Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / net / can / rcar / rcar_canfd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/netdevice.h>
31 #include <linux/platform_device.h>
32 #include <linux/can/led.h>
33 #include <linux/can/dev.h>
34 #include <linux/clk.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 #include <linux/iopoll.h>
40
41 #define RCANFD_DRV_NAME                 "rcar_canfd"
42
43 /* Global register bits */
44
45 /* RSCFDnCFDGRMCFG */
46 #define RCANFD_GRMCFG_RCMC              BIT(0)
47
48 /* RSCFDnCFDGCFG / RSCFDnGCFG */
49 #define RCANFD_GCFG_EEFE                BIT(6)
50 #define RCANFD_GCFG_CMPOC               BIT(5)  /* CAN FD only */
51 #define RCANFD_GCFG_DCS                 BIT(4)
52 #define RCANFD_GCFG_DCE                 BIT(1)
53 #define RCANFD_GCFG_TPRI                BIT(0)
54
55 /* RSCFDnCFDGCTR / RSCFDnGCTR */
56 #define RCANFD_GCTR_TSRST               BIT(16)
57 #define RCANFD_GCTR_CFMPOFIE            BIT(11) /* CAN FD only */
58 #define RCANFD_GCTR_THLEIE              BIT(10)
59 #define RCANFD_GCTR_MEIE                BIT(9)
60 #define RCANFD_GCTR_DEIE                BIT(8)
61 #define RCANFD_GCTR_GSLPR               BIT(2)
62 #define RCANFD_GCTR_GMDC_MASK           (0x3)
63 #define RCANFD_GCTR_GMDC_GOPM           (0x0)
64 #define RCANFD_GCTR_GMDC_GRESET         (0x1)
65 #define RCANFD_GCTR_GMDC_GTEST          (0x2)
66
67 /* RSCFDnCFDGSTS / RSCFDnGSTS */
68 #define RCANFD_GSTS_GRAMINIT            BIT(3)
69 #define RCANFD_GSTS_GSLPSTS             BIT(2)
70 #define RCANFD_GSTS_GHLTSTS             BIT(1)
71 #define RCANFD_GSTS_GRSTSTS             BIT(0)
72 /* Non-operational status */
73 #define RCANFD_GSTS_GNOPM               (BIT(0) | BIT(1) | BIT(2) | BIT(3))
74
75 /* RSCFDnCFDGERFL / RSCFDnGERFL */
76 #define RCANFD_GERFL_EEF1               BIT(17)
77 #define RCANFD_GERFL_EEF0               BIT(16)
78 #define RCANFD_GERFL_CMPOF              BIT(3)  /* CAN FD only */
79 #define RCANFD_GERFL_THLES              BIT(2)
80 #define RCANFD_GERFL_MES                BIT(1)
81 #define RCANFD_GERFL_DEF                BIT(0)
82
83 #define RCANFD_GERFL_ERR(gpriv, x)      ((x) & (RCANFD_GERFL_EEF1 |\
84                                         RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
85                                         (gpriv->fdmode ?\
86                                          RCANFD_GERFL_CMPOF : 0)))
87
88 /* AFL Rx rules registers */
89
90 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
91 #define RCANFD_GAFLCFG_SETRNC(n, x)     (((x) & 0xff) << (24 - n * 8))
92 #define RCANFD_GAFLCFG_GETRNC(n, x)     (((x) >> (24 - n * 8)) & 0xff)
93
94 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
95 #define RCANFD_GAFLECTR_AFLDAE          BIT(8)
96 #define RCANFD_GAFLECTR_AFLPN(x)        ((x) & 0x1f)
97
98 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
99 #define RCANFD_GAFLID_GAFLLB            BIT(29)
100
101 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
102 #define RCANFD_GAFLP1_GAFLFDP(x)        (1 << (x))
103
104 /* Channel register bits */
105
106 /* RSCFDnCmCFG - Classical CAN only */
107 #define RCANFD_CFG_SJW(x)               (((x) & 0x3) << 24)
108 #define RCANFD_CFG_TSEG2(x)             (((x) & 0x7) << 20)
109 #define RCANFD_CFG_TSEG1(x)             (((x) & 0xf) << 16)
110 #define RCANFD_CFG_BRP(x)               (((x) & 0x3ff) << 0)
111
112 /* RSCFDnCFDCmNCFG - CAN FD only */
113 #define RCANFD_NCFG_NTSEG2(x)           (((x) & 0x1f) << 24)
114 #define RCANFD_NCFG_NTSEG1(x)           (((x) & 0x7f) << 16)
115 #define RCANFD_NCFG_NSJW(x)             (((x) & 0x1f) << 11)
116 #define RCANFD_NCFG_NBRP(x)             (((x) & 0x3ff) << 0)
117
118 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
119 #define RCANFD_CCTR_CTME                BIT(24)
120 #define RCANFD_CCTR_ERRD                BIT(23)
121 #define RCANFD_CCTR_BOM_MASK            (0x3 << 21)
122 #define RCANFD_CCTR_BOM_ISO             (0x0 << 21)
123 #define RCANFD_CCTR_BOM_BENTRY          (0x1 << 21)
124 #define RCANFD_CCTR_BOM_BEND            (0x2 << 21)
125 #define RCANFD_CCTR_TDCVFIE             BIT(19)
126 #define RCANFD_CCTR_SOCOIE              BIT(18)
127 #define RCANFD_CCTR_EOCOIE              BIT(17)
128 #define RCANFD_CCTR_TAIE                BIT(16)
129 #define RCANFD_CCTR_ALIE                BIT(15)
130 #define RCANFD_CCTR_BLIE                BIT(14)
131 #define RCANFD_CCTR_OLIE                BIT(13)
132 #define RCANFD_CCTR_BORIE               BIT(12)
133 #define RCANFD_CCTR_BOEIE               BIT(11)
134 #define RCANFD_CCTR_EPIE                BIT(10)
135 #define RCANFD_CCTR_EWIE                BIT(9)
136 #define RCANFD_CCTR_BEIE                BIT(8)
137 #define RCANFD_CCTR_CSLPR               BIT(2)
138 #define RCANFD_CCTR_CHMDC_MASK          (0x3)
139 #define RCANFD_CCTR_CHDMC_COPM          (0x0)
140 #define RCANFD_CCTR_CHDMC_CRESET        (0x1)
141 #define RCANFD_CCTR_CHDMC_CHLT          (0x2)
142
143 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
144 #define RCANFD_CSTS_COMSTS              BIT(7)
145 #define RCANFD_CSTS_RECSTS              BIT(6)
146 #define RCANFD_CSTS_TRMSTS              BIT(5)
147 #define RCANFD_CSTS_BOSTS               BIT(4)
148 #define RCANFD_CSTS_EPSTS               BIT(3)
149 #define RCANFD_CSTS_SLPSTS              BIT(2)
150 #define RCANFD_CSTS_HLTSTS              BIT(1)
151 #define RCANFD_CSTS_CRSTSTS             BIT(0)
152
153 #define RCANFD_CSTS_TECCNT(x)           (((x) >> 24) & 0xff)
154 #define RCANFD_CSTS_RECCNT(x)           (((x) >> 16) & 0xff)
155
156 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
157 #define RCANFD_CERFL_ADERR              BIT(14)
158 #define RCANFD_CERFL_B0ERR              BIT(13)
159 #define RCANFD_CERFL_B1ERR              BIT(12)
160 #define RCANFD_CERFL_CERR               BIT(11)
161 #define RCANFD_CERFL_AERR               BIT(10)
162 #define RCANFD_CERFL_FERR               BIT(9)
163 #define RCANFD_CERFL_SERR               BIT(8)
164 #define RCANFD_CERFL_ALF                BIT(7)
165 #define RCANFD_CERFL_BLF                BIT(6)
166 #define RCANFD_CERFL_OVLF               BIT(5)
167 #define RCANFD_CERFL_BORF               BIT(4)
168 #define RCANFD_CERFL_BOEF               BIT(3)
169 #define RCANFD_CERFL_EPF                BIT(2)
170 #define RCANFD_CERFL_EWF                BIT(1)
171 #define RCANFD_CERFL_BEF                BIT(0)
172
173 #define RCANFD_CERFL_ERR(x)             ((x) & (0x7fff)) /* above bits 14:0 */
174
175 /* RSCFDnCFDCmDCFG */
176 #define RCANFD_DCFG_DSJW(x)             (((x) & 0x7) << 24)
177 #define RCANFD_DCFG_DTSEG2(x)           (((x) & 0x7) << 20)
178 #define RCANFD_DCFG_DTSEG1(x)           (((x) & 0xf) << 16)
179 #define RCANFD_DCFG_DBRP(x)             (((x) & 0xff) << 0)
180
181 /* RSCFDnCFDCmFDCFG */
182 #define RCANFD_FDCFG_TDCE               BIT(9)
183 #define RCANFD_FDCFG_TDCOC              BIT(8)
184 #define RCANFD_FDCFG_TDCO(x)            (((x) & 0x7f) >> 16)
185
186 /* RSCFDnCFDRFCCx */
187 #define RCANFD_RFCC_RFIM                BIT(12)
188 #define RCANFD_RFCC_RFDC(x)             (((x) & 0x7) << 8)
189 #define RCANFD_RFCC_RFPLS(x)            (((x) & 0x7) << 4)
