Merge git://git.denx.de/u-boot-arc
[oweals/u-boot.git] / drivers / net / cpsw.c
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <linux/errno.h>
25 #include <asm/gpio.h>
26 #include <asm/io.h>
27 #include <phy.h>
28 #include <asm/arch/cpu.h>
29 #include <dm.h>
30 #include <fdt_support.h>
31
32 DECLARE_GLOBAL_DATA_PTR;
33
34 #define BITMASK(bits)           (BIT(bits) - 1)
35 #define PHY_REG_MASK            0x1f
36 #define PHY_ID_MASK             0x1f
37 #define NUM_DESCS               (PKTBUFSRX * 2)
38 #define PKT_MIN                 60
39 #define PKT_MAX                 (1500 + 14 + 4 + 4)
40 #define CLEAR_BIT               1
41 #define GIGABITEN               BIT(7)
42 #define FULLDUPLEXEN            BIT(0)
43 #define MIIEN                   BIT(15)
44
45 /* reg offset */
46 #define CPSW_HOST_PORT_OFFSET   0x108
47 #define CPSW_SLAVE0_OFFSET      0x208
48 #define CPSW_SLAVE1_OFFSET      0x308
49 #define CPSW_SLAVE_SIZE         0x100
50 #define CPSW_CPDMA_OFFSET       0x800
51 #define CPSW_HW_STATS           0x900
52 #define CPSW_STATERAM_OFFSET    0xa00
53 #define CPSW_CPTS_OFFSET        0xc00
54 #define CPSW_ALE_OFFSET         0xd00
55 #define CPSW_SLIVER0_OFFSET     0xd80
56 #define CPSW_SLIVER1_OFFSET     0xdc0
57 #define CPSW_BD_OFFSET          0x2000
58 #define CPSW_MDIO_DIV           0xff
59
60 #define AM335X_GMII_SEL_OFFSET  0x630
61
62 /* DMA Registers */
63 #define CPDMA_TXCONTROL         0x004
64 #define CPDMA_RXCONTROL         0x014
65 #define CPDMA_SOFTRESET         0x01c
66 #define CPDMA_RXFREE            0x0e0
67 #define CPDMA_TXHDP_VER1        0x100
68 #define CPDMA_TXHDP_VER2        0x200
69 #define CPDMA_RXHDP_VER1        0x120
70 #define CPDMA_RXHDP_VER2        0x220
71 #define CPDMA_TXCP_VER1         0x140
72 #define CPDMA_TXCP_VER2         0x240
73 #define CPDMA_RXCP_VER1         0x160
74 #define CPDMA_RXCP_VER2         0x260
75
76 /* Descriptor mode bits */
77 #define CPDMA_DESC_SOP          BIT(31)
78 #define CPDMA_DESC_EOP          BIT(30)
79 #define CPDMA_DESC_OWNER        BIT(29)
80 #define CPDMA_DESC_EOQ          BIT(28)
81
82 /*
83  * This timeout definition is a worst-case ultra defensive measure against
84  * unexpected controller lock ups.  Ideally, we should never ever hit this
85  * scenario in practice.
86  */
87 #define MDIO_TIMEOUT            100 /* msecs */
88 #define CPDMA_TIMEOUT           100 /* msecs */
89
90 struct cpsw_mdio_regs {
91         u32     version;
92         u32     control;
93 #define CONTROL_IDLE            BIT(31)
94 #define CONTROL_ENABLE          BIT(30)
95
96         u32     alive;
97         u32     link;
98         u32     linkintraw;
99         u32     linkintmasked;
100         u32     __reserved_0[2];
101         u32     userintraw;
102         u32     userintmasked;
103         u32     userintmaskset;
104         u32     userintmaskclr;
105         u32     __reserved_1[20];
106
107         struct {
108                 u32             access;
109                 u32             physel;
110 #define USERACCESS_GO           BIT(31)
111 #define USERACCESS_WRITE        BIT(30)
112 #define USERACCESS_ACK          BIT(29)
113 #define USERACCESS_READ         (0)
114 #define USERACCESS_DATA         (0xffff)
115         } user[0];
116 };
117
118 struct cpsw_regs {
119         u32     id_ver;
120         u32     control;
121         u32     soft_reset;
122         u32     stat_port_en;
123         u32     ptype;
124 };
125
126 struct cpsw_slave_regs {
127         u32     max_blks;
128         u32     blk_cnt;
129         u32     flow_thresh;
130         u32     port_vlan;
131         u32     tx_pri_map;
132 #ifdef CONFIG_AM33XX
133         u32     gap_thresh;
134 #elif defined(CONFIG_TI814X)
135         u32     ts_ctl;
136         u32     ts_seq_ltype;
137         u32     ts_vlan;
138 #endif
139         u32     sa_lo;
140         u32     sa_hi;
141 };
142
143 struct cpsw_host_regs {
144         u32     max_blks;
145         u32     blk_cnt;
146         u32     flow_thresh;
147         u32     port_vlan;
148         u32     tx_pri_map;
149         u32     cpdma_tx_pri_map;
150         u32     cpdma_rx_chan_map;
151 };
152
153 struct cpsw_sliver_regs {
154         u32     id_ver;
155         u32     mac_control;
156         u32     mac_status;
157         u32     soft_reset;
158         u32     rx_maxlen;
159         u32     __reserved_0;
160         u32     rx_pause;
161         u32     tx_pause;
162         u32     __reserved_1;
163         u32     rx_pri_map;
164 };
165
166 #define ALE_ENTRY_BITS          68
167 #define ALE_ENTRY_WORDS         DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
168
169 /* ALE Registers */
170 #define ALE_CONTROL             0x08
171 #define ALE_UNKNOWNVLAN         0x18
172 #define ALE_TABLE_CONTROL       0x20
173 #define ALE_TABLE               0x34
174 #define ALE_PORTCTL             0x40
175
176 #define ALE_TABLE_WRITE         BIT(31)
177
178 #define ALE_TYPE_FREE                   0
179 #define ALE_TYPE_ADDR                   1
180 #define ALE_TYPE_VLAN                   2
181 #define ALE_TYPE_VLAN_ADDR              3
182
183 #define ALE_UCAST_PERSISTANT            0
184 #define ALE_UCAST_UNTOUCHED             1
185 #define ALE_UCAST_OUI                   2
186 #define ALE_UCAST_TOUCHED               3
187
188 #define ALE_MCAST_FWD                   0
189 #define ALE_MCAST_BLOCK_LEARN_FWD       1
190 #define ALE_MCAST_FWD_LEARN             2
191 #define ALE_MCAST_FWD_2                 3
192
193 enum cpsw_ale_port_state {
194         ALE_PORT_STATE_DISABLE  = 0x00,
195         ALE_PORT_STATE_BLOCK    = 0x01,
196         ALE_PORT_STATE_LEARN    = 0x02,
197         ALE_PORT_STATE_FORWARD  = 0x03,
198 };
199
200 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
201 #define ALE_SECURE      1
202 #define ALE_BLOCKED     2
203
204 struct cpsw_slave {
205         struct cpsw_slave_regs          *regs;
206         struct cpsw_sliver_regs         *sliver;
207         int                             slave_num;
208         u32                             mac_control;
209         struct cpsw_slave_data          *data;
210 };
211
212 struct cpdma_desc {
213         /* hardware fields */
214         u32                     hw_next;
215         u32                     hw_buffer;
216         u32                     hw_len;
217         u32                     hw_mode;
218         /* software fields */
219         u32                     sw_buffer;
