy_data; /* cable length */
373                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[18] = (u32)phy_data; /* cable polarity */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_PCS_INIT_REG);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[19] = (u32)phy_data; /* cable polarity */
383                 regs_buff[20] = 0; /* polarity correction enabled (always) */
384                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385                 regs_buff[23] = regs_buff[18]; /* mdix mode */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387         } else {
388                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389                 regs_buff[13] = (u32)phy_data; /* cable length */
390                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395                 regs_buff[18] = regs_buff[13]; /* cable polarity */
396                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397                 regs_buff[20] = regs_buff[17]; /* polarity correction */
398                 /* phy receive errors */
399                 regs_buff[22] = adapter->phy_stats.receive_errors;
400                 regs_buff[23] = regs_buff[13]; /* mdix mode */
401         }
402         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406         if (hw->mac_type >= e1000_82540 &&
407             hw->media_type == e1000_media_type_copper) {
408                 regs_buff[26] = er32(MANC);
409         }
410 }
411
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414         struct e1000_adapter *adapter = netdev_priv(netdev);
415         struct e1000_hw *hw = &adapter->hw;
416
417         return hw->eeprom.word_size * 2;
418 }
419
420 static int e1000_get_eeprom(struct net_device *netdev,
421                             struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423         struct e1000_adapter *adapter = netdev_priv(netdev);
424         struct e1000_hw *hw = &adapter->hw;
425         u16 *eeprom_buff;
426         int first_word, last_word;
427         int ret_val = 0;
428         u16 i;
429
430         if (eeprom->len == 0)
431                 return -EINVAL;
432
433         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435         first_word = eeprom->offset >> 1;
436         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439                                     GFP_KERNEL);
440         if (!eeprom_buff)
441                 return -ENOMEM;
442
443         if (hw->eeprom.type == e1000_eeprom_spi)
444                 ret_val = e1000_read_eeprom(hw, first_word,
445                                             last_word - first_word + 1,
446                                             eeprom_buff);
447         else {
448                 for (i = 0; i < last_word - first_word + 1; i++) {
449                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450                                                     &eeprom_buff[i]);
451                         if (ret_val)
452                                 break;
453                 }
454         }
455
456         /* Device's eeprom is always little-endian, word addressable */
457         for (i = 0; i < last_word - first_word + 1; i++)
458                 le16_to_cpus(&eeprom_buff[i]);
459
460         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461                eeprom->len);
462         kfree(eeprom_buff);
463
464         return ret_val;
465 }
466
467 static int e1000_set_eeprom(struct net_device *netdev,
468                             struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470         struct e1000_adapter *adapter = netdev_priv(netdev);
471         struct e1000_hw *hw = &adapter->hw;
472         u16 *eeprom_buff;
473         void *ptr;
474         int max_len, first_word, last_word, ret_val = 0;
475         u16 i;
476
477         if (eeprom->len == 0)
478                 return -EOPNOTSUPP;
479
480         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481                 return -EFAULT;
482
483         max_len = hw->eeprom.word_size * 2;
484
485         first_word = eeprom->offset >> 1;
486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488         if (!eeprom_buff)
489                 return -ENOMEM;
490
491         ptr = (void *)eeprom_buff;
492
493         if (eeprom->offset & 1) {
494                 /* need read/modify/write of first changed EEPROM word
495                  * only the second byte of the word is being modified
496                  */
497                 ret_val = e1000_read_eeprom(hw, first_word, 1,
498                                             &eeprom_buff[0]);
499                 ptr++;
500         }
501         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502                 /* need read/modify/write of last changed EEPROM word
503                  * only the first byte of the word is being modified
504                  */
505                 ret_val = e1000_read_eeprom(hw, last_word, 1,
506                                             &eeprom_buff[last_word - first_word]);
507         }
508
509         /* Device's eeprom is always little-endian, word addressable */
510         for (i = 0; i < last_word - first_word + 1; i++)
511                 le16_to_cpus(&eeprom_buff[i]);
512
513         memcpy(ptr, bytes, eeprom->len);
514
515         for (i = 0; i < last_word - first_word + 1; i++)
516                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518         ret_val = e1000_write_eeprom(hw, first_word,
519                                      last_word - first_word + 1, eeprom_buff);
520
521         /* Update the checksum over the first part of the EEPROM if needed */
522         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523                 e1000_update_eeprom_checksum(hw);
524
525         kfree(eeprom_buff);
526         return ret_val;
527 }
528
529 static void e1000_get_drvinfo(struct net_device *netdev,
530                               struct ethtool_drvinfo *drvinfo)
531 {
532         struct e1000_adapter *adapter = netdev_priv(netdev);
533
534         strlcpy(drvinfo->driver,  e1000_driver_name,
535                 sizeof(drvinfo->driver));
536         strlcpy(drvinfo->version, e1000_driver_version,
537                 sizeof(drvinfo->version));
538
539         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
540                 sizeof(drvinfo->bus_info));
541 }
542
543 static void e1000_get_ringparam(struct net_device *netdev,
544                                 struct ethtool_ringparam *ring)
545 {
546         struct e1000_adapter *adapter = netdev_priv(netdev);
547         struct e1000_hw *hw = &adapter->hw;
548         e1000_mac_type mac_type = hw->mac_type;
549         struct e1000_tx_ring *txdr = adapter->tx_ring;
550         struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553                 E1000_MAX_82544_RXD;