190 #define RCANFD_RFCC_RFIE                BIT(1)
191 #define RCANFD_RFCC_RFE                 BIT(0)
192
193 /* RSCFDnCFDRFSTSx */
194 #define RCANFD_RFSTS_RFIF               BIT(3)
195 #define RCANFD_RFSTS_RFMLT              BIT(2)
196 #define RCANFD_RFSTS_RFFLL              BIT(1)
197 #define RCANFD_RFSTS_RFEMP              BIT(0)
198
199 /* RSCFDnCFDRFIDx */
200 #define RCANFD_RFID_RFIDE               BIT(31)
201 #define RCANFD_RFID_RFRTR               BIT(30)
202
203 /* RSCFDnCFDRFPTRx */
204 #define RCANFD_RFPTR_RFDLC(x)           (((x) >> 28) & 0xf)
205 #define RCANFD_RFPTR_RFPTR(x)           (((x) >> 16) & 0xfff)
206 #define RCANFD_RFPTR_RFTS(x)            (((x) >> 0) & 0xffff)
207
208 /* RSCFDnCFDRFFDSTSx */
209 #define RCANFD_RFFDSTS_RFFDF            BIT(2)
210 #define RCANFD_RFFDSTS_RFBRS            BIT(1)
211 #define RCANFD_RFFDSTS_RFESI            BIT(0)
212
213 /* Common FIFO bits */
214
215 /* RSCFDnCFDCFCCk */
216 #define RCANFD_CFCC_CFTML(x)            (((x) & 0xf) << 20)
217 #define RCANFD_CFCC_CFM(x)              (((x) & 0x3) << 16)
218 #define RCANFD_CFCC_CFIM                BIT(12)
219 #define RCANFD_CFCC_CFDC(x)             (((x) & 0x7) << 8)
220 #define RCANFD_CFCC_CFPLS(x)            (((x) & 0x7) << 4)
221 #define RCANFD_CFCC_CFTXIE              BIT(2)
222 #define RCANFD_CFCC_CFE                 BIT(0)
223
224 /* RSCFDnCFDCFSTSk */
225 #define RCANFD_CFSTS_CFMC(x)            (((x) >> 8) & 0xff)
226 #define RCANFD_CFSTS_CFTXIF             BIT(4)
227 #define RCANFD_CFSTS_CFMLT              BIT(2)
228 #define RCANFD_CFSTS_CFFLL              BIT(1)
229 #define RCANFD_CFSTS_CFEMP              BIT(0)
230
231 /* RSCFDnCFDCFIDk */
232 #define RCANFD_CFID_CFIDE               BIT(31)
233 #define RCANFD_CFID_CFRTR               BIT(30)
234 #define RCANFD_CFID_CFID_MASK(x)        ((x) & 0x1fffffff)
235
236 /* RSCFDnCFDCFPTRk */
237 #define RCANFD_CFPTR_CFDLC(x)           (((x) & 0xf) << 28)
238 #define RCANFD_CFPTR_CFPTR(x)           (((x) & 0xfff) << 16)
239 #define RCANFD_CFPTR_CFTS(x)            (((x) & 0xff) << 0)
240
241 /* RSCFDnCFDCFFDCSTSk */
242 #define RCANFD_CFFDCSTS_CFFDF           BIT(2)
243 #define RCANFD_CFFDCSTS_CFBRS           BIT(1)
244 #define RCANFD_CFFDCSTS_CFESI           BIT(0)
245
246 /* This controller supports either Classical CAN only mode or CAN FD only mode.
247  * These modes are supported in two separate set of register maps & names.
248  * However, some of the register offsets are common for both modes. Those
249  * offsets are listed below as Common registers.
250  *
251  * The CAN FD only mode specific registers & Classical CAN only mode specific
252  * registers are listed separately. Their register names starts with
253  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
254  */
255
256 /* Common registers */
257
258 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
259 #define RCANFD_CCFG(m)                  (0x0000 + (0x10 * (m)))
260 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
261 #define RCANFD_CCTR(m)                  (0x0004 + (0x10 * (m)))
262 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
263 #define RCANFD_CSTS(m)                  (0x0008 + (0x10 * (m)))
264 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
265 #define RCANFD_CERFL(m)                 (0x000C + (0x10 * (m)))
266
267 /* RSCFDnCFDGCFG / RSCFDnGCFG */
268 #define RCANFD_GCFG                     (0x0084)
269 /* RSCFDnCFDGCTR / RSCFDnGCTR */
270 #define RCANFD_GCTR                     (0x0088)
271 /* RSCFDnCFDGCTS / RSCFDnGCTS */
272 #define RCANFD_GSTS                     (0x008c)
273 /* RSCFDnCFDGERFL / RSCFDnGERFL */
274 #define RCANFD_GERFL                    (0x0090)
275 /* RSCFDnCFDGTSC / RSCFDnGTSC */
276 #define RCANFD_GTSC                     (0x0094)
277 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
278 #define RCANFD_GAFLECTR                 (0x0098)
279 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
280 #define RCANFD_GAFLCFG0                 (0x009c)
281 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
282 #define RCANFD_GAFLCFG1                 (0x00a0)
283 /* RSCFDnCFDRMNB / RSCFDnRMNB */
284 #define RCANFD_RMNB                     (0x00a4)
285 /* RSCFDnCFDRMND / RSCFDnRMND */
286 #define RCANFD_RMND(y)                  (0x00a8 + (0x04 * (y)))
287
288 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
289 #define RCANFD_RFCC(x)                  (0x00b8 + (0x04 * (x)))
290 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
291 #define RCANFD_RFSTS(x)                 (0x00d8 + (0x04 * (x)))
292 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
293 #define RCANFD_RFPCTR(x)                (0x00f8 + (0x04 * (x)))
294
295 /* Common FIFO Control registers */
296
297 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
298 #define RCANFD_CFCC(ch, idx)            (0x0118 + (0x0c * (ch)) + \
299                                          (0x04 * (idx)))
300 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
301 #define RCANFD_CFSTS(ch, idx)           (0x0178 + (0x0c * (ch)) + \
302                                          (0x04 * (idx)))
303 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
304 #define RCANFD_CFPCTR(ch, idx)          (0x01d8 + (0x0c * (ch)) + \
305                                          (0x04 * (idx)))
306
307 /* RSCFDnCFDFESTS / RSCFDnFESTS */
308 #define RCANFD_FESTS                    (0x0238)
309 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
310 #define RCANFD_FFSTS                    (0x023c)
311 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
312 #define RCANFD_FMSTS                    (0x0240)
313 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
314 #define RCANFD_RFISTS                   (0x0244)
315 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
316 #define RCANFD_CFRISTS                  (0x0248)
317 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
318 #define RCANFD_CFTISTS                  (0x024c)
319
320 /* RSCFDnCFDTMCp / RSCFDnTMCp */
321 #define RCANFD_TMC(p)                   (0x0250 + (0x01 * (p)))
322 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
323 #define RCANFD_TMSTS(p)                 (0x02d0 + (0x01 * (p)))
324
325 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
326 #define RCANFD_TMTRSTS(y)               (0x0350 + (0x04 * (y)))
327 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
328 #define RCANFD_TMTARSTS(y)              (0x0360 + (0x04 * (y)))
329 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
330 #define RCANFD_TMTCSTS(y)               (0x0370 + (0x04 * (y)))
331 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
332 #define RCANFD_TMTASTS(y)               (0x0380 + (0x04 * (y)))
333 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
334 #define RCANFD_TMIEC(y)                 (0x0390 + (0x04 * (y)))
335
336 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
337 #define RCANFD_TXQCC(m)                 (0x03a0 + (0x04 * (m)))
338 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
339 #define RCANFD_TXQSTS(m)                (0x03c0 + (0x04 * (m)))
340 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
341 #define RCANFD_TXQPCTR(m)               (0x03e0 + (0x04 * (m)))