220         u32                     sw_len;
221 };
222
223 struct cpdma_chan {
224         struct cpdma_desc       *head, *tail;
225         void                    *hdp, *cp, *rxfree;
226 };
227
228 /* AM33xx SoC specific definitions for the CONTROL port */
229 #define AM33XX_GMII_SEL_MODE_MII        0
230 #define AM33XX_GMII_SEL_MODE_RMII       1
231 #define AM33XX_GMII_SEL_MODE_RGMII      2
232
233 #define AM33XX_GMII_SEL_RGMII1_IDMODE   BIT(4)
234 #define AM33XX_GMII_SEL_RGMII2_IDMODE   BIT(5)
235 #define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6)
236 #define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7)
237
238 #define GMII_SEL_MODE_MASK              0x3
239
240 #define desc_write(desc, fld, val)      __raw_writel((u32)(val), &(desc)->fld)
241 #define desc_read(desc, fld)            __raw_readl(&(desc)->fld)
242 #define desc_read_ptr(desc, fld)        ((void *)__raw_readl(&(desc)->fld))
243
244 #define chan_write(chan, fld, val)      __raw_writel((u32)(val), (chan)->fld)
245 #define chan_read(chan, fld)            __raw_readl((chan)->fld)
246 #define chan_read_ptr(chan, fld)        ((void *)__raw_readl((chan)->fld))
247
248 #define for_active_slave(slave, priv) \
249         slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
250 #define for_each_slave(slave, priv) \
251         for (slave = (priv)->slaves; slave != (priv)->slaves + \
252                                 (priv)->data.slaves; slave++)
253
254 struct cpsw_priv {
255 #ifdef CONFIG_DM_ETH
256         struct udevice                  *dev;
257 #else
258         struct eth_device               *dev;
259 #endif
260         struct cpsw_platform_data       data;
261         int                             host_port;
262
263         struct cpsw_regs                *regs;
264         void                            *dma_regs;
265         struct cpsw_host_regs           *host_port_regs;
266         void                            *ale_regs;
267
268         struct cpdma_desc               *descs;
269         struct cpdma_desc               *desc_free;
270         struct cpdma_chan               rx_chan, tx_chan;
271
272         struct cpsw_slave               *slaves;
273         struct phy_device               *phydev;
274         struct mii_dev                  *bus;
275
276         u32                             phy_mask;
277 };
278
279 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
280 {
281         int idx;
282
283         idx    = start / 32;
284         start -= idx * 32;
285         idx    = 2 - idx; /* flip */
286         return (ale_entry[idx] >> start) & BITMASK(bits);
287 }
288
289 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
290                                       u32 value)
291 {
292         int idx;
293
294         value &= BITMASK(bits);
295         idx    = start / 32;
296         start -= idx * 32;
297         idx    = 2 - idx; /* flip */
298         ale_entry[idx] &= ~(BITMASK(bits) << start);
299         ale_entry[idx] |=  (value << start);
300 }
301
302 #define DEFINE_ALE_FIELD(name, start, bits)                             \
303 static inline int cpsw_ale_get_##name(u32 *ale_entry)                   \
304 {                                                                       \
305         return cpsw_ale_get_field(ale_entry, start, bits);              \
306 }                                                                       \
307 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)       \
308 {                                                                       \
309         cpsw_ale_set_field(ale_entry, start, bits, value);              \
310 }
311
312 DEFINE_ALE_FIELD(entry_type,            60,     2)
313 DEFINE_ALE_FIELD(mcast_state,           62,     2)
314 DEFINE_ALE_FIELD(port_mask,             66,     3)
315 DEFINE_ALE_FIELD(ucast_type,            62,     2)
316 DEFINE_ALE_FIELD(port_num,              66,     2)
317 DEFINE_ALE_FIELD(blocked,               65,     1)
318 DEFINE_ALE_FIELD(secure,                64,     1)
319 DEFINE_ALE_FIELD(mcast,                 40,     1)
320
321 /* The MAC address field in the ALE entry cannot be macroized as above */
322 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
323 {
324         int i;
325
326         for (i = 0; i < 6; i++)
327                 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
328 }
329
330 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
331 {
332         int i;
333
334         for (i = 0; i < 6; i++)
335                 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
336 }
337
338 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
339 {
340         int i;
341
342         __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
343
344         for (i = 0; i < ALE_ENTRY_WORDS; i++)
345                 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
346
347         return idx;
348 }
349
350 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
351 {
352         int i;
353
354         for (i = 0; i < ALE_ENTRY_WORDS; i++)
355                 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
356
357         __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
358
359         return idx;
360 }
361
362 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
363 {
364         u32 ale_entry[ALE_ENTRY_WORDS];
365         int type, idx;
366
367         for (idx = 0; idx < priv->data.ale_entries; idx++) {
368                 u8 entry_addr[6];
369
370                 cpsw_ale_read(priv, idx, ale_entry);
371                 type = cpsw_ale_get_entry_type(ale_entry);
372                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
373                         continue;
374                 cpsw_ale_get_addr(ale_entry, entry_addr);
375                 if (memcmp(entry_addr, addr, 6) == 0)
376                         return idx;
377         }
378         return -ENOENT;
379 }
380
381 static int cpsw_ale_match_free(struct cpsw_priv *priv)
382 {
383         u32 ale_entry[ALE_ENTRY_WORDS];
384         int type, idx;
385
386         for (idx = 0; idx < priv->data.ale_entries; idx++) {
387                 cpsw_ale_read(priv, idx, ale_entry);
388                 type = cpsw_ale_get_entry_type(ale_entry);
389                 if (type == ALE_TYPE_FREE)
390                         return idx;
391         }
392         return -ENOENT;
393 }
394
395 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
