5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
23 * 04-14-2004 tglx: first working version for 2k page size chips
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
32 * David Woodhouse for adding multichip support
34 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
35 * rework for 2K page size chips
38 * Enable cached programming for 2k page size chips
39 * Check, if mtd->ecctype should be set to MTD_ECC_HW
40 * if we have HW ecc support.
41 * The AG-AND chips have nice features for speed improvement,
42 * which are not supported yet. Read / program 4 pages in one go.
44 * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
46 * This program is free software; you can redistribute it and/or modify
47 * it under the terms of the GNU General Public License version 2 as
48 * published by the Free Software Foundation.
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/sched.h>
57 #include <linux/slab.h>
58 #include <linux/types.h>
59 #include <linux/mtd/mtd.h>
60 #include <linux/mtd/nand.h>
61 #include <linux/mtd/nand_ecc.h>
62 #include <linux/mtd/compatmac.h>
63 #include <linux/interrupt.h>
64 #include <linux/bitops.h>
67 #ifdef CONFIG_MTD_PARTITIONS
68 #include <linux/mtd/partitions.h>
75 #ifdef CFG_NAND_LEGACY
76 #error CFG_NAND_LEGACY defined in a file not using the legacy NAND support!
79 #if (CONFIG_COMMANDS & CFG_CMD_NAND)
83 #include <linux/mtd/compat.h>
84 #include <linux/mtd/mtd.h>
85 #include <linux/mtd/nand.h>
86 #include <linux/mtd/nand_ecc.h>
89 #include <asm/errno.h>
91 #ifdef CONFIG_JFFS2_NAND
92 #include <jffs2/jffs2.h>
95 /* Define default oob placement schemes for large and small page devices */
96 static struct nand_oobinfo nand_oob_8 = {
97 .useecc = MTD_NANDECC_AUTOPLACE,
100 .oobfree = { {3, 2}, {6, 2} }
103 static struct nand_oobinfo nand_oob_16 = {
104 .useecc = MTD_NANDECC_AUTOPLACE,
106 .eccpos = {0, 1, 2, 3, 6, 7},
107 .oobfree = { {8, 8} }
110 static struct nand_oobinfo nand_oob_64 = {
111 .useecc = MTD_NANDECC_AUTOPLACE,
114 40, 41, 42, 43, 44, 45, 46, 47,
115 48, 49, 50, 51, 52, 53, 54, 55,
116 56, 57, 58, 59, 60, 61, 62, 63},
117 .oobfree = { {2, 38} }
120 /* This is used for padding purposes in nand_write_oob */
121 static u_char ffchars[] = {
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
133 * NAND low-level MTD interface functions
135 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
136 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
137 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
139 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
140 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
141 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
142 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
143 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
144 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
145 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
146 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
149 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
150 unsigned long count, loff_t to, size_t * retlen);
151 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
152 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
154 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
155 static void nand_sync (struct mtd_info *mtd);
157 /* Some internal functions */
158 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
159 struct nand_oobinfo *oobsel, int mode);
160 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
161 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
162 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
164 #define nand_verify_pages(...) (0)
167 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
170 * nand_release_device - [GENERIC] release chip
171 * @mtd: MTD device structure
173 * Deselect, release chip lock and wake up anyone waiting on the device
177 static void nand_release_device (struct mtd_info *mtd)
179 struct nand_chip *this = mtd->priv;
181 /* De-select the NAND device */
182 this->select_chip(mtd, -1);
183 /* Do we have a hardware controller ? */
184 if (this->controller) {
185 spin_lock(&this->controller->lock);
186 this->controller->active = NULL;
187 spin_unlock(&this->controller->lock);
189 /* Release the chip */
190 spin_lock (&this->chip_lock);
191 this->state = FL_READY;
193 spin_unlock (&this->chip_lock);
196 static void nand_release_device (struct mtd_info *mtd)
198 struct nand_chip *this = mtd->priv;
199 this->select_chip(mtd, -1); /* De-select the NAND device */
204 * nand_read_byte - [DEFAULT] read one byte from the chip
205 * @mtd: MTD device structure
207 * Default read function for 8bit buswith
209 static u_char nand_read_byte(struct mtd_info *mtd)
211 struct nand_chip *this = mtd->priv;
212 return readb(this->IO_ADDR_R);
216 * nand_write_byte - [DEFAULT] write one byte to the chip
217 * @mtd: MTD device structure
218 * @byte: pointer to data byte to write
220 * Default write function for 8it buswith
222 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
224 struct nand_chip *this = mtd->priv;
225 writeb(byte, this->IO_ADDR_W);
229 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
230 * @mtd: MTD device structure
232 * Default read function for 16bit buswith with
233 * endianess conversion
235 static u_char nand_read_byte16(struct mtd_info *mtd)
237 struct nand_chip *this = mtd->priv;
238 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
242 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
243 * @mtd: MTD device structure
244 * @byte: pointer to data byte to write
246 * Default write function for 16bit buswith with
247 * endianess conversion
249 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
251 struct nand_chip *this = mtd->priv;
252 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
256 * nand_read_word - [DEFAULT] read one word from the chip
257 * @mtd: MTD device structure
259 * Default read function for 16bit buswith without
260 * endianess conversion
262 static u16 nand_read_word(struct mtd_info *mtd)
264 struct nand_chip *this = mtd->priv;
265 return readw(this->IO_ADDR_R);
269 * nand_write_word - [DEFAULT] write one word to the chip
270 * @mtd: MTD device structure
271 * @word: data word to write
273 * Default write function for 16bit buswith without
274 * endianess conversion
276 static void nand_write_word(struct mtd_info *mtd, u16 word)
278 struct nand_chip *this = mtd->priv;
279 writew(word, this->IO_ADDR_W);
283 * nand_select_chip - [DEFAULT] control CE line
284 * @mtd: MTD device structure
285 * @chip: chipnumber to select, -1 for deselect
287 * Default select function for 1 chip devices.
