Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
317  * mask out bits in the Advertised Port Capabilities which are managed via
318  * separate controls, like Pause Frames and Forward Error Correction.  In the
319  * Virtual Function Common Code, since we never perform L1 Configuration on
320  * the Link, the only things we really need to filter out are things which
321  * we decode and report separately like Speed.
322  */
323 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
324                      FW_PORT_CAP32_802_3_PAUSE | \
325                      FW_PORT_CAP32_802_3_ASM_DIR | \
326                      FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
327                      FW_PORT_CAP32_ANEG)
328
329 /**
330  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
331  *      @caps16: a 16-bit Port Capabilities value
332  *
333  *      Returns the equivalent 32-bit Port Capabilities value.
334  */
335 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
336 {
337         fw_port_cap32_t caps32 = 0;
338
339         #define CAP16_TO_CAP32(__cap) \
340                 do { \
341                         if (caps16 & FW_PORT_CAP_##__cap) \
342                                 caps32 |= FW_PORT_CAP32_##__cap; \
343                 } while (0)
344
345         CAP16_TO_CAP32(SPEED_100M);
346         CAP16_TO_CAP32(SPEED_1G);
347         CAP16_TO_CAP32(SPEED_25G);
348         CAP16_TO_CAP32(SPEED_10G);
349         CAP16_TO_CAP32(SPEED_40G);
350         CAP16_TO_CAP32(SPEED_100G);
351         CAP16_TO_CAP32(FC_RX);
352         CAP16_TO_CAP32(FC_TX);
353         CAP16_TO_CAP32(ANEG);
354         CAP16_TO_CAP32(MDIAUTO);
355         CAP16_TO_CAP32(MDISTRAIGHT);
356         CAP16_TO_CAP32(FEC_RS);
357         CAP16_TO_CAP32(FEC_BASER_RS);
358         CAP16_TO_CAP32(802_3_PAUSE);
359         CAP16_TO_CAP32(802_3_ASM_DIR);
360
361         #undef CAP16_TO_CAP32
362
363         return caps32;
364 }
365
366 /* Translate Firmware Pause specification to Common Code */
367 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
368 {
369         enum cc_pause cc_pause = 0;
370
371         if (fw_pause & FW_PORT_CAP32_FC_RX)
372                 cc_pause |= PAUSE_RX;
373         if (fw_pause & FW_PORT_CAP32_FC_TX)
374                 cc_pause |= PAUSE_TX;
375
376         return cc_pause;
377 }
378
379 /* Translate Firmware Forward Error Correction specification to Common Code */
380 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
381 {
382         enum cc_fec cc_fec = 0;
383
384         if (fw_fec & FW_PORT_CAP32_FEC_RS)
385                 cc_fec |= FEC_RS;
386         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
387                 cc_fec |= FEC_BASER_RS;
388
389         return cc_fec;
390 }
391
392 /**
393  * Return the highest speed set in the port capabilities, in Mb/s.
394  */
395 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
396 {
397         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
398                 do { \
399                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
400                                 return __speed; \
401                 } while (0)
402
403         TEST_SPEED_RETURN(400G, 400000);
404         TEST_SPEED_RETURN(200G, 200000);
405         TEST_SPEED_RETURN(100G, 100000);
406         TEST_SPEED_RETURN(50G,   50000);
407         TEST_SPEED_RETURN(40G,   40000);
408         TEST_SPEED_RETURN(25G,   25000);
409         TEST_SPEED_RETURN(10G,   10000);
410         TEST_SPEED_RETURN(1G,     1000);
411         TEST_SPEED_RETURN(100M,    100);
412
413         #undef TEST_SPEED_RETURN
414
415         return 0;
416 }
417
418 /**
419  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
420  *      @acaps: advertised Port Capabilities
421  *
422  *      Get the highest speed for the port from the advertised Port
423  *      Capabilities.  It will be either the highest speed from the list of
424  *      speeds or whatever user has set using ethtool.
425  */
426 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
427 {
428         #define TEST_SPEED_RETURN(__caps_speed) \
429                 do { \
430                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
431                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
432                 } while (0)
433
434         TEST_SPEED_RETURN(400G);
435         TEST_SPEED_RETURN(200G);
436         TEST_SPEED_RETURN(100G);
437         TEST_SPEED_RETURN(50G);
438         TEST_SPEED_RETURN(40G);
439         TEST_SPEED_RETURN(25G);
440         TEST_SPEED_RETURN(10G);
441         TEST_SPEED_RETURN(1G);
442         TEST_SPEED_RETURN(100M);
443
444         #undef TEST_SPEED_RETURN
445         return 0;
446 }
447
448 /*
449  *      init_link_config - initialize a link's SW state
450  *      @lc: structure holding the link state
451  *      @pcaps: link Port Capabilities
452  *      @acaps: link current Advertised Port Capabilities
453  *
454  *      Initializes the SW state maintained for each link, including the link's
455  *      capabilities and default speed/flow-control/autonegotiation settings.
456  */
457 static void init_link_config(struct link_config *lc,
458                              fw_port_cap32_t pcaps,
459                              fw_port_cap32_t acaps)
460 {
461         lc->pcaps = pcaps;
462         lc->lpacaps = 0;
463         lc->speed_caps = 0;
464         lc->speed = 0;
465         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
466
467         /* For Forward Error Control, we default to whatever the Firmware
468          * tells us the Link is currently advertising.
469          */
470         lc->auto_fec = fwcap_to_cc_fec(acaps);
471         lc->requested_fec = FEC_AUTO;
472         lc->fec = lc->auto_fec;
473
474         /* If the Port is capable of Auto-Negtotiation, initialize it as
475          * "enabled" and copy over all of the Physical Port Capabilities
476          * to the Advertised Port Capabilities.  Otherwise mark it as
477          * Auto-Negotiate disabled and select the highest supported speed
478          * for the link.  Note parallel structure in t4_link_l1cfg_core()
479          * and t4_handle_get_port_info().
480          */
481         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
482                 lc->acaps = acaps & ADVERT_MASK;
483                 lc->autoneg = AUTONEG_ENABLE;
484                 lc->requested_fc |= PAUSE_AUTONEG;
485         } else {
486                 lc->acaps = 0;
487                 lc->autoneg = AUTONEG_DISABLE;
488                 lc->speed_caps = fwcap_to_fwspeed(acaps);
489         }
490 }
491
492 /**
493  *      t4vf_port_init - initialize port hardware/software state
494  *      @adapter: the adapter
495  *      @pidx: the adapter port index
496  */
497 int t4vf_port_init(struct adapter *adapter, int pidx)
498 {
499         struct port_info *pi = adap2pinfo(adapter, pidx);
500         unsigned int fw_caps = adapter->params.fw_caps_support;
501         struct fw_vi_cmd vi_cmd, vi_rpl;
502         struct fw_port_cmd port_cmd, port_rpl;
503         enum fw_port_type port_type;
504         int mdio_addr;
505         fw_port_cap32_t pcaps, acaps;
506         int ret;
507
508         /* If we haven't yet determined whether we're talking to Firmware
509          * which knows the new 32-bit Port Capabilities, it's time to find
510          * out now.  This will also tell new Firmware to send us Port Status
511          * Updates using the new 32-bit Port Capabilities version of the
512          * Port Information message.
