Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (5*HZ)
105
106 const char gfar_driver_version[] = "2.0";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
114                                 int alloc_cnt);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static noinline void gfar_update_link_state(struct gfar_private *priv);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct platform_device *ofdev);
124 static int gfar_remove(struct platform_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll_rx(struct napi_struct *napi, int budget);
130 static int gfar_poll_tx(struct napi_struct *napi, int budget);
131 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
132 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
139 static void gfar_halt_nodisable(struct gfar_private *priv);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
142                                   const u8 *addr);
143 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
150                             dma_addr_t buf)
151 {
152         u32 lstatus;
153
154         bdp->bufPtr = cpu_to_be32(buf);
155
156         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
157         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
158                 lstatus |= BD_LFLAG(RXBD_WRAP);
159
160         gfar_wmb();
161
162         bdp->lstatus = cpu_to_be32(lstatus);
163 }
164
165 static void gfar_init_bds(struct net_device *ndev)
166 {
167         struct gfar_private *priv = netdev_priv(ndev);
168         struct gfar __iomem *regs = priv->gfargrp[0].regs;
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         u32 __iomem *rfbptr;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
195                                             TXBD_WRAP);
196         }
197
198         rfbptr = &regs->rfbptr0;
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201
202                 rx_queue->next_to_clean = 0;
203                 rx_queue->next_to_use = 0;
204                 rx_queue->next_to_alloc = 0;
205
206                 /* make sure next_to_clean != next_to_use after this
207                  * by leaving at least 1 unused descriptor
208                  */
209                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
210
211                 rx_queue->rfbptr = rfbptr;
212                 rfbptr += 2;
213         }
214 }
215
216 static int gfar_alloc_skb_resources(struct net_device *ndev)
217 {
218         void *vaddr;
219         dma_addr_t addr;
220         int i, j;
221         struct gfar_private *priv = netdev_priv(ndev);
222         struct device *dev = priv->dev;
223         struct gfar_priv_tx_q *tx_queue = NULL;
224         struct gfar_priv_rx_q *rx_queue = NULL;
225
226         priv->total_tx_ring_size = 0;
227         for (i = 0; i < priv->num_tx_queues; i++)
228                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
229
230         priv->total_rx_ring_size = 0;
231         for (i = 0; i < priv->num_rx_queues; i++)
232                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
233
234         /* Allocate memory for the buffer descriptors */
235         vaddr = dma_alloc_coherent(dev,
236                                    (priv->total_tx_ring_size *
237                                     sizeof(struct txbd8)) +
238                                    (priv->total_rx_ring_size *
239                                     sizeof(struct rxbd8)),
240                                    &addr, GFP_KERNEL);
241         if (!vaddr)
242                 return -ENOMEM;
243
244         for (i = 0; i < priv->num_tx_queues; i++) {
245                 tx_queue = priv->tx_queue[i];
246                 tx_queue->tx_bd_base = vaddr;
247                 tx_queue->tx_bd_dma_base = addr;
248                 tx_queue->dev = ndev;
249                 /* enet DMA only understands physical addresses */
250                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
251                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
252         }
253
254         /* Start the rx descriptor ring where the tx ring leaves off */
255         for (i = 0; i < priv->num_rx_queues; i++) {
256                 rx_queue = priv->rx_queue[i];
257                 rx_queue->rx_bd_base = vaddr;
258                 rx_queue->rx_bd_dma_base = addr;
259                 rx_queue->ndev = ndev;
260                 rx_queue->dev = dev;
261                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
262                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
263         }
264
265         /* Setup the skbuff rings */
266         for (i = 0; i < priv->num_tx_queues; i++) {
267                 tx_queue = priv->tx_queue[i];
268                 tx_queue->tx_skbuff =
269                         kmalloc_array(tx_queue->tx_ring_size,
270                                       sizeof(*tx_queue->tx_skbuff),
271                                       GFP_KERNEL);
272                 if (!tx_queue->tx_skbuff)
273                         goto cleanup;
274
275                 for (j = 0; j < tx_queue->tx_ring_size; j++)
276                         tx_queue->tx_skbuff[j] = NULL;
277         }
278
279         for (i = 0; i < priv->num_rx_queues; i++) {
280                 rx_queue = priv->rx_queue[i];
281                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
282                                             sizeof(*rx_queue->rx_buff),
283                                             GFP_KERNEL);
284                 if (!rx_queue->rx_buff)
285                         goto cleanup;
286         }
287
288         gfar_init_bds(ndev);
289
290         return 0;
291
292 cleanup:
293         free_skb_resources(priv);
294         return -ENOMEM;
295 }
296
297 static void gfar_init_tx_rx_base(struct gfar_private *priv)
298 {
299         struct gfar __iomem *regs = priv->gfargrp[0].regs;
300         u32 __iomem *baddr;
301         int i;
302
303         baddr = &regs->tbase0;
304         for (i = 0; i < priv->num_tx_queues; i++) {
305                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
306                 baddr += 2;
307         }
308
309         baddr = &regs->rbase0;
310         for (i = 0; i < priv->num_rx_queues; i++) {
311                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
312                 baddr += 2;
313         }
314 }
315
316 static void gfar_init_rqprm(struct gfar_private *priv)
317 {
318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
319         u32 __iomem *baddr;
320         int i;
321
322         baddr = &regs->rqprm0;
323         for (i = 0; i < priv->num_rx_queues; i++) {
324                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
325                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
326                 baddr++;
327         }
328 }
329
330 static void gfar_rx_offload_en(struct gfar_private *priv)
331 {
332         /* set this when rx hw offload (TOE) functions are being used */
333         priv->uses_rxfcb = 0;
334
335         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
336                 priv->uses_rxfcb = 1;
337
338         if (priv->hwts_rx_en || priv->rx_filer_enable)
339                 priv->uses_rxfcb = 1;
340 }
341
342 static void gfar_mac_rx_config(struct gfar_private *priv)
343 {
344         struct gfar __iomem *regs = priv->gfargrp[0].regs;
345         u32 rctrl = 0;
346
347         if (priv->rx_filer_enable) {
348                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
349                 /* Program the RIR0 reg with the required distribution */
350                 if (priv->poll_mode == GFAR_SQ_POLLING)
351                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
352                 else /* GFAR_MQ_POLLING */
353                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
354         }
355
356         /* Restore PROMISC mode */
357         if (priv->ndev->flags & IFF_PROMISC)
358                 rctrl |= RCTRL_PROM;
359
360         if (priv->ndev->features & NETIF_F_RXCSUM)
361                 rctrl |= RCTRL_CHECKSUMMING;
362
363         if (priv->extended_hash)
364                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
365
366         if (priv->padding) {
367                 rctrl &= ~RCTRL_PAL_MASK;
368                 rctrl |= RCTRL_PADDING(priv->padding);
369         }
370
371         /* Enable HW time stamping if requested from user space */
372         if (priv->hwts_rx_en)
373                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
374
375         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
376                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
377
378         /* Clear the LFC bit */
379         gfar_write(&regs->rctrl, rctrl);
380         /* Init flow control threshold values */
381         gfar_init_rqprm(priv);
382         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
383         rctrl |= RCTRL_LFC;
384
385         /* Init rctrl based on our settings */
386         gfar_write(&regs->rctrl, rctrl);
387 }
388
389 static void gfar_mac_tx_config(struct gfar_private *priv)
390 {
391         struct gfar __iomem *regs = priv->gfargrp[0].regs;
392         u32 tctrl = 0;
393
394         if (priv->ndev->features & NETIF_F_IP_CSUM)
395                 tctrl |= TCTRL_INIT_CSUM;
396
397         if (priv->prio_sched_en)
398                 tctrl |= TCTRL_TXSCHED_PRIO;
399         else {
400                 tctrl |= TCTRL_TXSCHED_WRRS;
401                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
402                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
403         }
404
405         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
406                 tctrl |= TCTRL_VLINS;
407
408         gfar_write(&regs->tctrl, tctrl);
409 }
410
411 static void gfar_configure_coalescing(struct gfar_private *priv,
412                                unsigned long tx_mask, unsigned long rx_mask)
413 {
414         struct gfar __iomem *regs = priv->gfargrp[0].regs;
415         u32 __iomem *baddr;
416
417         if (priv->mode == MQ_MG_MODE) {
418                 int i = 0;
419
420                 baddr = &regs->txic0;
421                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
422                         gfar_write(baddr + i, 0);
423                         if (likely(priv->tx_queue[i]->txcoalescing))
424                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
425                 }
426
427                 baddr = &regs->rxic0;
428                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
429                         gfar_write(baddr + i, 0);
430                         if (likely(priv->rx_queue[i]->rxcoalescing))
431                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
432                 }
433         } else {
434                 /* Backward compatible case -- even if we enable
435                  * multiple queues, there's only single reg to program
436                  */
437                 gfar_write(&regs->txic, 0);
438                 if (likely(priv->tx_queue[0]->txcoalescing))
439                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
440
441                 gfar_write(&regs->rxic, 0);
442                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
443                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
444         }
445 }
446
447 void gfar_configure_coalescing_all(struct gfar_private *priv)
448 {
449         gfar_configure_coalescing(priv, 0xFF, 0xFF);
450 }
451
452 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
453 {
454         struct gfar_private *priv = netdev_priv(dev);
455         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
456         unsigned long tx_packets = 0, tx_bytes = 0;
457         int i;
458
459         for (i = 0; i < priv->num_rx_queues; i++) {
460                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
461                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
462                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
463         }
464
465         dev->stats.rx_packets = rx_packets;
466         dev->stats.rx_bytes   = rx_bytes;
467         dev->stats.rx_dropped = rx_dropped;
468
469         for (i = 0; i < priv->num_tx_queues; i++) {
470                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
471                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
472         }
473
474         dev->stats.tx_bytes   = tx_bytes;
475         dev->stats.tx_packets = tx_packets;
476
477         return &dev->stats;
478 }
479
480 static int gfar_set_mac_addr(struct net_device *dev, void *p)
481 {
482         eth_mac_addr(dev, p);
483
484         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
485
486         return 0;
487 }
488
489 static const struct net_device_ops gfar_netdev_ops = {
490         .ndo_open = gfar_enet_open,
491         .ndo_start_xmit = gfar_start_xmit,
492         .ndo_stop = gfar_close,
493         .ndo_change_mtu = gfar_change_mtu,
494         .ndo_set_features = gfar_set_features,
495         .ndo_set_rx_mode = gfar_set_multi,
496         .ndo_tx_timeout = gfar_timeout,
497         .ndo_do_ioctl = gfar_ioctl,
498         .ndo_get_stats = gfar_get_stats,
499         .ndo_change_carrier = fixed_phy_change_carrier,
500         .ndo_set_mac_address = gfar_set_mac_addr,
501         .ndo_validate_addr = eth_validate_addr,
502 #ifdef CONFIG_NET_POLL_CONTROLLER
503         .ndo_poll_controller = gfar_netpoll,
504 #endif
505 };
506
507 static void gfar_ints_disable(struct gfar_private *priv)
508 {
509         int i;
510         for (i = 0; i < priv->num_grps; i++) {
511                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
512                 /* Clear IEVENT */
513                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
514
515                 /* Initialize IMASK */
516                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
517         }
518 }
519
520 static void gfar_ints_enable(struct gfar_private *priv)
521 {
522         int i;
523         for (i = 0; i < priv->num_grps; i++) {
524                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
525                 /* Unmask the interrupts we look for */
526                 gfar_write(&regs->imask, IMASK_DEFAULT);
527         }
528 }
529
530 static int gfar_alloc_tx_queues(struct gfar_private *priv)
531 {
532         int i;
533
534         for (i = 0; i < priv->num_tx_queues; i++) {
535                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
536                                             GFP_KERNEL);
537                 if (!priv->tx_queue[i])
538                         return -ENOMEM;
539
540                 priv->tx_queue[i]->tx_skbuff = NULL;
541                 priv->tx_queue[i]->qindex = i;
542                 priv->tx_queue[i]->dev = priv->ndev;
543                 spin_lock_init(&(priv->tx_queue[i]->txlock));
544         }
545         return 0;
546 }
547
548 static int gfar_alloc_rx_queues(struct gfar_private *priv)
549 {
550         int i;
551
552         for (i = 0; i < priv->num_rx_queues; i++) {
553                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
554                                             GFP_KERNEL);
555                 if (!priv->rx_queue[i])
556                         return -ENOMEM;
557
558                 priv->rx_queue[i]->qindex = i;
559                 priv->rx_queue[i]->ndev = priv->ndev;
560         }
561         return 0;
562 }
563
564 static void gfar_free_tx_queues(struct gfar_private *priv)
565 {
566         int i;
567
568         for (i = 0; i < priv->num_tx_queues; i++)
569                 kfree(priv->tx_queue[i]);
570 }
571
572 static void gfar_free_rx_queues(struct gfar_private *priv)
573 {
574         int i;
575
576         for (i = 0; i < priv->num_rx_queues; i++)
577                 kfree(priv->rx_queue[i]);
578 }
579
580 static void unmap_group_regs(struct gfar_private *priv)
581 {
582         int i;
583
584         for (i = 0; i < MAXGROUPS; i++)
585                 if (priv->gfargrp[i].regs)
586                         iounmap(priv->gfargrp[i].regs);
587 }
588
589 static void free_gfar_dev(struct gfar_private *priv)
590 {
591         int i, j;
592
593         for (i = 0; i < priv->num_grps; i++)
594                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
595                         kfree(priv->gfargrp[i].irqinfo[j]);
596                         priv->gfargrp[i].irqinfo[j] = NULL;
597                 }
598
599         free_netdev(priv->ndev);
600 }
601
602 static void disable_napi(struct gfar_private *priv)
603 {
604         int i;
605
606         for (i = 0; i < priv->num_grps; i++) {
607                 napi_disable(&priv->gfargrp[i].napi_rx);
608                 napi_disable(&priv->gfargrp[i].napi_tx);
609         }
610 }
611
612 static void enable_napi(struct gfar_private *priv)
613 {
614         int i;
615
616         for (i = 0; i < priv->num_grps; i++) {
617                 napi_enable(&priv->gfargrp[i].napi_rx);
618                 napi_enable(&priv->gfargrp[i].napi_tx);
619         }
620 }
621
622 static int gfar_parse_group(struct device_node *np,
623                             struct gfar_private *priv, const char *model)
624 {
625         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
626         int i;
627
628         for (i = 0; i < GFAR_NUM_IRQS; i++) {
629                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
630                                           GFP_KERNEL);
631                 if (!grp->irqinfo[i])
632                         return -ENOMEM;
633         }
634
635         grp->regs = of_iomap(np, 0);
636         if (!grp->regs)
637                 return -ENOMEM;
638
639         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
640
641         /* If we aren't the FEC we have multiple interrupts */
642         if (model && strcasecmp(model, "FEC")) {
643                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
644                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
645                 if (!gfar_irq(grp, TX)->irq ||
646                     !gfar_irq(grp, RX)->irq ||
647                     !gfar_irq(grp, ER)->irq)
648                         return -EINVAL;
649         }
650
651         grp->priv = priv;
652         spin_lock_init(&grp->grplock);
653         if (priv->mode == MQ_MG_MODE) {
654                 u32 rxq_mask, txq_mask;
655                 int ret;
656
657                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
658                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
659
660                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
661                 if (!ret) {
662                         grp->rx_bit_map = rxq_mask ?