554         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555                 E1000_MAX_82544_TXD;
556         ring->rx_pending = rxdr->count;
557         ring->tx_pending = txdr->count;
558 }
559
560 static int e1000_set_ringparam(struct net_device *netdev,
561                                struct ethtool_ringparam *ring)
562 {
563         struct e1000_adapter *adapter = netdev_priv(netdev);
564         struct e1000_hw *hw = &adapter->hw;
565         e1000_mac_type mac_type = hw->mac_type;
566         struct e1000_tx_ring *txdr, *tx_old;
567         struct e1000_rx_ring *rxdr, *rx_old;
568         int i, err;
569
570         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
571                 return -EINVAL;
572
573         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
574                 msleep(1);
575
576         if (netif_running(adapter->netdev))
577                 e1000_down(adapter);
578
579         tx_old = adapter->tx_ring;
580         rx_old = adapter->rx_ring;
581
582         err = -ENOMEM;
583         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
584                        GFP_KERNEL);
585         if (!txdr)
586                 goto err_alloc_tx;
587
588         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
589                        GFP_KERNEL);
590         if (!rxdr)
591                 goto err_alloc_rx;
592
593         adapter->tx_ring = txdr;
594         adapter->rx_ring = rxdr;
595
596         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
597         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
598                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
599         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
600         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
601         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
602                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
603         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
604
605         for (i = 0; i < adapter->num_tx_queues; i++)
606                 txdr[i].count = txdr->count;
607         for (i = 0; i < adapter->num_rx_queues; i++)
608                 rxdr[i].count = rxdr->count;
609
610         err = 0;
611         if (netif_running(adapter->netdev)) {
612                 /* Try to get new resources before deleting old */
613                 err = e1000_setup_all_rx_resources(adapter);
614                 if (err)
615                         goto err_setup_rx;
616                 err = e1000_setup_all_tx_resources(adapter);
617                 if (err)
618                         goto err_setup_tx;
619
620                 /* save the new, restore the old in order to free it,
621                  * then restore the new back again
622                  */
623
624                 adapter->rx_ring = rx_old;
625                 adapter->tx_ring = tx_old;
626                 e1000_free_all_rx_resources(adapter);
627                 e1000_free_all_tx_resources(adapter);
628                 adapter->rx_ring = rxdr;
629                 adapter->tx_ring = txdr;
630                 err = e1000_up(adapter);
631         }
632         kfree(tx_old);
633         kfree(rx_old);
634
635         clear_bit(__E1000_RESETTING, &adapter->flags);
636         return err;
637
638 err_setup_tx:
639         e1000_free_all_rx_resources(adapter);
640 err_setup_rx:
641         adapter->rx_ring = rx_old;
642         adapter->tx_ring = tx_old;
643         kfree(rxdr);
644 err_alloc_rx:
645         kfree(txdr);
646 err_alloc_tx:
647         if (netif_running(adapter->netdev))
648                 e1000_up(adapter);
649         clear_bit(__E1000_RESETTING, &adapter->flags);
650         return err;
651 }
652
653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
654                              u32 mask, u32 write)
655 {
656         struct e1000_hw *hw = &adapter->hw;
657         static const u32 test[] = {
658                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
659         };
660         u8 __iomem *address = hw->hw_addr + reg;
661         u32 read;
662         int i;
663
664         for (i = 0; i < ARRAY_SIZE(test); i++) {
665                 writel(write & test[i], address);
666                 read = readl(address);
667                 if (read != (write & test[i] & mask)) {
668                         e_err(drv, "pattern test reg %04X failed: "
669                               "got 0x%08X expected 0x%08X\n",
670                               reg, read, (write & test[i] & mask));
671                         *data = reg;
672                         return true;
673                 }
674         }
675         return false;
676 }
677
678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
679                               u32 mask, u32 write)
680 {
681         struct e1000_hw *hw = &adapter->hw;
682         u8 __iomem *address = hw->hw_addr + reg;
683         u32 read;
684
685         writel(write & mask, address);
686         read = readl(address);
687         if ((read & mask) != (write & mask)) {
688                 e_err(drv, "set/check reg %04X test failed: "
689                       "got 0x%08X expected 0x%08X\n",
690                       reg, (read & mask), (write & mask));
691                 *data = reg;
692                 return true;
693         }
694         return false;
695 }
696
697 #define REG_PATTERN_TEST(reg, mask, write)                           \
698         do {                                                         \
699                 if (reg_pattern_test(adapter, data,                  \
700                              (hw->mac_type >= e1000_82543)   \
701                              ? E1000_##reg : E1000_82542_##reg,      \
702                              mask, write))                           \
703                         return 1;                                    \
704         } while (0)
705
706 #define REG_SET_AND_CHECK(reg, mask, write)                          \
707         do {                                                         \
708                 if (reg_set_and_check(adapter, data,                 \
709                               (hw->mac_type >= e1000_82543)  \
710                               ? E1000_##reg : E1000_82542_##reg,     \
711                               mask, write))                          \
712                         return 1;                                    \
713         } while (0)
714
715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
716 {
717         u32 value, before, after;
718         u32 i, toggle;
719         struct e1000_hw *hw = &adapter->hw;
720
721         /* The status register is Read Only, so a write should fail.
722          * Some bits that get toggled are ignored.