513          */
514         if (fw_caps == FW_CAPS_UNKNOWN) {
515                 u32 param, val;
516
517                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
518                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
519                 val = 1;
520                 ret = t4vf_set_params(adapter, 1, &param, &val);
521                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
522                 adapter->params.fw_caps_support = fw_caps;
523         }
524
525         /*
526          * Execute a VI Read command to get our Virtual Interface information
527          * like MAC address, etc.
528          */
529         memset(&vi_cmd, 0, sizeof(vi_cmd));
530         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
531                                        FW_CMD_REQUEST_F |
532                                        FW_CMD_READ_F);
533         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
534         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
535         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
536         if (ret != FW_SUCCESS)
537                 return ret;
538
539         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
540         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
541         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
542
543         /*
544          * If we don't have read access to our port information, we're done
545          * now.  Otherwise, execute a PORT Read command to get it ...
546          */
547         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
548                 return 0;
549
550         memset(&port_cmd, 0, sizeof(port_cmd));
551         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
552                                             FW_CMD_REQUEST_F |
553                                             FW_CMD_READ_F |
554                                             FW_PORT_CMD_PORTID_V(pi->port_id));
555         port_cmd.action_to_len16 = cpu_to_be32(
556                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
557                                      ? FW_PORT_ACTION_GET_PORT_INFO
558                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
559                 FW_LEN16(port_cmd));
560         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
561         if (ret != FW_SUCCESS)
562                 return ret;
563
564         /* Extract the various fields from the Port Information message. */
565         if (fw_caps == FW_CAPS16) {
566                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
567
568                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
569                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
570                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
571                              : -1);
572                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
573                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
574         } else {
575                 u32 lstatus32 =
576                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
577
578                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
579                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
580                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
581                              : -1);
582                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
583                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
584         }
585
586         pi->port_type = port_type;
587         pi->mdio_addr = mdio_addr;
588         pi->mod_type = FW_PORT_MOD_TYPE_NA;
589
590         init_link_config(&pi->link_cfg, pcaps, acaps);
591         return 0;
592 }
593
594 /**
595  *      t4vf_fw_reset - issue a reset to FW
596  *      @adapter: the adapter
597  *
598  *      Issues a reset command to FW.  For a Physical Function this would
599  *      result in the Firmware resetting all of its state.  For a Virtual
600  *      Function this just resets the state associated with the VF.
601  */
602 int t4vf_fw_reset(struct adapter *adapter)
603 {
604         struct fw_reset_cmd cmd;
605
606         memset(&cmd, 0, sizeof(cmd));
607         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
608                                       FW_CMD_WRITE_F);
609         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
610         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
611 }
612
613 /**
614  *      t4vf_query_params - query FW or device parameters
615  *      @adapter: the adapter
616  *      @nparams: the number of parameters
617  *      @params: the parameter names
618  *      @vals: the parameter values
619  *
620  *      Reads the values of firmware or device parameters.  Up to 7 parameters
621  *      can be queried at once.
622  */
623 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
624                              const u32 *params, u32 *vals)
625 {
626         int i, ret;
627         struct fw_params_cmd cmd, rpl;
628         struct fw_params_param *p;
629         size_t len16;
630
631         if (nparams > 7)
632                 return -EINVAL;
633
634         memset(&cmd, 0, sizeof(cmd));
635         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
636                                     FW_CMD_REQUEST_F |
637                                     FW_CMD_READ_F);
638         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
639                                       param[nparams].mnem), 16);
640         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
641         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
642                 p->mnem = htonl(*params++);
643
644         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
645         if (ret == 0)
646                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
647                         *vals++ = be32_to_cpu(p->val);
648         return ret;
649 }
650
651 /**
652  *      t4vf_set_params - sets FW or device parameters
653  *      @adapter: the adapter
654  *      @nparams: the number of parameters
655  *      @params: the parameter names
656  *      @vals: the parameter values
657  *
658  *      Sets the values of firmware or device parameters.  Up to 7 parameters
659  *      can be specified at once.
660  */
661 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
662                     const u32 *params, const u32 *vals)
663 {
664         int i;
665         struct fw_params_cmd cmd;
666         struct fw_params_param *p;
667         size_t len16;
668
669         if (nparams > 7)
670                 return -EINVAL;
671
672         memset(&cmd, 0, sizeof(cmd));
673         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
674                                     FW_CMD_REQUEST_F |
675                                     FW_CMD_WRITE_F);
676         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
677                                       param[nparams]), 16);
678         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
679         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
680                 p->mnem = cpu_to_be32(*params++);
681                 p->val = cpu_to_be32(*vals++);
682         }
683
684         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
685 }
686
687 /**
688  *      t4vf_fl_pkt_align - return the fl packet alignment
689  *      @adapter: the adapter
690  *
691  *      T4 has a single field to specify the packing and padding boundary.
692  *      T5 onwards has separate fields for this and hence the alignment for
693  *      next packet offset is maximum of these two.  And T6 changes the
694  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
695  *      if we put this in low-level Common Code ...
696  *
697  */
698 int t4vf_fl_pkt_align(struct adapter *adapter)
699 {
700         u32 sge_control, sge_control2;
701         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
702
703         sge_control = adapter->params.sge.sge_control;
704
705         /* T4 uses a single control field to specify both the PCIe Padding and
706          * Packing Boundary.  T5 introduced the ability to specify these
707          * separately.  The actual Ingress Packet Data alignment boundary
708          * within Packed Buffer Mode is the maximum of these two
709          * specifications.  (Note that it makes no real practical sense to
710          * have the Pading Boudary be larger than the Packing Boundary but you
711          * could set the chip up that way and, in fact, legacy T4 code would
712          * end doing this because it would initialize the Padding Boundary and
713          * leave the Packing Boundary initialized to 0 (16 bytes).)
714          * Padding Boundary values in T6 starts from 8B,
715          * where as it is 32B for T4 and T5.
716          */
717         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
718                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
719         else
720                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
721
722         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
723
724         fl_align = ingpadboundary;
725         if (!is_t4(adapter->params.chip)) {
726                 /* T5 has a different interpretation of one of the PCIe Packing
727                  * Boundary values.
728                  */
729                 sge_control2 = adapter->params.sge.sge_control2;
730                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
731                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
732                         ingpackboundary = 16;
733                 else
734                         ingpackboundary = 1 << (ingpackboundary +
735                                                 INGPACKBOUNDARY_SHIFT_X);
736
737                 fl_align = max(ingpadboundary, ingpackboundary);
738         }
739         return fl_align;
740 }
741
742 /**
743  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
744  *      @adapter: the adapter
745  *      @qid: the Queue ID
746  *      @qtype: the Ingress or Egress type for @qid
747  *      @pbar2_qoffset: BAR2 Queue Offset
748  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
749  *
750  *      Returns the BAR2 SGE Queue Registers information associated with the
751  *      indicated Absolute Queue ID.  These are passed back in return value
752  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
753  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
754  *
755  *      This may return an error which indicates that BAR2 SGE Queue
756  *      registers aren't available.  If an error is not returned, then the
757  *      following values are returned:
758  *
759  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
760  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
761  *
762  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
763  *      require the "Inferred Queue ID" ability may be used.  E.g. the
764  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
765  *      then these "Inferred Queue ID" register may not be used.
