drivers: net: cpsw: Add reading of DT phy-handle node
[oweals/u-boot.git] / drivers / net / cpsw.c
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <asm/errno.h>
25 #include <asm/io.h>
26 #include <phy.h>
27 #include <asm/arch/cpu.h>
28 #include <dm.h>
29 #include <fdt_support.h>
30
31 DECLARE_GLOBAL_DATA_PTR;
32
33 #define BITMASK(bits)           (BIT(bits) - 1)
34 #define PHY_REG_MASK            0x1f
35 #define PHY_ID_MASK             0x1f
36 #define NUM_DESCS               (PKTBUFSRX * 2)
37 #define PKT_MIN                 60
38 #define PKT_MAX                 (1500 + 14 + 4 + 4)
39 #define CLEAR_BIT               1
40 #define GIGABITEN               BIT(7)
41 #define FULLDUPLEXEN            BIT(0)
42 #define MIIEN                   BIT(15)
43
44 /* reg offset */
45 #define CPSW_HOST_PORT_OFFSET   0x108
46 #define CPSW_SLAVE0_OFFSET      0x208
47 #define CPSW_SLAVE1_OFFSET      0x308
48 #define CPSW_SLAVE_SIZE         0x100
49 #define CPSW_CPDMA_OFFSET       0x800
50 #define CPSW_HW_STATS           0x900
51 #define CPSW_STATERAM_OFFSET    0xa00
52 #define CPSW_CPTS_OFFSET        0xc00
53 #define CPSW_ALE_OFFSET         0xd00
54 #define CPSW_SLIVER0_OFFSET     0xd80
55 #define CPSW_SLIVER1_OFFSET     0xdc0
56 #define CPSW_BD_OFFSET          0x2000
57 #define CPSW_MDIO_DIV           0xff
58
59 #define AM335X_GMII_SEL_OFFSET  0x630
60
61 /* DMA Registers */
62 #define CPDMA_TXCONTROL         0x004
63 #define CPDMA_RXCONTROL         0x014
64 #define CPDMA_SOFTRESET         0x01c
65 #define CPDMA_RXFREE            0x0e0
66 #define CPDMA_TXHDP_VER1        0x100
67 #define CPDMA_TXHDP_VER2        0x200
68 #define CPDMA_RXHDP_VER1        0x120
69 #define CPDMA_RXHDP_VER2        0x220
70 #define CPDMA_TXCP_VER1         0x140
71 #define CPDMA_TXCP_VER2         0x240
72 #define CPDMA_RXCP_VER1         0x160
73 #define CPDMA_RXCP_VER2         0x260
74
75 /* Descriptor mode bits */
76 #define CPDMA_DESC_SOP          BIT(31)
77 #define CPDMA_DESC_EOP          BIT(30)
78 #define CPDMA_DESC_OWNER        BIT(29)
79 #define CPDMA_DESC_EOQ          BIT(28)
80
81 /*
82  * This timeout definition is a worst-case ultra defensive measure against
83  * unexpected controller lock ups.  Ideally, we should never ever hit this
84  * scenario in practice.
85  */
86 #define MDIO_TIMEOUT            100 /* msecs */
87 #define CPDMA_TIMEOUT           100 /* msecs */
88
89 struct cpsw_mdio_regs {
90         u32     version;
91         u32     control;
92 #define CONTROL_IDLE            BIT(31)
93 #define CONTROL_ENABLE          BIT(30)
94
95         u32     alive;
96         u32     link;
97         u32     linkintraw;
98         u32     linkintmasked;
99         u32     __reserved_0[2];
100         u32     userintraw;
101         u32     userintmasked;
102         u32     userintmaskset;
103         u32     userintmaskclr;
104         u32     __reserved_1[20];
105
106         struct {
107                 u32             access;
108                 u32             physel;
109 #define USERACCESS_GO           BIT(31)
110 #define USERACCESS_WRITE        BIT(30)
111 #define USERACCESS_ACK          BIT(29)
112 #define USERACCESS_READ         (0)
113 #define USERACCESS_DATA         (0xffff)
114         } user[0];
115 };
116
117 struct cpsw_regs {
118         u32     id_ver;
119         u32     control;
120         u32     soft_reset;
121         u32     stat_port_en;
122         u32     ptype;
123 };
124
125 struct cpsw_slave_regs {
126         u32     max_blks;
127         u32     blk_cnt;
128         u32     flow_thresh;
129         u32     port_vlan;
130         u32     tx_pri_map;
131 #ifdef CONFIG_AM33XX
132         u32     gap_thresh;
133 #elif defined(CONFIG_TI814X)
134         u32     ts_ctl;
135         u32     ts_seq_ltype;
136         u32     ts_vlan;
137 #endif
138         u32     sa_lo;
139         u32     sa_hi;
140 };
141
142 struct cpsw_host_regs {
143         u32     max_blks;
144         u32     blk_cnt;
145         u32     flow_thresh;
146         u32     port_vlan;
147         u32     tx_pri_map;
148         u32     cpdma_tx_pri_map;
149         u32     cpdma_rx_chan_map;
150 };
151
152 struct cpsw_sliver_regs {
153         u32     id_ver;
154         u32     mac_control;
155         u32     mac_status;
156         u32     soft_reset;
157         u32     rx_maxlen;
158         u32     __reserved_0;
159         u32     rx_pause;
160         u32     tx_pause;
161         u32     __reserved_1;
162         u32     rx_pri_map;
163 };
164
165 #define ALE_ENTRY_BITS          68
166 #define ALE_ENTRY_WORDS         DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
167
168 /* ALE Registers */
169 #define ALE_CONTROL             0x08
170 #define ALE_UNKNOWNVLAN         0x18
171 #define ALE_TABLE_CONTROL       0x20
172 #define ALE_TABLE               0x34
173 #define ALE_PORTCTL             0x40
174
175 #define ALE_TABLE_WRITE         BIT(31)
176
177 #define ALE_TYPE_FREE                   0
178 #define ALE_TYPE_ADDR                   1
179 #define ALE_TYPE_VLAN                   2
180 #define ALE_TYPE_VLAN_ADDR              3
181
182 #define ALE_UCAST_PERSISTANT            0
183 #define ALE_UCAST_UNTOUCHED             1
184 #define ALE_UCAST_OUI                   2
185 #define ALE_UCAST_TOUCHED               3
186
187 #define ALE_MCAST_FWD                   0
188 #define ALE_MCAST_BLOCK_LEARN_FWD       1
189 #define ALE_MCAST_FWD_LEARN             2
190 #define ALE_MCAST_FWD_2                 3
191
192 enum cpsw_ale_port_state {
193         ALE_PORT_STATE_DISABLE  = 0x00,
194         ALE_PORT_STATE_BLOCK    = 0x01,
195         ALE_PORT_STATE_LEARN    = 0x02,
196         ALE_PORT_STATE_FORWARD  = 0x03,
197 };
198
199 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