723          */
724
725         /* there are several bits on newer hardware that are r/w */
726         toggle = 0xFFFFF833;
727
728         before = er32(STATUS);
729         value = (er32(STATUS) & toggle);
730         ew32(STATUS, toggle);
731         after = er32(STATUS) & toggle;
732         if (value != after) {
733                 e_err(drv, "failed STATUS register test got: "
734                       "0x%08X expected: 0x%08X\n", after, value);
735                 *data = 1;
736                 return 1;
737         }
738         /* restore previous status */
739         ew32(STATUS, before);
740
741         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
742         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
743         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
744         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
745
746         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
747         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
748         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
749         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
750         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
751         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
752         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
753         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
754         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
755         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
756
757         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
758
759         before = 0x06DFB3FE;
760         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
761         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
762
763         if (hw->mac_type >= e1000_82543) {
764                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
765                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
767                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
769                 value = E1000_RAR_ENTRIES;
770                 for (i = 0; i < value; i++) {
771                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
772                                          0x8003FFFF, 0xFFFFFFFF);
773                 }
774         } else {
775                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
776                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
777                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
778                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
779         }
780
781         value = E1000_MC_TBL_SIZE;
782         for (i = 0; i < value; i++)
783                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
784
785         *data = 0;
786         return 0;
787 }
788
789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
790 {
791         struct e1000_hw *hw = &adapter->hw;
792         u16 temp;
793         u16 checksum = 0;
794         u16 i;
795
796         *data = 0;
797         /* Read and add up the contents of the EEPROM */
798         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
799                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
800                         *data = 1;
801                         break;
802                 }
803                 checksum += temp;
804         }
805
806         /* If Checksum is not Correct return error else test passed */
807         if ((checksum != (u16)EEPROM_SUM) && !(*data))
808                 *data = 2;
809
810         return *data;
811 }
812
813 static irqreturn_t e1000_test_intr(int irq, void *data)
814 {
815         struct net_device *netdev = (struct net_device *)data;
816         struct e1000_adapter *adapter = netdev_priv(netdev);
817         struct e1000_hw *hw = &adapter->hw;
818
819         adapter->test_icr |= er32(ICR);
820
821         return IRQ_HANDLED;
822 }
823
824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
825 {
826         struct net_device *netdev = adapter->netdev;
827         u32 mask, i = 0;
828         bool shared_int = true;
829         u32 irq = adapter->pdev->irq;
830         struct e1000_hw *hw = &adapter->hw;
831
832         *data = 0;
833
834         /* NOTE: we don't test MSI interrupts here, yet
835          * Hook up test interrupt handler just for this test
836          */
837         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
838                          netdev))
839                 shared_int = false;
840         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
841                              netdev->name, netdev)) {
842                 *data = 1;
843                 return -1;
844         }
845         e_info(hw, "testing %s interrupt\n", (shared_int ?
846                "shared" : "unshared"));
847
848         /* Disable all the interrupts */
849         ew32(IMC, 0xFFFFFFFF);
850         E1000_WRITE_FLUSH();
851         msleep(10);
852
853         /* Test each interrupt */
854         for (; i < 10; i++) {
855                 /* Interrupt to test */
856                 mask = 1 << i;
857
858                 if (!shared_int) {
859                         /* Disable the interrupt to be reported in
860                          * the cause register and then force the same
861                          * interrupt and see if one gets posted.  If
862                          * an interrupt was posted to the bus, the
863                          * test failed.
864                          */
865                         adapter->test_icr = 0;
866                         ew32(IMC, mask);
867                         ew32(ICS, mask);
868                         E1000_WRITE_FLUSH();
869                         msleep(10);
870
871                         if (adapter->test_icr & mask) {
872                                 *data = 3;
873                                 break;
874                         }
875                 }
876
877                 /* Enable the interrupt to be reported in
878                  * the cause register and then force the same
879                  * interrupt and see if one gets posted.  If
880                  * an interrupt was not posted to the bus, the
881                  * test failed.
882                  */
883                 adapter->test_icr = 0;
884                 ew32(IMS, mask);
885                 ew32(ICS, mask);
886                 E1000_WRITE_FLUSH();
887                 msleep(10);
888
889                 if (!(adapter->test_icr & mask)) {
890                         *data = 4;
891                         break;
892                 }
893
894                 if (!shared_int) {
895                         /* Disable the other interrupts to be reported in
896                          * the cause register and then force the other
897                          * interrupts and see if any get posted.  If
898                          * an interrupt was posted to the bus, the
899                          * test failed.
900                          */
901                         adapter->test_icr = 0;
902                         ew32(IMC, ~mask & 0x00007FFF);
903                         ew32(ICS, ~mask & 0x00007FFF);
904                         E1000_WRITE_FLUSH();
905                         msleep(10);
906
907                         if (adapter->test_icr) {
908                                 *data = 5;
909                                 break;
910                         }
911                 }
912         }
913
914         /* Disable all the interrupts */
915         ew32(IMC, 0xFFFFFFFF);
916         E1000_WRITE_FLUSH();
917         msleep(10);
918
919         /* Unhook test interrupt handler */
920         free_irq(irq, netdev);
921
922         return *data;
923 }
924
925 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
926 {
927         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
928         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
929         struct pci_dev *pdev = adapter->pdev;
930         int i;
931
932         if (txdr->desc && txdr->buffer_info) {
933                 for (i = 0; i < txdr->count; i++) {
934                         if (txdr->buffer_info[i].dma)
935                                 dma_unmap_single(&pdev->dev,
936                                                  txdr->buffer_info[i].dma,
937                                                  txdr->buffer_info[i].length,
938                                                  DMA_TO_DEVICE);
939                         if (txdr->buffer_info[i].skb)
940                                 dev_kfree_skb(txdr->buffer_info[i].skb);
941                 }
942         }
943
944         if (rxdr->desc && rxdr->buffer_info) {
945                 for (i = 0; i < rxdr->count; i++) {