663                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
664                 }
665
666                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
667                 if (!ret) {
668                         grp->tx_bit_map = txq_mask ?
669                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
670                 }
671
672                 if (priv->poll_mode == GFAR_SQ_POLLING) {
673                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
674                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
675                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
676                 }
677         } else {
678                 grp->rx_bit_map = 0xFF;
679                 grp->tx_bit_map = 0xFF;
680         }
681
682         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
683          * right to left, so we need to revert the 8 bits to get the q index
684          */
685         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
686         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
687
688         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
689          * also assign queues to groups
690          */
691         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
692                 if (!grp->rx_queue)
693                         grp->rx_queue = priv->rx_queue[i];
694                 grp->num_rx_queues++;
695                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
696                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
697                 priv->rx_queue[i]->grp = grp;
698         }
699
700         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
701                 if (!grp->tx_queue)
702                         grp->tx_queue = priv->tx_queue[i];
703                 grp->num_tx_queues++;
704                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
705                 priv->tqueue |= (TQUEUE_EN0 >> i);
706                 priv->tx_queue[i]->grp = grp;
707         }
708
709         priv->num_grps++;
710
711         return 0;
712 }
713
714 static int gfar_of_group_count(struct device_node *np)
715 {
716         struct device_node *child;
717         int num = 0;
718
719         for_each_available_child_of_node(np, child)
720                 if (of_node_name_eq(child, "queue-group"))
721                         num++;
722
723         return num;
724 }
725
726 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
727 {
728         const char *model;
729         const char *ctype;
730         const void *mac_addr;
731         int err = 0, i;
732         struct net_device *dev = NULL;
733         struct gfar_private *priv = NULL;
734         struct device_node *np = ofdev->dev.of_node;
735         struct device_node *child = NULL;
736         u32 stash_len = 0;
737         u32 stash_idx = 0;
738         unsigned int num_tx_qs, num_rx_qs;
739         unsigned short mode, poll_mode;
740
741         if (!np)
742                 return -ENODEV;
743
744         if (of_device_is_compatible(np, "fsl,etsec2")) {
745                 mode = MQ_MG_MODE;
746                 poll_mode = GFAR_SQ_POLLING;
747         } else {
748                 mode = SQ_SG_MODE;
749                 poll_mode = GFAR_SQ_POLLING;
750         }
751
752         if (mode == SQ_SG_MODE) {
753                 num_tx_qs = 1;
754                 num_rx_qs = 1;
755         } else { /* MQ_MG_MODE */
756                 /* get the actual number of supported groups */
757                 unsigned int num_grps = gfar_of_group_count(np);
758
759                 if (num_grps == 0 || num_grps > MAXGROUPS) {
760                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
761                                 num_grps);
762                         pr_err("Cannot do alloc_etherdev, aborting\n");
763                         return -EINVAL;
764                 }
765
766                 if (poll_mode == GFAR_SQ_POLLING) {
767                         num_tx_qs = num_grps; /* one txq per int group */
768                         num_rx_qs = num_grps; /* one rxq per int group */
769                 } else { /* GFAR_MQ_POLLING */
770                         u32 tx_queues, rx_queues;
771                         int ret;
772
773                         /* parse the num of HW tx and rx queues */
774                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
775                                                    &tx_queues);
776                         num_tx_qs = ret ? 1 : tx_queues;
777
778                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
779                                                    &rx_queues);
780                         num_rx_qs = ret ? 1 : rx_queues;
781                 }
782         }
783
784         if (num_tx_qs > MAX_TX_QS) {
785                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
786                        num_tx_qs, MAX_TX_QS);
787                 pr_err("Cannot do alloc_etherdev, aborting\n");
788                 return -EINVAL;
789         }
790
791         if (num_rx_qs > MAX_RX_QS) {
792                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
793                        num_rx_qs, MAX_RX_QS);
794                 pr_err("Cannot do alloc_etherdev, aborting\n");
795                 return -EINVAL;
796         }
797
798         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
799         dev = *pdev;
800         if (NULL == dev)
801                 return -ENOMEM;
802
803         priv = netdev_priv(dev);
804         priv->ndev = dev;
805
806         priv->mode = mode;
807         priv->poll_mode = poll_mode;
808
809         priv->num_tx_queues = num_tx_qs;
810         netif_set_real_num_rx_queues(dev, num_rx_qs);
811         priv->num_rx_queues = num_rx_qs;
812
813         err = gfar_alloc_tx_queues(priv);
814         if (err)
815                 goto tx_alloc_failed;
816
817         err = gfar_alloc_rx_queues(priv);
818         if (err)
819                 goto rx_alloc_failed;
820
821         err = of_property_read_string(np, "model", &model);
822         if (err) {
823                 pr_err("Device model property missing, aborting\n");
824                 goto rx_alloc_failed;
825         }
826
827         /* Init Rx queue filer rule set linked list */
828         INIT_LIST_HEAD(&priv->rx_list.list);
829         priv->rx_list.count = 0;
830         mutex_init(&priv->rx_queue_access);
831
832         for (i = 0; i < MAXGROUPS; i++)
833                 priv->gfargrp[i].regs = NULL;
834
835         /* Parse and initialize group specific information */
836         if (priv->mode == MQ_MG_MODE) {
837                 for_each_available_child_of_node(np, child) {
838                         if (!of_node_name_eq(child, "queue-group"))
839                                 continue;
840
841                         err = gfar_parse_group(child, priv, model);
842                         if (err)
843                                 goto err_grp_init;
844                 }
845         } else { /* SQ_SG_MODE */
846                 err = gfar_parse_group(np, priv, model);
847                 if (err)
848                         goto err_grp_init;
849         }
850
851         if (of_property_read_bool(np, "bd-stash")) {
852                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
853                 priv->bd_stash_en = 1;
854         }
855
856         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
857
858         if (err == 0)
859                 priv->rx_stash_size = stash_len;
860
861         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
862
863         if (err == 0)
864                 priv->rx_stash_index = stash_idx;
865
866         if (stash_len || stash_idx)
867                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
868
869         mac_addr = of_get_mac_address(np);
870
871         if (!IS_ERR(mac_addr))
872                 ether_addr_copy(dev->dev_addr, mac_addr);
873
874         if (model && !strcasecmp(model, "TSEC"))
875                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
876                                      FSL_GIANFAR_DEV_HAS_COALESCE |
877                                      FSL_GIANFAR_DEV_HAS_RMON |
878                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
879
880         if (model && !strcasecmp(model, "eTSEC"))
881                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
882                                      FSL_GIANFAR_DEV_HAS_COALESCE |
883                                      FSL_GIANFAR_DEV_HAS_RMON |
884                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
885                                      FSL_GIANFAR_DEV_HAS_CSUM |
886                                      FSL_GIANFAR_DEV_HAS_VLAN |
887                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
888                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
889                                      FSL_GIANFAR_DEV_HAS_TIMER |
890                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
891
892         err = of_property_read_string(np, "phy-connection-type", &ctype);
893
894         /* We only care about rgmii-id.  The rest are autodetected */
895         if (err == 0 && !strcmp(ctype, "rgmii-id"))
896                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
897         else
898                 priv->interface = PHY_INTERFACE_MODE_MII;
899
900         if (of_find_property(np, "fsl,magic-packet", NULL))
901                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
902
903         if (of_get_property(np, "fsl,wake-on-filer", NULL))
904                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
905
906         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
907
908         /* In the case of a fixed PHY, the DT node associated
909          * to the PHY is the Ethernet MAC DT node.
910          */
911         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
912                 err = of_phy_register_fixed_link(np);
913                 if (err)
914                         goto err_grp_init;
915
916                 priv->phy_node = of_node_get(np);
917         }
918
919         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
920         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
921
922         return 0;
923
924 err_grp_init:
925         unmap_group_regs(priv);
926 rx_alloc_failed:
927         gfar_free_rx_queues(priv);
928 tx_alloc_failed:
929         gfar_free_tx_queues(priv);
930         free_gfar_dev(priv);
931         return err;
932 }
933
934 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
935 {
936         struct hwtstamp_config config;
937         struct gfar_private *priv = netdev_priv(netdev);
938
939         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
940                 return -EFAULT;
941
942         /* reserved for future extensions */
943         if (config.flags)
944                 return -EINVAL;
945
946         switch (config.tx_type) {
947         case HWTSTAMP_TX_OFF:
948                 priv->hwts_tx_en = 0;
949                 break;
950         case HWTSTAMP_TX_ON:
951                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
952                         return -ERANGE;
953                 priv->hwts_tx_en = 1;
954                 break;
955         default:
956                 return -ERANGE;
957         }
958
959         switch (config.rx_filter) {
960         case HWTSTAMP_FILTER_NONE:
961                 if (priv->hwts_rx_en) {
962                         priv->hwts_rx_en = 0;
963                         reset_gfar(netdev);
964                 }
965                 break;
966         default:
967                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
968                         return -ERANGE;
969                 if (!priv->hwts_rx_en) {
970                         priv->hwts_rx_en = 1;
971                         reset_gfar(netdev);
972                 }
973                 config.rx_filter = HWTSTAMP_FILTER_ALL;
974                 break;
975         }
976
977         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
978                 -EFAULT : 0;
979 }
980
981 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
982 {
983         struct hwtstamp_config config;
984         struct gfar_private *priv = netdev_priv(netdev);
985
986         config.flags = 0;
987         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
988         config.rx_filter = (priv->hwts_rx_en ?