200 #define ALE_SECURE      1
201 #define ALE_BLOCKED     2
202
203 struct cpsw_slave {
204         struct cpsw_slave_regs          *regs;
205         struct cpsw_sliver_regs         *sliver;
206         int                             slave_num;
207         u32                             mac_control;
208         struct cpsw_slave_data          *data;
209 };
210
211 struct cpdma_desc {
212         /* hardware fields */
213         u32                     hw_next;
214         u32                     hw_buffer;
215         u32                     hw_len;
216         u32                     hw_mode;
217         /* software fields */
218         u32                     sw_buffer;
219         u32                     sw_len;
220 };
221
222 struct cpdma_chan {
223         struct cpdma_desc       *head, *tail;
224         void                    *hdp, *cp, *rxfree;
225 };
226
227 #define desc_write(desc, fld, val)      __raw_writel((u32)(val), &(desc)->fld)
228 #define desc_read(desc, fld)            __raw_readl(&(desc)->fld)
229 #define desc_read_ptr(desc, fld)        ((void *)__raw_readl(&(desc)->fld))
230
231 #define chan_write(chan, fld, val)      __raw_writel((u32)(val), (chan)->fld)
232 #define chan_read(chan, fld)            __raw_readl((chan)->fld)
233 #define chan_read_ptr(chan, fld)        ((void *)__raw_readl((chan)->fld))
234
235 #define for_active_slave(slave, priv) \
236         slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
237 #define for_each_slave(slave, priv) \
238         for (slave = (priv)->slaves; slave != (priv)->slaves + \
239                                 (priv)->data.slaves; slave++)
240
241 struct cpsw_priv {
242 #ifdef CONFIG_DM_ETH
243         struct udevice                  *dev;
244 #else
245         struct eth_device               *dev;
246 #endif
247         struct cpsw_platform_data       data;
248         int                             host_port;
249
250         struct cpsw_regs                *regs;
251         void                            *dma_regs;
252         struct cpsw_host_regs           *host_port_regs;
253         void                            *ale_regs;
254
255         struct cpdma_desc               *descs;
256         struct cpdma_desc               *desc_free;
257         struct cpdma_chan               rx_chan, tx_chan;
258
259         struct cpsw_slave               *slaves;
260         struct phy_device               *phydev;
261         struct mii_dev                  *bus;
262
263         u32                             phy_mask;
264 };
265
266 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
267 {
268         int idx;
269
270         idx    = start / 32;
271         start -= idx * 32;
272         idx    = 2 - idx; /* flip */
273         return (ale_entry[idx] >> start) & BITMASK(bits);
274 }
275
276 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
277                                       u32 value)
278 {
279         int idx;
280
281         value &= BITMASK(bits);
282         idx    = start / 32;
283         start -= idx * 32;
284         idx    = 2 - idx; /* flip */
285         ale_entry[idx] &= ~(BITMASK(bits) << start);
286         ale_entry[idx] |=  (value << start);
287 }
288
289 #define DEFINE_ALE_FIELD(name, start, bits)                             \
290 static inline int cpsw_ale_get_##name(u32 *ale_entry)                   \
291 {                                                                       \
292         return cpsw_ale_get_field(ale_entry, start, bits);              \
293 }                                                                       \
294 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)       \
295 {                                                                       \
296         cpsw_ale_set_field(ale_entry, start, bits, value);              \
297 }
298
299 DEFINE_ALE_FIELD(entry_type,            60,     2)
300 DEFINE_ALE_FIELD(mcast_state,           62,     2)
301 DEFINE_ALE_FIELD(port_mask,             66,     3)
302 DEFINE_ALE_FIELD(ucast_type,            62,     2)
303 DEFINE_ALE_FIELD(port_num,              66,     2)
304 DEFINE_ALE_FIELD(blocked,               65,     1)
305 DEFINE_ALE_FIELD(secure,                64,     1)
306 DEFINE_ALE_FIELD(mcast,                 40,     1)
307
308 /* The MAC address field in the ALE entry cannot be macroized as above */
309 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
310 {
311         int i;
312
313         for (i = 0; i < 6; i++)
314                 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
315 }
316
317 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
318 {
319         int i;
320
321         for (i = 0; i < 6; i++)
322                 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
323 }
324
325 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
326 {
327         int i;
328
329         __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
330
331         for (i = 0; i < ALE_ENTRY_WORDS; i++)
332                 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
333
334         return idx;
335 }
336
337 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
338 {
339         int i;
340
341         for (i = 0; i < ALE_ENTRY_WORDS; i++)
342                 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
343
344         __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
345
346         return idx;
347 }
348
349 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
350 {
351         u32 ale_entry[ALE_ENTRY_WORDS];
352         int type, idx;
353
354         for (idx = 0; idx < priv->data.ale_entries; idx++) {
355                 u8 entry_addr[6];
356
357                 cpsw_ale_read(priv, idx, ale_entry);