342
343 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
344 #define RCANFD_THLCC(m)                 (0x0400 + (0x04 * (m)))
345 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
346 #define RCANFD_THLSTS(m)                (0x0420 + (0x04 * (m)))
347 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
348 #define RCANFD_THLPCTR(m)               (0x0440 + (0x04 * (m)))
349
350 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
351 #define RCANFD_GTINTSTS0                (0x0460)
352 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
353 #define RCANFD_GTINTSTS1                (0x0464)
354 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
355 #define RCANFD_GTSTCFG                  (0x0468)
356 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
357 #define RCANFD_GTSTCTR                  (0x046c)
358 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
359 #define RCANFD_GLOCKK                   (0x047c)
360 /* RSCFDnCFDGRMCFG */
361 #define RCANFD_GRMCFG                   (0x04fc)
362
363 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
364 #define RCANFD_GAFLID(offset, j)        ((offset) + (0x10 * (j)))
365 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
366 #define RCANFD_GAFLM(offset, j)         ((offset) + 0x04 + (0x10 * (j)))
367 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
368 #define RCANFD_GAFLP0(offset, j)        ((offset) + 0x08 + (0x10 * (j)))
369 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
370 #define RCANFD_GAFLP1(offset, j)        ((offset) + 0x0c + (0x10 * (j)))
371
372 /* Classical CAN only mode register map */
373
374 /* RSCFDnGAFLXXXj offset */
375 #define RCANFD_C_GAFL_OFFSET            (0x0500)
376
377 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
378 #define RCANFD_C_RMID(q)                (0x0600 + (0x10 * (q)))
379 #define RCANFD_C_RMPTR(q)               (0x0604 + (0x10 * (q)))
380 #define RCANFD_C_RMDF0(q)               (0x0608 + (0x10 * (q)))
381 #define RCANFD_C_RMDF1(q)               (0x060c + (0x10 * (q)))
382
383 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
384 #define RCANFD_C_RFOFFSET               (0x0e00)
385 #define RCANFD_C_RFID(x)                (RCANFD_C_RFOFFSET + (0x10 * (x)))
386 #define RCANFD_C_RFPTR(x)               (RCANFD_C_RFOFFSET + 0x04 + \
387                                          (0x10 * (x)))
388 #define RCANFD_C_RFDF(x, df)            (RCANFD_C_RFOFFSET + 0x08 + \
389                                          (0x10 * (x)) + (0x04 * (df)))
390
391 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
392 #define RCANFD_C_CFOFFSET               (0x0e80)
393 #define RCANFD_C_CFID(ch, idx)          (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
394                                          (0x10 * (idx)))
395 #define RCANFD_C_CFPTR(ch, idx)         (RCANFD_C_CFOFFSET + 0x04 + \
396                                          (0x30 * (ch)) + (0x10 * (idx)))
397 #define RCANFD_C_CFDF(ch, idx, df)      (RCANFD_C_CFOFFSET + 0x08 + \
398                                          (0x30 * (ch)) + (0x10 * (idx)) + \
399                                          (0x04 * (df)))
400
401 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
402 #define RCANFD_C_TMID(p)                (0x1000 + (0x10 * (p)))
403 #define RCANFD_C_TMPTR(p)               (0x1004 + (0x10 * (p)))
404 #define RCANFD_C_TMDF0(p)               (0x1008 + (0x10 * (p)))
405 #define RCANFD_C_TMDF1(p)               (0x100c + (0x10 * (p)))
406
407 /* RSCFDnTHLACCm */
408 #define RCANFD_C_THLACC(m)              (0x1800 + (0x04 * (m)))
409 /* RSCFDnRPGACCr */
410 #define RCANFD_C_RPGACC(r)              (0x1900 + (0x04 * (r)))
411
412 /* CAN FD mode specific register map */
413
414 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
415 #define RCANFD_F_DCFG(m)                (0x0500 + (0x20 * (m)))
416 #define RCANFD_F_CFDCFG(m)              (0x0504 + (0x20 * (m)))
417 #define RCANFD_F_CFDCTR(m)              (0x0508 + (0x20 * (m)))
418 #define RCANFD_F_CFDSTS(m)              (0x050c + (0x20 * (m)))
419 #define RCANFD_F_CFDCRC(m)              (0x0510 + (0x20 * (m)))
420
421 /* RSCFDnCFDGAFLXXXj offset */
422 #define RCANFD_F_GAFL_OFFSET            (0x1000)
423
424 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
425 #define RCANFD_F_RMID(q)                (0x2000 + (0x20 * (q)))
426 #define RCANFD_F_RMPTR(q)               (0x2004 + (0x20 * (q)))
427 #define RCANFD_F_RMFDSTS(q)             (0x2008 + (0x20 * (q)))
428 #define RCANFD_F_RMDF(q, b)             (0x200c + (0x04 * (b)) + (0x20 * (q)))
429
430 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
431 #define RCANFD_F_RFOFFSET               (0x3000)
432 #define RCANFD_F_RFID(x)                (RCANFD_F_RFOFFSET + (0x80 * (x)))
433 #define RCANFD_F_RFPTR(x)               (RCANFD_F_RFOFFSET + 0x04 + \
434                                          (0x80 * (x)))
435 #define RCANFD_F_RFFDSTS(x)             (RCANFD_F_RFOFFSET + 0x08 + \
436                                          (0x80 * (x)))
437 #define RCANFD_F_RFDF(x, df)            (RCANFD_F_RFOFFSET + 0x0c + \
438                                          (0x80 * (x)) + (0x04 * (df)))
439
440 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
441 #define RCANFD_F_CFOFFSET               (0x3400)
442 #define RCANFD_F_CFID(ch, idx)          (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
443                                          (0x80 * (idx)))
444 #define RCANFD_F_CFPTR(ch, idx)         (RCANFD_F_CFOFFSET + 0x04 + \
445                                          (0x180 * (ch)) + (0x80 * (idx)))
446 #define RCANFD_F_CFFDCSTS(ch, idx)      (RCANFD_F_CFOFFSET + 0x08 + \
447                                          (0x180 * (ch)) + (0x80 * (idx)))
448 #define RCANFD_F_CFDF(ch, idx, df)      (RCANFD_F_CFOFFSET + 0x0c + \
449                                          (0x180 * (ch)) + (0x80 * (idx)) + \
450                                          (0x04 * (df)))
451
452 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
453 #define RCANFD_F_TMID(p)                (0x4000 + (0x20 * (p)))
454 #define RCANFD_F_TMPTR(p)               (0x4004 + (0x20 * (p)))
455 #define RCANFD_F_TMFDCTR(p)             (0x4008 + (0x20 * (p)))
456 #define RCANFD_F_TMDF(p, b)             (0x400c + (0x20 * (p)) + (0x04 * (b)))
457
458 /* RSCFDnCFDTHLACCm */
459 #define RCANFD_F_THLACC(m)              (0x6000 + (0x04 * (m)))
460 /* RSCFDnCFDRPGACCr */
461 #define RCANFD_F_RPGACC(r)              (0x6400 + (0x04 * (r)))
462
463 /* Constants */
464 #define RCANFD_FIFO_DEPTH               8       /* Tx FIFO depth */
465 #define RCANFD_NAPI_WEIGHT              8       /* Rx poll quota */
466
467 #define RCANFD_NUM_CHANNELS             2       /* Two channels max */
468 #define RCANFD_CHANNELS_MASK            BIT((RCANFD_NUM_CHANNELS) - 1)
469
470 #define RCANFD_GAFL_PAGENUM(entry)      ((entry) / 16)
471 #define RCANFD_CHANNEL_NUMRULES         1       /* only one rule per channel */
472
473 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
474  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
475  * number is added to RFFIFO index.