766  */
767 int t4vf_bar2_sge_qregs(struct adapter *adapter,
768                         unsigned int qid,
769                         enum t4_bar2_qtype qtype,
770                         u64 *pbar2_qoffset,
771                         unsigned int *pbar2_qid)
772 {
773         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
774         u64 bar2_page_offset, bar2_qoffset;
775         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
776
777         /* T4 doesn't support BAR2 SGE Queue registers.
778          */
779         if (is_t4(adapter->params.chip))
780                 return -EINVAL;
781
782         /* Get our SGE Page Size parameters.
783          */
784         page_shift = adapter->params.sge.sge_vf_hps + 10;
785         page_size = 1 << page_shift;
786
787         /* Get the right Queues per Page parameters for our Queue.
788          */
789         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
790                      ? adapter->params.sge.sge_vf_eq_qpp
791                      : adapter->params.sge.sge_vf_iq_qpp);
792         qpp_mask = (1 << qpp_shift) - 1;
793
794         /* Calculate the basics of the BAR2 SGE Queue register area:
795          *  o The BAR2 page the Queue registers will be in.
796          *  o The BAR2 Queue ID.
797          *  o The BAR2 Queue ID Offset into the BAR2 page.
798          */
799         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
800         bar2_qid = qid & qpp_mask;
801         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
802
803         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
804          * hardware will infer the Absolute Queue ID simply from the writes to
805          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
806          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
807          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
808          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
809          * from the BAR2 Page and BAR2 Queue ID.
810          *
811          * One important censequence of this is that some BAR2 SGE registers
812          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
813          * there.  But other registers synthesize the SGE Queue ID purely
814          * from the writes to the registers -- the Write Combined Doorbell
815          * Buffer is a good example.  These BAR2 SGE Registers are only
816          * available for those BAR2 SGE Register areas where the SGE Absolute
817          * Queue ID can be inferred from simple writes.
818          */
819         bar2_qoffset = bar2_page_offset;
820         bar2_qinferred = (bar2_qid_offset < page_size);
821         if (bar2_qinferred) {
822                 bar2_qoffset += bar2_qid_offset;
823                 bar2_qid = 0;
824         }
825
826         *pbar2_qoffset = bar2_qoffset;
827         *pbar2_qid = bar2_qid;
828         return 0;
829 }
830
831 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
832 {
833         u32 whoami;
834
835         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
836         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
837                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
838 }
839
840 /**
841  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
842  *      @adapter: the adapter
843  *
844  *      Retrieves various core SGE parameters in the form of hardware SGE
845  *      register values.  The caller is responsible for decoding these as
846  *      needed.  The SGE parameters are stored in @adapter->params.sge.
847  */
848 int t4vf_get_sge_params(struct adapter *adapter)
849 {
850         struct sge_params *sge_params = &adapter->params.sge;
851         u32 params[7], vals[7];
852         int v;
853
854         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
856         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
858         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
859                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
860         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
861                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
862         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
863                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
864         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
865                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
866         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
867                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
868         v = t4vf_query_params(adapter, 7, params, vals);
869         if (v)
870                 return v;
871         sge_params->sge_control = vals[0];
872         sge_params->sge_host_page_size = vals[1];
873         sge_params->sge_fl_buffer_size[0] = vals[2];
874         sge_params->sge_fl_buffer_size[1] = vals[3];
875         sge_params->sge_timer_value_0_and_1 = vals[4];
876         sge_params->sge_timer_value_2_and_3 = vals[5];
877         sge_params->sge_timer_value_4_and_5 = vals[6];
878
879         /* T4 uses a single control field to specify both the PCIe Padding and
880          * Packing Boundary.  T5 introduced the ability to specify these
881          * separately with the Padding Boundary in SGE_CONTROL and and Packing
882          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
883          * SGE_CONTROL in order to determine how ingress packet data will be
884          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
885          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
886          * failure grabbing it we throw an error since we can't figure out the
887          * right value.
888          */
889         if (!is_t4(adapter->params.chip)) {
890                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
891                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
892                 v = t4vf_query_params(adapter, 1, params, vals);
893                 if (v != FW_SUCCESS) {
894                         dev_err(adapter->pdev_dev,
895                                 "Unable to get SGE Control2; "
896                                 "probably old firmware.\n");
897                         return v;
898                 }
899                 sge_params->sge_control2 = vals[0];
900         }
901
902         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
903                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
904         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
905                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
906         v = t4vf_query_params(adapter, 2, params, vals);
907         if (v)
908                 return v;
909         sge_params->sge_ingress_rx_threshold = vals[0];
910         sge_params->sge_congestion_control = vals[1];
911
912         /* For T5 and later we want to use the new BAR2 Doorbells.
913          * Unfortunately, older firmware didn't allow the this register to be
914          * read.
915          */
916         if (!is_t4(adapter->params.chip)) {
917                 unsigned int pf, s_hps, s_qpp;
918
919                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
920                              FW_PARAMS_PARAM_XYZ_V(
921                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
922                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
923                              FW_PARAMS_PARAM_XYZ_V(
924                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
925                 v = t4vf_query_params(adapter, 2, params, vals);
926                 if (v != FW_SUCCESS) {
927                         dev_warn(adapter->pdev_dev,
928                                  "Unable to get VF SGE Queues/Page; "
929                                  "probably old firmware.\n");
930                         return v;
931                 }
932                 sge_params->sge_egress_queues_per_page = vals[0];
933                 sge_params->sge_ingress_queues_per_page = vals[1];
934
935                 /* We need the Queues/Page for our VF.  This is based on the
936                  * PF from which we're instantiated and is indexed in the
937                  * register we just read. Do it once here so other code in
938                  * the driver can just use it.
939                  */
940                 pf = t4vf_get_pf_from_vf(adapter);
941                 s_hps = (HOSTPAGESIZEPF0_S +
942                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
943                 sge_params->sge_vf_hps =
944                         ((sge_params->sge_host_page_size >> s_hps)
945                          & HOSTPAGESIZEPF0_M);
946
947                 s_qpp = (QUEUESPERPAGEPF0_S +
948                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
949                 sge_params->sge_vf_eq_qpp =
950                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
951                          & QUEUESPERPAGEPF0_M);
952                 sge_params->sge_vf_iq_qpp =
953                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
954                          & QUEUESPERPAGEPF0_M);
955         }
956
957         return 0;
958 }
959
960 /**
961  *      t4vf_get_vpd_params - retrieve device VPD paremeters
962  *      @adapter: the adapter
963  *
964  *      Retrives various device Vital Product Data parameters.  The parameters
965  *      are stored in @adapter->params.vpd.
966  */
967 int t4vf_get_vpd_params(struct adapter *adapter)
968 {
969         struct vpd_params *vpd_params = &adapter->params.vpd;
970         u32 params[7], vals[7];
971         int v;
972
973         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
974                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
975         v = t4vf_query_params(adapter, 1, params, vals);
976         if (v)
977                 return v;
978         vpd_params->cclk = vals[0];
979
980         return 0;
981 }
982
983 /**
984  *      t4vf_get_dev_params - retrieve device paremeters
985  *      @adapter: the adapter
986  *
987  *      Retrives various device parameters.  The parameters are stored in
988  *      @adapter->params.dev.