358                 type = cpsw_ale_get_entry_type(ale_entry);
359                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
360                         continue;
361                 cpsw_ale_get_addr(ale_entry, entry_addr);
362                 if (memcmp(entry_addr, addr, 6) == 0)
363                         return idx;
364         }
365         return -ENOENT;
366 }
367
368 static int cpsw_ale_match_free(struct cpsw_priv *priv)
369 {
370         u32 ale_entry[ALE_ENTRY_WORDS];
371         int type, idx;
372
373         for (idx = 0; idx < priv->data.ale_entries; idx++) {
374                 cpsw_ale_read(priv, idx, ale_entry);
375                 type = cpsw_ale_get_entry_type(ale_entry);
376                 if (type == ALE_TYPE_FREE)
377                         return idx;
378         }
379         return -ENOENT;
380 }
381
382 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
383 {
384         u32 ale_entry[ALE_ENTRY_WORDS];
385         int type, idx;
386
387         for (idx = 0; idx < priv->data.ale_entries; idx++) {
388                 cpsw_ale_read(priv, idx, ale_entry);
389                 type = cpsw_ale_get_entry_type(ale_entry);
390                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
391                         continue;
392                 if (cpsw_ale_get_mcast(ale_entry))
393                         continue;
394                 type = cpsw_ale_get_ucast_type(ale_entry);
395                 if (type != ALE_UCAST_PERSISTANT &&
396                     type != ALE_UCAST_OUI)
397                         return idx;
398         }
399         return -ENOENT;
400 }
401
402 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
403                               int port, int flags)
404 {
405         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
406         int idx;
407
408         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
409         cpsw_ale_set_addr(ale_entry, addr);
410         cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
411         cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
412         cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
413         cpsw_ale_set_port_num(ale_entry, port);
414
415         idx = cpsw_ale_match_addr(priv, addr);
416         if (idx < 0)
417                 idx = cpsw_ale_match_free(priv);
418         if (idx < 0)
419                 idx = cpsw_ale_find_ageable(priv);
420         if (idx < 0)
421                 return -ENOMEM;
422
423         cpsw_ale_write(priv, idx, ale_entry);
424         return 0;
425 }
426
427 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
428                               int port_mask)
429 {
430         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
431         int idx, mask;
432
433         idx = cpsw_ale_match_addr(priv, addr);
434         if (idx >= 0)
435                 cpsw_ale_read(priv, idx, ale_entry);
436
437         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
438         cpsw_ale_set_addr(ale_entry, addr);
439         cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
440
441         mask = cpsw_ale_get_port_mask(ale_entry);
442         port_mask |= mask;
443         cpsw_ale_set_port_mask(ale_entry, port_mask);
444
445         if (idx < 0)
446                 idx = cpsw_ale_match_free(priv);
447         if (idx < 0)
448                 idx = cpsw_ale_find_ageable(priv);
449         if (idx < 0)
450                 return -ENOMEM;
451
452         cpsw_ale_write(priv, idx, ale_entry);
453         return 0;
454 }
455
456 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
457 {
458         u32 tmp, mask = BIT(bit);
459
460         tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
461         tmp &= ~mask;
462         tmp |= val ? mask : 0;
463         __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
464 }
465
466 #define cpsw_ale_enable(priv, val)      cpsw_ale_control(priv, 31, val)
467 #define cpsw_ale_clear(priv, val)       cpsw_ale_control(priv, 30, val)
468 #define cpsw_ale_vlan_aware(priv, val)  cpsw_ale_control(priv,  2, val)
469
470 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
471                                        int val)
472 {
473         int offset = ALE_PORTCTL + 4 * port;
474         u32 tmp, mask = 0x3;
475
476         tmp  = __raw_readl(priv->ale_regs + offset);
477         tmp &= ~mask;
478         tmp |= val & mask;
479         __raw_writel(tmp, priv->ale_regs + offset);
480 }
481
482 static struct cpsw_mdio_regs *mdio_regs;
483
484 /* wait until hardware is ready for another user access */
485 static inline u32 wait_for_user_access(void)
486 {
487         u32 reg = 0;
488         int timeout = MDIO_TIMEOUT;
489
490         while (timeout-- &&
491         ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
492                 udelay(10);
493
494         if (timeout == -1) {
495                 printf("wait_for_user_access Timeout\n");
496                 return -ETIMEDOUT;
497         }
498         return reg;
499 }
500
501 /* wait until hardware state machine is idle */
502 static inline void wait_for_idle(void)
503 {
504         int timeout = MDIO_TIMEOUT;
505
506         while (timeout-- &&
507                 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
508                 udelay(10);
509
510         if (timeout == -1)
511                 printf("wait_for_idle Timeout\n");
512 }
513
514 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
515                                 int dev_addr, int phy_reg)
516 {
517         int data;
518         u32 reg;
519
520         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
521                 return -EINVAL;
522
523         wait_for_user_access();