396 {
397         u32 ale_entry[ALE_ENTRY_WORDS];
398         int type, idx;
399
400         for (idx = 0; idx < priv->data.ale_entries; idx++) {
401                 cpsw_ale_read(priv, idx, ale_entry);
402                 type = cpsw_ale_get_entry_type(ale_entry);
403                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
404                         continue;
405                 if (cpsw_ale_get_mcast(ale_entry))
406                         continue;
407                 type = cpsw_ale_get_ucast_type(ale_entry);
408                 if (type != ALE_UCAST_PERSISTANT &&
409                     type != ALE_UCAST_OUI)
410                         return idx;
411         }
412         return -ENOENT;
413 }
414
415 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
416                               int port, int flags)
417 {
418         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
419         int idx;
420
421         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
422         cpsw_ale_set_addr(ale_entry, addr);
423         cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
424         cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
425         cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
426         cpsw_ale_set_port_num(ale_entry, port);
427
428         idx = cpsw_ale_match_addr(priv, addr);
429         if (idx < 0)
430                 idx = cpsw_ale_match_free(priv);
431         if (idx < 0)
432                 idx = cpsw_ale_find_ageable(priv);
433         if (idx < 0)
434                 return -ENOMEM;
435
436         cpsw_ale_write(priv, idx, ale_entry);
437         return 0;
438 }
439
440 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
441                               int port_mask)
442 {
443         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
444         int idx, mask;
445
446         idx = cpsw_ale_match_addr(priv, addr);
447         if (idx >= 0)
448                 cpsw_ale_read(priv, idx, ale_entry);
449
450         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
451         cpsw_ale_set_addr(ale_entry, addr);
452         cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
453
454         mask = cpsw_ale_get_port_mask(ale_entry);
455         port_mask |= mask;
456         cpsw_ale_set_port_mask(ale_entry, port_mask);
457
458         if (idx < 0)
459                 idx = cpsw_ale_match_free(priv);
460         if (idx < 0)
461                 idx = cpsw_ale_find_ageable(priv);
462         if (idx < 0)
463                 return -ENOMEM;
464
465         cpsw_ale_write(priv, idx, ale_entry);
466         return 0;
467 }
468
469 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
470 {
471         u32 tmp, mask = BIT(bit);
472
473         tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
474         tmp &= ~mask;
475         tmp |= val ? mask : 0;
476         __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
477 }
478
479 #define cpsw_ale_enable(priv, val)      cpsw_ale_control(priv, 31, val)
480 #define cpsw_ale_clear(priv, val)       cpsw_ale_control(priv, 30, val)
481 #define cpsw_ale_vlan_aware(priv, val)  cpsw_ale_control(priv,  2, val)
482
483 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
484                                        int val)
485 {
486         int offset = ALE_PORTCTL + 4 * port;
487         u32 tmp, mask = 0x3;
488
489         tmp  = __raw_readl(priv->ale_regs + offset);
490         tmp &= ~mask;
491         tmp |= val & mask;
492         __raw_writel(tmp, priv->ale_regs + offset);
493 }
494
495 static struct cpsw_mdio_regs *mdio_regs;
496
497 /* wait until hardware is ready for another user access */
498 static inline u32 wait_for_user_access(void)
499 {
500         u32 reg = 0;
501         int timeout = MDIO_TIMEOUT;
502
503         while (timeout-- &&
504         ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
505                 udelay(10);
506
507         if (timeout == -1) {
508                 printf("wait_for_user_access Timeout\n");
509                 return -ETIMEDOUT;
510         }
511         return reg;
512 }
513
514 /* wait until hardware state machine is idle */
515 static inline void wait_for_idle(void)
516 {
517         int timeout = MDIO_TIMEOUT;
518
519         while (timeout-- &&
520                 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
521                 udelay(10);
522
523         if (timeout == -1)
524                 printf("wait_for_idle Timeout\n");
525 }
526
527 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
528                                 int dev_addr, int phy_reg)
529 {
530         int data;
531         u32 reg;
532
533         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
534                 return -EINVAL;
535
536         wait_for_user_access();
537         reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
538                (phy_id << 16));
539         __raw_writel(reg, &mdio_regs->user[0].access);
540         reg = wait_for_user_access();
541
542         data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
543         return data;
544 }
545
546 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
547                                 int phy_reg, u16 data)
548 {
549         u32 reg;
550
551         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
552                 return -EINVAL;
553
554         wait_for_user_access();
555         reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
556                    (phy_id << 16) | (data & USERACCESS_DATA));
557         __raw_writel(reg, &mdio_regs->user[0].access);
558         wait_for_user_access();
559
560         return 0;
561 }
562
563 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
564 {
565         struct mii_dev *bus = mdio_alloc();
566
567         mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
568
569         /* set enable and clock divider */
570         __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
571
572         /*
573          * wait for scan logic to settle:
574          * the scan time consists of (a) a large fixed component, and (b) a
575          * small component that varies with the mii bus frequency.  These
576          * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
577          * silicon.  Since the effect of (b) was found to be largely
578          * negligible, we keep things simple here.
579          */