946                         if (rxdr->buffer_info[i].dma)
947                                 dma_unmap_single(&pdev->dev,
948                                                  rxdr->buffer_info[i].dma,
949                                                  E1000_RXBUFFER_2048,
950                                                  DMA_FROM_DEVICE);
951                         kfree(rxdr->buffer_info[i].rxbuf.data);
952                 }
953         }
954
955         if (txdr->desc) {
956                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
957                                   txdr->dma);
958                 txdr->desc = NULL;
959         }
960         if (rxdr->desc) {
961                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
962                                   rxdr->dma);
963                 rxdr->desc = NULL;
964         }
965
966         kfree(txdr->buffer_info);
967         txdr->buffer_info = NULL;
968         kfree(rxdr->buffer_info);
969         rxdr->buffer_info = NULL;
970 }
971
972 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
973 {
974         struct e1000_hw *hw = &adapter->hw;
975         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
976         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
977         struct pci_dev *pdev = adapter->pdev;
978         u32 rctl;
979         int i, ret_val;
980
981         /* Setup Tx descriptor ring and Tx buffers */
982
983         if (!txdr->count)
984                 txdr->count = E1000_DEFAULT_TXD;
985
986         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
987                                     GFP_KERNEL);
988         if (!txdr->buffer_info) {
989                 ret_val = 1;
990                 goto err_nomem;
991         }
992
993         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
994         txdr->size = ALIGN(txdr->size, 4096);
995         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
996                                         GFP_KERNEL);
997         if (!txdr->desc) {
998                 ret_val = 2;
999                 goto err_nomem;
1000         }
1001         txdr->next_to_use = txdr->next_to_clean = 0;
1002
1003         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1004         ew32(TDBAH, ((u64)txdr->dma >> 32));
1005         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1006         ew32(TDH, 0);
1007         ew32(TDT, 0);
1008         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1009              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1010              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1011
1012         for (i = 0; i < txdr->count; i++) {
1013                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1014                 struct sk_buff *skb;
1015                 unsigned int size = 1024;
1016
1017                 skb = alloc_skb(size, GFP_KERNEL);
1018                 if (!skb) {
1019                         ret_val = 3;
1020                         goto err_nomem;
1021                 }
1022                 skb_put(skb, size);
1023                 txdr->buffer_info[i].skb = skb;
1024                 txdr->buffer_info[i].length = skb->len;
1025                 txdr->buffer_info[i].dma =
1026                         dma_map_single(&pdev->dev, skb->data, skb->len,
1027                                        DMA_TO_DEVICE);
1028                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1029                         ret_val = 4;
1030                         goto err_nomem;
1031                 }
1032                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1033                 tx_desc->lower.data = cpu_to_le32(skb->len);
1034                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1035                                                    E1000_TXD_CMD_IFCS |
1036                                                    E1000_TXD_CMD_RPS);
1037                 tx_desc->upper.data = 0;
1038         }
1039
1040         /* Setup Rx descriptor ring and Rx buffers */
1041
1042         if (!rxdr->count)
1043                 rxdr->count = E1000_DEFAULT_RXD;
1044
1045         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1046                                     GFP_KERNEL);
1047         if (!rxdr->buffer_info) {
1048                 ret_val = 5;
1049                 goto err_nomem;
1050         }
1051
1052         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1053         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1054                                         GFP_KERNEL);
1055         if (!rxdr->desc) {
1056                 ret_val = 6;
1057                 goto err_nomem;
1058         }
1059         rxdr->next_to_use = rxdr->next_to_clean = 0;
1060
1061         rctl = er32(RCTL);
1062         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1063         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1064         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1065         ew32(RDLEN, rxdr->size);
1066         ew32(RDH, 0);
1067         ew32(RDT, 0);
1068         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1069                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1070                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1071         ew32(RCTL, rctl);
1072
1073         for (i = 0; i < rxdr->count; i++) {
1074                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1075                 u8 *buf;
1076
1077                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1078                               GFP_KERNEL);
1079                 if (!buf) {
1080                         ret_val = 7;
1081                         goto err_nomem;
1082                 }
1083                 rxdr->buffer_info[i].rxbuf.data = buf;
1084
1085                 rxdr->buffer_info[i].dma =
1086                         dma_map_single(&pdev->dev,
1087                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1088                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1089                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1090                         ret_val = 8;
1091                         goto err_nomem;
1092                 }
1093                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1094         }
1095
1096         return 0;
1097
1098 err_nomem:
1099         e1000_free_desc_rings(adapter);
1100         return ret_val;
1101 }
1102
1103 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1104 {
1105         struct e1000_hw *hw = &adapter->hw;
1106
1107         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1108         e1000_write_phy_reg(hw, 29, 0x001F);
1109         e1000_write_phy_reg(hw, 30, 0x8FFC);
1110         e1000_write_phy_reg(hw, 29, 0x001A);
1111         e1000_write_phy_reg(hw, 30, 0x8FF0);
1112 }
1113
1114 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1115 {
1116         struct e1000_hw *hw = &adapter->hw;
1117         u16 phy_reg;
1118
1119         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1120          * Extended PHY Specific Control Register to 25MHz clock.  This
1121          * value defaults back to a 2.5MHz clock when the PHY is reset.
1122          */
1123         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1124         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1125         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1126
1127         /* In addition, because of the s/w reset above, we need to enable
1128          * CRS on TX.  This must be set for both full and half duplex
1129          * operation.
1130          */
1131         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1132         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1133         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1134 }
1135
1136 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1137 {
1138         struct e1000_hw *hw = &adapter->hw;
1139         u32 ctrl_reg;
1140         u16 phy_reg;
1141
1142         /* Setup the Device Control Register for PHY loopback test. */
1143
1144         ctrl_reg = er32(CTRL);
1145         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1146                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1147                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1148                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1149                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1150
1151         ew32(CTRL, ctrl_reg);
1152
1153         /* Read the PHY Specific Control Register (0x10) */
1154         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155
1156         /* Clear Auto-Crossover bits in PHY Specific Control Register
1157          * (bits 6:5).