524         reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
525                (phy_id << 16));
526         __raw_writel(reg, &mdio_regs->user[0].access);
527         reg = wait_for_user_access();
528
529         data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
530         return data;
531 }
532
533 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
534                                 int phy_reg, u16 data)
535 {
536         u32 reg;
537
538         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
539                 return -EINVAL;
540
541         wait_for_user_access();
542         reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
543                    (phy_id << 16) | (data & USERACCESS_DATA));
544         __raw_writel(reg, &mdio_regs->user[0].access);
545         wait_for_user_access();
546
547         return 0;
548 }
549
550 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
551 {
552         struct mii_dev *bus = mdio_alloc();
553
554         mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
555
556         /* set enable and clock divider */
557         __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
558
559         /*
560          * wait for scan logic to settle:
561          * the scan time consists of (a) a large fixed component, and (b) a
562          * small component that varies with the mii bus frequency.  These
563          * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
564          * silicon.  Since the effect of (b) was found to be largely
565          * negligible, we keep things simple here.
566          */
567         udelay(1000);
568
569         bus->read = cpsw_mdio_read;
570         bus->write = cpsw_mdio_write;
571         strcpy(bus->name, name);
572
573         mdio_register(bus);
574 }
575
576 /* Set a self-clearing bit in a register, and wait for it to clear */
577 static inline void setbit_and_wait_for_clear32(void *addr)
578 {
579         __raw_writel(CLEAR_BIT, addr);
580         while (__raw_readl(addr) & CLEAR_BIT)
581                 ;
582 }
583
584 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
585                          ((mac)[2] << 16) | ((mac)[3] << 24))
586 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
587
588 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
589                                struct cpsw_priv *priv)
590 {
591 #ifdef CONFIG_DM_ETH
592         struct eth_pdata *pdata = dev_get_platdata(priv->dev);
593
594         writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
595         writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
596 #else
597         __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
598         __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
599 #endif
600 }
601
602 static void cpsw_slave_update_link(struct cpsw_slave *slave,
603                                    struct cpsw_priv *priv, int *link)
604 {
605         struct phy_device *phy;
606         u32 mac_control = 0;
607
608         phy = priv->phydev;
609
610         if (!phy)
611                 return;
612
613         phy_startup(phy);
614         *link = phy->link;
615
616         if (*link) { /* link up */
617                 mac_control = priv->data.mac_control;
618                 if (phy->speed == 1000)
619                         mac_control |= GIGABITEN;
620                 if (phy->duplex == DUPLEX_FULL)
621                         mac_control |= FULLDUPLEXEN;
622                 if (phy->speed == 100)
623                         mac_control |= MIIEN;
624         }
625
626         if (mac_control == slave->mac_control)
627                 return;
628
629         if (mac_control) {
630                 printf("link up on port %d, speed %d, %s duplex\n",
631                                 slave->slave_num, phy->speed,
632                                 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
633         } else {
634                 printf("link down on port %d\n", slave->slave_num);
635         }
636
637         __raw_writel(mac_control, &slave->sliver->mac_control);
638         slave->mac_control = mac_control;
639 }
640
641 static int cpsw_update_link(struct cpsw_priv *priv)
642 {
643         int link = 0;
644         struct cpsw_slave *slave;
645
646         for_active_slave(slave, priv)
647                 cpsw_slave_update_link(slave, priv, &link);
648
649         return link;
650 }
651
652 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
653 {
654         if (priv->host_port == 0)
655                 return slave_num + 1;
656         else
657                 return slave_num;
658 }
659
660 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
661 {
662         u32     slave_port;
663
664         setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
665
666         /* setup priority mapping */
667         __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
668         __raw_writel(0x33221100, &slave->regs->tx_pri_map);
669
670         /* setup max packet size, and mac address */
671         __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
672         cpsw_set_slave_mac(slave, priv);
673
674         slave->mac_control = 0; /* no link yet */
675
676         /* enable forwarding */
677         slave_port = cpsw_get_slave_port(priv, slave->slave_num);
678         cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
679
680         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
681
682         priv->phy_mask |= 1 << slave->data->phy_addr;
683 }
684
685 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
686 {
687         struct cpdma_desc *desc = priv->desc_free;
688
689         if (desc)
690                 priv->desc_free = desc_read_ptr(desc, hw_next);
691         return desc;
692 }