989                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
990
991         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
992                 -EFAULT : 0;
993 }
994
995 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
996 {
997         struct phy_device *phydev = dev->phydev;
998
999         if (!netif_running(dev))
1000                 return -EINVAL;
1001
1002         if (cmd == SIOCSHWTSTAMP)
1003                 return gfar_hwtstamp_set(dev, rq);
1004         if (cmd == SIOCGHWTSTAMP)
1005                 return gfar_hwtstamp_get(dev, rq);
1006
1007         if (!phydev)
1008                 return -ENODEV;
1009
1010         return phy_mii_ioctl(phydev, rq, cmd);
1011 }
1012
1013 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1014                                    u32 class)
1015 {
1016         u32 rqfpr = FPR_FILER_MASK;
1017         u32 rqfcr = 0x0;
1018
1019         rqfar--;
1020         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1021         priv->ftp_rqfpr[rqfar] = rqfpr;
1022         priv->ftp_rqfcr[rqfar] = rqfcr;
1023         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1024
1025         rqfar--;
1026         rqfcr = RQFCR_CMP_NOMATCH;
1027         priv->ftp_rqfpr[rqfar] = rqfpr;
1028         priv->ftp_rqfcr[rqfar] = rqfcr;
1029         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1030
1031         rqfar--;
1032         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1033         rqfpr = class;
1034         priv->ftp_rqfcr[rqfar] = rqfcr;
1035         priv->ftp_rqfpr[rqfar] = rqfpr;
1036         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037
1038         rqfar--;
1039         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1040         rqfpr = class;
1041         priv->ftp_rqfcr[rqfar] = rqfcr;
1042         priv->ftp_rqfpr[rqfar] = rqfpr;
1043         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044
1045         return rqfar;
1046 }
1047
1048 static void gfar_init_filer_table(struct gfar_private *priv)
1049 {
1050         int i = 0x0;
1051         u32 rqfar = MAX_FILER_IDX;
1052         u32 rqfcr = 0x0;
1053         u32 rqfpr = FPR_FILER_MASK;
1054
1055         /* Default rule */
1056         rqfcr = RQFCR_CMP_MATCH;
1057         priv->ftp_rqfcr[rqfar] = rqfcr;
1058         priv->ftp_rqfpr[rqfar] = rqfpr;
1059         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1060
1061         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1062         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1063         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1064         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1065         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1066         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1067
1068         /* cur_filer_idx indicated the first non-masked rule */
1069         priv->cur_filer_idx = rqfar;
1070
1071         /* Rest are masked rules */
1072         rqfcr = RQFCR_CMP_NOMATCH;
1073         for (i = 0; i < rqfar; i++) {
1074                 priv->ftp_rqfcr[i] = rqfcr;
1075                 priv->ftp_rqfpr[i] = rqfpr;
1076                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1077         }
1078 }
1079
1080 #ifdef CONFIG_PPC
1081 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1082 {
1083         unsigned int pvr = mfspr(SPRN_PVR);
1084         unsigned int svr = mfspr(SPRN_SVR);
1085         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1086         unsigned int rev = svr & 0xffff;
1087
1088         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1089         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1090             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1091                 priv->errata |= GFAR_ERRATA_74;
1092
1093         /* MPC8313 and MPC837x all rev */
1094         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1095             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                 priv->errata |= GFAR_ERRATA_76;
1097
1098         /* MPC8313 Rev < 2.0 */
1099         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1100                 priv->errata |= GFAR_ERRATA_12;
1101 }
1102
1103 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1104 {
1105         unsigned int svr = mfspr(SPRN_SVR);
1106
1107         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1108                 priv->errata |= GFAR_ERRATA_12;
1109         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1110         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1111             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1112             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1113                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1114 }
1115 #endif
1116
1117 static void gfar_detect_errata(struct gfar_private *priv)
1118 {
1119         struct device *dev = &priv->ofdev->dev;
1120
1121         /* no plans to fix */
1122         priv->errata |= GFAR_ERRATA_A002;
1123
1124 #ifdef CONFIG_PPC
1125         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1126                 __gfar_detect_errata_85xx(priv);
1127         else /* non-mpc85xx parts, i.e. e300 core based */
1128                 __gfar_detect_errata_83xx(priv);
1129 #endif
1130
1131         if (priv->errata)
1132                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1133                          priv->errata);
1134 }
1135
1136 void gfar_mac_reset(struct gfar_private *priv)
1137 {
1138         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1139         u32 tempval;
1140
1141         /* Reset MAC layer */
1142         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1143
1144         /* We need to delay at least 3 TX clocks */
1145         udelay(3);
1146
1147         /* the soft reset bit is not self-resetting, so we need to
1148          * clear it before resuming normal operation
1149          */
1150         gfar_write(&regs->maccfg1, 0);
1151
1152         udelay(3);
1153
1154         gfar_rx_offload_en(priv);
1155
1156         /* Initialize the max receive frame/buffer lengths */
1157         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1158         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1159
1160         /* Initialize the Minimum Frame Length Register */
1161         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1162
1163         /* Initialize MACCFG2. */
1164         tempval = MACCFG2_INIT_SETTINGS;
1165
1166         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1167          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1168          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1169          */
1170         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1171                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1172
1173         gfar_write(&regs->maccfg2, tempval);
1174
1175         /* Clear mac addr hash registers */
1176         gfar_write(&regs->igaddr0, 0);
1177         gfar_write(&regs->igaddr1, 0);
1178         gfar_write(&regs->igaddr2, 0);
1179         gfar_write(&regs->igaddr3, 0);
1180         gfar_write(&regs->igaddr4, 0);
1181         gfar_write(&regs->igaddr5, 0);
1182         gfar_write(&regs->igaddr6, 0);
1183         gfar_write(&regs->igaddr7, 0);
1184
1185         gfar_write(&regs->gaddr0, 0);
1186         gfar_write(&regs->gaddr1, 0);
1187         gfar_write(&regs->gaddr2, 0);
1188         gfar_write(&regs->gaddr3, 0);
1189         gfar_write(&regs->gaddr4, 0);
1190         gfar_write(&regs->gaddr5, 0);
1191         gfar_write(&regs->gaddr6, 0);
1192         gfar_write(&regs->gaddr7, 0);
1193
1194         if (priv->extended_hash)
1195                 gfar_clear_exact_match(priv->ndev);
1196
1197         gfar_mac_rx_config(priv);
1198
1199         gfar_mac_tx_config(priv);
1200
1201         gfar_set_mac_address(priv->ndev);
1202
1203         gfar_set_multi(priv->ndev);
1204
1205         /* clear ievent and imask before configuring coalescing */
1206         gfar_ints_disable(priv);
1207
1208         /* Configure the coalescing support */
1209         gfar_configure_coalescing_all(priv);
1210 }
1211
1212 static void gfar_hw_init(struct gfar_private *priv)
1213 {
1214         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1215         u32 attrs;
1216
1217         /* Stop the DMA engine now, in case it was running before
1218          * (The firmware could have used it, and left it running).
1219          */
1220         gfar_halt(priv);
1221
1222         gfar_mac_reset(priv);
1223
1224         /* Zero out the rmon mib registers if it has them */
1225         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1226                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1227
1228                 /* Mask off the CAM interrupts */
1229                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1230                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1231         }
1232
1233         /* Initialize ECNTRL */
1234         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1235
1236         /* Set the extraction length and index */
1237         attrs = ATTRELI_EL(priv->rx_stash_size) |
1238                 ATTRELI_EI(priv->rx_stash_index);
1239
1240         gfar_write(&regs->attreli, attrs);
1241
1242         /* Start with defaults, and add stashing
1243          * depending on driver parameters
1244          */
1245         attrs = ATTR_INIT_SETTINGS;
1246
1247         if (priv->bd_stash_en)
1248                 attrs |= ATTR_BDSTASH;
1249
1250         if (priv->rx_stash_size != 0)
1251                 attrs |= ATTR_BUFSTASH;
1252
1253         gfar_write(&regs->attr, attrs);
1254
1255         /* FIFO configs */
1256         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1257         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1258         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1259
1260         /* Program the interrupt steering regs, only for MG devices */
1261         if (priv->num_grps > 1)
1262                 gfar_write_isrg(priv);
1263 }
1264
1265 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1266 {
1267         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1268
1269         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1270                 priv->extended_hash = 1;
1271                 priv->hash_width = 9;
1272
1273                 priv->hash_regs[0] = &regs->igaddr0;
1274                 priv->hash_regs[1] = &regs->igaddr1;
1275                 priv->hash_regs[2] = &regs->igaddr2;
1276                 priv->hash_regs[3] = &regs->igaddr3;
1277                 priv->hash_regs[4] = &regs->igaddr4;
1278                 priv->hash_regs[5] = &regs->igaddr5;
1279                 priv->hash_regs[6] = &regs->igaddr6;
1280                 priv->hash_regs[7] = &regs->igaddr7;
1281                 priv->hash_regs[8] = &regs->gaddr0;
1282                 priv->hash_regs[9] = &regs->gaddr1;
1283                 priv->hash_regs[10] = &regs->gaddr2;
1284                 priv->hash_regs[11] = &regs->gaddr3;
1285                 priv->hash_regs[12] = &regs->gaddr4;
1286                 priv->hash_regs[13] = &regs->gaddr5;
1287                 priv->hash_regs[14] = &regs->gaddr6;
1288                 priv->hash_regs[15] = &regs->gaddr7;
1289
1290         } else {
1291                 priv->extended_hash = 0;
1292                 priv->hash_width = 8;
1293
1294                 priv->hash_regs[0] = &regs->gaddr0;
1295                 priv->hash_regs[1] = &regs->gaddr1;
1296                 priv->hash_regs[2] = &regs->gaddr2;
1297                 priv->hash_regs[3] = &regs->gaddr3;
1298                 priv->hash_regs[4] = &regs->gaddr4;
1299                 priv->hash_regs[5] = &regs->gaddr5;
1300                 priv->hash_regs[6] = &regs->gaddr6;
1301                 priv->hash_regs[7] = &regs->gaddr7;
1302         }
1303 }
1304
1305 /* Set up the ethernet device structure, private data,
1306  * and anything else we need before we start
1307  */
1308 static int gfar_probe(struct platform_device *ofdev)
1309 {
1310         struct device_node *np = ofdev->dev.of_node;
1311         struct net_device *dev = NULL;
1312         struct gfar_private *priv = NULL;
1313         int err = 0, i;
1314
1315         err = gfar_of_init(ofdev, &dev);
1316
1317         if (err)
1318                 return err;
1319
1320         priv = netdev_priv(dev);
1321         priv->ndev = dev;
1322         priv->ofdev = ofdev;
1323         priv->dev = &ofdev->dev;
1324         SET_NETDEV_DEV(dev, &ofdev->dev);
1325
1326         INIT_WORK(&priv->reset_task, gfar_reset_task);
1327
1328         platform_set_drvdata(ofdev, priv);
1329
1330         gfar_detect_errata(priv);
1331
1332         /* Set the dev->base_addr to the gfar reg region */
1333         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1334
1335         /* Fill in the dev structure */
1336         dev->watchdog_timeo = TX_TIMEOUT;
1337         /* MTU range: 50 - 9586 */
1338         dev->mtu = 1500;
1339         dev->min_mtu = 50;
1340         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1341         dev->netdev_ops = &gfar_netdev_ops;
1342         dev->ethtool_ops = &gfar_ethtool_ops;
1343
1344         /* Register for napi ...We are registering NAPI for each grp */
1345         for (i = 0; i < priv->num_grps; i++) {
1346                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1347                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1348                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1349                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1350                                        gfar_poll_tx_sq, 2);
1351                 } else {
1352                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1354                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355                                        gfar_poll_tx, 2);
1356                 }
1357         }
1358
1359         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1360                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1361                                    NETIF_F_RXCSUM;
1362                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1363                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1364         }
1365
1366         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1367                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1368                                     NETIF_F_HW_VLAN_CTAG_RX;
1369                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1370         }
1371
1372         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1373
1374         gfar_init_addr_hash_table(priv);
1375
1376         /* Insert receive time stamps into padding alignment bytes, and
1377          * plus 2 bytes padding to ensure the cpu alignment.
1378          */
1379         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380                 priv->padding = 8 + DEFAULT_PADDING;
1381
1382         if (dev->features & NETIF_F_IP_CSUM ||
1383             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384                 dev->needed_headroom = GMAC_FCB_LEN;
1385
1386         /* Initializing some of the rx/tx queue level parameters */
1387         for (i = 0; i < priv->num_tx_queues; i++) {
1388                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1392         }
1393
1394         for (i = 0; i < priv->num_rx_queues; i++) {
1395                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1398         }
1399
1400         /* Always enable rx filer if available */
1401         priv->rx_filer_enable =
1402             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403         /* Enable most messages by default */
1404         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405         /* use pritority h/w tx queue scheduling for single queue devices */
1406         if (priv->num_tx_queues == 1)
1407                 priv->prio_sched_en = 1;
1408
1409         set_bit(GFAR_DOWN, &priv->state);
1410
1411         gfar_hw_init(priv);
1412
1413         /* Carrier starts down, phylib will bring it up */
1414         netif_carrier_off(dev);
1415
1416         err = register_netdev(dev);
1417
1418         if (err) {
1419                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420                 goto register_fail;
1421         }
1422
1423         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424                 priv->wol_supported |= GFAR_WOL_MAGIC;
1425
1426         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427             priv->rx_filer_enable)
1428                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1429
1430         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1431
1432         /* fill out IRQ number and name fields */
1433         for (i = 0; i < priv->num_grps; i++) {
1434                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437                                 dev->name, "_g", '0' + i, "_tx");
1438                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439                                 dev->name, "_g", '0' + i, "_rx");
1440                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441                                 dev->name, "_g", '0' + i, "_er");
1442                 } else
1443                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1444         }
1445
1446         /* Initialize the filer table */
1447         gfar_init_filer_table(priv);
1448
1449         /* Print out the device info */
1450         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1451
1452         /* Even more device info helps when determining which kernel
1453          * provided which set of benchmarks.