580         udelay(1000);
581
582         bus->read = cpsw_mdio_read;
583         bus->write = cpsw_mdio_write;
584         strcpy(bus->name, name);
585
586         mdio_register(bus);
587 }
588
589 /* Set a self-clearing bit in a register, and wait for it to clear */
590 static inline void setbit_and_wait_for_clear32(void *addr)
591 {
592         __raw_writel(CLEAR_BIT, addr);
593         while (__raw_readl(addr) & CLEAR_BIT)
594                 ;
595 }
596
597 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
598                          ((mac)[2] << 16) | ((mac)[3] << 24))
599 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
600
601 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
602                                struct cpsw_priv *priv)
603 {
604 #ifdef CONFIG_DM_ETH
605         struct eth_pdata *pdata = dev_get_platdata(priv->dev);
606
607         writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
608         writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
609 #else
610         __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
611         __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
612 #endif
613 }
614
615 static int cpsw_slave_update_link(struct cpsw_slave *slave,
616                                    struct cpsw_priv *priv, int *link)
617 {
618         struct phy_device *phy;
619         u32 mac_control = 0;
620         int ret = -ENODEV;
621
622         phy = priv->phydev;
623         if (!phy)
624                 goto out;
625
626         ret = phy_startup(phy);
627         if (ret)
628                 goto out;
629
630         if (link)
631                 *link = phy->link;
632
633         if (phy->link) { /* link up */
634                 mac_control = priv->data.mac_control;
635                 if (phy->speed == 1000)
636                         mac_control |= GIGABITEN;
637                 if (phy->duplex == DUPLEX_FULL)
638                         mac_control |= FULLDUPLEXEN;
639                 if (phy->speed == 100)
640                         mac_control |= MIIEN;
641         }
642
643         if (mac_control == slave->mac_control)
644                 goto out;
645
646         if (mac_control) {
647                 printf("link up on port %d, speed %d, %s duplex\n",
648                                 slave->slave_num, phy->speed,
649                                 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
650         } else {
651                 printf("link down on port %d\n", slave->slave_num);
652         }
653
654         __raw_writel(mac_control, &slave->sliver->mac_control);
655         slave->mac_control = mac_control;
656
657 out:
658         return ret;
659 }
660
661 static int cpsw_update_link(struct cpsw_priv *priv)
662 {
663         int ret = -ENODEV;
664         struct cpsw_slave *slave;
665
666         for_active_slave(slave, priv)
667                 ret = cpsw_slave_update_link(slave, priv, NULL);
668
669         return ret;
670 }
671
672 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
673 {
674         if (priv->host_port == 0)
675                 return slave_num + 1;
676         else
677                 return slave_num;
678 }
679
680 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
681 {
682         u32     slave_port;
683
684         setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
685
686         /* setup priority mapping */
687         __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
688         __raw_writel(0x33221100, &slave->regs->tx_pri_map);
689
690         /* setup max packet size, and mac address */
691         __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
692         cpsw_set_slave_mac(slave, priv);
693
694         slave->mac_control = 0; /* no link yet */
695
696         /* enable forwarding */
697         slave_port = cpsw_get_slave_port(priv, slave->slave_num);
698         cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
699
700         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
701
702         priv->phy_mask |= 1 << slave->data->phy_addr;
703 }
704
705 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
706 {
707         struct cpdma_desc *desc = priv->desc_free;
708
709         if (desc)
710                 priv->desc_free = desc_read_ptr(desc, hw_next);
711         return desc;
712 }
713
714 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
715 {
716         if (desc) {
717                 desc_write(desc, hw_next, priv->desc_free);
718                 priv->desc_free = desc;
719         }
720 }
721
722 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
723                         void *buffer, int len)
724 {
725         struct cpdma_desc *desc, *prev;
726         u32 mode;
727
728         desc = cpdma_desc_alloc(priv);
729         if (!desc)
730                 return -ENOMEM;
731
732         if (len < PKT_MIN)
733                 len = PKT_MIN;
734
735         mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
736
737         desc_write(desc, hw_next,   0);
738         desc_write(desc, hw_buffer, buffer);
739         desc_write(desc, hw_len,    len);
740         desc_write(desc, hw_mode,   mode | len);
741         desc_write(desc, sw_buffer, buffer);
742         desc_write(desc, sw_len,    len);
743
744         if (!chan->head) {
745                 /* simple case - first packet enqueued */
746                 chan->head = desc;
747                 chan->tail = desc;
748                 chan_write(chan, hdp, desc);
749                 goto done;
750         }
751
752         /* not the first packet - enqueue at the tail */
753         prev = chan->tail;
754         desc_write(prev, hw_next, desc);
755         chan->tail = desc;
756
757         /* next check if EOQ has been triggered already */
758         if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
759                 chan_write(chan, hdp, desc);
760
761 done:
762         if (chan->rxfree)
763                 chan_write(chan, rxfree, 1);
764         return 0;
765 }
766
767 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
768                          void **buffer, int *len)
769 {
770         struct cpdma_desc *desc = chan->head;
771         u32 status;
772
773         if (!desc)
774                 return -ENOENT;
775
776         status = desc_read(desc, hw_mode);
777
778         if (len)
779                 *len = status & 0x7ff;
780
781         if (buffer)