989  */
990 int t4vf_get_dev_params(struct adapter *adapter)
991 {
992         struct dev_params *dev_params = &adapter->params.dev;
993         u32 params[7], vals[7];
994         int v;
995
996         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
997                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
998         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
999                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
1000         v = t4vf_query_params(adapter, 2, params, vals);
1001         if (v)
1002                 return v;
1003         dev_params->fwrev = vals[0];
1004         dev_params->tprev = vals[1];
1005
1006         return 0;
1007 }
1008
1009 /**
1010  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1011  *      @adapter: the adapter
1012  *
1013  *      Retrieves global RSS mode and parameters with which we have to live
1014  *      and stores them in the @adapter's RSS parameters.
1015  */
1016 int t4vf_get_rss_glb_config(struct adapter *adapter)
1017 {
1018         struct rss_params *rss = &adapter->params.rss;
1019         struct fw_rss_glb_config_cmd cmd, rpl;
1020         int v;
1021
1022         /*
1023          * Execute an RSS Global Configuration read command to retrieve
1024          * our RSS configuration.
1025          */
1026         memset(&cmd, 0, sizeof(cmd));
1027         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1028                                       FW_CMD_REQUEST_F |
1029                                       FW_CMD_READ_F);
1030         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1031         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1032         if (v)
1033                 return v;
1034
1035         /*
1036          * Transate the big-endian RSS Global Configuration into our
1037          * cpu-endian format based on the RSS mode.  We also do first level
1038          * filtering at this point to weed out modes which don't support
1039          * VF Drivers ...
1040          */
1041         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1042                         be32_to_cpu(rpl.u.manual.mode_pkd));
1043         switch (rss->mode) {
1044         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1045                 u32 word = be32_to_cpu(
1046                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1047
1048                 rss->u.basicvirtual.synmapen =
1049                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1050                 rss->u.basicvirtual.syn4tupenipv6 =
1051                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1052                 rss->u.basicvirtual.syn2tupenipv6 =
1053                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1054                 rss->u.basicvirtual.syn4tupenipv4 =
1055                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1056                 rss->u.basicvirtual.syn2tupenipv4 =
1057                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1058
1059                 rss->u.basicvirtual.ofdmapen =
1060                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1061
1062                 rss->u.basicvirtual.tnlmapen =
1063                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1064                 rss->u.basicvirtual.tnlalllookup =
1065                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1066
1067                 rss->u.basicvirtual.hashtoeplitz =
1068                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1069
1070                 /* we need at least Tunnel Map Enable to be set */
1071                 if (!rss->u.basicvirtual.tnlmapen)
1072                         return -EINVAL;
1073                 break;
1074         }
1075
1076         default:
1077                 /* all unknown/unsupported RSS modes result in an error */
1078                 return -EINVAL;
1079         }
1080
1081         return 0;
1082 }
1083
1084 /**
1085  *      t4vf_get_vfres - retrieve VF resource limits
1086  *      @adapter: the adapter
1087  *
1088  *      Retrieves configured resource limits and capabilities for a virtual
1089  *      function.  The results are stored in @adapter->vfres.
1090  */
1091 int t4vf_get_vfres(struct adapter *adapter)
1092 {
1093         struct vf_resources *vfres = &adapter->params.vfres;
1094         struct fw_pfvf_cmd cmd, rpl;
1095         int v;
1096         u32 word;
1097
1098         /*
1099          * Execute PFVF Read command to get VF resource limits; bail out early
1100          * with error on command failure.
1101          */
1102         memset(&cmd, 0, sizeof(cmd));
1103         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1104                                     FW_CMD_REQUEST_F |
1105                                     FW_CMD_READ_F);
1106         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1107         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1108         if (v)
1109                 return v;
1110
1111         /*
1112          * Extract VF resource limits and return success.
1113          */
1114         word = be32_to_cpu(rpl.niqflint_niq);
1115         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1116         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1117
1118         word = be32_to_cpu(rpl.type_to_neq);
1119         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1120         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1121
1122         word = be32_to_cpu(rpl.tc_to_nexactf);
1123         vfres->tc = FW_PFVF_CMD_TC_G(word);
1124         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1125         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1126
1127         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1128         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1129         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1130         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1137  *      @adapter: the adapter
1138  *      @viid: Virtual Interface ID
1139  *      @config: pointer to host-native VI RSS Configuration buffer
1140  *
1141  *      Reads the Virtual Interface's RSS configuration information and
1142  *      translates it into CPU-native format.
1143  */
1144 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1145                             union rss_vi_config *config)
1146 {
1147         struct fw_rss_vi_config_cmd cmd, rpl;
1148         int v;
1149
1150         memset(&cmd, 0, sizeof(cmd));
1151         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1152                                      FW_CMD_REQUEST_F |
1153                                      FW_CMD_READ_F |
1154                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1155         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1156         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1157         if (v)
1158                 return v;
1159
1160         switch (adapter->params.rss.mode) {
1161         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1162                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1163
1164                 config->basicvirtual.ip6fourtupen =
1165                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1166                 config->basicvirtual.ip6twotupen =
1167                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1168                 config->basicvirtual.ip4fourtupen =
1169                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1170                 config->basicvirtual.ip4twotupen =
1171                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1172                 config->basicvirtual.udpen =
1173                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1174                 config->basicvirtual.defaultq =
1175                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1176                 break;
1177         }
1178
1179         default:
1180                 return -EINVAL;
1181         }
1182
1183         return 0;
1184 }
1185
1186 /**
1187  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1188  *      @adapter: the adapter
1189  *      @viid: Virtual Interface ID
1190  *      @config: pointer to host-native VI RSS Configuration buffer
1191  *
1192  *      Write the Virtual Interface's RSS configuration information
1193  *      (translating it into firmware-native format before writing).
1194  */
1195 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1196                              union rss_vi_config *config)
1197 {
1198         struct fw_rss_vi_config_cmd cmd, rpl;
1199
1200         memset(&cmd, 0, sizeof(cmd));
1201         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1202                                      FW_CMD_REQUEST_F |
1203                                      FW_CMD_WRITE_F |
1204                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1205         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1206         switch (adapter->params.rss.mode) {
1207         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1208                 u32 word = 0;
1209
1210                 if (config->basicvirtual.ip6fourtupen)
1211                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1212                 if (config->basicvirtual.ip6twotupen)
1213                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1214                 if (config->basicvirtual.ip4fourtupen)
1215                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1216                 if (config->basicvirtual.ip4twotupen)
1217                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1218                 if (config->basicvirtual.udpen)
1219                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1220                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1221                                 config->basicvirtual.defaultq);
1222                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1223                 break;
1224         }
1225
1226         default:
1227                 return -EINVAL;
1228         }
1229
1230         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1231 }
1232
1233 /**
1234  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1235  *      @adapter: the adapter
1236  *      @viid: Virtual Interface of RSS Table Slice
1237  *      @start: starting entry in the table to write
1238  *      @n: how many table entries to write
1239  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1240  *      @nrspq: number of values in @rspq
1241  *
1242  *      Programs the selected part of the VI's RSS mapping table with the
1243  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1244  *      until the full table range is populated.
1245  *
1246  *      The caller must ensure the values in @rspq are in the range 0..1023.
1247  */
1248 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1249                           int start, int n, const u16 *rspq, int nrspq)
1250 {
1251         const u16 *rsp = rspq;
1252         const u16 *rsp_end = rspq+nrspq;
1253         struct fw_rss_ind_tbl_cmd cmd;
1254
1255         /*
1256          * Initialize firmware command template to write the RSS table.
1257          */
1258         memset(&cmd, 0, sizeof(cmd));
1259         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1260                                      FW_CMD_REQUEST_F |
1261                                      FW_CMD_WRITE_F |
1262                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1263         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1264
1265         /*
1266          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1267          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1268          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1269          * reserved.