693
694 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
695 {
696         if (desc) {
697                 desc_write(desc, hw_next, priv->desc_free);
698                 priv->desc_free = desc;
699         }
700 }
701
702 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
703                         void *buffer, int len)
704 {
705         struct cpdma_desc *desc, *prev;
706         u32 mode;
707
708         desc = cpdma_desc_alloc(priv);
709         if (!desc)
710                 return -ENOMEM;
711
712         if (len < PKT_MIN)
713                 len = PKT_MIN;
714
715         mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
716
717         desc_write(desc, hw_next,   0);
718         desc_write(desc, hw_buffer, buffer);
719         desc_write(desc, hw_len,    len);
720         desc_write(desc, hw_mode,   mode | len);
721         desc_write(desc, sw_buffer, buffer);
722         desc_write(desc, sw_len,    len);
723
724         if (!chan->head) {
725                 /* simple case - first packet enqueued */
726                 chan->head = desc;
727                 chan->tail = desc;
728                 chan_write(chan, hdp, desc);
729                 goto done;
730         }
731
732         /* not the first packet - enqueue at the tail */
733         prev = chan->tail;
734         desc_write(prev, hw_next, desc);
735         chan->tail = desc;
736
737         /* next check if EOQ has been triggered already */
738         if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
739                 chan_write(chan, hdp, desc);
740
741 done:
742         if (chan->rxfree)
743                 chan_write(chan, rxfree, 1);
744         return 0;
745 }
746
747 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
748                          void **buffer, int *len)
749 {
750         struct cpdma_desc *desc = chan->head;
751         u32 status;
752
753         if (!desc)
754                 return -ENOENT;
755
756         status = desc_read(desc, hw_mode);
757
758         if (len)
759                 *len = status & 0x7ff;
760
761         if (buffer)
762                 *buffer = desc_read_ptr(desc, sw_buffer);
763
764         if (status & CPDMA_DESC_OWNER) {
765                 if (chan_read(chan, hdp) == 0) {
766                         if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
767                                 chan_write(chan, hdp, desc);
768                 }
769
770                 return -EBUSY;
771         }
772
773         chan->head = desc_read_ptr(desc, hw_next);
774         chan_write(chan, cp, desc);
775
776         cpdma_desc_free(priv, desc);
777         return 0;
778 }
779
780 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
781 {
782         struct cpsw_slave       *slave;
783         int i, ret;
784
785         /* soft reset the controller and initialize priv */
786         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
787
788         /* initialize and reset the address lookup engine */
789         cpsw_ale_enable(priv, 1);
790         cpsw_ale_clear(priv, 1);
791         cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
792
793         /* setup host port priority mapping */
794         __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
795         __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
796
797         /* disable priority elevation and enable statistics on all ports */
798         __raw_writel(0, &priv->regs->ptype);
799
800         /* enable statistics collection only on the host port */
801         __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
802         __raw_writel(0x7, &priv->regs->stat_port_en);
803
804         cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
805
806         cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
807         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
808
809         for_active_slave(slave, priv)
810                 cpsw_slave_init(slave, priv);
811
812         cpsw_update_link(priv);
813
814         /* init descriptor pool */
815         for (i = 0; i < NUM_DESCS; i++) {
816                 desc_write(&priv->descs[i], hw_next,
817                            (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
818         }
819         priv->desc_free = &priv->descs[0];
820
821         /* initialize channels */
822         if (priv->data.version == CPSW_CTRL_VERSION_2) {
823                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
824                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
825                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
826                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
827
828                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
829                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
830                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
831         } else {
832                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
833                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
834                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
835                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
836
837                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
838                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
839                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
840         }
841
842         /* clear dma state */
843         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
844
845         if (priv->data.version == CPSW_CTRL_VERSION_2) {
846                 for (i = 0; i < priv->data.channels; i++) {
847                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