782                 *buffer = desc_read_ptr(desc, sw_buffer);
783
784         if (status & CPDMA_DESC_OWNER) {
785                 if (chan_read(chan, hdp) == 0) {
786                         if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
787                                 chan_write(chan, hdp, desc);
788                 }
789
790                 return -EBUSY;
791         }
792
793         chan->head = desc_read_ptr(desc, hw_next);
794         chan_write(chan, cp, desc);
795
796         cpdma_desc_free(priv, desc);
797         return 0;
798 }
799
800 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
801 {
802         struct cpsw_slave       *slave;
803         int i, ret;
804
805         /* soft reset the controller and initialize priv */
806         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
807
808         /* initialize and reset the address lookup engine */
809         cpsw_ale_enable(priv, 1);
810         cpsw_ale_clear(priv, 1);
811         cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
812
813         /* setup host port priority mapping */
814         __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
815         __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
816
817         /* disable priority elevation and enable statistics on all ports */
818         __raw_writel(0, &priv->regs->ptype);
819
820         /* enable statistics collection only on the host port */
821         __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
822         __raw_writel(0x7, &priv->regs->stat_port_en);
823
824         cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
825
826         cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
827         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
828
829         for_active_slave(slave, priv)
830                 cpsw_slave_init(slave, priv);
831
832         ret = cpsw_update_link(priv);
833         if (ret)
834                 goto out;
835
836         /* init descriptor pool */
837         for (i = 0; i < NUM_DESCS; i++) {
838                 desc_write(&priv->descs[i], hw_next,
839                            (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
840         }
841         priv->desc_free = &priv->descs[0];
842
843         /* initialize channels */
844         if (priv->data.version == CPSW_CTRL_VERSION_2) {
845                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
846                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
847                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
848                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
849
850                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
851                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
852                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
853         } else {
854                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
855                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
856                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
857                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
858
859                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
860                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
861                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
862         }
863
864         /* clear dma state */
865         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
866
867         if (priv->data.version == CPSW_CTRL_VERSION_2) {
868                 for (i = 0; i < priv->data.channels; i++) {
869                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
870                                         * i);
871                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
872                                         * i);
873                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
874                                         * i);
875                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
876                                         * i);
877                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
878                                         * i);
879                 }
880         } else {
881                 for (i = 0; i < priv->data.channels; i++) {
882                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
883                                         * i);
884                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
885                                         * i);
886                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
887                                         * i);
888                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
889                                         * i);
890                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
891                                         * i);
892
893                 }
894         }
895
896         __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
897         __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
898
899         /* submit rx descs */
900         for (i = 0; i < PKTBUFSRX; i++) {
901                 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
902                                    PKTSIZE);
903                 if (ret < 0) {
904                         printf("error %d submitting rx desc\n", ret);
905                         break;
906                 }
907         }
908
909 out:
910         return ret;
911 }
912
913 static void _cpsw_halt(struct cpsw_priv *priv)
914 {
915         writel(0, priv->dma_regs + CPDMA_TXCONTROL);
916         writel(0, priv->dma_regs + CPDMA_RXCONTROL);
917
918         /* soft reset the controller and initialize priv */
919         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
920
921         /* clear dma state */
922         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
923
924 }
925
926 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
927 {
928         void *buffer;
929         int len;
930         int timeout = CPDMA_TIMEOUT;
931
932         flush_dcache_range((unsigned long)packet,
933                            (unsigned long)packet + ALIGN(length, PKTALIGN));
934
935         /* first reap completed packets */
936         while (timeout-- &&
937                 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