1270          */
1271         while (n > 0) {
1272                 __be32 *qp = &cmd.iq0_to_iq2;
1273                 int nq = min(n, 32);
1274                 int ret;
1275
1276                 /*
1277                  * Set up the firmware RSS command header to send the next
1278                  * "nq" Ingress Queue IDs to the firmware.
1279                  */
1280                 cmd.niqid = cpu_to_be16(nq);
1281                 cmd.startidx = cpu_to_be16(start);
1282
1283                 /*
1284                  * "nq" more done for the start of the next loop.
1285                  */
1286                 start += nq;
1287                 n -= nq;
1288
1289                 /*
1290                  * While there are still Ingress Queue IDs to stuff into the
1291                  * current firmware RSS command, retrieve them from the
1292                  * Ingress Queue ID array and insert them into the command.
1293                  */
1294                 while (nq > 0) {
1295                         /*
1296                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1297                          * around the Ingress Queue ID array if necessary) and
1298                          * insert them into the firmware RSS command at the
1299                          * current 3-tuple position within the commad.
1300                          */
1301                         u16 qbuf[3];
1302                         u16 *qbp = qbuf;
1303                         int nqbuf = min(3, nq);
1304
1305                         nq -= nqbuf;
1306                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1307                         while (nqbuf) {
1308                                 nqbuf--;
1309                                 *qbp++ = *rsp++;
1310                                 if (rsp >= rsp_end)
1311                                         rsp = rspq;
1312                         }
1313                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1314                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1315                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1316                 }
1317
1318                 /*
1319                  * Send this portion of the RRS table update to the firmware;
1320                  * bail out on any errors.
1321                  */
1322                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1323                 if (ret)
1324                         return ret;
1325         }
1326         return 0;
1327 }
1328
1329 /**
1330  *      t4vf_alloc_vi - allocate a virtual interface on a port
1331  *      @adapter: the adapter
1332  *      @port_id: physical port associated with the VI
1333  *
1334  *      Allocate a new Virtual Interface and bind it to the indicated
1335  *      physical port.  Return the new Virtual Interface Identifier on
1336  *      success, or a [negative] error number on failure.
1337  */
1338 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1339 {
1340         struct fw_vi_cmd cmd, rpl;
1341         int v;
1342
1343         /*
1344          * Execute a VI command to allocate Virtual Interface and return its
1345          * VIID.
1346          */
1347         memset(&cmd, 0, sizeof(cmd));
1348         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1349                                     FW_CMD_REQUEST_F |
1350                                     FW_CMD_WRITE_F |
1351                                     FW_CMD_EXEC_F);
1352         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1353                                          FW_VI_CMD_ALLOC_F);
1354         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1355         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1356         if (v)
1357                 return v;
1358
1359         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1360 }
1361
1362 /**
1363  *      t4vf_free_vi -- free a virtual interface
1364  *      @adapter: the adapter
1365  *      @viid: the virtual interface identifier
1366  *
1367  *      Free a previously allocated Virtual Interface.  Return an error on
1368  *      failure.
1369  */
1370 int t4vf_free_vi(struct adapter *adapter, int viid)
1371 {
1372         struct fw_vi_cmd cmd;
1373
1374         /*
1375          * Execute a VI command to free the Virtual Interface.
1376          */
1377         memset(&cmd, 0, sizeof(cmd));
1378         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1379                                     FW_CMD_REQUEST_F |
1380                                     FW_CMD_EXEC_F);
1381         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1382                                          FW_VI_CMD_FREE_F);
1383         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1384         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1385 }
1386
1387 /**
1388  *      t4vf_enable_vi - enable/disable a virtual interface
1389  *      @adapter: the adapter
1390  *      @viid: the Virtual Interface ID
1391  *      @rx_en: 1=enable Rx, 0=disable Rx
1392  *      @tx_en: 1=enable Tx, 0=disable Tx
1393  *
1394  *      Enables/disables a virtual interface.
1395  */
1396 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1397                    bool rx_en, bool tx_en)
1398 {
1399         struct fw_vi_enable_cmd cmd;
1400
1401         memset(&cmd, 0, sizeof(cmd));
1402         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1403                                      FW_CMD_REQUEST_F |
1404                                      FW_CMD_EXEC_F |
1405                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1406         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1407                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1408                                        FW_LEN16(cmd));
1409         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1410 }
1411
1412 /**
1413  *      t4vf_enable_pi - enable/disable a Port's virtual interface
1414  *      @adapter: the adapter
1415  *      @pi: the Port Information structure
1416  *      @rx_en: 1=enable Rx, 0=disable Rx
1417  *      @tx_en: 1=enable Tx, 0=disable Tx
1418  *
1419  *      Enables/disables a Port's virtual interface.  If the Virtual
1420  *      Interface enable/disable operation is successful, we notify the
1421  *      OS-specific code of a potential Link Status change via the OS Contract
1422  *      API t4vf_os_link_changed().
1423  */
1424 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1425                    bool rx_en, bool tx_en)
1426 {
1427         int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1428
1429         if (ret)
1430                 return ret;
1431         t4vf_os_link_changed(adapter, pi->pidx,
1432                              rx_en && tx_en && pi->link_cfg.link_ok);
1433         return 0;
1434 }
1435
1436 /**
1437  *      t4vf_identify_port - identify a VI's port by blinking its LED
1438  *      @adapter: the adapter
1439  *      @viid: the Virtual Interface ID
1440  *      @nblinks: how many times to blink LED at 2.5 Hz
1441  *
1442  *      Identifies a VI's port by blinking its LED.
1443  */
1444 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1445                        unsigned int nblinks)
1446 {
1447         struct fw_vi_enable_cmd cmd;
1448
1449         memset(&cmd, 0, sizeof(cmd));
1450         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1451                                      FW_CMD_REQUEST_F |
1452                                      FW_CMD_EXEC_F |
1453                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1454         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1455                                        FW_LEN16(cmd));
1456         cmd.blinkdur = cpu_to_be16(nblinks);
1457         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1458 }
1459
1460 /**
1461  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1462  *      @adapter: the adapter
1463  *      @viid: the VI id
1464  *      @mtu: the new MTU or -1 for no change
1465  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1466  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1467  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1468  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1469  *              -1 no change
1470  *
1471  *      Sets Rx properties of a virtual interface.
1472  */
1473 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1474                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1475                     bool sleep_ok)
1476 {
1477         struct fw_vi_rxmode_cmd cmd;
1478
1479         /* convert to FW values */
1480         if (mtu < 0)
1481                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1482         if (promisc < 0)
1483                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1484         if (all_multi < 0)
1485                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1486         if (bcast < 0)
1487                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1488         if (vlanex < 0)
1489                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1490
1491         memset(&cmd, 0, sizeof(cmd));
1492         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1493                                      FW_CMD_REQUEST_F |
1494                                      FW_CMD_WRITE_F |
1495                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1496         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1497         cmd.mtu_to_vlanexen =
1498                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1499                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1500                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1501                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1502                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1503         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1504 }
1505
1506 /**
1507  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508  *      @adapter: the adapter
1509  *      @viid: the Virtual Interface Identifier
1510  *      @free: if true any existing filters for this VI id are first removed
1511  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1512  *      @addr: the MAC address(es)
1513  *      @idx: where to store the index of each allocated filter
1514  *      @hash: pointer to hash address filter bitmap
1515  *      @sleep_ok: call is allowed to sleep
1516  *
1517  *      Allocates an exact-match filter for each of the supplied addresses and
1518  *      sets it to the corresponding address.  If @idx is not %NULL it should
1519  *      have at least @naddr entries, each of which will be set to the index of
1520  *      the filter allocated for the corresponding MAC address.  If a filter
1521  *      could not be allocated for an address its index is set to 0xffff.