1454          */
1455         netdev_info(dev, "Running with NAPI enabled\n");
1456         for (i = 0; i < priv->num_rx_queues; i++)
1457                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458                             i, priv->rx_queue[i]->rx_ring_size);
1459         for (i = 0; i < priv->num_tx_queues; i++)
1460                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461                             i, priv->tx_queue[i]->tx_ring_size);
1462
1463         return 0;
1464
1465 register_fail:
1466         if (of_phy_is_fixed_link(np))
1467                 of_phy_deregister_fixed_link(np);
1468         unmap_group_regs(priv);
1469         gfar_free_rx_queues(priv);
1470         gfar_free_tx_queues(priv);
1471         of_node_put(priv->phy_node);
1472         of_node_put(priv->tbi_node);
1473         free_gfar_dev(priv);
1474         return err;
1475 }
1476
1477 static int gfar_remove(struct platform_device *ofdev)
1478 {
1479         struct gfar_private *priv = platform_get_drvdata(ofdev);
1480         struct device_node *np = ofdev->dev.of_node;
1481
1482         of_node_put(priv->phy_node);
1483         of_node_put(priv->tbi_node);
1484
1485         unregister_netdev(priv->ndev);
1486
1487         if (of_phy_is_fixed_link(np))
1488                 of_phy_deregister_fixed_link(np);
1489
1490         unmap_group_regs(priv);
1491         gfar_free_rx_queues(priv);
1492         gfar_free_tx_queues(priv);
1493         free_gfar_dev(priv);
1494
1495         return 0;
1496 }
1497
1498 #ifdef CONFIG_PM
1499
1500 static void __gfar_filer_disable(struct gfar_private *priv)
1501 {
1502         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503         u32 temp;
1504
1505         temp = gfar_read(&regs->rctrl);
1506         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1507         gfar_write(&regs->rctrl, temp);
1508 }
1509
1510 static void __gfar_filer_enable(struct gfar_private *priv)
1511 {
1512         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1513         u32 temp;
1514
1515         temp = gfar_read(&regs->rctrl);
1516         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1517         gfar_write(&regs->rctrl, temp);
1518 }
1519
1520 /* Filer rules implementing wol capabilities */
1521 static void gfar_filer_config_wol(struct gfar_private *priv)
1522 {
1523         unsigned int i;
1524         u32 rqfcr;
1525
1526         __gfar_filer_disable(priv);
1527
1528         /* clear the filer table, reject any packet by default */
1529         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1530         for (i = 0; i <= MAX_FILER_IDX; i++)
1531                 gfar_write_filer(priv, i, rqfcr, 0);
1532
1533         i = 0;
1534         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1535                 /* unicast packet, accept it */
1536                 struct net_device *ndev = priv->ndev;
1537                 /* get the default rx queue index */
1538                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1539                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1540                                     (ndev->dev_addr[1] << 8) |
1541                                      ndev->dev_addr[2];
1542
1543                 rqfcr = (qindex << 10) | RQFCR_AND |
1544                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1545
1546                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1547
1548                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1549                                 (ndev->dev_addr[4] << 8) |
1550                                  ndev->dev_addr[5];
1551                 rqfcr = (qindex << 10) | RQFCR_GPI |
1552                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1553                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554         }
1555
1556         __gfar_filer_enable(priv);
1557 }
1558
1559 static void gfar_filer_restore_table(struct gfar_private *priv)
1560 {
1561         u32 rqfcr, rqfpr;
1562         unsigned int i;
1563
1564         __gfar_filer_disable(priv);
1565
1566         for (i = 0; i <= MAX_FILER_IDX; i++) {
1567                 rqfcr = priv->ftp_rqfcr[i];
1568                 rqfpr = priv->ftp_rqfpr[i];
1569                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1570         }
1571
1572         __gfar_filer_enable(priv);
1573 }
1574
1575 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1576 static void gfar_start_wol_filer(struct gfar_private *priv)
1577 {
1578         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1579         u32 tempval;
1580         int i = 0;
1581
1582         /* Enable Rx hw queues */
1583         gfar_write(&regs->rqueue, priv->rqueue);
1584
1585         /* Initialize DMACTRL to have WWR and WOP */
1586         tempval = gfar_read(&regs->dmactrl);
1587         tempval |= DMACTRL_INIT_SETTINGS;
1588         gfar_write(&regs->dmactrl, tempval);
1589
1590         /* Make sure we aren't stopped */
1591         tempval = gfar_read(&regs->dmactrl);
1592         tempval &= ~DMACTRL_GRS;
1593         gfar_write(&regs->dmactrl, tempval);
1594
1595         for (i = 0; i < priv->num_grps; i++) {
1596                 regs = priv->gfargrp[i].regs;
1597                 /* Clear RHLT, so that the DMA starts polling now */
1598                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1599                 /* enable the Filer General Purpose Interrupt */
1600                 gfar_write(&regs->imask, IMASK_FGPI);
1601         }
1602
1603         /* Enable Rx DMA */
1604         tempval = gfar_read(&regs->maccfg1);
1605         tempval |= MACCFG1_RX_EN;
1606         gfar_write(&regs->maccfg1, tempval);
1607 }
1608
1609 static int gfar_suspend(struct device *dev)
1610 {
1611         struct gfar_private *priv = dev_get_drvdata(dev);
1612         struct net_device *ndev = priv->ndev;
1613         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1614         u32 tempval;
1615         u16 wol = priv->wol_opts;
1616
1617         if (!netif_running(ndev))
1618                 return 0;
1619
1620         disable_napi(priv);
1621         netif_tx_lock(ndev);
1622         netif_device_detach(ndev);
1623         netif_tx_unlock(ndev);
1624
1625         gfar_halt(priv);
1626
1627         if (wol & GFAR_WOL_MAGIC) {
1628                 /* Enable interrupt on Magic Packet */
1629                 gfar_write(&regs->imask, IMASK_MAG);
1630
1631                 /* Enable Magic Packet mode */
1632                 tempval = gfar_read(&regs->maccfg2);
1633                 tempval |= MACCFG2_MPEN;
1634                 gfar_write(&regs->maccfg2, tempval);
1635
1636                 /* re-enable the Rx block */
1637                 tempval = gfar_read(&regs->maccfg1);
1638                 tempval |= MACCFG1_RX_EN;
1639                 gfar_write(&regs->maccfg1, tempval);
1640
1641         } else if (wol & GFAR_WOL_FILER_UCAST) {
1642                 gfar_filer_config_wol(priv);
1643                 gfar_start_wol_filer(priv);
1644
1645         } else {
1646                 phy_stop(ndev->phydev);
1647         }
1648
1649         return 0;
1650 }
1651
1652 static int gfar_resume(struct device *dev)
1653 {
1654         struct gfar_private *priv = dev_get_drvdata(dev);
1655         struct net_device *ndev = priv->ndev;
1656         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1657         u32 tempval;
1658         u16 wol = priv->wol_opts;
1659
1660         if (!netif_running(ndev))
1661                 return 0;
1662
1663         if (wol & GFAR_WOL_MAGIC) {
1664                 /* Disable Magic Packet mode */
1665                 tempval = gfar_read(&regs->maccfg2);
1666                 tempval &= ~MACCFG2_MPEN;
1667                 gfar_write(&regs->maccfg2, tempval);
1668
1669         } else if (wol & GFAR_WOL_FILER_UCAST) {
1670                 /* need to stop rx only, tx is already down */
1671                 gfar_halt(priv);
1672                 gfar_filer_restore_table(priv);
1673
1674         } else {
1675                 phy_start(ndev->phydev);
1676         }
1677
1678         gfar_start(priv);
1679
1680         netif_device_attach(ndev);
1681         enable_napi(priv);
1682
1683         return 0;
1684 }
1685
1686 static int gfar_restore(struct device *dev)
1687 {
1688         struct gfar_private *priv = dev_get_drvdata(dev);
1689         struct net_device *ndev = priv->ndev;
1690
1691         if (!netif_running(ndev)) {
1692                 netif_device_attach(ndev);
1693
1694                 return 0;
1695         }
1696
1697         gfar_init_bds(ndev);
1698
1699         gfar_mac_reset(priv);
1700
1701         gfar_init_tx_rx_base(priv);
1702
1703         gfar_start(priv);
1704
1705         priv->oldlink = 0;
1706         priv->oldspeed = 0;
1707         priv->oldduplex = -1;
1708
1709         if (ndev->phydev)
1710                 phy_start(ndev->phydev);
1711
1712         netif_device_attach(ndev);
1713         enable_napi(priv);
1714
1715         return 0;
1716 }
1717
1718 static const struct dev_pm_ops gfar_pm_ops = {
1719         .suspend = gfar_suspend,
1720         .resume = gfar_resume,
1721         .freeze = gfar_suspend,
1722         .thaw = gfar_resume,
1723         .restore = gfar_restore,
1724 };
1725
1726 #define GFAR_PM_OPS (&gfar_pm_ops)
1727
1728 #else
1729
1730 #define GFAR_PM_OPS NULL
1731
1732 #endif
1733
1734 /* Reads the controller's registers to determine what interface
1735  * connects it to the PHY.
1736  */
1737 static phy_interface_t gfar_get_interface(struct net_device *dev)
1738 {
1739         struct gfar_private *priv = netdev_priv(dev);
1740         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1741         u32 ecntrl;
1742
1743         ecntrl = gfar_read(&regs->ecntrl);
1744
1745         if (ecntrl & ECNTRL_SGMII_MODE)
1746                 return PHY_INTERFACE_MODE_SGMII;
1747
1748         if (ecntrl & ECNTRL_TBI_MODE) {
1749                 if (ecntrl & ECNTRL_REDUCED_MODE)
1750                         return PHY_INTERFACE_MODE_RTBI;
1751                 else
1752                         return PHY_INTERFACE_MODE_TBI;
1753         }
1754
1755         if (ecntrl & ECNTRL_REDUCED_MODE) {
1756                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1757                         return PHY_INTERFACE_MODE_RMII;
1758                 }
1759                 else {
1760                         phy_interface_t interface = priv->interface;
1761
1762                         /* This isn't autodetected right now, so it must
1763                          * be set by the device tree or platform code.
1764                          */
1765                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1766                                 return PHY_INTERFACE_MODE_RGMII_ID;
1767
1768                         return PHY_INTERFACE_MODE_RGMII;
1769                 }
1770         }
1771
1772         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1773                 return PHY_INTERFACE_MODE_GMII;
1774
1775         return PHY_INTERFACE_MODE_MII;
1776 }
1777
1778
1779 /* Initializes driver's PHY state, and attaches to the PHY.
1780  * Returns 0 on success.
1781  */
1782 static int init_phy(struct net_device *dev)
1783 {
1784         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1785         struct gfar_private *priv = netdev_priv(dev);
1786         phy_interface_t interface;
1787         struct phy_device *phydev;
1788         struct ethtool_eee edata;
1789
1790         linkmode_set_bit_array(phy_10_100_features_array,
1791                                ARRAY_SIZE(phy_10_100_features_array),
1792                                mask);
1793         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1794         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1795         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1796                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1797
1798         priv->oldlink = 0;
1799         priv->oldspeed = 0;
1800         priv->oldduplex = -1;
1801
1802         interface = gfar_get_interface(dev);
1803
1804         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1805                                 interface);
1806         if (!phydev) {
1807                 dev_err(&dev->dev, "could not attach to PHY\n");
1808                 return -ENODEV;
1809         }
1810
1811         if (interface == PHY_INTERFACE_MODE_SGMII)
1812                 gfar_configure_serdes(dev);
1813
1814         /* Remove any features not supported by the controller */
1815         linkmode_and(phydev->supported, phydev->supported, mask);
1816         linkmode_copy(phydev->advertising, phydev->supported);
1817
1818         /* Add support for flow control */
1819         phy_support_asym_pause(phydev);
1820
1821         /* disable EEE autoneg, EEE not supported by eTSEC */
1822         memset(&edata, 0, sizeof(struct ethtool_eee));
1823         phy_ethtool_set_eee(phydev, &edata);
1824
1825         return 0;
1826 }
1827
1828 /* Initialize TBI PHY interface for communicating with the
1829  * SERDES lynx PHY on the chip.  We communicate with this PHY
1830  * through the MDIO bus on each controller, treating it as a
1831  * "normal" PHY at the address found in the TBIPA register.  We assume
1832  * that the TBIPA register is valid.  Either the MDIO bus code will set
1833  * it to a value that doesn't conflict with other PHYs on the bus, or the
1834  * value doesn't matter, as there are no other PHYs on the bus.
1835  */
1836 static void gfar_configure_serdes(struct net_device *dev)
1837 {
1838         struct gfar_private *priv = netdev_priv(dev);
1839         struct phy_device *tbiphy;
1840
1841         if (!priv->tbi_node) {
1842                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1843                                     "device tree specify a tbi-handle\n");
1844                 return;
1845         }
1846
1847         tbiphy = of_phy_find_device(priv->tbi_node);
1848         if (!tbiphy) {
1849                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1850                 return;
1851         }
1852
1853         /* If the link is already up, we must already be ok, and don't need to
1854          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1855          * everything for us?  Resetting it takes the link down and requires
1856          * several seconds for it to come back.
1857          */
1858         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1859                 put_device(&tbiphy->mdio.dev);
1860                 return;
1861         }
1862
1863         /* Single clk mode, mii mode off(for serdes communication) */
1864         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1865
1866         phy_write(tbiphy, MII_ADVERTISE,
1867                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1868                   ADVERTISE_1000XPSE_ASYM);
1869
1870         phy_write(tbiphy, MII_BMCR,
1871                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1872                   BMCR_SPEED1000);
1873
1874         put_device(&tbiphy->mdio.dev);
1875 }
1876
1877 static int __gfar_is_rx_idle(struct gfar_private *priv)
1878 {
1879         u32 res;
1880
1881         /* Normaly TSEC should not hang on GRS commands, so we should
1882          * actually wait for IEVENT_GRSC flag.
1883          */
1884         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1885                 return 0;
1886
1887         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1888          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1889          * and the Rx can be safely reset.
1890          */
1891         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1892         res &= 0x7f807f80;
1893         if ((res & 0xffff) == (res >> 16))
1894                 return 1;
1895
1896         return 0;
1897 }
1898
1899 /* Halt the receive and transmit queues */
1900 static void gfar_halt_nodisable(struct gfar_private *priv)
1901 {
1902         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1903         u32 tempval;
1904         unsigned int timeout;
1905         int stopped;
1906
1907         gfar_ints_disable(priv);
1908
1909         if (gfar_is_dma_stopped(priv))
1910                 return;
1911
1912         /* Stop the DMA, and wait for it to stop */
1913         tempval = gfar_read(&regs->dmactrl);
1914         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1915         gfar_write(&regs->dmactrl, tempval);
1916
1917 retry:
1918         timeout = 1000;
1919         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1920                 cpu_relax();
1921                 timeout--;
1922         }
1923
1924         if (!timeout)
1925                 stopped = gfar_is_dma_stopped(priv);
1926
1927         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1928             !__gfar_is_rx_idle(priv))
1929                 goto retry;
1930 }
1931
1932 /* Halt the receive and transmit queues */
1933 void gfar_halt(struct gfar_private *priv)
1934 {
1935         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1936         u32 tempval;
1937
1938         /* Dissable the Rx/Tx hw queues */
1939         gfar_write(&regs->rqueue, 0);
1940         gfar_write(&regs->tqueue, 0);
1941
1942         mdelay(10);
1943
1944         gfar_halt_nodisable(priv);
1945
1946         /* Disable Rx/Tx DMA */
1947         tempval = gfar_read(&regs->maccfg1);
1948         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1949         gfar_write(&regs->maccfg1, tempval);
1950 }
1951
1952 void stop_gfar(struct net_device *dev)
1953 {
1954         struct gfar_private *priv = netdev_priv(dev);
1955
1956         netif_tx_stop_all_queues(dev);
1957
1958         smp_mb__before_atomic();
1959         set_bit(GFAR_DOWN, &priv->state);
1960         smp_mb__after_atomic();
1961
1962         disable_napi(priv);
1963
1964         /* disable ints and gracefully shut down Rx/Tx DMA */
1965         gfar_halt(priv);
1966
1967         phy_stop(dev->phydev);
1968
1969         free_skb_resources(priv);
1970 }
1971
1972 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1973 {
1974         struct txbd8 *txbdp;
1975         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1976         int i, j;
1977
1978         txbdp = tx_queue->tx_bd_base;
1979
1980         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1981                 if (!tx_queue->tx_skbuff[i])
1982                         continue;
1983
1984                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1985                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1986                 txbdp->lstatus = 0;
1987                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1988                      j++) {
1989                         txbdp++;
1990                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1991                                        be16_to_cpu(txbdp->length),
1992                                        DMA_TO_DEVICE);
1993                 }
1994                 txbdp++;
1995                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1996                 tx_queue->tx_skbuff[i] = NULL;
1997         }
1998         kfree(tx_queue->tx_skbuff);
1999         tx_queue->tx_skbuff = NULL;
2000 }
2001
2002 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2003 {
2004         int i;
2005
2006         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2007
2008         if (rx_queue->skb)
2009                 dev_kfree_skb(rx_queue->skb);
2010
2011         for (i = 0; i < rx_queue->rx_ring_size; i++) {
2012                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2013
2014                 rxbdp->lstatus = 0;
2015                 rxbdp->bufPtr = 0;
2016                 rxbdp++;
2017
2018                 if (!rxb->page)
2019                         continue;
2020
2021                 dma_unmap_page(rx_queue->dev, rxb->dma,
2022                                PAGE_SIZE, DMA_FROM_DEVICE);
2023                 __free_page(rxb->page);
2024
2025                 rxb->page = NULL;
2026         }
2027
2028         kfree(rx_queue->rx_buff);
2029         rx_queue->rx_buff = NULL;
2030 }
2031
2032 /* If there are any tx skbs or rx skbs still around, free them.