938                 ;
939
940         if (timeout == -1) {
941                 printf("cpdma_process timeout\n");
942                 return -ETIMEDOUT;
943         }
944
945         return cpdma_submit(priv, &priv->tx_chan, packet, length);
946 }
947
948 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
949 {
950         void *buffer;
951         int len;
952         int ret;
953
954         ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
955         if (ret < 0)
956                 return ret;
957
958         invalidate_dcache_range((unsigned long)buffer,
959                                 (unsigned long)buffer + PKTSIZE_ALIGN);
960         *pkt = buffer;
961
962         return len;
963 }
964
965 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
966                             struct cpsw_priv *priv)
967 {
968         void                    *regs = priv->regs;
969         struct cpsw_slave_data  *data = priv->data.slave_data + slave_num;
970         slave->slave_num = slave_num;
971         slave->data     = data;
972         slave->regs     = regs + data->slave_reg_ofs;
973         slave->sliver   = regs + data->sliver_reg_ofs;
974 }
975
976 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
977 {
978         struct phy_device *phydev;
979         u32 supported = PHY_GBIT_FEATURES;
980
981         phydev = phy_connect(priv->bus,
982                         slave->data->phy_addr,
983                         priv->dev,
984                         slave->data->phy_if);
985
986         if (!phydev)
987                 return -1;
988
989         phydev->supported &= supported;
990         phydev->advertising = phydev->supported;
991
992 #ifdef CONFIG_DM_ETH
993         if (slave->data->phy_of_handle)
994                 dev_set_of_offset(phydev->dev, slave->data->phy_of_handle);
995 #endif
996
997         priv->phydev = phydev;
998         phy_config(phydev);
999
1000         return 1;
1001 }
1002
1003 int _cpsw_register(struct cpsw_priv *priv)
1004 {
1005         struct cpsw_slave       *slave;
1006         struct cpsw_platform_data *data = &priv->data;
1007         void                    *regs = (void *)data->cpsw_base;
1008
1009         priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
1010         if (!priv->slaves) {
1011                 return -ENOMEM;
1012         }
1013
1014         priv->host_port         = data->host_port_num;
1015         priv->regs              = regs;
1016         priv->host_port_regs    = regs + data->host_port_reg_ofs;
1017         priv->dma_regs          = regs + data->cpdma_reg_ofs;
1018         priv->ale_regs          = regs + data->ale_reg_ofs;
1019         priv->descs             = (void *)regs + data->bd_ram_ofs;
1020
1021         int idx = 0;
1022
1023         for_each_slave(slave, priv) {
1024                 cpsw_slave_setup(slave, idx, priv);
1025                 idx = idx + 1;
1026         }
1027
1028         cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
1029         priv->bus = miiphy_get_dev_by_name(priv->dev->name);
1030         for_active_slave(slave, priv)
1031                 cpsw_phy_init(priv, slave);
1032
1033         return 0;
1034 }
1035
1036 #ifndef CONFIG_DM_ETH
1037 static int cpsw_init(struct eth_device *dev, bd_t *bis)
1038 {
1039         struct cpsw_priv        *priv = dev->priv;
1040
1041         return _cpsw_init(priv, dev->enetaddr);
1042 }
1043
1044 static void cpsw_halt(struct eth_device *dev)
1045 {
1046         struct cpsw_priv *priv = dev->priv;
1047
1048         return _cpsw_halt(priv);
1049 }
1050
1051 static int cpsw_send(struct eth_device *dev, void *packet, int length)
1052 {
1053         struct cpsw_priv        *priv = dev->priv;
1054
1055         return _cpsw_send(priv, packet, length);
1056 }
1057
1058 static int cpsw_recv(struct eth_device *dev)
1059 {
1060         struct cpsw_priv *priv = dev->priv;
1061         uchar *pkt = NULL;
1062         int len;
1063
1064         len = _cpsw_recv(priv, &pkt);
1065
1066         if (len > 0) {
1067                 net_process_received_packet(pkt, len);
1068                 cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
1069         }
1070
1071         return len;
1072 }
1073
1074 int cpsw_register(struct cpsw_platform_data *data)
1075 {
1076         struct cpsw_priv        *priv;
1077         struct eth_device       *dev;
1078         int ret;
1079
1080         dev = calloc(sizeof(*dev), 1);
1081         if (!dev)
1082                 return -ENOMEM;
1083
1084         priv = calloc(sizeof(*priv), 1);
1085         if (!priv) {
1086                 free(dev);
1087                 return -ENOMEM;
1088         }
1089
1090         priv->dev = dev;
1091         priv->data = *data;
1092
1093         strcpy(dev->name, "cpsw");
1094         dev->iobase     = 0;
1095         dev->init       = cpsw_init;
1096         dev->halt       = cpsw_halt;
1097         dev->send       = cpsw_send;
1098         dev->recv       = cpsw_recv;
1099         dev->priv       = priv;
1100
1101         eth_register(dev);
1102
1103         ret = _cpsw_register(priv);
1104         if (ret < 0) {
1105                 eth_unregister(dev);
1106                 free(dev);
1107                 free(priv);
1108                 return ret;
1109         }
1110
1111         return 1;
1112 }
1113 #else
1114 static int cpsw_eth_start(struct udevice *dev)
1115 {
1116         struct eth_pdata *pdata = dev_get_platdata(dev);
1117         struct cpsw_priv *priv = dev_get_priv(dev);
1118
1119         return _cpsw_init(priv, pdata->enetaddr);
1120 }
1121
1122 static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
1123 {
1124         struct cpsw_priv *priv = dev_get_priv(dev);
1125
1126         return _cpsw_send(priv, packet, length);
1127 }
1128
1129 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
1130 {
1131         struct cpsw_priv *priv = dev_get_priv(dev);
1132
1133         return _cpsw_recv(priv, packetp);
1134 }
1135
1136 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
1137                                    int length)
1138 {
1139         struct cpsw_priv *priv = dev_get_priv(dev);
1140
1141         return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
1142 }
1143
1144 static void cpsw_eth_stop(struct udevice *dev)
1145 {
1146         struct cpsw_priv *priv = dev_get_priv(dev);
1147
1148         return _cpsw_halt(priv);
1149 }
1150
1151