476  */
477 #define RCANFD_RFFIFO_IDX               0
478
479 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
480  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
481  */
482 #define RCANFD_CFFIFO_IDX               0
483
484 /* fCAN clock select register settings */
485 enum rcar_canfd_fcanclk {
486         RCANFD_CANFDCLK = 0,            /* CANFD clock */
487         RCANFD_EXTCLK,                  /* Externally input clock */
488 };
489
490 struct rcar_canfd_global;
491
492 /* Channel priv data */
493 struct rcar_canfd_channel {
494         struct can_priv can;                    /* Must be the first member */
495         struct net_device *ndev;
496         struct rcar_canfd_global *gpriv;        /* Controller reference */
497         void __iomem *base;                     /* Register base address */
498         struct napi_struct napi;
499         u8  tx_len[RCANFD_FIFO_DEPTH];          /* For net stats */
500         u32 tx_head;                            /* Incremented on xmit */
501         u32 tx_tail;                            /* Incremented on xmit done */
502         u32 channel;                            /* Channel number */
503         spinlock_t tx_lock;                     /* To protect tx path */
504 };
505
506 /* Global priv data */
507 struct rcar_canfd_global {
508         struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
509         void __iomem *base;             /* Register base address */
510         struct platform_device *pdev;   /* Respective platform device */
511         struct clk *clkp;               /* Peripheral clock */
512         struct clk *can_clk;            /* fCAN clock */
513         enum rcar_canfd_fcanclk fcan;   /* CANFD or Ext clock */
514         unsigned long channels_mask;    /* Enabled channels mask */
515         bool fdmode;                    /* CAN FD or Classical CAN only mode */
516 };
517
518 /* CAN FD mode nominal rate constants */
519 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
520         .name = RCANFD_DRV_NAME,
521         .tseg1_min = 2,
522         .tseg1_max = 128,
523         .tseg2_min = 2,
524         .tseg2_max = 32,
525         .sjw_max = 32,
526         .brp_min = 1,
527         .brp_max = 1024,
528         .brp_inc = 1,
529 };
530
531 /* CAN FD mode data rate constants */
532 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
533         .name = RCANFD_DRV_NAME,
534         .tseg1_min = 2,
535         .tseg1_max = 16,
536         .tseg2_min = 2,
537         .tseg2_max = 8,
538         .sjw_max = 8,
539         .brp_min = 1,
540         .brp_max = 256,
541         .brp_inc = 1,
542 };
543
544 /* Classical CAN mode bitrate constants */
545 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
546         .name = RCANFD_DRV_NAME,
547         .tseg1_min = 4,
548         .tseg1_max = 16,
549         .tseg2_min = 2,
550         .tseg2_max = 8,
551         .sjw_max = 4,
552         .brp_min = 1,
553         .brp_max = 1024,
554         .brp_inc = 1,
555 };
556
557 /* Helper functions */
558 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
559 {
560         u32 data = readl(reg);
561
562         data &= ~mask;
563         data |= (val & mask);
564         writel(data, reg);
565 }
566
567 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
568 {
569         return readl(base + (offset));
570 }
571
572 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
573 {
574         writel(val, base + (offset));
575 }
576
577 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
578 {
579         rcar_canfd_update(val, val, base + (reg));
580 }
581
582 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
583 {
584         rcar_canfd_update(val, 0, base + (reg));
585 }
586
587 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
588                                   u32 mask, u32 val)
589 {
590         rcar_canfd_update(mask, val, base + (reg));
591 }
592
593 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
594                                 struct canfd_frame *cf, u32 off)
595 {
596         u32 i, lwords;
597
598         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
599         for (i = 0; i < lwords; i++)
600                 *((u32 *)cf->data + i) =
601                         rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
602 }
603
604 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
605                                 struct canfd_frame *cf, u32 off)
606 {
607         u32 i, lwords;
608
609         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
610         for (i = 0; i < lwords; i++)
611                 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
612                                  *((u32 *)cf->data + i));
613 }
614
615 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
616 {
617         u32 i;
618
619         for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
620                 can_free_echo_skb(ndev, i);
621 }
622
623 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
624 {
625         u32 sts, ch;
626         int err;
627
628         /* Check RAMINIT flag as CAN RAM initialization takes place
629          * after the MCU reset
630          */
631         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
632                                  !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
633         if (err) {
634                 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
635                 return err;
636         }
637
638         /* Transition to Global Reset mode */
639         rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
640         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
641                               RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
642
643         /* Ensure Global reset mode */
644         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
645                                  (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
646         if (err) {
647                 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
648                 return err;
649         }
650
651         /* Reset Global error flags */
652         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
653
654         /* Set the controller into appropriate mode */
655         if (gpriv->fdmode)
656                 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
657                                    RCANFD_GRMCFG_RCMC);
658         else
659                 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
660                                      RCANFD_GRMCFG_RCMC);
661
662         /* Transition all Channels to reset mode */
663         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
664                 rcar_canfd_clear_bit(gpriv->base,
665                                      RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
666
667                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
668                                       RCANFD_CCTR_CHMDC_MASK,
669                                       RCANFD_CCTR_CHDMC_CRESET);
670
671                 /* Ensure Channel reset mode */
672                 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
673                                          (sts & RCANFD_CSTS_CRSTSTS),
674                                          2, 500000);
675                 if (err) {
676                         dev_dbg(&gpriv->pdev->dev,
677                                 "channel %u reset failed\n", ch);
678                         return err;
679                 }
680         }
681         return 0;
682 }
683
684 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
685 {
686         u32 cfg, ch;
687
688         /* Global configuration settings */
689
690         /* ECC Error flag Enable */
691         cfg = RCANFD_GCFG_EEFE;
692
693         if (gpriv->fdmode)
694                 /* Truncate payload to configured message size RFPLS */
695                 cfg |= RCANFD_GCFG_CMPOC;
696
697         /* Set External Clock if selected */
698         if (gpriv->fcan != RCANFD_CANFDCLK)
699                 cfg |= RCANFD_GCFG_DCS;
700
701         rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
702
703         /* Channel configuration settings */
704         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
705                 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
706                                    RCANFD_CCTR_ERRD);
707                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
708                                       RCANFD_CCTR_BOM_MASK,
709                                       RCANFD_CCTR_BOM_BENTRY);
710         }
711 }
712
713 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
714                                            u32 ch)
715 {
716         u32 cfg;
717         int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
718         u32 ridx = ch + RCANFD_RFFIFO_IDX;
719
720         if (ch == 0) {
721                 start = 0; /* Channel 0 always starts from 0th rule */
722         } else {
723                 /* Get number of Channel 0 rules and adjust */
724                 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
725                 start = RCANFD_GAFLCFG_GETRNC(0, cfg);
726         }
727
728         /* Enable write access to entry */
729         page = RCANFD_GAFL_PAGENUM(start);
730         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
731                            (RCANFD_GAFLECTR_AFLPN(page) |
732                             RCANFD_GAFLECTR_AFLDAE));
733
734         /* Write number of rules for channel */
735         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
736                            RCANFD_GAFLCFG_SETRNC(ch, num_rules));
737         if (gpriv->fdmode)
738                 offset = RCANFD_F_GAFL_OFFSET;
739         else
740                 offset = RCANFD_C_GAFL_OFFSET;
741
742         /* Accept all IDs */
743         rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
744         /* IDE or RTR is not considered for matching */
745         rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
746         /* Any data length accepted */
747         rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
748         /* Place the msg in corresponding Rx FIFO entry */
749         rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
750                          RCANFD_GAFLP1_GAFLFDP(ridx));
751
752         /* Disable write access to page */
753         rcar_canfd_clear_bit(gpriv->base,
754                              RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
755 }
756
757 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
758 {
759         /* Rx FIFO is used for reception */
760         u32 cfg;
761         u16 rfdc, rfpls;
762
763         /* Select Rx FIFO based on channel */
764         u32 ridx = ch + RCANFD_RFFIFO_IDX;
765
766         rfdc = 2;               /* b010 - 8 messages Rx FIFO depth */
767         if (gpriv->fdmode)
768                 rfpls = 7;      /* b111 - Max 64 bytes payload */
769         else
770                 rfpls = 0;      /* b000 - Max 8 bytes payload */
771
772         cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
773                 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
774         rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
775 }
776
777 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
778 {
779         /* Tx/Rx(Common) FIFO configured in Tx mode is
780          * used for transmission
781          *
782          * Each channel has 3 Common FIFO dedicated to them.