2033  * Then free tx_skbuff and rx_skbuff
2034  */
2035 static void free_skb_resources(struct gfar_private *priv)
2036 {
2037         struct gfar_priv_tx_q *tx_queue = NULL;
2038         struct gfar_priv_rx_q *rx_queue = NULL;
2039         int i;
2040
2041         /* Go through all the buffer descriptors and free their data buffers */
2042         for (i = 0; i < priv->num_tx_queues; i++) {
2043                 struct netdev_queue *txq;
2044
2045                 tx_queue = priv->tx_queue[i];
2046                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2047                 if (tx_queue->tx_skbuff)
2048                         free_skb_tx_queue(tx_queue);
2049                 netdev_tx_reset_queue(txq);
2050         }
2051
2052         for (i = 0; i < priv->num_rx_queues; i++) {
2053                 rx_queue = priv->rx_queue[i];
2054                 if (rx_queue->rx_buff)
2055                         free_skb_rx_queue(rx_queue);
2056         }
2057
2058         dma_free_coherent(priv->dev,
2059                           sizeof(struct txbd8) * priv->total_tx_ring_size +
2060                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
2061                           priv->tx_queue[0]->tx_bd_base,
2062                           priv->tx_queue[0]->tx_bd_dma_base);
2063 }
2064
2065 void gfar_start(struct gfar_private *priv)
2066 {
2067         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2068         u32 tempval;
2069         int i = 0;
2070
2071         /* Enable Rx/Tx hw queues */
2072         gfar_write(&regs->rqueue, priv->rqueue);
2073         gfar_write(&regs->tqueue, priv->tqueue);
2074
2075         /* Initialize DMACTRL to have WWR and WOP */
2076         tempval = gfar_read(&regs->dmactrl);
2077         tempval |= DMACTRL_INIT_SETTINGS;
2078         gfar_write(&regs->dmactrl, tempval);
2079
2080         /* Make sure we aren't stopped */
2081         tempval = gfar_read(&regs->dmactrl);
2082         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2083         gfar_write(&regs->dmactrl, tempval);
2084
2085         for (i = 0; i < priv->num_grps; i++) {
2086                 regs = priv->gfargrp[i].regs;
2087                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2088                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2089                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2090         }
2091
2092         /* Enable Rx/Tx DMA */
2093         tempval = gfar_read(&regs->maccfg1);
2094         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2095         gfar_write(&regs->maccfg1, tempval);
2096
2097         gfar_ints_enable(priv);
2098
2099         netif_trans_update(priv->ndev); /* prevent tx timeout */
2100 }
2101
2102 static void free_grp_irqs(struct gfar_priv_grp *grp)
2103 {
2104         free_irq(gfar_irq(grp, TX)->irq, grp);
2105         free_irq(gfar_irq(grp, RX)->irq, grp);
2106         free_irq(gfar_irq(grp, ER)->irq, grp);
2107 }
2108
2109 static int register_grp_irqs(struct gfar_priv_grp *grp)
2110 {
2111         struct gfar_private *priv = grp->priv;
2112         struct net_device *dev = priv->ndev;
2113         int err;
2114
2115         /* If the device has multiple interrupts, register for
2116          * them.  Otherwise, only register for the one
2117          */
2118         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2119                 /* Install our interrupt handlers for Error,
2120                  * Transmit, and Receive
2121                  */
2122                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2123                                   gfar_irq(grp, ER)->name, grp);
2124                 if (err < 0) {
2125                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2126                                   gfar_irq(grp, ER)->irq);
2127
2128                         goto err_irq_fail;
2129                 }
2130                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2131
2132                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2133                                   gfar_irq(grp, TX)->name, grp);
2134                 if (err < 0) {
2135                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2136                                   gfar_irq(grp, TX)->irq);
2137                         goto tx_irq_fail;
2138                 }
2139                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2140                                   gfar_irq(grp, RX)->name, grp);
2141                 if (err < 0) {
2142                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2143                                   gfar_irq(grp, RX)->irq);
2144                         goto rx_irq_fail;
2145                 }
2146                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2147
2148         } else {
2149                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2150                                   gfar_irq(grp, TX)->name, grp);
2151                 if (err < 0) {
2152                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2153                                   gfar_irq(grp, TX)->irq);
2154                         goto err_irq_fail;
2155                 }
2156                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2157         }
2158
2159         return 0;
2160
2161 rx_irq_fail:
2162         free_irq(gfar_irq(grp, TX)->irq, grp);
2163 tx_irq_fail:
2164         free_irq(gfar_irq(grp, ER)->irq, grp);
2165 err_irq_fail:
2166         return err;
2167
2168 }
2169
2170 static void gfar_free_irq(struct gfar_private *priv)
2171 {
2172         int i;
2173
2174         /* Free the IRQs */
2175         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2176                 for (i = 0; i < priv->num_grps; i++)
2177                         free_grp_irqs(&priv->gfargrp[i]);
2178         } else {
2179                 for (i = 0; i < priv->num_grps; i++)
2180                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2181                                  &priv->gfargrp[i]);
2182         }
2183 }
2184
2185 static int gfar_request_irq(struct gfar_private *priv)
2186 {
2187         int err, i, j;
2188
2189         for (i = 0; i < priv->num_grps; i++) {
2190                 err = register_grp_irqs(&priv->gfargrp[i]);
2191                 if (err) {
2192                         for (j = 0; j < i; j++)
2193                                 free_grp_irqs(&priv->gfargrp[j]);
2194                         return err;
2195                 }
2196         }
2197
2198         return 0;
2199 }
2200
2201 /* Bring the controller up and running */
2202 int startup_gfar(struct net_device *ndev)
2203 {
2204         struct gfar_private *priv = netdev_priv(ndev);
2205         int err;
2206
2207         gfar_mac_reset(priv);
2208
2209         err = gfar_alloc_skb_resources(ndev);
2210         if (err)
2211                 return err;
2212
2213         gfar_init_tx_rx_base(priv);
2214
2215         smp_mb__before_atomic();
2216         clear_bit(GFAR_DOWN, &priv->state);
2217         smp_mb__after_atomic();
2218
2219         /* Start Rx/Tx DMA and enable the interrupts */
2220         gfar_start(priv);
2221
2222         /* force link state update after mac reset */
2223         priv->oldlink = 0;
2224         priv->oldspeed = 0;
2225         priv->oldduplex = -1;
2226
2227         phy_start(ndev->phydev);
2228
2229         enable_napi(priv);
2230
2231         netif_tx_wake_all_queues(ndev);
2232
2233         return 0;
2234 }
2235
2236 /* Called when something needs to use the ethernet device
2237  * Returns 0 for success.
2238  */
2239 static int gfar_enet_open(struct net_device *dev)
2240 {
2241         struct gfar_private *priv = netdev_priv(dev);
2242         int err;
2243
2244         err = init_phy(dev);
2245         if (err)
2246                 return err;
2247
2248         err = gfar_request_irq(priv);
2249         if (err)
2250                 return err;
2251
2252         err = startup_gfar(dev);
2253         if (err)
2254                 return err;
2255
2256         return err;
2257 }
2258
2259 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2260 {
2261         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2262
2263         memset(fcb, 0, GMAC_FCB_LEN);
2264
2265         return fcb;
2266 }
2267
2268 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2269                                     int fcb_length)
2270 {
2271         /* If we're here, it's a IP packet with a TCP or UDP
2272          * payload.  We set it to checksum, using a pseudo-header
2273          * we provide
2274          */
2275         u8 flags = TXFCB_DEFAULT;
2276
2277         /* Tell the controller what the protocol is
2278          * And provide the already calculated phcs
2279          */
2280         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2281                 flags |= TXFCB_UDP;
2282                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2283         } else
2284                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2285
2286         /* l3os is the distance between the start of the
2287          * frame (skb->data) and the start of the IP hdr.
2288          * l4os is the distance between the start of the
2289          * l3 hdr and the l4 hdr
2290          */
2291         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2292         fcb->l4os = skb_network_header_len(skb);
2293
2294         fcb->flags = flags;
2295 }
2296
2297 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2298 {
2299         fcb->flags |= TXFCB_VLN;
2300         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2301 }
2302
2303 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2304                                       struct txbd8 *base, int ring_size)
2305 {
2306         struct txbd8 *new_bd = bdp + stride;
2307
2308         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2309 }
2310
2311 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2312                                       int ring_size)
2313 {
2314         return skip_txbd(bdp, 1, base, ring_size);
2315 }
2316
2317 /* eTSEC12: csum generation not supported for some fcb offsets */
2318 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2319                                        unsigned long fcb_addr)
2320 {
2321         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2322                (fcb_addr % 0x20) > 0x18);
2323 }
2324
2325 /* eTSEC76: csum generation for frames larger than 2500 may
2326  * cause excess delays before start of transmission
2327  */
2328 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2329                                        unsigned int len)
2330 {
2331         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2332                (len > 2500));
2333 }
2334
2335 /* This is called by the kernel when a frame is ready for transmission.
2336  * It is pointed to by the dev->hard_start_xmit function pointer
2337  */
2338 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2339 {
2340         struct gfar_private *priv = netdev_priv(dev);
2341         struct gfar_priv_tx_q *tx_queue = NULL;
2342         struct netdev_queue *txq;
2343         struct gfar __iomem *regs = NULL;
2344         struct txfcb *fcb = NULL;
2345         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2346         u32 lstatus;
2347         skb_frag_t *frag;
2348         int i, rq = 0;
2349         int do_tstamp, do_csum, do_vlan;
2350         u32 bufaddr;
2351         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2352
2353         rq = skb->queue_mapping;
2354         tx_queue = priv->tx_queue[rq];
2355         txq = netdev_get_tx_queue(dev, rq);
2356         base = tx_queue->tx_bd_base;
2357         regs = tx_queue->grp->regs;
2358
2359         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2360         do_vlan = skb_vlan_tag_present(skb);
2361         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2362                     priv->hwts_tx_en;
2363
2364         if (do_csum || do_vlan)
2365                 fcb_len = GMAC_FCB_LEN;
2366
2367         /* check if time stamp should be generated */
2368         if (unlikely(do_tstamp))
2369                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2370
2371         /* make space for additional header when fcb is needed */
2372         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2373                 struct sk_buff *skb_new;
2374
2375                 skb_new = skb_realloc_headroom(skb, fcb_len);
2376                 if (!skb_new) {
2377                         dev->stats.tx_errors++;
2378                         dev_kfree_skb_any(skb);
2379                         return NETDEV_TX_OK;
2380                 }
2381
2382                 if (skb->sk)
2383                         skb_set_owner_w(skb_new, skb->sk);
2384                 dev_consume_skb_any(skb);
2385                 skb = skb_new;
2386         }
2387
2388         /* total number of fragments in the SKB */
2389         nr_frags = skb_shinfo(skb)->nr_frags;
2390
2391         /* calculate the required number of TxBDs for this skb */
2392         if (unlikely(do_tstamp))
2393                 nr_txbds = nr_frags + 2;
2394         else
2395                 nr_txbds = nr_frags + 1;
2396
2397         /* check if there is space to queue this packet */
2398         if (nr_txbds > tx_queue->num_txbdfree) {
2399                 /* no space, stop the queue */
2400                 netif_tx_stop_queue(txq);
2401                 dev->stats.tx_fifo_errors++;
2402                 return NETDEV_TX_BUSY;
2403         }
2404
2405         /* Update transmit stats */
2406         bytes_sent = skb->len;
2407         tx_queue->stats.tx_bytes += bytes_sent;
2408         /* keep Tx bytes on wire for BQL accounting */
2409         GFAR_CB(skb)->bytes_sent = bytes_sent;
2410         tx_queue->stats.tx_packets++;
2411
2412         txbdp = txbdp_start = tx_queue->cur_tx;
2413         lstatus = be32_to_cpu(txbdp->lstatus);
2414
2415         /* Add TxPAL between FCB and frame if required */
2416         if (unlikely(do_tstamp)) {
2417                 skb_push(skb, GMAC_TXPAL_LEN);
2418                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2419         }
2420
2421         /* Add TxFCB if required */
2422         if (fcb_len) {
2423                 fcb = gfar_add_fcb(skb);
2424                 lstatus |= BD_LFLAG(TXBD_TOE);
2425         }
2426
2427         /* Set up checksumming */
2428         if (do_csum) {
2429                 gfar_tx_checksum(skb, fcb, fcb_len);
2430
2431                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2432                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2433                         __skb_pull(skb, GMAC_FCB_LEN);
2434                         skb_checksum_help(skb);
2435                         if (do_vlan || do_tstamp) {
2436                                 /* put back a new fcb for vlan/tstamp TOE */
2437                                 fcb = gfar_add_fcb(skb);
2438                         } else {
2439                                 /* Tx TOE not used */
2440                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2441                                 fcb = NULL;
2442                         }
2443                 }
2444         }
2445
2446         if (do_vlan)
2447                 gfar_tx_vlan(skb, fcb);
2448
2449         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2450                                  DMA_TO_DEVICE);
2451         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2452                 goto dma_map_err;
2453
2454         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2455
2456         /* Time stamp insertion requires one additional TxBD */
2457         if (unlikely(do_tstamp))
2458                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2459                                                  tx_queue->tx_ring_size);
2460
2461         if (likely(!nr_frags)) {
2462                 if (likely(!do_tstamp))
2463                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2464         } else {
2465                 u32 lstatus_start = lstatus;
2466
2467                 /* Place the fragment addresses and lengths into the TxBDs */
2468                 frag = &skb_shinfo(skb)->frags[0];
2469                 for (i = 0; i < nr_frags; i++, frag++) {
2470                         unsigned int size;
2471
2472                         /* Point at the next BD, wrapping as needed */
2473                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2474
2475                         size = skb_frag_size(frag);
2476
2477                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
2478                                   BD_LFLAG(TXBD_READY);
2479
2480                         /* Handle the last BD specially */
2481                         if (i == nr_frags - 1)
2482                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2483
2484                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2485                                                    size, DMA_TO_DEVICE);
2486                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2487                                 goto dma_map_err;
2488
2489                         /* set the TxBD length and buffer pointer */
2490                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2491                         txbdp->lstatus = cpu_to_be32(lstatus);
2492                 }
2493
2494                 lstatus = lstatus_start;
2495         }
2496
2497         /* If time stamping is requested one additional TxBD must be set up. The
2498          * first TxBD points to the FCB and must have a data length of
2499          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2500          * the full frame length.