848                                         * i);
849                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
850                                         * i);
851                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
852                                         * i);
853                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
854                                         * i);
855                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
856                                         * i);
857                 }
858         } else {
859                 for (i = 0; i < priv->data.channels; i++) {
860                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
861                                         * i);
862                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
863                                         * i);
864                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
865                                         * i);
866                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
867                                         * i);
868                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
869                                         * i);
870
871                 }
872         }
873
874         __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
875         __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
876
877         /* submit rx descs */
878         for (i = 0; i < PKTBUFSRX; i++) {
879                 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
880                                    PKTSIZE);
881                 if (ret < 0) {
882                         printf("error %d submitting rx desc\n", ret);
883                         break;
884                 }
885         }
886
887         return 0;
888 }
889
890 static void _cpsw_halt(struct cpsw_priv *priv)
891 {
892         writel(0, priv->dma_regs + CPDMA_TXCONTROL);
893         writel(0, priv->dma_regs + CPDMA_RXCONTROL);
894
895         /* soft reset the controller and initialize priv */
896         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
897
898         /* clear dma state */
899         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
900
901 }
902
903 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
904 {
905         void *buffer;
906         int len;
907         int timeout = CPDMA_TIMEOUT;
908
909         flush_dcache_range((unsigned long)packet,
910                            (unsigned long)packet + length);
911
912         /* first reap completed packets */
913         while (timeout-- &&
914                 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
915                 ;
916
917         if (timeout == -1) {
918                 printf("cpdma_process timeout\n");
919                 return -ETIMEDOUT;
920         }
921
922         return cpdma_submit(priv, &priv->tx_chan, packet, length);
923 }
924
925 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
926 {
927         void *buffer;
928         int len;
929         int ret = -EAGAIN;
930
931         ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
932         if (ret < 0)
933                 return ret;
934
935         invalidate_dcache_range((unsigned long)buffer,
936                                 (unsigned long)buffer + PKTSIZE_ALIGN);
937         *pkt = buffer;
938
939         return len;
940 }
941
942 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
943                             struct cpsw_priv *priv)
944 {
945         void                    *regs = priv->regs;
946         struct cpsw_slave_data  *data = priv->data.slave_data + slave_num;
947         slave->slave_num = slave_num;
948         slave->data     = data;
949         slave->regs     = regs + data->slave_reg_ofs;
950         slave->sliver   = regs + data->sliver_reg_ofs;
951 }
952
953 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
954 {
955         struct phy_device *phydev;
956         u32 supported = PHY_GBIT_FEATURES;
957
958         phydev = phy_connect(priv->bus,
959                         slave->data->phy_addr,
960                         priv->dev,
961                         slave->data->phy_if);
962
963         if (!phydev)
964                 return -1;
965
966         phydev->supported &= supported;
967         phydev->advertising = phydev->supported;
968
969 #ifdef CONFIG_DM_ETH
970         if (slave->data->phy_of_handle)
971                 phydev->dev->of_offset = slave->data->phy_of_handle;
972 #endif
973
974         priv->phydev = phydev;
975         phy_config(phydev);
976
977         return 1;
978 }
979
980 int _cpsw_register(struct cpsw_priv *priv)
981 {
982         struct cpsw_slave       *slave;
983         struct cpsw_platform_data *data = &priv->data;
984         void                    *regs = (void *)data->cpsw_base;
985
986         priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
987         if (!priv->slaves) {
988                 return -ENOMEM;
989         }
990
991         priv->host_port         = data->host_port_num;
992         priv->regs              = regs;
993         priv->host_port_regs    = regs + data->host_port_reg_ofs;
994         priv->dma_regs          = regs + data->cpdma_reg_ofs;
995         priv->ale_regs          = regs + data->ale_reg_ofs;
996         priv->descs             = (void *)regs + data->bd_ram_ofs;
997
998         int idx = 0;
999
1000         for_each_slave(slave, priv) {
1001                 cpsw_slave_setup(slave, idx, priv);
1002                 idx = idx + 1;
1003         }
1004
1005         cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
1006         priv->bus = miiphy_get_dev_by_name(priv->dev->name);