783          * Use the 1st (index 0) out of 3
784          */
785         u32 cfg;
786         u16 cftml, cfm, cfdc, cfpls;
787
788         cftml = 0;              /* 0th buffer */
789         cfm = 1;                /* b01 - Transmit mode */
790         cfdc = 2;               /* b010 - 8 messages Tx FIFO depth */
791         if (gpriv->fdmode)
792                 cfpls = 7;      /* b111 - Max 64 bytes payload */
793         else
794                 cfpls = 0;      /* b000 - Max 8 bytes payload */
795
796         cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
797                 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
798                 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
799         rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
800
801         if (gpriv->fdmode)
802                 /* Clear FD mode specific control/status register */
803                 rcar_canfd_write(gpriv->base,
804                                  RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
805 }
806
807 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
808 {
809         u32 ctr;
810
811         /* Clear any stray error interrupt flags */
812         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
813
814         /* Global interrupts setup */
815         ctr = RCANFD_GCTR_MEIE;
816         if (gpriv->fdmode)
817                 ctr |= RCANFD_GCTR_CFMPOFIE;
818
819         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
820 }
821
822 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
823                                                  *gpriv)
824 {
825         /* Disable all interrupts */
826         rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
827
828         /* Clear any stray error interrupt flags */
829         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
830 }
831
832 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
833                                                  *priv)
834 {
835         u32 ctr, ch = priv->channel;
836
837         /* Clear any stray error flags */
838         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
839
840         /* Channel interrupts setup */
841         ctr = (RCANFD_CCTR_TAIE |
842                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
843                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
844                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
845                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
846         rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
847 }
848
849 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
850                                                   *priv)
851 {
852         u32 ctr, ch = priv->channel;
853
854         ctr = (RCANFD_CCTR_TAIE |
855                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
856                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
857                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
858                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
859         rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
860
861         /* Clear any stray error flags */
862         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
863 }
864
865 static void rcar_canfd_global_error(struct net_device *ndev)
866 {
867         struct rcar_canfd_channel *priv = netdev_priv(ndev);
868         struct rcar_canfd_global *gpriv = priv->gpriv;
869         struct net_device_stats *stats = &ndev->stats;
870         u32 ch = priv->channel;
871         u32 gerfl, sts;
872         u32 ridx = ch + RCANFD_RFFIFO_IDX;
873
874         gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
875         if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
876                 netdev_dbg(ndev, "Ch0: ECC Error flag\n");
877                 stats->tx_dropped++;
878         }
879         if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
880                 netdev_dbg(ndev, "Ch1: ECC Error flag\n");
881                 stats->tx_dropped++;
882         }
883         if (gerfl & RCANFD_GERFL_MES) {
884                 sts = rcar_canfd_read(priv->base,
885                                       RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
886                 if (sts & RCANFD_CFSTS_CFMLT) {
887                         netdev_dbg(ndev, "Tx Message Lost flag\n");
888                         stats->tx_dropped++;
889                         rcar_canfd_write(priv->base,
890                                          RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
891                                          sts & ~RCANFD_CFSTS_CFMLT);
892                 }
893
894                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
895                 if (sts & RCANFD_RFSTS_RFMLT) {
896                         netdev_dbg(ndev, "Rx Message Lost flag\n");
897                         stats->rx_dropped++;
898                         rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
899                                          sts & ~RCANFD_RFSTS_RFMLT);
900                 }
901         }
902         if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
903                 /* Message Lost flag will be set for respective channel
904                  * when this condition happens with counters and flags
905                  * already updated.
906                  */
907                 netdev_dbg(ndev, "global payload overflow interrupt\n");
908         }
909
910         /* Clear all global error interrupts. Only affected channels bits
911          * get cleared
912          */
913         rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
914 }
915
916 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
917                              u16 txerr, u16 rxerr)
918 {
919         struct rcar_canfd_channel *priv = netdev_priv(ndev);
920         struct net_device_stats *stats = &ndev->stats;
921         struct can_frame *cf;
922         struct sk_buff *skb;
923         u32 ch = priv->channel;
924
925         netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
926
927         /* Propagate the error condition to the CAN stack */
928         skb = alloc_can_err_skb(ndev, &cf);
929         if (!skb) {
930                 stats->rx_dropped++;
931                 return;
932         }
933
934         /* Channel error interrupts */
935         if (cerfl & RCANFD_CERFL_BEF) {
936                 netdev_dbg(ndev, "Bus error\n");
937                 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
938                 cf->data[2] = CAN_ERR_PROT_UNSPEC;
939                 priv->can.can_stats.bus_error++;
940         }
941         if (cerfl & RCANFD_CERFL_ADERR) {
942                 netdev_dbg(ndev, "ACK Delimiter Error\n");
943                 stats->tx_errors++;
944                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
945         }
946         if (cerfl & RCANFD_CERFL_B0ERR) {
947                 netdev_dbg(ndev, "Bit Error (dominant)\n");
948                 stats->tx_errors++;
949                 cf->data[2] |= CAN_ERR_PROT_BIT0;
950         }
951         if (cerfl & RCANFD_CERFL_B1ERR) {
952                 netdev_dbg(ndev, "Bit Error (recessive)\n");
953                 stats->tx_errors++;
954                 cf->data[2] |= CAN_ERR_PROT_BIT1;
955         }
956         if (cerfl & RCANFD_CERFL_CERR) {
957                 netdev_dbg(ndev, "CRC Error\n");
958                 stats->rx_errors++;
959                 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
960         }
961         if (cerfl & RCANFD_CERFL_AERR) {
962                 netdev_dbg(ndev, "ACK Error\n");
963                 stats->tx_errors++;
964                 cf->can_id |= CAN_ERR_ACK;
965                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
966         }
967         if (cerfl & RCANFD_CERFL_FERR) {
968                 netdev_dbg(ndev, "Form Error\n");
969                 stats->rx_errors++;
970                 cf->data[2] |= CAN_ERR_PROT_FORM;
971         }
972         if (cerfl & RCANFD_CERFL_SERR) {
973                 netdev_dbg(ndev, "Stuff Error\n");
974                 stats->rx_errors++;
975                 cf->data[2] |= CAN_ERR_PROT_STUFF;
976         }
977         if (cerfl & RCANFD_CERFL_ALF) {
978                 netdev_dbg(ndev, "Arbitration lost Error\n");
979                 priv->can.can_stats.arbitration_lost++;
980                 cf->can_id |= CAN_ERR_LOSTARB;
981                 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
982         }
983         if (cerfl & RCANFD_CERFL_BLF) {
984                 netdev_dbg(ndev, "Bus Lock Error\n");
985                 stats->rx_errors++;
986                 cf->can_id |= CAN_ERR_BUSERROR;
987         }
988         if (cerfl & RCANFD_CERFL_EWF) {
989                 netdev_dbg(ndev, "Error warning interrupt\n");
990                 priv->can.state = CAN_STATE_ERROR_WARNING;
991                 priv->can.can_stats.error_warning++;
992                 cf->can_id |= CAN_ERR_CRTL;
993                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
994                         CAN_ERR_CRTL_RX_WARNING;
995                 cf->data[6] = txerr;
996                 cf->data[7] = rxerr;
997         }
998         if (cerfl & RCANFD_CERFL_EPF) {
999                 netdev_dbg(ndev, "Error passive interrupt\n");
1000                 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1001                 priv->can.can_stats.error_passive++;
1002                 cf->can_id |= CAN_ERR_CRTL;
1003                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1004                         CAN_ERR_CRTL_RX_PASSIVE;
1005                 cf->data[6] = txerr;
1006                 cf->data[7] = rxerr;
1007         }
1008         if (cerfl & RCANFD_CERFL_BOEF) {
1009                 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1010                 rcar_canfd_tx_failure_cleanup(ndev);
1011                 priv->can.state = CAN_STATE_BUS_OFF;
1012                 priv->can.can_stats.bus_off++;
1013                 can_bus_off(ndev);
1014                 cf->can_id |= CAN_ERR_BUSOFF;
1015         }
1016         if (cerfl & RCANFD_CERFL_OVLF) {
1017                 netdev_dbg(ndev,
1018                            "Overload Frame Transmission error interrupt\n");
1019                 stats->tx_errors++;
1020                 cf->can_id |= CAN_ERR_PROT;
1021                 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1022         }
1023
1024         /* Clear channel error interrupts that are handled */
1025         rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1026                          RCANFD_CERFL_ERR(~cerfl));
1027         stats->rx_packets++;
1028         stats->rx_bytes += cf->can_dlc;
1029         netif_rx(skb);
1030 }
1031
1032 static void rcar_canfd_tx_done(struct net_device *ndev)
1033 {
1034         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1035         struct net_device_stats *stats = &ndev->stats;
1036         u32 sts;
1037         unsigned long flags;
1038         u32 ch = priv->channel;
1039
1040         do {
1041                 u8 unsent, sent;
1042
1043                 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1044                 stats->tx_packets++;
1045                 stats->tx_bytes += priv->tx_len[sent];
1046                 priv->tx_len[sent] = 0;
1047                 can_get_echo_skb(ndev, sent);
1048
1049                 spin_lock_irqsave(&priv->tx_lock, flags);
1050                 priv->tx_tail++;
1051                 sts = rcar_canfd_read(priv->base,
1052                                       RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1053                 unsent = RCANFD_CFSTS_CFMC(sts);
1054
1055                 /* Wake producer only when there is room */
1056                 if (unsent != RCANFD_FIFO_DEPTH)
1057                         netif_wake_queue(ndev);
1058
1059                 if (priv->tx_head - priv->tx_tail <= unsent) {
1060                         spin_unlock_irqrestore(&priv->tx_lock, flags);
1061                         break;
1062                 }
1063                 spin_unlock_irqrestore(&priv->tx_lock, flags);
1064
1065         } while (1);
1066
1067         /* Clear interrupt */
1068         rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
1069                          sts & ~RCANFD_CFSTS_CFTXIF);
1070         can_led_event(ndev, CAN_LED_EVENT_TX);
1071 }
1072
1073 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1074 {
1075         struct rcar_canfd_global *gpriv = dev_id;
1076         struct net_device *ndev;
1077         struct rcar_canfd_channel *priv;
1078         u32 sts, gerfl;
1079         u32 ch, ridx;
1080
1081         /* Global error interrupts still indicate a condition specific
1082          * to a channel. RxFIFO interrupt is a global interrupt.