1158          */
1159         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1160         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1161
1162         /* Perform software reset on the PHY */
1163         e1000_phy_reset(hw);
1164
1165         /* Have to setup TX_CLK and TX_CRS after software reset */
1166         e1000_phy_reset_clk_and_crs(adapter);
1167
1168         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1169
1170         /* Wait for reset to complete. */
1171         udelay(500);
1172
1173         /* Have to setup TX_CLK and TX_CRS after software reset */
1174         e1000_phy_reset_clk_and_crs(adapter);
1175
1176         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1177         e1000_phy_disable_receiver(adapter);
1178
1179         /* Set the loopback bit in the PHY control register. */
1180         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1181         phy_reg |= MII_CR_LOOPBACK;
1182         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1183
1184         /* Setup TX_CLK and TX_CRS one more time. */
1185         e1000_phy_reset_clk_and_crs(adapter);
1186
1187         /* Check Phy Configuration */
1188         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1189         if (phy_reg != 0x4100)
1190                 return 9;
1191
1192         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1193         if (phy_reg != 0x0070)
1194                 return 10;
1195
1196         e1000_read_phy_reg(hw, 29, &phy_reg);
1197         if (phy_reg != 0x001A)
1198                 return 11;
1199
1200         return 0;
1201 }
1202
1203 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1204 {
1205         struct e1000_hw *hw = &adapter->hw;
1206         u32 ctrl_reg = 0;
1207         u32 stat_reg = 0;
1208
1209         hw->autoneg = false;
1210
1211         if (hw->phy_type == e1000_phy_m88) {
1212                 /* Auto-MDI/MDIX Off */
1213                 e1000_write_phy_reg(hw,
1214                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1215                 /* reset to update Auto-MDI/MDIX */
1216                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1217                 /* autoneg off */
1218                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1219         }
1220
1221         ctrl_reg = er32(CTRL);
1222
1223         /* force 1000, set loopback */
1224         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1225
1226         /* Now set up the MAC to the same speed/duplex as the PHY. */
1227         ctrl_reg = er32(CTRL);
1228         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1229         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1230                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1231                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1232                         E1000_CTRL_FD); /* Force Duplex to FULL */
1233
1234         if (hw->media_type == e1000_media_type_copper &&
1235             hw->phy_type == e1000_phy_m88)
1236                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1237         else {
1238                 /* Set the ILOS bit on the fiber Nic is half
1239                  * duplex link is detected.
1240                  */
1241                 stat_reg = er32(STATUS);
1242                 if ((stat_reg & E1000_STATUS_FD) == 0)
1243                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1244         }
1245
1246         ew32(CTRL, ctrl_reg);
1247
1248         /* Disable the receiver on the PHY so when a cable is plugged in, the
1249          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1250          */
1251         if (hw->phy_type == e1000_phy_m88)
1252                 e1000_phy_disable_receiver(adapter);
1253
1254         udelay(500);
1255
1256         return 0;
1257 }
1258
1259 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1260 {
1261         struct e1000_hw *hw = &adapter->hw;
1262         u16 phy_reg = 0;
1263         u16 count = 0;
1264
1265         switch (hw->mac_type) {
1266         case e1000_82543:
1267                 if (hw->media_type == e1000_media_type_copper) {
1268                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1269                          * Some PHY registers get corrupted at random, so
1270                          * attempt this 10 times.
1271                          */
1272                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1273                                count++ < 10);
1274                         if (count < 11)
1275                                 return 0;
1276                 }
1277                 break;
1278
1279         case e1000_82544:
1280         case e1000_82540:
1281         case e1000_82545:
1282         case e1000_82545_rev_3:
1283         case e1000_82546:
1284         case e1000_82546_rev_3:
1285         case e1000_82541:
1286         case e1000_82541_rev_2:
1287         case e1000_82547:
1288         case e1000_82547_rev_2:
1289                 return e1000_integrated_phy_loopback(adapter);
1290         default:
1291                 /* Default PHY loopback work is to read the MII
1292                  * control register and assert bit 14 (loopback mode).
1293                  */
1294                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1295                 phy_reg |= MII_CR_LOOPBACK;
1296                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1297                 return 0;
1298         }
1299
1300         return 8;
1301 }
1302
1303 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1304 {
1305         struct e1000_hw *hw = &adapter->hw;
1306         u32 rctl;
1307
1308         if (hw->media_type == e1000_media_type_fiber ||
1309             hw->media_type == e1000_media_type_internal_serdes) {
1310                 switch (hw->mac_type) {
1311                 case e1000_82545:
1312                 case e1000_82546:
1313                 case e1000_82545_rev_3:
1314                 case e1000_82546_rev_3:
1315                         return e1000_set_phy_loopback(adapter);
1316                 default:
1317                         rctl = er32(RCTL);
1318                         rctl |= E1000_RCTL_LBM_TCVR;
1319                         ew32(RCTL, rctl);
1320                         return 0;
1321                 }
1322         } else if (hw->media_type == e1000_media_type_copper) {
1323                 return e1000_set_phy_loopback(adapter);
1324         }
1325
1326         return 7;
1327 }
1328
1329 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1330 {
1331         struct e1000_hw *hw = &adapter->hw;
1332         u32 rctl;
1333         u16 phy_reg;
1334
1335         rctl = er32(RCTL);
1336         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1337         ew32(RCTL, rctl);
1338
1339         switch (hw->mac_type) {
1340         case e1000_82545:
1341         case e1000_82546:
1342         case e1000_82545_rev_3:
1343         case e1000_82546_rev_3:
1344         default:
1345                 hw->autoneg = true;
1346                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1347                 if (phy_reg & MII_CR_LOOPBACK) {
1348                         phy_reg &= ~MII_CR_LOOPBACK;