2501          */
2502         if (unlikely(do_tstamp)) {
2503                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2504
2505                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2506                 bufaddr += fcb_len;
2507
2508                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2509                               (skb_headlen(skb) - fcb_len);
2510                 if (!nr_frags)
2511                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2512
2513                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2514                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2515                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2516
2517                 /* Setup tx hardware time stamping */
2518                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2519                 fcb->ptp = 1;
2520         } else {
2521                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2522         }
2523
2524         netdev_tx_sent_queue(txq, bytes_sent);
2525
2526         gfar_wmb();
2527
2528         txbdp_start->lstatus = cpu_to_be32(lstatus);
2529
2530         gfar_wmb(); /* force lstatus write before tx_skbuff */
2531
2532         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2533
2534         /* Update the current skb pointer to the next entry we will use
2535          * (wrapping if necessary)
2536          */
2537         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2538                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2539
2540         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2541
2542         /* We can work in parallel with gfar_clean_tx_ring(), except
2543          * when modifying num_txbdfree. Note that we didn't grab the lock
2544          * when we were reading the num_txbdfree and checking for available
2545          * space, that's because outside of this function it can only grow.
2546          */
2547         spin_lock_bh(&tx_queue->txlock);
2548         /* reduce TxBD free count */
2549         tx_queue->num_txbdfree -= (nr_txbds);
2550         spin_unlock_bh(&tx_queue->txlock);
2551
2552         /* If the next BD still needs to be cleaned up, then the bds
2553          * are full.  We need to tell the kernel to stop sending us stuff.
2554          */
2555         if (!tx_queue->num_txbdfree) {
2556                 netif_tx_stop_queue(txq);
2557
2558                 dev->stats.tx_fifo_errors++;
2559         }
2560
2561         /* Tell the DMA to go go go */
2562         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2563
2564         return NETDEV_TX_OK;
2565
2566 dma_map_err:
2567         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2568         if (do_tstamp)
2569                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2570         for (i = 0; i < nr_frags; i++) {
2571                 lstatus = be32_to_cpu(txbdp->lstatus);
2572                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2573                         break;
2574
2575                 lstatus &= ~BD_LFLAG(TXBD_READY);
2576                 txbdp->lstatus = cpu_to_be32(lstatus);
2577                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2578                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2579                                DMA_TO_DEVICE);
2580                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2581         }
2582         gfar_wmb();
2583         dev_kfree_skb_any(skb);
2584         return NETDEV_TX_OK;
2585 }
2586
2587 /* Stops the kernel queue, and halts the controller */
2588 static int gfar_close(struct net_device *dev)
2589 {
2590         struct gfar_private *priv = netdev_priv(dev);
2591
2592         cancel_work_sync(&priv->reset_task);
2593         stop_gfar(dev);
2594
2595         /* Disconnect from the PHY */
2596         phy_disconnect(dev->phydev);
2597
2598         gfar_free_irq(priv);
2599
2600         return 0;
2601 }
2602
2603 /* Changes the mac address if the controller is not running. */
2604 static int gfar_set_mac_address(struct net_device *dev)
2605 {
2606         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2607
2608         return 0;
2609 }
2610
2611 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2612 {
2613         struct gfar_private *priv = netdev_priv(dev);
2614
2615         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2616                 cpu_relax();
2617
2618         if (dev->flags & IFF_UP)
2619                 stop_gfar(dev);
2620
2621         dev->mtu = new_mtu;
2622
2623         if (dev->flags & IFF_UP)
2624                 startup_gfar(dev);
2625
2626         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2627
2628         return 0;
2629 }
2630
2631 void reset_gfar(struct net_device *ndev)
2632 {
2633         struct gfar_private *priv = netdev_priv(ndev);
2634
2635         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2636                 cpu_relax();
2637
2638         stop_gfar(ndev);
2639         startup_gfar(ndev);
2640
2641         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2642 }
2643
2644 /* gfar_reset_task gets scheduled when a packet has not been
2645  * transmitted after a set amount of time.
2646  * For now, assume that clearing out all the structures, and
2647  * starting over will fix the problem.
2648  */
2649 static void gfar_reset_task(struct work_struct *work)
2650 {
2651         struct gfar_private *priv = container_of(work, struct gfar_private,
2652                                                  reset_task);
2653         reset_gfar(priv->ndev);
2654 }
2655
2656 static void gfar_timeout(struct net_device *dev)
2657 {
2658         struct gfar_private *priv = netdev_priv(dev);
2659
2660         dev->stats.tx_errors++;
2661         schedule_work(&priv->reset_task);
2662 }
2663
2664 /* Interrupt Handler for Transmit complete */
2665 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2666 {
2667         struct net_device *dev = tx_queue->dev;
2668         struct netdev_queue *txq;
2669         struct gfar_private *priv = netdev_priv(dev);
2670         struct txbd8 *bdp, *next = NULL;
2671         struct txbd8 *lbdp = NULL;
2672         struct txbd8 *base = tx_queue->tx_bd_base;
2673         struct sk_buff *skb;
2674         int skb_dirtytx;
2675         int tx_ring_size = tx_queue->tx_ring_size;
2676         int frags = 0, nr_txbds = 0;
2677         int i;
2678         int howmany = 0;
2679         int tqi = tx_queue->qindex;
2680         unsigned int bytes_sent = 0;
2681         u32 lstatus;
2682         size_t buflen;
2683
2684         txq = netdev_get_tx_queue(dev, tqi);
2685         bdp = tx_queue->dirty_tx;
2686         skb_dirtytx = tx_queue->skb_dirtytx;
2687
2688         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2689
2690                 frags = skb_shinfo(skb)->nr_frags;
2691
2692                 /* When time stamping, one additional TxBD must be freed.
2693                  * Also, we need to dma_unmap_single() the TxPAL.
2694                  */
2695                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2696                         nr_txbds = frags + 2;
2697                 else
2698                         nr_txbds = frags + 1;
2699
2700                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2701
2702                 lstatus = be32_to_cpu(lbdp->lstatus);
2703
2704                 /* Only clean completed frames */
2705                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2706                     (lstatus & BD_LENGTH_MASK))
2707                         break;
2708
2709                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2710                         next = next_txbd(bdp, base, tx_ring_size);
2711                         buflen = be16_to_cpu(next->length) +
2712                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2713                 } else
2714                         buflen = be16_to_cpu(bdp->length);
2715
2716                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2717                                  buflen, DMA_TO_DEVICE);
2718
2719                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2720                         struct skb_shared_hwtstamps shhwtstamps;
2721                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2722                                           ~0x7UL);
2723
2724                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2725                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2726                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2727                         skb_tstamp_tx(skb, &shhwtstamps);
2728                         gfar_clear_txbd_status(bdp);
2729                         bdp = next;
2730                 }
2731
2732                 gfar_clear_txbd_status(bdp);
2733                 bdp = next_txbd(bdp, base, tx_ring_size);
2734
2735                 for (i = 0; i < frags; i++) {
2736                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2737                                        be16_to_cpu(bdp->length),
2738                                        DMA_TO_DEVICE);
2739                         gfar_clear_txbd_status(bdp);
2740                         bdp = next_txbd(bdp, base, tx_ring_size);
2741                 }
2742
2743                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2744
2745                 dev_kfree_skb_any(skb);
2746
2747                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2748
2749                 skb_dirtytx = (skb_dirtytx + 1) &
2750                               TX_RING_MOD_MASK(tx_ring_size);
2751
2752                 howmany++;
2753                 spin_lock(&tx_queue->txlock);
2754                 tx_queue->num_txbdfree += nr_txbds;
2755                 spin_unlock(&tx_queue->txlock);
2756         }
2757
2758         /* If we freed a buffer, we can restart transmission, if necessary */
2759         if (tx_queue->num_txbdfree &&
2760             netif_tx_queue_stopped(txq) &&
2761             !(test_bit(GFAR_DOWN, &priv->state)))
2762                 netif_wake_subqueue(priv->ndev, tqi);
2763
2764         /* Update dirty indicators */
2765         tx_queue->skb_dirtytx = skb_dirtytx;
2766         tx_queue->dirty_tx = bdp;
2767
2768         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2769 }
2770
2771 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2772 {
2773         struct page *page;
2774         dma_addr_t addr;
2775
2776         page = dev_alloc_page();
2777         if (unlikely(!page))
2778                 return false;
2779
2780         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2781         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2782                 __free_page(page);
2783
2784                 return false;
2785         }
2786
2787         rxb->dma = addr;
2788         rxb->page = page;
2789         rxb->page_offset = 0;
2790
2791         return true;
2792 }
2793
2794 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2795 {
2796         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2797         struct gfar_extra_stats *estats = &priv->extra_stats;
2798
2799         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2800         atomic64_inc(&estats->rx_alloc_err);
2801 }
2802
2803 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2804                                 int alloc_cnt)
2805 {
2806         struct rxbd8 *bdp;
2807         struct gfar_rx_buff *rxb;
2808         int i;
2809
2810         i = rx_queue->next_to_use;
2811         bdp = &rx_queue->rx_bd_base[i];
2812         rxb = &rx_queue->rx_buff[i];
2813
2814         while (alloc_cnt--) {
2815                 /* try reuse page */
2816                 if (unlikely(!rxb->page)) {
2817                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2818                                 gfar_rx_alloc_err(rx_queue);
2819                                 break;
2820                         }
2821                 }
2822
2823                 /* Setup the new RxBD */
2824                 gfar_init_rxbdp(rx_queue, bdp,
2825                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2826
2827                 /* Update to the next pointer */
2828                 bdp++;
2829                 rxb++;
2830
2831                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2832                         i = 0;
2833                         bdp = rx_queue->rx_bd_base;
2834                         rxb = rx_queue->rx_buff;
2835                 }
2836         }
2837
2838         rx_queue->next_to_use = i;
2839         rx_queue->next_to_alloc = i;
2840 }
2841
2842 static void count_errors(u32 lstatus, struct net_device *ndev)
2843 {
2844         struct gfar_private *priv = netdev_priv(ndev);
2845         struct net_device_stats *stats = &ndev->stats;
2846         struct gfar_extra_stats *estats = &priv->extra_stats;
2847
2848         /* If the packet was truncated, none of the other errors matter */
2849         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2850                 stats->rx_length_errors++;
2851
2852                 atomic64_inc(&estats->rx_trunc);
2853
2854                 return;
2855         }
2856         /* Count the errors, if there were any */
2857         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2858                 stats->rx_length_errors++;
2859
2860                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2861                         atomic64_inc(&estats->rx_large);
2862                 else
2863                         atomic64_inc(&estats->rx_short);
2864         }
2865         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2866                 stats->rx_frame_errors++;
2867                 atomic64_inc(&estats->rx_nonoctet);
2868         }
2869         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2870                 atomic64_inc(&estats->rx_crcerr);
2871                 stats->rx_crc_errors++;
2872         }
2873         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2874                 atomic64_inc(&estats->rx_overrun);
2875                 stats->rx_over_errors++;
2876         }
2877 }
2878
2879 irqreturn_t gfar_receive(int irq, void *grp_id)
2880 {
2881         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2882         unsigned long flags;
2883         u32 imask, ievent;
2884
2885         ievent = gfar_read(&grp->regs->ievent);
2886
2887         if (unlikely(ievent & IEVENT_FGPI)) {
2888                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2889                 return IRQ_HANDLED;
2890         }
2891
2892         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2893                 spin_lock_irqsave(&grp->grplock, flags);
2894                 imask = gfar_read(&grp->regs->imask);
2895                 imask &= IMASK_RX_DISABLED;
2896                 gfar_write(&grp->regs->imask, imask);
2897                 spin_unlock_irqrestore(&grp->grplock, flags);
2898                 __napi_schedule(&grp->napi_rx);
2899         } else {
2900                 /* Clear IEVENT, so interrupts aren't called again
2901                  * because of the packets that have already arrived.
2902                  */
2903                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2904         }
2905
2906         return IRQ_HANDLED;
2907 }
2908
2909 /* Interrupt Handler for Transmit complete */
2910 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2911 {
2912         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2913         unsigned long flags;
2914         u32 imask;
2915
2916         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2917                 spin_lock_irqsave(&grp->grplock, flags);
2918                 imask = gfar_read(&grp->regs->imask);
2919                 imask &= IMASK_TX_DISABLED;
2920                 gfar_write(&grp->regs->imask, imask);
2921                 spin_unlock_irqrestore(&grp->grplock, flags);
2922                 __napi_schedule(&grp->napi_tx);
2923         } else {
2924                 /* Clear IEVENT, so interrupts aren't called again
2925                  * because of the packets that have already arrived.