1083          */
1084         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1085                 priv = gpriv->ch[ch];
1086                 ndev = priv->ndev;
1087                 ridx = ch + RCANFD_RFFIFO_IDX;
1088
1089                 /* Global error interrupts */
1090                 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1091                 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1092                         rcar_canfd_global_error(ndev);
1093
1094                 /* Handle Rx interrupts */
1095                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1096                 if (likely(sts & RCANFD_RFSTS_RFIF)) {
1097                         if (napi_schedule_prep(&priv->napi)) {
1098                                 /* Disable Rx FIFO interrupts */
1099                                 rcar_canfd_clear_bit(priv->base,
1100                                                      RCANFD_RFCC(ridx),
1101                                                      RCANFD_RFCC_RFIE);
1102                                 __napi_schedule(&priv->napi);
1103                         }
1104                 }
1105         }
1106         return IRQ_HANDLED;
1107 }
1108
1109 static void rcar_canfd_state_change(struct net_device *ndev,
1110                                     u16 txerr, u16 rxerr)
1111 {
1112         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1113         struct net_device_stats *stats = &ndev->stats;
1114         enum can_state rx_state, tx_state, state = priv->can.state;
1115         struct can_frame *cf;
1116         struct sk_buff *skb;
1117
1118         /* Handle transition from error to normal states */
1119         if (txerr < 96 && rxerr < 96)
1120                 state = CAN_STATE_ERROR_ACTIVE;
1121         else if (txerr < 128 && rxerr < 128)
1122                 state = CAN_STATE_ERROR_WARNING;
1123
1124         if (state != priv->can.state) {
1125                 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1126                            state, priv->can.state, txerr, rxerr);
1127                 skb = alloc_can_err_skb(ndev, &cf);
1128                 if (!skb) {
1129                         stats->rx_dropped++;
1130                         return;
1131                 }
1132                 tx_state = txerr >= rxerr ? state : 0;
1133                 rx_state = txerr <= rxerr ? state : 0;
1134
1135                 can_change_state(ndev, cf, tx_state, rx_state);
1136                 stats->rx_packets++;
1137                 stats->rx_bytes += cf->can_dlc;
1138                 netif_rx(skb);
1139         }
1140 }
1141
1142 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1143 {
1144         struct rcar_canfd_global *gpriv = dev_id;
1145         struct net_device *ndev;
1146         struct rcar_canfd_channel *priv;
1147         u32 sts, ch, cerfl;
1148         u16 txerr, rxerr;
1149
1150         /* Common FIFO is a per channel resource */
1151         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1152                 priv = gpriv->ch[ch];
1153                 ndev = priv->ndev;
1154
1155                 /* Channel error interrupts */
1156                 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1157                 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1158                 txerr = RCANFD_CSTS_TECCNT(sts);
1159                 rxerr = RCANFD_CSTS_RECCNT(sts);
1160                 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1161                         rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1162
1163                 /* Handle state change to lower states */
1164                 if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
1165                              (priv->can.state != CAN_STATE_BUS_OFF)))
1166                         rcar_canfd_state_change(ndev, txerr, rxerr);
1167
1168                 /* Handle Tx interrupts */
1169                 sts = rcar_canfd_read(priv->base,
1170                                       RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
1171                 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1172                         rcar_canfd_tx_done(ndev);
1173         }
1174         return IRQ_HANDLED;
1175 }
1176
1177 static void rcar_canfd_set_bittiming(struct net_device *dev)
1178 {
1179         struct rcar_canfd_channel *priv = netdev_priv(dev);
1180         const struct can_bittiming *bt = &priv->can.bittiming;
1181         const struct can_bittiming *dbt = &priv->can.data_bittiming;
1182         u16 brp, sjw, tseg1, tseg2;
1183         u32 cfg;
1184         u32 ch = priv->channel;
1185
1186         /* Nominal bit timing settings */
1187         brp = bt->brp - 1;
1188         sjw = bt->sjw - 1;
1189         tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1190         tseg2 = bt->phase_seg2 - 1;
1191
1192         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1193                 /* CAN FD only mode */
1194                 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
1195                        RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
1196
1197                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1198                 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1199                            brp, sjw, tseg1, tseg2);
1200
1201                 /* Data bit timing settings */
1202                 brp = dbt->brp - 1;
1203                 sjw = dbt->sjw - 1;
1204                 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1205                 tseg2 = dbt->phase_seg2 - 1;
1206
1207                 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
1208                        RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
1209
1210                 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1211                 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1212                            brp, sjw, tseg1, tseg2);
1213         } else {
1214                 /* Classical CAN only mode */
1215                 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
1216                         RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
1217
1218                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1219                 netdev_dbg(priv->ndev,
1220                            "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1221                            brp, sjw, tseg1, tseg2);
1222         }
1223 }
1224
1225 static int rcar_canfd_start(struct net_device *ndev)
1226 {
1227         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1228         int err = -EOPNOTSUPP;
1229         u32 sts, ch = priv->channel;
1230         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1231
1232         rcar_canfd_set_bittiming(ndev);
1233
1234         rcar_canfd_enable_channel_interrupts(priv);
1235
1236         /* Set channel to Operational mode */
1237         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1238                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1239
1240         /* Verify channel mode change */
1241         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1242                                  (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1243         if (err) {
1244                 netdev_err(ndev, "channel %u communication state failed\n", ch);
1245                 goto fail_mode_change;
1246         }
1247
1248         /* Enable Common & Rx FIFO */
1249         rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1250                            RCANFD_CFCC_CFE);
1251         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1252
1253         priv->can.state = CAN_STATE_ERROR_ACTIVE;
1254         return 0;
1255
1256 fail_mode_change:
1257         rcar_canfd_disable_channel_interrupts(priv);
1258         return err;
1259 }
1260
1261 static int rcar_canfd_open(struct net_device *ndev)
1262 {
1263         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1264         struct rcar_canfd_global *gpriv = priv->gpriv;
1265         int err;
1266
1267         /* Peripheral clock is already enabled in probe */
1268         err = clk_prepare_enable(gpriv->can_clk);
1269         if (err) {
1270                 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1271                 goto out_clock;
1272         }
1273
1274         err = open_candev(ndev);
1275         if (err) {
1276                 netdev_err(ndev, "open_candev() failed, error %d\n", err);
1277                 goto out_can_clock;
1278         }
1279
1280         napi_enable(&priv->napi);
1281         err = rcar_canfd_start(ndev);
1282         if (err)
1283                 goto out_close;
1284         netif_start_queue(ndev);
1285         can_led_event(ndev, CAN_LED_EVENT_OPEN);
1286         return 0;
1287 out_close:
1288         napi_disable(&priv->napi);
1289         close_candev(ndev);
1290 out_can_clock:
1291         clk_disable_unprepare(gpriv->can_clk);
1292 out_clock:
1293         return err;
1294 }
1295
1296 static void rcar_canfd_stop(struct net_device *ndev)
1297 {
1298         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1299         int err;
1300         u32 sts, ch = priv->channel;
1301         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1302
1303         /* Transition to channel reset mode  */
1304         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1305                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1306
1307         /* Check Channel reset mode */
1308         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1309                                  (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1310         if (err)
1311                 netdev_err(ndev, "channel %u reset failed\n", ch);
1312
1313         rcar_canfd_disable_channel_interrupts(priv);
1314
1315         /* Disable Common & Rx FIFO */
1316         rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
1317                              RCANFD_CFCC_CFE);
1318         rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
1319
1320         /* Set the state as STOPPED */
1321         priv->can.state = CAN_STATE_STOPPED;
1322 }
1323
1324 static int rcar_canfd_close(struct net_device *ndev)
1325 {
1326         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1327         struct rcar_canfd_global *gpriv = priv->gpriv;
1328