1522  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1523  *      are hashed and update the hash filter bitmap pointed at by @hash.
1524  *
1525  *      Returns a negative error number or the number of filters allocated.
1526  */
1527 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1528                         unsigned int naddr, const u8 **addr, u16 *idx,
1529                         u64 *hash, bool sleep_ok)
1530 {
1531         int offset, ret = 0;
1532         unsigned nfilters = 0;
1533         unsigned int rem = naddr;
1534         struct fw_vi_mac_cmd cmd, rpl;
1535         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1536
1537         if (naddr > max_naddr)
1538                 return -EINVAL;
1539
1540         for (offset = 0; offset < naddr; /**/) {
1541                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1542                                          ? rem
1543                                          : ARRAY_SIZE(cmd.u.exact));
1544                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1545                                                      u.exact[fw_naddr]), 16);
1546                 struct fw_vi_mac_exact *p;
1547                 int i;
1548
1549                 memset(&cmd, 0, sizeof(cmd));
1550                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1551                                              FW_CMD_REQUEST_F |
1552                                              FW_CMD_WRITE_F |
1553                                              (free ? FW_CMD_EXEC_F : 0) |
1554                                              FW_VI_MAC_CMD_VIID_V(viid));
1555                 cmd.freemacs_to_len16 =
1556                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1557                                     FW_CMD_LEN16_V(len16));
1558
1559                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1560                         p->valid_to_idx = cpu_to_be16(
1561                                 FW_VI_MAC_CMD_VALID_F |
1562                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1563                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1564                 }
1565
1566
1567                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1568                                         sleep_ok);
1569                 if (ret && ret != -ENOMEM)
1570                         break;
1571
1572                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1573                         u16 index = FW_VI_MAC_CMD_IDX_G(
1574                                 be16_to_cpu(p->valid_to_idx));
1575
1576                         if (idx)
1577                                 idx[offset+i] =
1578                                         (index >= max_naddr
1579                                          ? 0xffff
1580                                          : index);
1581                         if (index < max_naddr)
1582                                 nfilters++;
1583                         else if (hash)
1584                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1585                 }
1586
1587                 free = false;
1588                 offset += fw_naddr;
1589                 rem -= fw_naddr;
1590         }
1591
1592         /*
1593          * If there were no errors or we merely ran out of room in our MAC
1594          * address arena, return the number of filters actually written.
1595          */
1596         if (ret == 0 || ret == -ENOMEM)
1597                 ret = nfilters;
1598         return ret;
1599 }
1600
1601 /**
1602  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603  *      @adapter: the adapter
1604  *      @viid: the VI id
1605  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1606  *      @addr: the MAC address(es)
1607  *      @sleep_ok: call is allowed to sleep
1608  *
1609  *      Frees the exact-match filter for each of the supplied addresses
1610  *
1611  *      Returns a negative error number or the number of filters freed.
1612  */
1613 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1614                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1615 {
1616         int offset, ret = 0;
1617         struct fw_vi_mac_cmd cmd;
1618         unsigned int nfilters = 0;
1619         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1620         unsigned int rem = naddr;
1621
1622         if (naddr > max_naddr)
1623                 return -EINVAL;
1624
1625         for (offset = 0; offset < (int)naddr ; /**/) {
1626                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1627                                          rem : ARRAY_SIZE(cmd.u.exact));
1628                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1629                                                      u.exact[fw_naddr]), 16);
1630                 struct fw_vi_mac_exact *p;
1631                 int i;
1632
1633                 memset(&cmd, 0, sizeof(cmd));
1634                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1635                                      FW_CMD_REQUEST_F |
1636                                      FW_CMD_WRITE_F |
1637                                      FW_CMD_EXEC_V(0) |
1638                                      FW_VI_MAC_CMD_VIID_V(viid));
1639                 cmd.freemacs_to_len16 =
1640                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641                                             FW_CMD_LEN16_V(len16));
1642
1643                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1644                         p->valid_to_idx = cpu_to_be16(
1645                                 FW_VI_MAC_CMD_VALID_F |
1646                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1647                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1648                 }
1649
1650                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1651                                         sleep_ok);
1652                 if (ret)
1653                         break;
1654
1655                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1656                         u16 index = FW_VI_MAC_CMD_IDX_G(
1657                                                 be16_to_cpu(p->valid_to_idx));
1658
1659                         if (index < max_naddr)
1660                                 nfilters++;
1661                 }
1662
1663                 offset += fw_naddr;
1664                 rem -= fw_naddr;
1665         }
1666
1667         if (ret == 0)
1668                 ret = nfilters;
1669         return ret;
1670 }
1671
1672 /**
1673  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1674  *      @adapter: the adapter
1675  *      @viid: the Virtual Interface ID
1676  *      @idx: index of existing filter for old value of MAC address, or -1
1677  *      @addr: the new MAC address value
1678  *      @persist: if idx < 0, the new MAC allocation should be persistent
1679  *
1680  *      Modifies an exact-match filter and sets it to the new MAC address.
1681  *      Note that in general it is not possible to modify the value of a given
1682  *      filter so the generic way to modify an address filter is to free the
1683  *      one being used by the old address value and allocate a new filter for
1684  *      the new address value.  @idx can be -1 if the address is a new
1685  *      addition.
1686  *
1687  *      Returns a negative error number or the index of the filter with the new
1688  *      MAC value.
1689  */
1690 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1691                     int idx, const u8 *addr, bool persist)
1692 {
1693         int ret;
1694         struct fw_vi_mac_cmd cmd, rpl;
1695         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1696         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1697                                              u.exact[1]), 16);
1698         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1699
1700         /*
1701          * If this is a new allocation, determine whether it should be
1702          * persistent (across a "freemacs" operation) or not.
1703          */
1704         if (idx < 0)
1705                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1706
1707         memset(&cmd, 0, sizeof(cmd));
1708         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1709                                      FW_CMD_REQUEST_F |
1710                                      FW_CMD_WRITE_F |
1711                                      FW_VI_MAC_CMD_VIID_V(viid));
1712         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1713         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1714                                       FW_VI_MAC_CMD_IDX_V(idx));
1715         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1716
1717         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1718         if (ret == 0) {
1719                 p = &rpl.u.exact[0];
1720                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1721                 if (ret >= max_mac_addr)
1722                         ret = -ENOMEM;
1723         }
1724         return ret;
1725 }
1726
1727 /**
1728  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729  *      @adapter: the adapter
1730  *      @viid: the Virtual Interface Identifier
1731  *      @ucast: whether the hash filter should also match unicast addresses
1732  *      @vec: the value to be written to the hash filter
1733  *      @sleep_ok: call is allowed to sleep
1734  *
1735  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1736  */
1737 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1738                        bool ucast, u64 vec, bool sleep_ok)
1739 {
1740         struct fw_vi_mac_cmd cmd;
1741         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1742                                              u.exact[0]), 16);
1743
1744         memset(&cmd, 0, sizeof(cmd));
1745         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1746                                      FW_CMD_REQUEST_F |
1747                                      FW_CMD_WRITE_F |
1748                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1749         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1750                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1751                                             FW_CMD_LEN16_V(len16));
1752         cmd.u.hash.hashvec = cpu_to_be64(vec);
1753         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1754 }
1755
1756 /**
1757  *      t4vf_get_port_stats - collect "port" statistics
1758  *      @adapter: the adapter
1759  *      @pidx: the port index
1760  *      @s: the stats structure to fill
1761  *
1762  *      Collect statistics for the "port"'s Virtual Interface.