1349                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1350                         e1000_phy_reset(hw);
1351                 }
1352                 break;
1353         }
1354 }
1355
1356 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1357                                       unsigned int frame_size)
1358 {
1359         memset(skb->data, 0xFF, frame_size);
1360         frame_size &= ~1;
1361         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1362         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1363         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1364 }
1365
1366 static int e1000_check_lbtest_frame(const unsigned char *data,
1367                                     unsigned int frame_size)
1368 {
1369         frame_size &= ~1;
1370         if (*(data + 3) == 0xFF) {
1371                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1372                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1373                         return 0;
1374                 }
1375         }
1376         return 13;
1377 }
1378
1379 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1380 {
1381         struct e1000_hw *hw = &adapter->hw;
1382         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1383         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1384         struct pci_dev *pdev = adapter->pdev;
1385         int i, j, k, l, lc, good_cnt, ret_val = 0;
1386         unsigned long time;
1387
1388         ew32(RDT, rxdr->count - 1);
1389
1390         /* Calculate the loop count based on the largest descriptor ring
1391          * The idea is to wrap the largest ring a number of times using 64
1392          * send/receive pairs during each loop
1393          */
1394
1395         if (rxdr->count <= txdr->count)
1396                 lc = ((txdr->count / 64) * 2) + 1;
1397         else
1398                 lc = ((rxdr->count / 64) * 2) + 1;
1399
1400         k = l = 0;
1401         for (j = 0; j <= lc; j++) { /* loop count loop */
1402                 for (i = 0; i < 64; i++) { /* send the packets */
1403                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1404                                                   1024);
1405                         dma_sync_single_for_device(&pdev->dev,
1406                                                    txdr->buffer_info[k].dma,
1407                                                    txdr->buffer_info[k].length,
1408                                                    DMA_TO_DEVICE);
1409                         if (unlikely(++k == txdr->count))
1410                                 k = 0;
1411                 }
1412                 ew32(TDT, k);
1413                 E1000_WRITE_FLUSH();
1414                 msleep(200);
1415                 time = jiffies; /* set the start time for the receive */
1416                 good_cnt = 0;
1417                 do { /* receive the sent packets */
1418                         dma_sync_single_for_cpu(&pdev->dev,
1419                                                 rxdr->buffer_info[l].dma,
1420                                                 E1000_RXBUFFER_2048,
1421                                                 DMA_FROM_DEVICE);
1422
1423                         ret_val = e1000_check_lbtest_frame(
1424                                         rxdr->buffer_info[l].rxbuf.data +
1425                                         NET_SKB_PAD + NET_IP_ALIGN,
1426                                         1024);
1427                         if (!ret_val)
1428                                 good_cnt++;
1429                         if (unlikely(++l == rxdr->count))
1430                                 l = 0;
1431                         /* time + 20 msecs (200 msecs on 2.4) is more than
1432                          * enough time to complete the receives, if it's
1433                          * exceeded, break and error off
1434                          */
1435                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1436
1437                 if (good_cnt != 64) {
1438                         ret_val = 13; /* ret_val is the same as mis-compare */
1439                         break;
1440                 }
1441                 if (time_after_eq(jiffies, time + 2)) {
1442                         ret_val = 14; /* error code for time out error */
1443                         break;
1444                 }
1445         } /* end loop count loop */
1446         return ret_val;
1447 }
1448
1449 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1450 {
1451         *data = e1000_setup_desc_rings(adapter);
1452         if (*data)
1453                 goto out;
1454         *data = e1000_setup_loopback_test(adapter);
1455         if (*data)
1456                 goto err_loopback;
1457         *data = e1000_run_loopback_test(adapter);
1458         e1000_loopback_cleanup(adapter);
1459
1460 err_loopback:
1461         e1000_free_desc_rings(adapter);
1462 out:
1463         return *data;
1464 }
1465
1466 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1467 {
1468         struct e1000_hw *hw = &adapter->hw;
1469         *data = 0;
1470         if (hw->media_type == e1000_media_type_internal_serdes) {
1471                 int i = 0;
1472
1473                 hw->serdes_has_link = false;
1474
1475                 /* On some blade server designs, link establishment
1476                  * could take as long as 2-3 minutes
1477                  */
1478                 do {
1479                         e1000_check_for_link(hw);
1480                         if (hw->serdes_has_link)
1481                                 return *data;
1482                         msleep(20);
1483                 } while (i++ < 3750);
1484
1485                 *data = 1;
1486         } else {
1487                 e1000_check_for_link(hw);
1488                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1489                         msleep(4000);
1490
1491                 if (!(er32(STATUS) & E1000_STATUS_LU))
1492                         *data = 1;
1493         }
1494         return *data;
1495 }
1496
1497 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1498 {
1499         switch (sset) {
1500         case ETH_SS_TEST:
1501                 return E1000_TEST_LEN;
1502         case ETH_SS_STATS:
1503                 return E1000_STATS_LEN;
1504         default:
1505                 return -EOPNOTSUPP;
1506         }
1507 }
1508
1509 static void e1000_diag_test(struct net_device *netdev,
1510                             struct ethtool_test *eth_test, u64 *data)
1511 {
1512         struct e1000_adapter *adapter = netdev_priv(netdev);
1513         struct e1000_hw *hw = &adapter->hw;
1514         bool if_running = netif_running(netdev);
1515
1516         set_bit(__E1000_TESTING, &adapter->flags);
1517         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1518                 /* Offline tests */
1519
1520                 /* save speed, duplex, autoneg settings */
1521                 u16 autoneg_advertised = hw->autoneg_advertised;
1522                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1523                 u8 autoneg = hw->autoneg;
1524
1525                 e_info(hw, "offline testing starting\n");