2926                  */
2927                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2928         }
2929
2930         return IRQ_HANDLED;
2931 }
2932
2933 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2934                              struct sk_buff *skb, bool first)
2935 {
2936         int size = lstatus & BD_LENGTH_MASK;
2937         struct page *page = rxb->page;
2938
2939         if (likely(first)) {
2940                 skb_put(skb, size);
2941         } else {
2942                 /* the last fragments' length contains the full frame length */
2943                 if (lstatus & BD_LFLAG(RXBD_LAST))
2944                         size -= skb->len;
2945
2946                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2947                                 rxb->page_offset + RXBUF_ALIGNMENT,
2948                                 size, GFAR_RXB_TRUESIZE);
2949         }
2950
2951         /* try reuse page */
2952         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2953                 return false;
2954
2955         /* change offset to the other half */
2956         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2957
2958         page_ref_inc(page);
2959
2960         return true;
2961 }
2962
2963 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2964                                struct gfar_rx_buff *old_rxb)
2965 {
2966         struct gfar_rx_buff *new_rxb;
2967         u16 nta = rxq->next_to_alloc;
2968
2969         new_rxb = &rxq->rx_buff[nta];
2970
2971         /* find next buf that can reuse a page */
2972         nta++;
2973         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2974
2975         /* copy page reference */
2976         *new_rxb = *old_rxb;
2977
2978         /* sync for use by the device */
2979         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2980                                          old_rxb->page_offset,
2981                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2982 }
2983
2984 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2985                                             u32 lstatus, struct sk_buff *skb)
2986 {
2987         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2988         struct page *page = rxb->page;
2989         bool first = false;
2990
2991         if (likely(!skb)) {
2992                 void *buff_addr = page_address(page) + rxb->page_offset;
2993
2994                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2995                 if (unlikely(!skb)) {
2996                         gfar_rx_alloc_err(rx_queue);
2997                         return NULL;
2998                 }
2999                 skb_reserve(skb, RXBUF_ALIGNMENT);
3000                 first = true;
3001         }
3002
3003         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3004                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3005
3006         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3007                 /* reuse the free half of the page */
3008                 gfar_reuse_rx_page(rx_queue, rxb);
3009         } else {
3010                 /* page cannot be reused, unmap it */
3011                 dma_unmap_page(rx_queue->dev, rxb->dma,
3012                                PAGE_SIZE, DMA_FROM_DEVICE);
3013         }
3014
3015         /* clear rxb content */
3016         rxb->page = NULL;
3017
3018         return skb;
3019 }
3020
3021 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3022 {
3023         /* If valid headers were found, and valid sums
3024          * were verified, then we tell the kernel that no
3025          * checksumming is necessary.  Otherwise, it is [FIXME]
3026          */
3027         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3028             (RXFCB_CIP | RXFCB_CTU))
3029                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3030         else
3031                 skb_checksum_none_assert(skb);
3032 }
3033
3034 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3035 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3036 {
3037         struct gfar_private *priv = netdev_priv(ndev);
3038         struct rxfcb *fcb = NULL;
3039
3040         /* fcb is at the beginning if exists */
3041         fcb = (struct rxfcb *)skb->data;
3042
3043         /* Remove the FCB from the skb
3044          * Remove the padded bytes, if there are any
3045          */
3046         if (priv->uses_rxfcb)
3047                 skb_pull(skb, GMAC_FCB_LEN);
3048
3049         /* Get receive timestamp from the skb */
3050         if (priv->hwts_rx_en) {
3051                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3052                 u64 *ns = (u64 *) skb->data;
3053
3054                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3055                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3056         }
3057
3058         if (priv->padding)
3059                 skb_pull(skb, priv->padding);
3060
3061         /* Trim off the FCS */
3062         pskb_trim(skb, skb->len - ETH_FCS_LEN);
3063
3064         if (ndev->features & NETIF_F_RXCSUM)
3065                 gfar_rx_checksum(skb, fcb);
3066
3067         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3068          * Even if vlan rx accel is disabled, on some chips
3069          * RXFCB_VLN is pseudo randomly set.
3070          */
3071         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3072             be16_to_cpu(fcb->flags) & RXFCB_VLN)
3073                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3074                                        be16_to_cpu(fcb->vlctl));
3075 }
3076
3077 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3078  * until the budget/quota has been reached. Returns the number
3079  * of frames handled
3080  */
3081 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3082 {
3083         struct net_device *ndev = rx_queue->ndev;
3084         struct gfar_private *priv = netdev_priv(ndev);
3085         struct rxbd8 *bdp;
3086         int i, howmany = 0;
3087         struct sk_buff *skb = rx_queue->skb;
3088         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3089         unsigned int total_bytes = 0, total_pkts = 0;
3090
3091         /* Get the first full descriptor */
3092         i = rx_queue->next_to_clean;
3093
3094         while (rx_work_limit--) {
3095                 u32 lstatus;
3096
3097                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3098                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3099                         cleaned_cnt = 0;
3100                 }
3101
3102                 bdp = &rx_queue->rx_bd_base[i];
3103                 lstatus = be32_to_cpu(bdp->lstatus);
3104                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3105                         break;
3106
3107                 /* order rx buffer descriptor reads */
3108                 rmb();
3109
3110                 /* fetch next to clean buffer from the ring */
3111                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3112                 if (unlikely(!skb))
3113                         break;
3114
3115                 cleaned_cnt++;
3116                 howmany++;
3117
3118                 if (unlikely(++i == rx_queue->rx_ring_size))
3119                         i = 0;
3120
3121                 rx_queue->next_to_clean = i;
3122
3123                 /* fetch next buffer if not the last in frame */
3124                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3125                         continue;
3126
3127                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3128                         count_errors(lstatus, ndev);
3129
3130                         /* discard faulty buffer */
3131                         dev_kfree_skb(skb);
3132                         skb = NULL;
3133                         rx_queue->stats.rx_dropped++;
3134                         continue;
3135                 }
3136
3137                 gfar_process_frame(ndev, skb);
3138
3139                 /* Increment the number of packets */
3140                 total_pkts++;
3141                 total_bytes += skb->len;
3142
3143                 skb_record_rx_queue(skb, rx_queue->qindex);
3144
3145                 skb->protocol = eth_type_trans(skb, ndev);
3146
3147                 /* Send the packet up the stack */
3148                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3149
3150                 skb = NULL;
3151         }
3152
3153         /* Store incomplete frames for completion */
3154         rx_queue->skb = skb;
3155
3156         rx_queue->stats.rx_packets += total_pkts;
3157         rx_queue->stats.rx_bytes += total_bytes;
3158
3159         if (cleaned_cnt)
3160                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3161
3162         /* Update Last Free RxBD pointer for LFC */
3163         if (unlikely(priv->tx_actual_en)) {
3164                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3165
3166                 gfar_write(rx_queue->rfbptr, bdp_dma);
3167         }
3168
3169         return howmany;
3170 }
3171
3172 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3173 {
3174         struct gfar_priv_grp *gfargrp =
3175                 container_of(napi, struct gfar_priv_grp, napi_rx);
3176         struct gfar __iomem *regs = gfargrp->regs;
3177         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3178         int work_done = 0;
3179
3180         /* Clear IEVENT, so interrupts aren't called again
3181          * because of the packets that have already arrived
3182          */
3183         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3184
3185         work_done = gfar_clean_rx_ring(rx_queue, budget);
3186
3187         if (work_done < budget) {
3188                 u32 imask;
3189                 napi_complete_done(napi, work_done);
3190                 /* Clear the halt bit in RSTAT */
3191                 gfar_write(&regs->rstat, gfargrp->rstat);
3192
3193                 spin_lock_irq(&gfargrp->grplock);
3194                 imask = gfar_read(&regs->imask);
3195                 imask |= IMASK_RX_DEFAULT;
3196                 gfar_write(&regs->imask, imask);
3197                 spin_unlock_irq(&gfargrp->grplock);
3198         }
3199
3200         return work_done;
3201 }
3202
3203 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3204 {
3205         struct gfar_priv_grp *gfargrp =
3206                 container_of(napi, struct gfar_priv_grp, napi_tx);
3207         struct gfar __iomem *regs = gfargrp->regs;
3208         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3209         u32 imask;
3210
3211         /* Clear IEVENT, so interrupts aren't called again
3212          * because of the packets that have already arrived
3213          */
3214         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3215
3216         /* run Tx cleanup to completion */
3217         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3218                 gfar_clean_tx_ring(tx_queue);
3219
3220         napi_complete(napi);
3221
3222         spin_lock_irq(&gfargrp->grplock);
3223         imask = gfar_read(&regs->imask);
3224         imask |= IMASK_TX_DEFAULT;
3225         gfar_write(&regs->imask, imask);
3226         spin_unlock_irq(&gfargrp->grplock);
3227
3228         return 0;
3229 }
3230
3231 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3232 {
3233         struct gfar_priv_grp *gfargrp =
3234                 container_of(napi, struct gfar_priv_grp, napi_rx);
3235         struct gfar_private *priv = gfargrp->priv;
3236         struct gfar __iomem *regs = gfargrp->regs;
3237         struct gfar_priv_rx_q *rx_queue = NULL;
3238         int work_done = 0, work_done_per_q = 0;
3239         int i, budget_per_q = 0;
3240         unsigned long rstat_rxf;
3241         int num_act_queues;
3242
3243         /* Clear IEVENT, so interrupts aren't called again
3244          * because of the packets that have already arrived
3245          */
3246         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3247
3248         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3249
3250         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3251         if (num_act_queues)
3252                 budget_per_q = budget/num_act_queues;
3253
3254         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3255                 /* skip queue if not active */
3256                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3257                         continue;
3258
3259                 rx_queue = priv->rx_queue[i];
3260                 work_done_per_q =
3261                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3262                 work_done += work_done_per_q;
3263
3264                 /* finished processing this queue */
3265                 if (work_done_per_q < budget_per_q) {
3266                         /* clear active queue hw indication */
3267                         gfar_write(&regs->rstat,
3268                                    RSTAT_CLEAR_RXF0 >> i);
3269                         num_act_queues--;
3270
3271                         if (!num_act_queues)
3272                                 break;
3273                 }
3274         }
3275
3276         if (!num_act_queues) {
3277                 u32 imask;
3278                 napi_complete_done(napi, work_done);
3279
3280                 /* Clear the halt bit in RSTAT */
3281                 gfar_write(&regs->rstat, gfargrp->rstat);
3282
3283                 spin_lock_irq(&gfargrp->grplock);
3284                 imask = gfar_read(&regs->imask);
3285                 imask |= IMASK_RX_DEFAULT;
3286                 gfar_write(&regs->imask, imask);
3287                 spin_unlock_irq(&gfargrp->grplock);
3288         }
3289
3290         return work_done;
3291 }
3292
3293 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3294 {
3295         struct gfar_priv_grp *gfargrp =
3296                 container_of(napi, struct gfar_priv_grp, napi_tx);
3297         struct gfar_private *priv = gfargrp->priv;
3298         struct gfar __iomem *regs = gfargrp->regs;
3299         struct gfar_priv_tx_q *tx_queue = NULL;
3300         int has_tx_work = 0;
3301         int i;
3302
3303         /* Clear IEVENT, so interrupts aren't called again
3304          * because of the packets that have already arrived
3305          */
3306         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3307
3308         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3309                 tx_queue = priv->tx_queue[i];
3310                 /* run Tx cleanup to completion */
3311                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3312                         gfar_clean_tx_ring(tx_queue);
3313                         has_tx_work = 1;
3314                 }
3315         }
3316
3317         if (!has_tx_work) {
3318                 u32 imask;
3319                 napi_complete(napi);
3320
3321                 spin_lock_irq(&gfargrp->grplock);
3322                 imask = gfar_read(&regs->imask);
3323                 imask |= IMASK_TX_DEFAULT;
3324                 gfar_write(&regs->imask, imask);
3325                 spin_unlock_irq(&gfargrp->grplock);
3326         }
3327
3328         return 0;
3329 }
3330
3331
3332 #ifdef CONFIG_NET_POLL_CONTROLLER
3333 /* Polling 'interrupt' - used by things like netconsole to send skbs
3334  * without having to re-enable interrupts. It's not called while
3335  * the interrupt routine is executing.
3336  */
3337 static void gfar_netpoll(struct net_device *dev)
3338 {
3339         struct gfar_private *priv = netdev_priv(dev);
3340         int i;
3341
3342         /* If the device has multiple interrupts, run tx/rx */
3343         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3344                 for (i = 0; i < priv->num_grps; i++) {
3345                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3346
3347                         disable_irq(gfar_irq(grp, TX)->irq);
3348                         disable_irq(gfar_irq(grp, RX)->irq);
3349                         disable_irq(gfar_irq(grp, ER)->irq);
3350                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3351                         enable_irq(gfar_irq(grp, ER)->irq);
3352                         enable_irq(gfar_irq(grp, RX)->irq);
3353                         enable_irq(gfar_irq(grp, TX)->irq);
3354                 }
3355         } else {
3356                 for (i = 0; i < priv->num_grps; i++) {
3357                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3358
3359                         disable_irq(gfar_irq(grp, TX)->irq);
3360                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3361                         enable_irq(gfar_irq(grp, TX)->irq);
3362                 }
3363         }
3364 }
3365 #endif
3366
3367 /* The interrupt handler for devices with one interrupt */
3368 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3369 {
3370         struct gfar_priv_grp *gfargrp = grp_id;
3371
3372         /* Save ievent for future reference */
3373         u32 events = gfar_read(&gfargrp->regs->ievent);
3374
3375         /* Check for reception */
3376         if (events & IEVENT_RX_MASK)
3377                 gfar_receive(irq, grp_id);
3378
3379         /* Check for transmit completion */
3380         if (events & IEVENT_TX_MASK)
3381                 gfar_transmit(irq, grp_id);
3382
3383         /* Check for errors */
3384         if (events & IEVENT_ERR_MASK)
3385                 gfar_error(irq, grp_id);
3386
3387         return IRQ_HANDLED;
3388 }
3389
3390 /* Called every time the controller might need to be made
3391  * aware of new link state.  The PHY code conveys this
3392  * information through variables in the phydev structure, and this
3393  * function converts those variables into the appropriate
3394  * register values, and can bring down the device if needed.