1007         for_active_slave(slave, priv)
1008                 cpsw_phy_init(priv, slave);
1009
1010         return 0;
1011 }
1012
1013 #ifndef CONFIG_DM_ETH
1014 static int cpsw_init(struct eth_device *dev, bd_t *bis)
1015 {
1016         struct cpsw_priv        *priv = dev->priv;
1017
1018         return _cpsw_init(priv, dev->enetaddr);
1019 }
1020
1021 static void cpsw_halt(struct eth_device *dev)
1022 {
1023         struct cpsw_priv *priv = dev->priv;
1024
1025         return _cpsw_halt(priv);
1026 }
1027
1028 static int cpsw_send(struct eth_device *dev, void *packet, int length)
1029 {
1030         struct cpsw_priv        *priv = dev->priv;
1031
1032         return _cpsw_send(priv, packet, length);
1033 }
1034
1035 static int cpsw_recv(struct eth_device *dev)
1036 {
1037         struct cpsw_priv *priv = dev->priv;
1038         uchar *pkt = NULL;
1039         int len;
1040
1041         len = _cpsw_recv(priv, &pkt);
1042
1043         if (len > 0) {
1044                 net_process_received_packet(pkt, len);
1045                 cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
1046         }
1047
1048         return len;
1049 }
1050
1051 int cpsw_register(struct cpsw_platform_data *data)
1052 {
1053         struct cpsw_priv        *priv;
1054         struct eth_device       *dev;
1055         int ret;
1056
1057         dev = calloc(sizeof(*dev), 1);
1058         if (!dev)
1059                 return -ENOMEM;
1060
1061         priv = calloc(sizeof(*priv), 1);
1062         if (!priv) {
1063                 free(dev);
1064                 return -ENOMEM;
1065         }
1066
1067         priv->dev = dev;
1068         priv->data = *data;
1069
1070         strcpy(dev->name, "cpsw");
1071         dev->iobase     = 0;
1072         dev->init       = cpsw_init;
1073         dev->halt       = cpsw_halt;
1074         dev->send       = cpsw_send;
1075         dev->recv       = cpsw_recv;
1076         dev->priv       = priv;
1077
1078         eth_register(dev);
1079
1080         ret = _cpsw_register(priv);
1081         if (ret < 0) {
1082                 eth_unregister(dev);
1083                 free(dev);
1084                 free(priv);
1085                 return ret;
1086         }
1087
1088         return 1;
1089 }
1090 #else
1091 static int cpsw_eth_start(struct udevice *dev)
1092 {
1093         struct eth_pdata *pdata = dev_get_platdata(dev);
1094         struct cpsw_priv *priv = dev_get_priv(dev);
1095
1096         return _cpsw_init(priv, pdata->enetaddr);
1097 }
1098
1099 static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
1100 {
1101         struct cpsw_priv *priv = dev_get_priv(dev);
1102
1103         return _cpsw_send(priv, packet, length);
1104 }
1105
1106 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
1107 {
1108         struct cpsw_priv *priv = dev_get_priv(dev);
1109
1110         return _cpsw_recv(priv, packetp);
1111 }
1112
1113 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
1114                                    int length)
1115 {
1116         struct cpsw_priv *priv = dev_get_priv(dev);
1117
1118         return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
1119 }
1120
1121 static void cpsw_eth_stop(struct udevice *dev)
1122 {
1123         struct cpsw_priv *priv = dev_get_priv(dev);
1124
1125         return _cpsw_halt(priv);
1126 }
1127
1128
1129 static int cpsw_eth_probe(struct udevice *dev)
1130 {
1131         struct cpsw_priv *priv = dev_get_priv(dev);
1132
1133         priv->dev = dev;
1134
1135         return _cpsw_register(priv);
1136 }
1137
1138 static const struct eth_ops cpsw_eth_ops = {
1139         .start          = cpsw_eth_start,
1140         .send           = cpsw_eth_send,
1141         .recv           = cpsw_eth_recv,
1142         .free_pkt       = cpsw_eth_free_pkt,
1143         .stop           = cpsw_eth_stop,
1144 };
1145
1146 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
1147 {
1148         return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL);
1149 }
1150
1151 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
1152 {
1153         struct eth_pdata *pdata = dev_get_platdata(dev);
1154         struct cpsw_priv *priv = dev_get_priv(dev);
1155         const char *phy_mode;
1156         const void *fdt = gd->fdt_blob;
1157         int node = dev->of_offset;
1158         int subnode;
1159         int slave_index = 0;
1160         int active_slave;
1161         int ret;
1162
1163         pdata->iobase = dev_get_addr(dev);
1164         priv->data.version = CPSW_CTRL_VERSION_2;
1165         priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
1166         priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
1167         priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
1168         priv->data.mdio_div = CPSW_MDIO_DIV;
1169         priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
1170
1171         pdata->phy_interface = -1;
1172
1173         priv->data.cpsw_base = pdata->iobase;
1174         priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
1175         if (priv->data.channels <= 0) {
1176                 printf("error: cpdma_channels not found in dt\n");
1177                 return -ENOENT;
1178         }
1179
1180         priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
1181         if (priv->data.slaves <= 0) {
1182                 printf("error: slaves not found in dt\n");
1183                 return -ENOENT;
1184         }
1185         priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
1186                                        priv->data.slaves);
1187
1188         priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
1189         if (priv->data.ale_entries <= 0) {