1526
1527                 /* Link test performed before hardware reset so autoneg doesn't
1528                  * interfere with test result
1529                  */
1530                 if (e1000_link_test(adapter, &data[4]))
1531                         eth_test->flags |= ETH_TEST_FL_FAILED;
1532
1533                 if (if_running)
1534                         /* indicate we're in test mode */
1535                         e1000_close(netdev);
1536                 else
1537                         e1000_reset(adapter);
1538
1539                 if (e1000_reg_test(adapter, &data[0]))
1540                         eth_test->flags |= ETH_TEST_FL_FAILED;
1541
1542                 e1000_reset(adapter);
1543                 if (e1000_eeprom_test(adapter, &data[1]))
1544                         eth_test->flags |= ETH_TEST_FL_FAILED;
1545
1546                 e1000_reset(adapter);
1547                 if (e1000_intr_test(adapter, &data[2]))
1548                         eth_test->flags |= ETH_TEST_FL_FAILED;
1549
1550                 e1000_reset(adapter);
1551                 /* make sure the phy is powered up */
1552                 e1000_power_up_phy(adapter);
1553                 if (e1000_loopback_test(adapter, &data[3]))
1554                         eth_test->flags |= ETH_TEST_FL_FAILED;
1555
1556                 /* restore speed, duplex, autoneg settings */
1557                 hw->autoneg_advertised = autoneg_advertised;
1558                 hw->forced_speed_duplex = forced_speed_duplex;
1559                 hw->autoneg = autoneg;
1560
1561                 e1000_reset(adapter);
1562                 clear_bit(__E1000_TESTING, &adapter->flags);
1563                 if (if_running)
1564                         e1000_open(netdev);
1565         } else {
1566                 e_info(hw, "online testing starting\n");
1567                 /* Online tests */
1568                 if (e1000_link_test(adapter, &data[4]))
1569                         eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571                 /* Online tests aren't run; pass by default */
1572                 data[0] = 0;
1573                 data[1] = 0;
1574                 data[2] = 0;
1575                 data[3] = 0;
1576
1577                 clear_bit(__E1000_TESTING, &adapter->flags);
1578         }
1579         msleep_interruptible(4 * 1000);
1580 }
1581
1582 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1583                                struct ethtool_wolinfo *wol)
1584 {
1585         struct e1000_hw *hw = &adapter->hw;
1586         int retval = 1; /* fail by default */
1587
1588         switch (hw->device_id) {
1589         case E1000_DEV_ID_82542:
1590         case E1000_DEV_ID_82543GC_FIBER:
1591         case E1000_DEV_ID_82543GC_COPPER:
1592         case E1000_DEV_ID_82544EI_FIBER:
1593         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1594         case E1000_DEV_ID_82545EM_FIBER:
1595         case E1000_DEV_ID_82545EM_COPPER:
1596         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1597         case E1000_DEV_ID_82546GB_PCIE:
1598                 /* these don't support WoL at all */
1599                 wol->supported = 0;
1600                 break;
1601         case E1000_DEV_ID_82546EB_FIBER:
1602         case E1000_DEV_ID_82546GB_FIBER:
1603                 /* Wake events not supported on port B */
1604                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1605                         wol->supported = 0;
1606                         break;
1607                 }
1608                 /* return success for non excluded adapter ports */
1609                 retval = 0;
1610                 break;
1611         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1612                 /* quad port adapters only support WoL on port A */
1613                 if (!adapter->quad_port_a) {
1614                         wol->supported = 0;
1615                         break;
1616                 }
1617                 /* return success for non excluded adapter ports */
1618                 retval = 0;
1619                 break;
1620         default:
1621                 /* dual port cards only support WoL on port A from now on
1622                  * unless it was enabled in the eeprom for port B
1623                  * so exclude FUNC_1 ports from having WoL enabled
1624                  */
1625                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1626                     !adapter->eeprom_wol) {
1627                         wol->supported = 0;
1628                         break;
1629                 }
1630
1631                 retval = 0;
1632         }
1633
1634         return retval;
1635 }
1636
1637 static void e1000_get_wol(struct net_device *netdev,
1638                           struct ethtool_wolinfo *wol)
1639 {
1640         struct e1000_adapter *adapter = netdev_priv(netdev);
1641         struct e1000_hw *hw = &adapter->hw;
1642
1643         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1644         wol->wolopts = 0;
1645
1646         /* this function will set ->supported = 0 and return 1 if wol is not
1647          * supported by this hardware
1648          */
1649         if (e1000_wol_exclusion(adapter, wol) ||
1650             !device_can_wakeup(&adapter->pdev->dev))
1651                 return;
1652
1653         /* apply any specific unsupported masks here */
1654         switch (hw->device_id) {
1655         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1656                 /* KSP3 does not support UCAST wake-ups */
1657                 wol->supported &= ~WAKE_UCAST;
1658
1659                 if (adapter->wol & E1000_WUFC_EX)
1660                         e_err(drv, "Interface does not support directed "
1661                               "(unicast) frame wake-up packets\n");
1662                 break;
1663         default:
1664                 break;
1665         }
1666
1667         if (adapter->wol & E1000_WUFC_EX)
1668                 wol->wolopts |= WAKE_UCAST;
1669         if (adapter->wol & E1000_WUFC_MC)
1670                 wol->wolopts |= WAKE_MCAST;
1671         if (adapter->wol & E1000_WUFC_BC)
1672                 wol->wolopts |= WAKE_BCAST;
1673         if (adapter->wol & E1000_WUFC_MAG)
1674                 wol->wolopts |= WAKE_MAGIC;
1675 }
1676
1677 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1678 {
1679         struct e1000_adapter *adapter = netdev_priv(netdev);
1680         struct e1000_hw *hw = &adapter->hw;
1681
1682         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1683                 return -EOPNOTSUPP;
1684
1685         if (e1000_wol_exclusion(adapter, wol) ||
1686             !device_can_wakeup(&adapter->pdev->dev))
1687                 return wol->wolopts ? -EOPNOTSUPP : 0;
1688
1689         switch (hw->device_id) {
1690         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1691                 if (wol->wolopts & WAKE_UCAST) {
1692                         e_err(drv, "Interface does not support directed "
1693                               "(unicast) frame wake-up packets\n");
1694                         return -EOPNOTSUPP;
1695                 }
1696                 break;
1697         default:
1698                 break;
1699         }
1700
1701         /* these settings will always override what we currently have */
1702         adapter->wol = 0;
1703
1704         if (wol->wolopts & WAKE_UCAST)
1705                 adapter->wol |= E1000_WUFC_EX;
1706         if (wol->wolopts & WAKE_MCAST)
1707                 adapter->wol |= E1000_WUFC_MC;
1708         if (wol->wolopts & WAKE_BCAST)
1709                 adapter->wol |= E1000_WUFC_BC;
1710         if (wol->wolopts & WAKE_MAGIC)
1711                 adapter->wol |= E1000_WUFC_MAG;
1712
1713         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1714
1715         return 0;
1716 }
1717
1718 static int e1000_set_phys_id(struct net_device *netdev,
1719                              enum ethtool_phys_id_state state)
1720 {
1721         struct e1000_adapter *adapter = netdev_priv(netdev);
1722         struct e1000_hw *hw = &adapter->hw;
1723
1724         switch (state) {
1725         case ETHTOOL_ID_ACTIVE:
1726                 e1000_setup_led(hw);
1727                 return 2;
1728
1729         case ETHTOOL_ID_ON:
1730                 e1000_led_on(hw);
1731                 break;
1732
1733         case ETHTOOL_ID_OFF:
1734                 e1000_led_off(hw);
1735                 break;
1736
1737         case ETHTOOL_ID_INACTIVE:
1738                 e1000_cleanup_led(hw);
1739         }
1740
1741         return 0;
1742 }
1743
1744 static int e1000_get_coalesce(struct net_device *netdev,
1745                               struct ethtool_coalesce *ec)
1746 {
1747         struct e1000_adapter *adapter = netdev_priv(netdev);
1748
1749         if (adapter->hw.mac_type < e1000_82545)
1750                 return -EOPNOTSUPP;
1751
1752         if (adapter->itr_setting <= 4)
1753                 ec->rx_coalesce_usecs = adapter->itr_setting;
1754         else
1755                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1756
1757         return 0;
1758 }
1759
1760 static int e1000_set_coalesce(struct net_device *netdev,
1761                               struct ethtool_coalesce *ec)
1762 {
1763         struct e1000_adapter *adapter = netdev_priv(netdev);
1764         struct e1000_hw *hw = &adapter->hw;
1765
1766         if (hw->mac_type < e1000_82545)
1767                 return -EOPNOTSUPP;
1768
1769         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1770             ((ec->rx_coalesce_usecs > 4) &&
1771              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1772             (ec->rx_coalesce_usecs == 2))
1773                 return -EINVAL;
1774
1775         if (ec->rx_coalesce_usecs == 4) {
1776                 adapter->itr = adapter->itr_setting = 4;
1777         } else if (ec->rx_coalesce_usecs <= 3) {
1778                 adapter->itr = 20000;
1779                 adapter->itr_setting = ec->rx_coalesce_usecs;
1780         } else {
1781                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1782                 adapter->itr_setting = adapter->itr & ~3;
1783         }
1784
1785         if (adapter->itr_setting != 0)
1786                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1787         else
1788                 ew32(ITR, 0);
1789
1790         return 0;
1791 }
1792
1793 static int e1000_nway_reset(struct net_device *netdev)
1794 {
1795         struct e1000_adapter *adapter = netdev_priv(netdev);
1796
1797         if (netif_running(netdev))
1798                 e1000_reinit_locked(adapter);
1799         return 0;
1800 }
1801
1802 static void e1000_get_ethtool_stats(struct net_device *netdev,
1803                                     struct ethtool_stats *stats, u64 *data)
1804 {
1805         struct e1000_adapter *adapter = netdev_priv(netdev);
1806         int i;
1807         const struct e1000_stats *stat = e1000_gstrings_stats;
1808
1809         e1000_update_stats(adapter);
1810         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1811                 char *p;
1812
1813                 switch (stat->type) {
1814                 case NETDEV_STATS:
1815                         p = (char *)netdev + stat->stat_offset;
1816                         break;
1817                 case E1000_STATS:
1818                         p = (char *)adapter + stat->stat_offset;
1819                         break;
1820                 default:
1821                         netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1822                                          stat->type, i);
1823                         continue;
1824                 }
1825
1826                 if (stat->sizeof_stat == sizeof(u64))
1827                         data[i] = *(u64 *)p;
1828                 else
1829                         data[i] = *(u32 *)p;
1830         }
1831 /* BUG_ON(i != E1000_STATS_LEN); */
1832 }
1833
1834 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1835                               u8 *data)
1836 {
1837         u8 *p = data;
1838         int i;
1839
1840         switch (stringset) {
1841         case ETH_SS_TEST:
1842                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1843                 break;
1844         case ETH_SS_STATS:
1845                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1846                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1847                                ETH_GSTRING_LEN);
1848                         p += ETH_GSTRING_LEN;
1849                 }
1850                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1851                 break;
1852         }
1853 }
1854
1855 static const struct ethtool_ops e1000_ethtool_ops = {
1856         .get_drvinfo            = e1000_get_drvinfo,
1857         .get_regs_len           = e1000_get_regs_len,
1858         .get_regs               = e1000_get_regs,
1859         .get_wol                = e1000_get_wol,
1860         .set_wol                = e1000_set_wol,
1861         .get_msglevel           = e1000_get_msglevel,
1862         .set_msglevel           = e1000_set_msglevel,
1863         .nway_reset             = e1000_nway_reset,
1864         .get_link               = e1000_get_link,
1865         .get_eeprom_len         = e1000_get_eeprom_len,
1866         .get_eeprom             = e1000_get_eeprom,
1867         .set_eeprom             = e1000_set_eeprom,
1868         .get_ringparam          = e1000_get_ringparam,
1869         .set_ringparam          = e1000_set_ringparam,
1870         .get_pauseparam         = e1000_get_pauseparam,
1871         .set_pauseparam         = e1000_set_pauseparam,
1872         .self_test              = e1000_diag_test,
1873         .get_strings            = e1000_get_strings,
1874         .set_phys_id            = e1000_set_phys_id,
1875         .get_ethtool_stats      = e1000_get_ethtool_stats,
1876         .get_sset_count         = e1000_get_sset_count,
1877         .get_coalesce           = e1000_get_coalesce,
1878         .set_coalesce           = e1000_set_coalesce,
1879         .get_ts_info            = ethtool_op_get_ts_info,
1880         .get_link_ksettings     = e1000_get_link_ksettings,
1881         .set_link_ksettings     = e1000_set_link_ksettings,
1882 };
1883
1884 void e1000_set_ethtool_ops(struct net_device *netdev)
1885 {
1886         netdev->ethtool_ops = &e1000_ethtool_ops;
1887 }