1329         netif_stop_queue(ndev);
1330         rcar_canfd_stop(ndev);
1331         napi_disable(&priv->napi);
1332         clk_disable_unprepare(gpriv->can_clk);
1333         close_candev(ndev);
1334         can_led_event(ndev, CAN_LED_EVENT_STOP);
1335         return 0;
1336 }
1337
1338 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1339                                          struct net_device *ndev)
1340 {
1341         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1342         struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1343         u32 sts = 0, id, dlc;
1344         unsigned long flags;
1345         u32 ch = priv->channel;
1346
1347         if (can_dropped_invalid_skb(ndev, skb))
1348                 return NETDEV_TX_OK;
1349
1350         if (cf->can_id & CAN_EFF_FLAG) {
1351                 id = cf->can_id & CAN_EFF_MASK;
1352                 id |= RCANFD_CFID_CFIDE;
1353         } else {
1354                 id = cf->can_id & CAN_SFF_MASK;
1355         }
1356
1357         if (cf->can_id & CAN_RTR_FLAG)
1358                 id |= RCANFD_CFID_CFRTR;
1359
1360         dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
1361
1362         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1363                 rcar_canfd_write(priv->base,
1364                                  RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
1365                 rcar_canfd_write(priv->base,
1366                                  RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1367
1368                 if (can_is_canfd_skb(skb)) {
1369                         /* CAN FD frame format */
1370                         sts |= RCANFD_CFFDCSTS_CFFDF;
1371                         if (cf->flags & CANFD_BRS)
1372                                 sts |= RCANFD_CFFDCSTS_CFBRS;
1373
1374                         if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1375                                 sts |= RCANFD_CFFDCSTS_CFESI;
1376                 }
1377
1378                 rcar_canfd_write(priv->base,
1379                                  RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
1380
1381                 rcar_canfd_put_data(priv, cf,
1382                                     RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1383         } else {
1384                 rcar_canfd_write(priv->base,
1385                                  RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1386                 rcar_canfd_write(priv->base,
1387                                  RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1388                 rcar_canfd_put_data(priv, cf,
1389                                     RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1390         }
1391
1392         priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
1393         can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
1394
1395         spin_lock_irqsave(&priv->tx_lock, flags);
1396         priv->tx_head++;
1397
1398         /* Stop the queue if we've filled all FIFO entries */
1399         if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1400                 netif_stop_queue(ndev);
1401
1402         /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1403          * pointer for the Common FIFO
1404          */
1405         rcar_canfd_write(priv->base,
1406                          RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
1407
1408         spin_unlock_irqrestore(&priv->tx_lock, flags);
1409         return NETDEV_TX_OK;
1410 }
1411
1412 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1413 {
1414         struct net_device_stats *stats = &priv->ndev->stats;
1415         struct canfd_frame *cf;
1416         struct sk_buff *skb;
1417         u32 sts = 0, id, dlc;
1418         u32 ch = priv->channel;
1419         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1420
1421         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1422                 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
1423                 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
1424
1425                 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
1426                 if (sts & RCANFD_RFFDSTS_RFFDF)
1427                         skb = alloc_canfd_skb(priv->ndev, &cf);
1428                 else
1429                         skb = alloc_can_skb(priv->ndev,
1430                                             (struct can_frame **)&cf);
1431         } else {
1432                 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1433                 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1434                 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1435         }
1436
1437         if (!skb) {
1438                 stats->rx_dropped++;
1439                 return;
1440         }
1441
1442         if (id & RCANFD_RFID_RFIDE)
1443                 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1444         else
1445                 cf->can_id = id & CAN_SFF_MASK;
1446
1447         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1448                 if (sts & RCANFD_RFFDSTS_RFFDF)
1449                         cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1450                 else
1451                         cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1452
1453                 if (sts & RCANFD_RFFDSTS_RFESI) {
1454                         cf->flags |= CANFD_ESI;
1455                         netdev_dbg(priv->ndev, "ESI Error\n");
1456                 }
1457
1458                 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1459                         cf->can_id |= CAN_RTR_FLAG;
1460                 } else {
1461                         if (sts & RCANFD_RFFDSTS_RFBRS)
1462                                 cf->flags |= CANFD_BRS;
1463
1464                         rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
1465                 }
1466         } else {
1467                 cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
1468                 if (id & RCANFD_RFID_RFRTR)
1469                         cf->can_id |= CAN_RTR_FLAG;
1470                 else
1471                         rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1472         }
1473
1474         /* Write 0xff to RFPC to increment the CPU-side
1475          * pointer of the Rx FIFO
1476          */
1477         rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
1478
1479         can_led_event(priv->ndev, CAN_LED_EVENT_RX);
1480
1481         stats->rx_bytes += cf->len;
1482         stats->rx_packets++;
1483         netif_receive_skb(skb);
1484 }
1485
1486 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1487 {
1488         struct rcar_canfd_channel *priv =
1489                 container_of(napi, struct rcar_canfd_channel, napi);
1490         int num_pkts;
1491         u32 sts;
1492         u32 ch = priv->channel;
1493         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1494
1495         for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1496                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
1497                 /* Check FIFO empty condition */
1498                 if (sts & RCANFD_RFSTS_RFEMP)
1499                         break;
1500
1501                 rcar_canfd_rx_pkt(priv);
1502
1503                 /* Clear interrupt bit */
1504                 if (sts & RCANFD_RFSTS_RFIF)
1505                         rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
1506                                          sts & ~RCANFD_RFSTS_RFIF);
1507         }
1508
1509         /* All packets processed */
1510         if (num_pkts < quota) {
1511                 if (napi_complete_done(napi, num_pkts)) {
1512                         /* Enable Rx FIFO interrupts */
1513                         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
1514                                            RCANFD_RFCC_RFIE);
1515                 }
1516         }
1517         return num_pkts;
1518 }
1519
1520 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1521 {
1522         int err;
1523
1524         switch (mode) {
1525         case CAN_MODE_START:
1526                 err = rcar_canfd_start(ndev);
1527                 if (err)
1528                         return err;
1529                 netif_wake_queue(ndev);
1530                 return 0;
1531         default:
1532                 return -EOPNOTSUPP;
1533         }
1534 }
1535
1536 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1537                                        struct can_berr_counter *bec)
1538 {
1539         struct rcar_canfd_channel *priv = netdev_priv(dev);
1540         u32 val, ch = priv->channel;
1541
1542         /* Peripheral clock is already enabled in probe */
1543         val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1544         bec->txerr = RCANFD_CSTS_TECCNT(val);
1545         bec->rxerr = RCANFD_CSTS_RECCNT(val);
1546         return 0;
1547 }
1548
1549 static const struct net_device_ops rcar_canfd_netdev_ops = {
1550         .ndo_open = rcar_canfd_open,
1551         .ndo_stop = rcar_canfd_close,
1552         .ndo_start_xmit = rcar_canfd_start_xmit,
1553         .ndo_change_mtu = can_change_mtu,
1554 };
1555
1556 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1557                                     u32 fcan_freq)
1558 {
1559         struct platform_device *pdev = gpriv->pdev;
1560         struct rcar_canfd_channel *priv;
1561         struct net_device *ndev;
1562         int err = -ENODEV;
1563
1564         ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1565         if (!ndev) {
1566                 dev_err(&pdev->dev, "alloc_candev() failed\n");
1567                 err = -ENOMEM;
1568                 goto fail;
1569         }
1570         priv = netdev_priv(ndev);
1571
1572         ndev->netdev_ops = &rcar_canfd_netdev_ops;
1573         ndev->flags |= IFF_ECHO;
1574         priv->ndev = ndev;
1575         priv->base = gpriv->base;
1576         priv->channel = ch;
1577         priv->can.clock.freq = fcan_freq;
1578         dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1579
1580         if (gpriv->fdmode) {
1581                 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1582                 priv->can.data_bittiming_const =
1583                         &rcar_canfd_data_bittiming_const;
1584