3395  */
3396 static void adjust_link(struct net_device *dev)
3397 {
3398         struct gfar_private *priv = netdev_priv(dev);
3399         struct phy_device *phydev = dev->phydev;
3400
3401         if (unlikely(phydev->link != priv->oldlink ||
3402                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3403                                        phydev->speed != priv->oldspeed))))
3404                 gfar_update_link_state(priv);
3405 }
3406
3407 /* Update the hash table based on the current list of multicast
3408  * addresses we subscribe to.  Also, change the promiscuity of
3409  * the device based on the flags (this function is called
3410  * whenever dev->flags is changed
3411  */
3412 static void gfar_set_multi(struct net_device *dev)
3413 {
3414         struct netdev_hw_addr *ha;
3415         struct gfar_private *priv = netdev_priv(dev);
3416         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3417         u32 tempval;
3418
3419         if (dev->flags & IFF_PROMISC) {
3420                 /* Set RCTRL to PROM */
3421                 tempval = gfar_read(&regs->rctrl);
3422                 tempval |= RCTRL_PROM;
3423                 gfar_write(&regs->rctrl, tempval);
3424         } else {
3425                 /* Set RCTRL to not PROM */
3426                 tempval = gfar_read(&regs->rctrl);
3427                 tempval &= ~(RCTRL_PROM);
3428                 gfar_write(&regs->rctrl, tempval);
3429         }
3430
3431         if (dev->flags & IFF_ALLMULTI) {
3432                 /* Set the hash to rx all multicast frames */
3433                 gfar_write(&regs->igaddr0, 0xffffffff);
3434                 gfar_write(&regs->igaddr1, 0xffffffff);
3435                 gfar_write(&regs->igaddr2, 0xffffffff);
3436                 gfar_write(&regs->igaddr3, 0xffffffff);
3437                 gfar_write(&regs->igaddr4, 0xffffffff);
3438                 gfar_write(&regs->igaddr5, 0xffffffff);
3439                 gfar_write(&regs->igaddr6, 0xffffffff);
3440                 gfar_write(&regs->igaddr7, 0xffffffff);
3441                 gfar_write(&regs->gaddr0, 0xffffffff);
3442                 gfar_write(&regs->gaddr1, 0xffffffff);
3443                 gfar_write(&regs->gaddr2, 0xffffffff);
3444                 gfar_write(&regs->gaddr3, 0xffffffff);
3445                 gfar_write(&regs->gaddr4, 0xffffffff);
3446                 gfar_write(&regs->gaddr5, 0xffffffff);
3447                 gfar_write(&regs->gaddr6, 0xffffffff);
3448                 gfar_write(&regs->gaddr7, 0xffffffff);
3449         } else {
3450                 int em_num;
3451                 int idx;
3452
3453                 /* zero out the hash */
3454                 gfar_write(&regs->igaddr0, 0x0);
3455                 gfar_write(&regs->igaddr1, 0x0);
3456                 gfar_write(&regs->igaddr2, 0x0);
3457                 gfar_write(&regs->igaddr3, 0x0);
3458                 gfar_write(&regs->igaddr4, 0x0);
3459                 gfar_write(&regs->igaddr5, 0x0);
3460                 gfar_write(&regs->igaddr6, 0x0);
3461                 gfar_write(&regs->igaddr7, 0x0);
3462                 gfar_write(&regs->gaddr0, 0x0);
3463                 gfar_write(&regs->gaddr1, 0x0);
3464                 gfar_write(&regs->gaddr2, 0x0);
3465                 gfar_write(&regs->gaddr3, 0x0);
3466                 gfar_write(&regs->gaddr4, 0x0);
3467                 gfar_write(&regs->gaddr5, 0x0);
3468                 gfar_write(&regs->gaddr6, 0x0);
3469                 gfar_write(&regs->gaddr7, 0x0);
3470
3471                 /* If we have extended hash tables, we need to
3472                  * clear the exact match registers to prepare for
3473                  * setting them
3474                  */
3475                 if (priv->extended_hash) {
3476                         em_num = GFAR_EM_NUM + 1;
3477                         gfar_clear_exact_match(dev);
3478                         idx = 1;
3479                 } else {
3480                         idx = 0;
3481                         em_num = 0;
3482                 }
3483
3484                 if (netdev_mc_empty(dev))
3485                         return;
3486
3487                 /* Parse the list, and set the appropriate bits */
3488                 netdev_for_each_mc_addr(ha, dev) {
3489                         if (idx < em_num) {
3490                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3491                                 idx++;
3492                         } else
3493                                 gfar_set_hash_for_addr(dev, ha->addr);
3494                 }
3495         }
3496 }
3497
3498
3499 /* Clears each of the exact match registers to zero, so they
3500  * don't interfere with normal reception
3501  */
3502 static void gfar_clear_exact_match(struct net_device *dev)
3503 {
3504         int idx;
3505         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3506
3507         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3508                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3509 }
3510
3511 /* Set the appropriate hash bit for the given addr */
3512 /* The algorithm works like so:
3513  * 1) Take the Destination Address (ie the multicast address), and
3514  * do a CRC on it (little endian), and reverse the bits of the
3515  * result.
3516  * 2) Use the 8 most significant bits as a hash into a 256-entry
3517  * table.  The table is controlled through 8 32-bit registers:
3518  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3519  * gaddr7.  This means that the 3 most significant bits in the
3520  * hash index which gaddr register to use, and the 5 other bits
3521  * indicate which bit (assuming an IBM numbering scheme, which
3522  * for PowerPC (tm) is usually the case) in the register holds
3523  * the entry.
3524  */
3525 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3526 {
3527         u32 tempval;
3528         struct gfar_private *priv = netdev_priv(dev);
3529         u32 result = ether_crc(ETH_ALEN, addr);
3530         int width = priv->hash_width;
3531         u8 whichbit = (result >> (32 - width)) & 0x1f;
3532         u8 whichreg = result >> (32 - width + 5);
3533         u32 value = (1 << (31-whichbit));
3534
3535         tempval = gfar_read(priv->hash_regs[whichreg]);
3536         tempval |= value;
3537         gfar_write(priv->hash_regs[whichreg], tempval);
3538 }
3539
3540
3541 /* There are multiple MAC Address register pairs on some controllers
3542  * This function sets the numth pair to a given address
3543  */
3544 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3545                                   const u8 *addr)
3546 {
3547         struct gfar_private *priv = netdev_priv(dev);
3548         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3549         u32 tempval;
3550         u32 __iomem *macptr = &regs->macstnaddr1;
3551
3552         macptr += num*2;
3553
3554         /* For a station address of 0x12345678ABCD in transmission
3555          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3556          * MACnADDR2 is set to 0x34120000.
3557          */
3558         tempval = (addr[5] << 24) | (addr[4] << 16) |
3559                   (addr[3] << 8)  |  addr[2];
3560
3561         gfar_write(macptr, tempval);
3562
3563         tempval = (addr[1] << 24) | (addr[0] << 16);
3564
3565         gfar_write(macptr+1, tempval);
3566 }
3567
3568 /* GFAR error interrupt handler */
3569 static irqreturn_t gfar_error(int irq, void *grp_id)
3570 {
3571         struct gfar_priv_grp *gfargrp = grp_id;
3572         struct gfar __iomem *regs = gfargrp->regs;
3573         struct gfar_private *priv= gfargrp->priv;
3574         struct net_device *dev = priv->ndev;
3575
3576         /* Save ievent for future reference */
3577         u32 events = gfar_read(&regs->ievent);
3578
3579         /* Clear IEVENT */
3580         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3581
3582         /* Magic Packet is not an error. */
3583         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3584             (events & IEVENT_MAG))
3585                 events &= ~IEVENT_MAG;
3586
3587         /* Hmm... */
3588         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3589                 netdev_dbg(dev,
3590                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3591                            events, gfar_read(&regs->imask));
3592
3593         /* Update the error counters */
3594         if (events & IEVENT_TXE) {
3595                 dev->stats.tx_errors++;
3596
3597                 if (events & IEVENT_LC)
3598                         dev->stats.tx_window_errors++;
3599                 if (events & IEVENT_CRL)
3600                         dev->stats.tx_aborted_errors++;
3601                 if (events & IEVENT_XFUN) {
3602                         netif_dbg(priv, tx_err, dev,
3603                                   "TX FIFO underrun, packet dropped\n");
3604                         dev->stats.tx_dropped++;
3605                         atomic64_inc(&priv->extra_stats.tx_underrun);
3606
3607                         schedule_work(&priv->reset_task);
3608                 }
3609                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3610         }
3611         if (events & IEVENT_BSY) {
3612                 dev->stats.rx_over_errors++;
3613                 atomic64_inc(&priv->extra_stats.rx_bsy);
3614
3615                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3616                           gfar_read(&regs->rstat));
3617         }
3618         if (events & IEVENT_BABR) {
3619                 dev->stats.rx_errors++;
3620                 atomic64_inc(&priv->extra_stats.rx_babr);
3621
3622                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3623         }
3624         if (events & IEVENT_EBERR) {
3625                 atomic64_inc(&priv->extra_stats.eberr);
3626                 netif_dbg(priv, rx_err, dev, "bus error\n");
3627         }
3628         if (events & IEVENT_RXC)
3629                 netif_dbg(priv, rx_status, dev, "control frame\n");
3630
3631         if (events & IEVENT_BABT) {
3632                 atomic64_inc(&priv->extra_stats.tx_babt);
3633                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3634         }
3635         return IRQ_HANDLED;
3636 }
3637
3638 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3639 {
3640         struct net_device *ndev = priv->ndev;
3641         struct phy_device *phydev = ndev->phydev;
3642         u32 val = 0;
3643
3644         if (!phydev->duplex)
3645                 return val;
3646
3647         if (!priv->pause_aneg_en) {
3648                 if (priv->tx_pause_en)
3649                         val |= MACCFG1_TX_FLOW;
3650                 if (priv->rx_pause_en)
3651                         val |= MACCFG1_RX_FLOW;
3652         } else {
3653                 u16 lcl_adv, rmt_adv;
3654                 u8 flowctrl;
3655                 /* get link partner capabilities */
3656                 rmt_adv = 0;
3657                 if (phydev->pause)
3658                         rmt_adv = LPA_PAUSE_CAP;
3659                 if (phydev->asym_pause)
3660                         rmt_adv |= LPA_PAUSE_ASYM;
3661
3662                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3663                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3664                 if (flowctrl & FLOW_CTRL_TX)
3665                         val |= MACCFG1_TX_FLOW;
3666                 if (flowctrl & FLOW_CTRL_RX)
3667                         val |= MACCFG1_RX_FLOW;
3668         }
3669
3670         return val;
3671 }
3672
3673 static noinline void gfar_update_link_state(struct gfar_private *priv)
3674 {
3675         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3676         struct net_device *ndev = priv->ndev;
3677         struct phy_device *phydev = ndev->phydev;
3678         struct gfar_priv_rx_q *rx_queue = NULL;
3679         int i;
3680
3681         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3682                 return;
3683
3684         if (phydev->link) {
3685                 u32 tempval1 = gfar_read(&regs->maccfg1);
3686                 u32 tempval = gfar_read(&regs->maccfg2);
3687                 u32 ecntrl = gfar_read(&regs->ecntrl);
3688                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3689
3690                 if (phydev->duplex != priv->oldduplex) {
3691                         if (!(phydev->duplex))
3692                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3693                         else
3694                                 tempval |= MACCFG2_FULL_DUPLEX;
3695
3696                         priv->oldduplex = phydev->duplex;
3697                 }
3698
3699                 if (phydev->speed != priv->oldspeed) {
3700                         switch (phydev->speed) {
3701                         case 1000:
3702                                 tempval =
3703                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3704
3705                                 ecntrl &= ~(ECNTRL_R100);
3706                                 break;
3707                         case 100:
3708                         case 10:
3709                                 tempval =
3710                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3711
3712                                 /* Reduced mode distinguishes
3713                                  * between 10 and 100
3714                                  */
3715                                 if (phydev->speed == SPEED_100)
3716                                         ecntrl |= ECNTRL_R100;
3717                                 else
3718                                         ecntrl &= ~(ECNTRL_R100);
3719                                 break;
3720                         default:
3721                                 netif_warn(priv, link, priv->ndev,
3722                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3723                                            phydev->speed);
3724                                 break;
3725                         }
3726
3727                         priv->oldspeed = phydev->speed;
3728                 }
3729
3730                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3731                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3732
3733                 /* Turn last free buffer recording on */
3734                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3735                         for (i = 0; i < priv->num_rx_queues; i++) {
3736                                 u32 bdp_dma;
3737
3738                                 rx_queue = priv->rx_queue[i];
3739                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3740                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3741                         }
3742
3743                         priv->tx_actual_en = 1;
3744                 }
3745
3746                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3747                         priv->tx_actual_en = 0;
3748
3749                 gfar_write(&regs->maccfg1, tempval1);
3750                 gfar_write(&regs->maccfg2, tempval);
3751                 gfar_write(&regs->ecntrl, ecntrl);
3752
3753                 if (!priv->oldlink)
3754                         priv->oldlink = 1;
3755
3756         } else if (priv->oldlink) {
3757                 priv->oldlink = 0;
3758                 priv->oldspeed = 0;
3759                 priv->oldduplex = -1;
3760         }
3761
3762         if (netif_msg_link(priv))
3763                 phy_print_status(phydev);
3764 }
3765
3766 static const struct of_device_id gfar_match[] =
3767 {
3768         {
3769                 .type = "network",
3770                 .compatible = "gianfar",
3771         },
3772         {
3773                 .compatible = "fsl,etsec2",
3774         },
3775         {},
3776 };
3777 MODULE_DEVICE_TABLE(of, gfar_match);
3778
3779 /* Structure for a device driver */
3780 static struct platform_driver gfar_driver = {
3781         .driver = {
3782                 .name = "fsl-gianfar",
3783                 .pm = GFAR_PM_OPS,
3784                 .of_match_table = gfar_match,
3785         },
3786         .probe = gfar_probe,
3787         .remove = gfar_remove,
3788 };
3789
3790 module_platform_driver(gfar_driver);