1763  */
1764 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1765                         struct t4vf_port_stats *s)
1766 {
1767         struct port_info *pi = adap2pinfo(adapter, pidx);
1768         struct fw_vi_stats_vf fwstats;
1769         unsigned int rem = VI_VF_NUM_STATS;
1770         __be64 *fwsp = (__be64 *)&fwstats;
1771
1772         /*
1773          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774          * commands.  We could use a Work Request and get all of them at once
1775          * but that's an asynchronous interface which is awkward to use.
1776          */
1777         while (rem) {
1778                 unsigned int ix = VI_VF_NUM_STATS - rem;
1779                 unsigned int nstats = min(6U, rem);
1780                 struct fw_vi_stats_cmd cmd, rpl;
1781                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1782                               sizeof(struct fw_vi_stats_ctl));
1783                 size_t len16 = DIV_ROUND_UP(len, 16);
1784                 int ret;
1785
1786                 memset(&cmd, 0, sizeof(cmd));
1787                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1788                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1789                                              FW_CMD_REQUEST_F |
1790                                              FW_CMD_READ_F);
1791                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1792                 cmd.u.ctl.nstats_ix =
1793                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1794                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1795                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1796                 if (ret)
1797                         return ret;
1798
1799                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1800
1801                 rem -= nstats;
1802                 fwsp += nstats;
1803         }
1804
1805         /*
1806          * Translate firmware statistics into host native statistics.
1807          */
1808         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1809         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1810         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1811         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1812         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1813         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1814         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1815         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1816         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1817
1818         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1819         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1820         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1821         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1822         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1823         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1824
1825         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1826
1827         return 0;
1828 }
1829
1830 /**
1831  *      t4vf_iq_free - free an ingress queue and its free lists
1832  *      @adapter: the adapter
1833  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834  *      @iqid: ingress queue ID
1835  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1836  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1837  *
1838  *      Frees an ingress queue and its associated free lists, if any.
1839  */
1840 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1841                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1842 {
1843         struct fw_iq_cmd cmd;
1844
1845         memset(&cmd, 0, sizeof(cmd));
1846         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1847                                     FW_CMD_REQUEST_F |
1848                                     FW_CMD_EXEC_F);
1849         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1850                                          FW_LEN16(cmd));
1851         cmd.type_to_iqandstindex =
1852                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1853
1854         cmd.iqid = cpu_to_be16(iqid);
1855         cmd.fl0id = cpu_to_be16(fl0id);
1856         cmd.fl1id = cpu_to_be16(fl1id);
1857         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1858 }
1859
1860 /**
1861  *      t4vf_eth_eq_free - free an Ethernet egress queue
1862  *      @adapter: the adapter
1863  *      @eqid: egress queue ID
1864  *
1865  *      Frees an Ethernet egress queue.
1866  */
1867 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1868 {
1869         struct fw_eq_eth_cmd cmd;
1870
1871         memset(&cmd, 0, sizeof(cmd));
1872         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1873                                     FW_CMD_REQUEST_F |
1874                                     FW_CMD_EXEC_F);
1875         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1876                                          FW_LEN16(cmd));
1877         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1878         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1879 }
1880
1881 /**
1882  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883  *      @link_down_rc: Link Down Reason Code
1884  *
1885  *      Returns a string representation of the Link Down Reason Code.
1886  */
1887 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1888 {
1889         static const char * const reason[] = {
1890                 "Link Down",
1891                 "Remote Fault",
1892                 "Auto-negotiation Failure",
1893                 "Reserved",
1894                 "Insufficient Airflow",
1895                 "Unable To Determine Reason",
1896                 "No RX Signal Detected",
1897                 "Reserved",
1898         };
1899
1900         if (link_down_rc >= ARRAY_SIZE(reason))
1901                 return "Bad Reason Code";
1902
1903         return reason[link_down_rc];
1904 }
1905
1906 /**
1907  *      t4vf_handle_get_port_info - process a FW reply message
1908  *      @pi: the port info
1909  *      @rpl: start of the FW message
1910  *
1911  *      Processes a GET_PORT_INFO FW reply message.
1912  */
1913 static void t4vf_handle_get_port_info(struct port_info *pi,
1914                                       const struct fw_port_cmd *cmd)
1915 {
1916         int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1917         struct adapter *adapter = pi->adapter;
1918         struct link_config *lc = &pi->link_cfg;
1919         int link_ok, linkdnrc;
1920         enum fw_port_type port_type;
1921         enum fw_port_module_type mod_type;
1922         unsigned int speed, fc, fec;
1923         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1924
1925         /* Extract the various fields from the Port Information message. */
1926         switch (action) {
1927         case FW_PORT_ACTION_GET_PORT_INFO: {
1928                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1929
1930                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1931                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1932                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1933                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1934                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1935                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1936                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1937
1938                 /* Unfortunately the format of the Link Status in the old
1939                  * 16-bit Port Information message isn't the same as the
1940                  * 16-bit Port Capabilities bitfield used everywhere else ...
1941                  */
1942                 linkattr = 0;
1943                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1944                         linkattr |= FW_PORT_CAP32_FC_RX;
1945                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1946                         linkattr |= FW_PORT_CAP32_FC_TX;
1947                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1948                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1949                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1950                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1951                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1952                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1953                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1954                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1955                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1956                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1957                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1958                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1959
1960                 break;
1961         }
1962
1963         case FW_PORT_ACTION_GET_PORT_INFO32: {
1964                 u32 lstatus32;
1965
1966                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1967                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1968                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1969                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1970                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1971                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1972                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1973                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1974                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1975                 break;
1976         }
1977
1978         default:
1979                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1980                         be32_to_cpu(cmd->action_to_len16));
1981                 return;
1982         }
1983
1984         fec = fwcap_to_cc_fec(acaps);
1985         fc = fwcap_to_cc_pause(linkattr);
1986         speed = fwcap_to_speed(linkattr);
1987
1988         if (mod_type != pi->mod_type) {
1989                 /* When a new Transceiver Module is inserted, the Firmware
1990                  * will examine any Forward Error Correction parameters
1991                  * present in the Transceiver Module i2c EPROM and determine
1992                  * the supported and recommended FEC settings from those
1993                  * based on IEEE 802.3 standards.  We always record the
1994                  * IEEE 802.3 recommended "automatic" settings.
1995                  */
1996                 lc->auto_fec = fec;
1997
1998                 /* Some versions of the early T6 Firmware "cheated" when
1999                  * handling different Transceiver Modules by changing the
2000                  * underlaying Port Type reported to the Host Drivers.  As
2001                  * such we need to capture whatever Port Type the Firmware
2002                  * sends us and record it in case it's different from what we
2003                  * were told earlier.  Unfortunately, since Firmware is
2004                  * forever, we'll need to keep this code here forever, but in
2005                  * later T6 Firmware it should just be an assignment of the
2006                  * same value already recorded.