1152 static int cpsw_eth_probe(struct udevice *dev)
1153 {
1154         struct cpsw_priv *priv = dev_get_priv(dev);
1155
1156         priv->dev = dev;
1157
1158         return _cpsw_register(priv);
1159 }
1160
1161 static const struct eth_ops cpsw_eth_ops = {
1162         .start          = cpsw_eth_start,
1163         .send           = cpsw_eth_send,
1164         .recv           = cpsw_eth_recv,
1165         .free_pkt       = cpsw_eth_free_pkt,
1166         .stop           = cpsw_eth_stop,
1167 };
1168
1169 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
1170 {
1171         return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL,
1172                                                   false);
1173 }
1174
1175 static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv,
1176                                  phy_interface_t phy_mode)
1177 {
1178         u32 reg;
1179         u32 mask;
1180         u32 mode = 0;
1181         bool rgmii_id = false;
1182         int slave = priv->data.active_slave;
1183
1184         reg = readl(priv->data.gmii_sel);
1185
1186         switch (phy_mode) {
1187         case PHY_INTERFACE_MODE_RMII:
1188                 mode = AM33XX_GMII_SEL_MODE_RMII;
1189                 break;
1190
1191         case PHY_INTERFACE_MODE_RGMII:
1192                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1193                 break;
1194         case PHY_INTERFACE_MODE_RGMII_ID:
1195         case PHY_INTERFACE_MODE_RGMII_RXID:
1196         case PHY_INTERFACE_MODE_RGMII_TXID:
1197                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1198                 rgmii_id = true;
1199                 break;
1200
1201         case PHY_INTERFACE_MODE_MII:
1202         default:
1203                 mode = AM33XX_GMII_SEL_MODE_MII;
1204                 break;
1205         };
1206
1207         mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6);
1208         mode <<= slave * 2;
1209
1210         if (priv->data.rmii_clock_external) {
1211                 if (slave == 0)
1212                         mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
1213                 else
1214                         mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
1215         }
1216
1217         if (rgmii_id) {
1218                 if (slave == 0)
1219                         mode |= AM33XX_GMII_SEL_RGMII1_IDMODE;
1220                 else
1221                         mode |= AM33XX_GMII_SEL_RGMII2_IDMODE;
1222         }
1223
1224         reg &= ~mask;
1225         reg |= mode;
1226
1227         writel(reg, priv->data.gmii_sel);
1228 }
1229
1230 static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv,
1231                                  phy_interface_t phy_mode)
1232 {
1233         u32 reg;
1234         u32 mask;
1235         u32 mode = 0;
1236         int slave = priv->data.active_slave;
1237
1238         reg = readl(priv->data.gmii_sel);
1239
1240         switch (phy_mode) {
1241         case PHY_INTERFACE_MODE_RMII:
1242                 mode = AM33XX_GMII_SEL_MODE_RMII;
1243                 break;
1244
1245         case PHY_INTERFACE_MODE_RGMII:
1246         case PHY_INTERFACE_MODE_RGMII_ID:
1247         case PHY_INTERFACE_MODE_RGMII_RXID:
1248         case PHY_INTERFACE_MODE_RGMII_TXID:
1249                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1250                 break;
1251
1252         case PHY_INTERFACE_MODE_MII:
1253         default:
1254                 mode = AM33XX_GMII_SEL_MODE_MII;
1255                 break;
1256         };
1257
1258         switch (slave) {
1259         case 0:
1260                 mask = GMII_SEL_MODE_MASK;
1261                 break;
1262         case 1:
1263                 mask = GMII_SEL_MODE_MASK << 4;
1264                 mode <<= 4;
1265                 break;
1266         default:
1267                 dev_err(priv->dev, "invalid slave number...\n");
1268                 return;
1269         }
1270
1271         if (priv->data.rmii_clock_external)
1272                 dev_err(priv->dev, "RMII External clock is not supported\n");
1273
1274         reg &= ~mask;
1275         reg |= mode;
1276
1277         writel(reg, priv->data.gmii_sel);
1278 }
1279
1280 static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat,
1281                          phy_interface_t phy_mode)
1282 {
1283         if (!strcmp(compat, "ti,am3352-cpsw-phy-sel"))
1284                 cpsw_gmii_sel_am3352(priv, phy_mode);
1285         if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel"))
1286                 cpsw_gmii_sel_am3352(priv, phy_mode);
1287         else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel"))
1288                 cpsw_gmii_sel_dra7xx(priv, phy_mode);
1289 }
1290
1291 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
1292 {
1293         struct eth_pdata *pdata = dev_get_platdata(dev);
1294         struct cpsw_priv *priv = dev_get_priv(dev);
1295         struct gpio_desc *mode_gpios;
1296         const char *phy_mode;
1297         const char *phy_sel_compat = NULL;
1298         const void *fdt = gd->fdt_blob;
1299         int node = dev_of_offset(dev);
1300         int subnode;
1301         int slave_index = 0;
1302         int active_slave;
1303         int num_mode_gpios;
1304         int ret;
1305
1306         pdata->iobase = devfdt_get_addr(dev);
1307         priv->data.version = CPSW_CTRL_VERSION_2;
1308         priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
1309         priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
1310         priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
1311         priv->data.mdio_div = CPSW_MDIO_DIV;
1312         priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
1313
1314         pdata->phy_interface = -1;
1315
1316         priv->data.cpsw_base = pdata->iobase;
1317         priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
1318         if (priv->data.channels <= 0) {
1319                 printf("error: cpdma_channels not found in dt\n");
1320                 return -ENOENT;
1321         }
1322
1323         priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
1324         if (priv->data.slaves <= 0) {
1325                 printf("error: slaves not found in dt\n");
1326                 return -ENOENT;
1327         }
1328         priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
1329                                        priv->data.slaves);
1330