1190                 printf("error: ale_entries not found in dt\n");
1191                 return -ENOENT;
1192         }
1193
1194         priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
1195         if (priv->data.bd_ram_ofs <= 0) {
1196                 printf("error: bd_ram_size not found in dt\n");
1197                 return -ENOENT;
1198         }
1199
1200         priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
1201         if (priv->data.mac_control <= 0) {
1202                 printf("error: ale_entries not found in dt\n");
1203                 return -ENOENT;
1204         }
1205
1206         active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
1207         priv->data.active_slave = active_slave;
1208
1209         fdt_for_each_subnode(fdt, subnode, node) {
1210                 int len;
1211                 const char *name;
1212
1213                 name = fdt_get_name(fdt, subnode, &len);
1214                 if (!strncmp(name, "mdio", 4)) {
1215                         u32 mdio_base;
1216
1217                         mdio_base = cpsw_get_addr_by_node(fdt, subnode);
1218                         if (mdio_base == FDT_ADDR_T_NONE) {
1219                                 error("Not able to get MDIO address space\n");
1220                                 return -ENOENT;
1221                         }
1222                         priv->data.mdio_base = mdio_base;
1223                 }
1224
1225                 if (!strncmp(name, "slave", 5)) {
1226                         u32 phy_id[2];
1227
1228                         if (slave_index >= priv->data.slaves)
1229                                 continue;
1230                         phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
1231                         if (phy_mode)
1232                                 priv->data.slave_data[slave_index].phy_if =
1233                                         phy_get_interface_by_name(phy_mode);
1234
1235                         priv->data.slave_data[slave_index].phy_of_handle =
1236                                 fdtdec_lookup_phandle(fdt, subnode,
1237                                                       "phy-handle");
1238
1239                         if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
1240                                 priv->data.slave_data[slave_index].phy_addr =
1241                                                 fdtdec_get_int(gd->fdt_blob,
1242                                                                priv->data.slave_data[slave_index].phy_of_handle,
1243                                                                "reg", -1);
1244                         } else {
1245                                 fdtdec_get_int_array(fdt, subnode, "phy_id",
1246                                                      phy_id, 2);
1247                                 priv->data.slave_data[slave_index].phy_addr =
1248                                                 phy_id[1];
1249                         }
1250                         slave_index++;
1251                 }
1252
1253                 if (!strncmp(name, "cpsw-phy-sel", 12)) {
1254                         priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
1255                                                                     subnode);
1256
1257                         if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
1258                                 error("Not able to get gmii_sel reg address\n");
1259                                 return -ENOENT;
1260                         }
1261                 }
1262         }
1263
1264         priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
1265         priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
1266
1267         if (priv->data.slaves == 2) {
1268                 priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
1269                 priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
1270         }
1271
1272         ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
1273         if (ret < 0) {
1274                 error("cpsw read efuse mac failed\n");
1275                 return ret;
1276         }
1277
1278         pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
1279         if (pdata->phy_interface == -1) {
1280                 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1281                 return -EINVAL;
1282         }
1283         switch (pdata->phy_interface) {
1284         case PHY_INTERFACE_MODE_MII:
1285                 writel(MII_MODE_ENABLE, priv->data.gmii_sel);
1286                 break;
1287         case PHY_INTERFACE_MODE_RMII:
1288                 writel(RMII_MODE_ENABLE, priv->data.gmii_sel);
1289                 break;
1290         case PHY_INTERFACE_MODE_RGMII:
1291         case PHY_INTERFACE_MODE_RGMII_ID:
1292         case PHY_INTERFACE_MODE_RGMII_RXID:
1293         case PHY_INTERFACE_MODE_RGMII_TXID:
1294                 writel(RGMII_MODE_ENABLE, priv->data.gmii_sel);
1295                 break;
1296         }
1297
1298         return 0;
1299 }
1300
1301
1302 static const struct udevice_id cpsw_eth_ids[] = {
1303         { .compatible = "ti,cpsw" },
1304         { .compatible = "ti,am335x-cpsw" },
1305         { }
1306 };
1307
1308 U_BOOT_DRIVER(eth_cpsw) = {
1309         .name   = "eth_cpsw",
1310         .id     = UCLASS_ETH,
1311         .of_match = cpsw_eth_ids,
1312         .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
1313         .probe  = cpsw_eth_probe,
1314         .ops    = &cpsw_eth_ops,
1315         .priv_auto_alloc_size = sizeof(struct cpsw_priv),
1316         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1317         .flags = DM_FLAG_ALLOC_PRIV_DMA,
1318 };
1319 #endif /* CONFIG_DM_ETH */