2007                  */
2008                 pi->port_type = port_type;
2009
2010                 pi->mod_type = mod_type;
2011                 t4vf_os_portmod_changed(adapter, pi->pidx);
2012         }
2013
2014         if (link_ok != lc->link_ok || speed != lc->speed ||
2015             fc != lc->fc || fec != lc->fec) {   /* something changed */
2016                 if (!link_ok && lc->link_ok) {
2017                         lc->link_down_rc = linkdnrc;
2018                         dev_warn_ratelimited(adapter->pdev_dev,
2019                                              "Port %d link down, reason: %s\n",
2020                                              pi->port_id,
2021                                              t4vf_link_down_rc_str(linkdnrc));
2022                 }
2023                 lc->link_ok = link_ok;
2024                 lc->speed = speed;
2025                 lc->fc = fc;
2026                 lc->fec = fec;
2027
2028                 lc->pcaps = pcaps;
2029                 lc->lpacaps = lpacaps;
2030                 lc->acaps = acaps & ADVERT_MASK;
2031
2032                 /* If we're not physically capable of Auto-Negotiation, note
2033                  * this as Auto-Negotiation disabled.  Otherwise, we track
2034                  * what Auto-Negotiation settings we have.  Note parallel
2035                  * structure in init_link_config().
2036                  */
2037                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2038                         lc->autoneg = AUTONEG_DISABLE;
2039                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2040                         lc->autoneg = AUTONEG_ENABLE;
2041                 } else {
2042                         /* When Autoneg is disabled, user needs to set
2043                          * single speed.
2044                          * Similar to cxgb4_ethtool.c: set_link_ksettings
2045                          */
2046                         lc->acaps = 0;
2047                         lc->speed_caps = fwcap_to_speed(acaps);
2048                         lc->autoneg = AUTONEG_DISABLE;
2049                 }
2050
2051                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2052         }
2053 }
2054
2055 /**
2056  *      t4vf_update_port_info - retrieve and update port information if changed
2057  *      @pi: the port_info
2058  *
2059  *      We issue a Get Port Information Command to the Firmware and, if
2060  *      successful, we check to see if anything is different from what we
2061  *      last recorded and update things accordingly.
2062  */
2063 int t4vf_update_port_info(struct port_info *pi)
2064 {
2065         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2066         struct fw_port_cmd port_cmd;
2067         int ret;
2068
2069         memset(&port_cmd, 0, sizeof(port_cmd));
2070         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2071                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
2072                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2073         port_cmd.action_to_len16 = cpu_to_be32(
2074                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2075                                      ? FW_PORT_ACTION_GET_PORT_INFO
2076                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
2077                 FW_LEN16(port_cmd));
2078         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2079                            &port_cmd);
2080         if (ret)
2081                 return ret;
2082         t4vf_handle_get_port_info(pi, &port_cmd);
2083         return 0;
2084 }
2085
2086 /**
2087  *      t4vf_handle_fw_rpl - process a firmware reply message
2088  *      @adapter: the adapter
2089  *      @rpl: start of the firmware message
2090  *
2091  *      Processes a firmware message, such as link state change messages.
2092  */
2093 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2094 {
2095         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2096         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2097
2098         switch (opcode) {
2099         case FW_PORT_CMD: {
2100                 /*
2101                  * Link/module state change message.
2102                  */
2103                 const struct fw_port_cmd *port_cmd =
2104                         (const struct fw_port_cmd *)rpl;
2105                 int action = FW_PORT_CMD_ACTION_G(
2106                         be32_to_cpu(port_cmd->action_to_len16));
2107                 int port_id, pidx;
2108
2109                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2110                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2111                         dev_err(adapter->pdev_dev,
2112                                 "Unknown firmware PORT reply action %x\n",
2113                                 action);
2114                         break;
2115                 }
2116
2117                 port_id = FW_PORT_CMD_PORTID_G(
2118                         be32_to_cpu(port_cmd->op_to_portid));
2119                 for_each_port(adapter, pidx) {
2120                         struct port_info *pi = adap2pinfo(adapter, pidx);
2121
2122                         if (pi->port_id != port_id)
2123                                 continue;
2124                         t4vf_handle_get_port_info(pi, port_cmd);
2125                 }
2126                 break;
2127         }
2128
2129         default:
2130                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2131                         opcode);
2132         }
2133         return 0;
2134 }
2135
2136 /**
2137  */
2138 int t4vf_prep_adapter(struct adapter *adapter)
2139 {
2140         int err;
2141         unsigned int chipid;
2142
2143         /* Wait for the device to become ready before proceeding ...
2144          */
2145         err = t4vf_wait_dev_ready(adapter);
2146         if (err)
2147                 return err;
2148
2149         /* Default port and clock for debugging in case we can't reach
2150          * firmware.
2151          */
2152         adapter->params.nports = 1;
2153         adapter->params.vfres.pmask = 1;
2154         adapter->params.vpd.cclk = 50000;
2155
2156         adapter->params.chip = 0;
2157         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2158         case CHELSIO_T4:
2159                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2160                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2161                 adapter->params.arch.mps_tcam_size =
2162                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2163                 break;
2164
2165         case CHELSIO_T5:
2166                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2167                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2168                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2169                 adapter->params.arch.mps_tcam_size =
2170                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2171                 break;
2172
2173         case CHELSIO_T6:
2174                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2175                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2176                 adapter->params.arch.sge_fl_db = 0;
2177                 adapter->params.arch.mps_tcam_size =
2178                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2179                 break;
2180         }
2181
2182         return 0;
2183 }
2184
2185 /**
2186  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2187  *                            the VI of this VF.
2188  *      @adapter: The adapter
2189  *      @pf: The pf associated with vf
2190  *      @naddr: the number of ACL MAC addresses returned in addr
2191  *      @addr: Placeholder for MAC addresses
2192  *
2193  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2194  *      is from the host OS via callback in the PF driver.
2195  */
2196 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2197                         unsigned int *naddr, u8 *addr)
2198 {
2199         struct fw_acl_mac_cmd cmd;
2200         int ret;
2201
2202         memset(&cmd, 0, sizeof(cmd));
2203         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2204                                     FW_CMD_REQUEST_F |
2205                                     FW_CMD_READ_F);
2206         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2207         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2208         if (ret)
2209                 return ret;
2210
2211         if (cmd.nmac < *naddr)
2212                 *naddr = cmd.nmac;
2213
2214         switch (pf) {
2215         case 3:
2216                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2217                 break;
2218         case 2:
2219                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2220                 break;
2221         case 1:
2222                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2223                 break;
2224         case 0:
2225                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2226                 break;
2227         }
2228
2229         return ret;
2230 }
2231
2232 /**
2233  *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2234  *                             the VI of this VF.
2235  *      @adapter: The adapter
2236  *
2237  *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2238  *      is from the host OS via callback in the PF driver.
2239  */
2240 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2241 {
2242         struct fw_acl_vlan_cmd cmd;
2243         int vlan = 0;
2244         int ret = 0;
2245
2246         cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2247                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2248
2249         /* Note: Do not enable the ACL */
2250         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2251
2252         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2253
2254         if (!ret)
2255                 vlan = be16_to_cpu(cmd.vlanid[0]);
2256
2257         return vlan;
2258 }