1585                 /* Controller starts in CAN FD only mode */
1586                 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1587                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1588         } else {
1589                 /* Controller starts in Classical CAN only mode */
1590                 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1591                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1592         }
1593
1594         priv->can.do_set_mode = rcar_canfd_do_set_mode;
1595         priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1596         priv->gpriv = gpriv;
1597         SET_NETDEV_DEV(ndev, &pdev->dev);
1598
1599         netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
1600                        RCANFD_NAPI_WEIGHT);
1601         err = register_candev(ndev);
1602         if (err) {
1603                 dev_err(&pdev->dev,
1604                         "register_candev() failed, error %d\n", err);
1605                 goto fail_candev;
1606         }
1607         spin_lock_init(&priv->tx_lock);
1608         devm_can_led_init(ndev);
1609         gpriv->ch[priv->channel] = priv;
1610         dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1611         return 0;
1612
1613 fail_candev:
1614         netif_napi_del(&priv->napi);
1615         free_candev(ndev);
1616 fail:
1617         return err;
1618 }
1619
1620 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1621 {
1622         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1623
1624         if (priv) {
1625                 unregister_candev(priv->ndev);
1626                 netif_napi_del(&priv->napi);
1627                 free_candev(priv->ndev);
1628         }
1629 }
1630
1631 static int rcar_canfd_probe(struct platform_device *pdev)
1632 {
1633         struct resource *mem;
1634         void __iomem *addr;
1635         u32 sts, ch, fcan_freq;
1636         struct rcar_canfd_global *gpriv;
1637         struct device_node *of_child;
1638         unsigned long channels_mask = 0;
1639         int err, ch_irq, g_irq;
1640         bool fdmode = true;                     /* CAN FD only mode - default */
1641
1642         if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1643                 fdmode = false;                 /* Classical CAN only mode */
1644
1645         of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
1646         if (of_child && of_device_is_available(of_child))
1647                 channels_mask |= BIT(0);        /* Channel 0 */
1648
1649         of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
1650         if (of_child && of_device_is_available(of_child))
1651                 channels_mask |= BIT(1);        /* Channel 1 */
1652
1653         ch_irq = platform_get_irq(pdev, 0);
1654         if (ch_irq < 0) {
1655                 dev_err(&pdev->dev, "no Channel IRQ resource\n");
1656                 err = ch_irq;
1657                 goto fail_dev;
1658         }
1659
1660         g_irq = platform_get_irq(pdev, 1);
1661         if (g_irq < 0) {
1662                 dev_err(&pdev->dev, "no Global IRQ resource\n");
1663                 err = g_irq;
1664                 goto fail_dev;
1665         }
1666
1667         /* Global controller context */
1668         gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1669         if (!gpriv) {
1670                 err = -ENOMEM;
1671                 goto fail_dev;
1672         }
1673         gpriv->pdev = pdev;
1674         gpriv->channels_mask = channels_mask;
1675         gpriv->fdmode = fdmode;
1676
1677         /* Peripheral clock */
1678         gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1679         if (IS_ERR(gpriv->clkp)) {
1680                 err = PTR_ERR(gpriv->clkp);
1681                 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1682                         err);
1683                 goto fail_dev;
1684         }
1685
1686         /* fCAN clock: Pick External clock. If not available fallback to
1687          * CANFD clock
1688          */
1689         gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1690         if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1691                 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1692                 if (IS_ERR(gpriv->can_clk)) {
1693                         err = PTR_ERR(gpriv->can_clk);
1694                         dev_err(&pdev->dev,
1695                                 "cannot get canfd clock, error %d\n", err);
1696                         goto fail_dev;
1697                 }
1698                 gpriv->fcan = RCANFD_CANFDCLK;
1699
1700         } else {
1701                 gpriv->fcan = RCANFD_EXTCLK;
1702         }
1703         fcan_freq = clk_get_rate(gpriv->can_clk);
1704
1705         if (gpriv->fcan == RCANFD_CANFDCLK)
1706                 /* CANFD clock is further divided by (1/2) within the IP */
1707                 fcan_freq /= 2;
1708
1709         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1710         addr = devm_ioremap_resource(&pdev->dev, mem);
1711         if (IS_ERR(addr)) {
1712                 err = PTR_ERR(addr);
1713                 goto fail_dev;
1714         }
1715         gpriv->base = addr;
1716
1717         /* Request IRQ that's common for both channels */
1718         err = devm_request_irq(&pdev->dev, ch_irq,
1719                                rcar_canfd_channel_interrupt, 0,
1720                                "canfd.chn", gpriv);
1721         if (err) {
1722                 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1723                         ch_irq, err);
1724                 goto fail_dev;
1725         }
1726         err = devm_request_irq(&pdev->dev, g_irq,
1727                                rcar_canfd_global_interrupt, 0,
1728                                "canfd.gbl", gpriv);
1729         if (err) {
1730                 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1731                         g_irq, err);
1732                 goto fail_dev;
1733         }
1734
1735         /* Enable peripheral clock for register access */
1736         err = clk_prepare_enable(gpriv->clkp);
1737         if (err) {
1738                 dev_err(&pdev->dev,
1739                         "failed to enable peripheral clock, error %d\n", err);
1740                 goto fail_dev;
1741         }
1742
1743         err = rcar_canfd_reset_controller(gpriv);
1744         if (err) {
1745                 dev_err(&pdev->dev, "reset controller failed\n");
1746                 goto fail_clk;
1747         }
1748
1749         /* Controller in Global reset & Channel reset mode */
1750         rcar_canfd_configure_controller(gpriv);
1751
1752         /* Configure per channel attributes */
1753         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1754                 /* Configure Channel's Rx fifo */
1755                 rcar_canfd_configure_rx(gpriv, ch);
1756
1757                 /* Configure Channel's Tx (Common) fifo */
1758                 rcar_canfd_configure_tx(gpriv, ch);
1759
1760                 /* Configure receive rules */
1761                 rcar_canfd_configure_afl_rules(gpriv, ch);
1762         }
1763
1764         /* Configure common interrupts */
1765         rcar_canfd_enable_global_interrupts(gpriv);
1766
1767         /* Start Global operation mode */
1768         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
1769                               RCANFD_GCTR_GMDC_GOPM);
1770
1771         /* Verify mode change */
1772         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
1773                                  !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
1774         if (err) {
1775                 dev_err(&pdev->dev, "global operational mode failed\n");
1776                 goto fail_mode;
1777         }
1778
1779         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1780                 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
1781                 if (err)
1782                         goto fail_channel;
1783         }
1784
1785         platform_set_drvdata(pdev, gpriv);
1786         dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
1787                  gpriv->fcan, gpriv->fdmode);
1788         return 0;
1789
1790 fail_channel:
1791         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
1792                 rcar_canfd_channel_remove(gpriv, ch);
1793 fail_mode:
1794         rcar_canfd_disable_global_interrupts(gpriv);
1795 fail_clk:
1796         clk_disable_unprepare(gpriv->clkp);
1797 fail_dev:
1798         return err;
1799 }
1800
1801 static int rcar_canfd_remove(struct platform_device *pdev)
1802 {
1803         struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
1804         u32 ch;
1805
1806         rcar_canfd_reset_controller(gpriv);
1807         rcar_canfd_disable_global_interrupts(gpriv);
1808
1809         for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
1810                 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
1811                 rcar_canfd_channel_remove(gpriv, ch);
1812         }
1813
1814         /* Enter global sleep mode */
1815         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
1816         clk_disable_unprepare(gpriv->clkp);
1817         return 0;
1818 }
1819
1820 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
1821 {
1822         return 0;
1823 }
1824
1825 static int __maybe_unused rcar_canfd_resume(struct device *dev)
1826 {
1827         return 0;
1828 }
1829
1830 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
1831                          rcar_canfd_resume);
1832
1833 static const struct of_device_id rcar_canfd_of_table[] = {
1834         { .compatible = "renesas,rcar-gen3-canfd" },
1835         { }
1836 };
1837
1838 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
1839
1840 static struct platform_driver rcar_canfd_driver = {
1841         .driver = {
1842                 .name = RCANFD_DRV_NAME,
1843                 .of_match_table = of_match_ptr(rcar_canfd_of_table),
1844                 .pm = &rcar_canfd_pm_ops,
1845         },
1846         .probe = rcar_canfd_probe,
1847         .remove = rcar_canfd_remove,
1848 };
1849
1850 module_platform_driver(rcar_canfd_driver);
1851
1852 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
1853 MODULE_LICENSE("GPL");
1854 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
1855 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);