1331         priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
1332         if (priv->data.ale_entries <= 0) {
1333                 printf("error: ale_entries not found in dt\n");
1334                 return -ENOENT;
1335         }
1336
1337         priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
1338         if (priv->data.bd_ram_ofs <= 0) {
1339                 printf("error: bd_ram_size not found in dt\n");
1340                 return -ENOENT;
1341         }
1342
1343         priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
1344         if (priv->data.mac_control <= 0) {
1345                 printf("error: ale_entries not found in dt\n");
1346                 return -ENOENT;
1347         }
1348
1349         num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
1350         if (num_mode_gpios > 0) {
1351                 mode_gpios = malloc(sizeof(struct gpio_desc) *
1352                                     num_mode_gpios);
1353                 gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
1354                                           num_mode_gpios, GPIOD_IS_OUT);
1355                 free(mode_gpios);
1356         }
1357
1358         active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
1359         priv->data.active_slave = active_slave;
1360
1361         fdt_for_each_subnode(subnode, fdt, node) {
1362                 int len;
1363                 const char *name;
1364
1365                 name = fdt_get_name(fdt, subnode, &len);
1366                 if (!strncmp(name, "mdio", 4)) {
1367                         u32 mdio_base;
1368
1369                         mdio_base = cpsw_get_addr_by_node(fdt, subnode);
1370                         if (mdio_base == FDT_ADDR_T_NONE) {
1371                                 pr_err("Not able to get MDIO address space\n");
1372                                 return -ENOENT;
1373                         }
1374                         priv->data.mdio_base = mdio_base;
1375                 }
1376
1377                 if (!strncmp(name, "slave", 5)) {
1378                         u32 phy_id[2];
1379
1380                         if (slave_index >= priv->data.slaves)
1381                                 continue;
1382                         phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
1383                         if (phy_mode)
1384                                 priv->data.slave_data[slave_index].phy_if =
1385                                         phy_get_interface_by_name(phy_mode);
1386
1387                         priv->data.slave_data[slave_index].phy_of_handle =
1388                                 fdtdec_lookup_phandle(fdt, subnode,
1389                                                       "phy-handle");
1390
1391                         if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
1392                                 priv->data.slave_data[slave_index].phy_addr =
1393                                                 fdtdec_get_int(gd->fdt_blob,
1394                                                                priv->data.slave_data[slave_index].phy_of_handle,
1395                                                                "reg", -1);
1396                         } else {
1397                                 fdtdec_get_int_array(fdt, subnode, "phy_id",
1398                                                      phy_id, 2);
1399                                 priv->data.slave_data[slave_index].phy_addr =
1400                                                 phy_id[1];
1401                         }
1402                         slave_index++;
1403                 }
1404
1405                 if (!strncmp(name, "cpsw-phy-sel", 12)) {
1406                         priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
1407                                                                     subnode);
1408
1409                         if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
1410                                 pr_err("Not able to get gmii_sel reg address\n");
1411                                 return -ENOENT;
1412                         }
1413
1414                         if (fdt_get_property(fdt, subnode, "rmii-clock-ext",
1415                                              NULL))
1416                                 priv->data.rmii_clock_external = true;
1417
1418                         phy_sel_compat = fdt_getprop(fdt, subnode, "compatible",
1419                                                      NULL);
1420                         if (!phy_sel_compat) {
1421                                 pr_err("Not able to get gmii_sel compatible\n");
1422                                 return -ENOENT;
1423                         }
1424                 }
1425         }
1426
1427         priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
1428         priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
1429
1430         if (priv->data.slaves == 2) {
1431                 priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
1432                 priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
1433         }
1434
1435         ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
1436         if (ret < 0) {
1437                 pr_err("cpsw read efuse mac failed\n");
1438                 return ret;
1439         }
1440
1441         pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
1442         if (pdata->phy_interface == -1) {
1443                 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1444                 return -EINVAL;
1445         }
1446
1447         /* Select phy interface in control module */
1448         cpsw_phy_sel(priv, phy_sel_compat, pdata->phy_interface);
1449
1450         return 0;
1451 }
1452
1453
1454 static const struct udevice_id cpsw_eth_ids[] = {
1455         { .compatible = "ti,cpsw" },
1456         { .compatible = "ti,am335x-cpsw" },
1457         { }
1458 };
1459
1460 U_BOOT_DRIVER(eth_cpsw) = {
1461         .name   = "eth_cpsw",
1462         .id     = UCLASS_ETH,
1463         .of_match = cpsw_eth_ids,
1464         .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
1465         .probe  = cpsw_eth_probe,
1466         .ops    = &cpsw_eth_ops,
1467         .priv_auto_alloc_size = sizeof(struct cpsw_priv),
1468         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1469         .flags = DM_FLAG_ALLOC_PRIV_DMA,
1470 };
1471 #endif /* CONFIG_DM_ETH */