289 static void nand_select_chip(struct mtd_info *mtd, int chip)
291 struct nand_chip *this = mtd->priv;
294 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
297 this->hwcontrol(mtd, NAND_CTL_SETNCE);
306 * nand_write_buf - [DEFAULT] write buffer to chip
307 * @mtd: MTD device structure
309 * @len: number of bytes to write
311 * Default write function for 8bit buswith
313 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
316 struct nand_chip *this = mtd->priv;
318 for (i=0; i<len; i++)
319 writeb(buf[i], this->IO_ADDR_W);
323 * nand_read_buf - [DEFAULT] read chip data into buffer
324 * @mtd: MTD device structure
325 * @buf: buffer to store date
326 * @len: number of bytes to read
328 * Default read function for 8bit buswith
330 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
333 struct nand_chip *this = mtd->priv;
335 for (i=0; i<len; i++)
336 buf[i] = readb(this->IO_ADDR_R);
340 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
341 * @mtd: MTD device structure
342 * @buf: buffer containing the data to compare
343 * @len: number of bytes to compare
345 * Default verify function for 8bit buswith
347 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
350 struct nand_chip *this = mtd->priv;
352 for (i=0; i<len; i++)
353 if (buf[i] != readb(this->IO_ADDR_R))
360 * nand_write_buf16 - [DEFAULT] write buffer to chip
361 * @mtd: MTD device structure
363 * @len: number of bytes to write
365 * Default write function for 16bit buswith
367 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
370 struct nand_chip *this = mtd->priv;
371 u16 *p = (u16 *) buf;
374 for (i=0; i<len; i++)
375 writew(p[i], this->IO_ADDR_W);
380 * nand_read_buf16 - [DEFAULT] read chip data into buffer
381 * @mtd: MTD device structure
382 * @buf: buffer to store date
383 * @len: number of bytes to read
385 * Default read function for 16bit buswith
387 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
390 struct nand_chip *this = mtd->priv;
391 u16 *p = (u16 *) buf;
394 for (i=0; i<len; i++)
395 p[i] = readw(this->IO_ADDR_R);
399 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
400 * @mtd: MTD device structure
401 * @buf: buffer containing the data to compare
402 * @len: number of bytes to compare
404 * Default verify function for 16bit buswith
406 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
409 struct nand_chip *this = mtd->priv;
410 u16 *p = (u16 *) buf;
413 for (i=0; i<len; i++)
414 if (p[i] != readw(this->IO_ADDR_R))
421 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
422 * @mtd: MTD device structure
423 * @ofs: offset from device start
424 * @getchip: 0, if the chip is already selected
426 * Check, if the block is bad.
428 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
430 int page, chipnr, res = 0;
431 struct nand_chip *this = mtd->priv;
435 page = (int)(ofs >> this->page_shift);
436 chipnr = (int)(ofs >> this->chip_shift);
438 /* Grab the lock and see if the device is available */
439 nand_get_device (this, mtd, FL_READING);
441 /* Select the NAND device */
442 this->select_chip(mtd, chipnr);
446 if (this->options & NAND_BUSWIDTH_16) {
447 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
448 bad = cpu_to_le16(this->read_word(mtd));
449 if (this->badblockpos & 0x1)
451 if ((bad & 0xFF) != 0xff)
454 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
455 if (this->read_byte(mtd) != 0xff)
460 /* Deselect and wake up anyone waiting on the device */
461 nand_release_device(mtd);
468 * nand_default_block_markbad - [DEFAULT] mark a block bad
469 * @mtd: MTD device structure
470 * @ofs: offset from device start
472 * This is the default implementation, which can be overridden by
473 * a hardware specific driver.
475 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
477 struct nand_chip *this = mtd->priv;
478 u_char buf[2] = {0, 0};
482 /* Get block number */
483 block = ((int) ofs) >> this->bbt_erase_shift;
484 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
486 /* Do we have a flash based bad block table ? */
487 if (this->options & NAND_USE_FLASH_BBT)
488 return nand_update_bbt (mtd, ofs);
490 /* We write two bytes, so we dont have to mess with 16 bit access */
491 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
492 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
496 * nand_check_wp - [GENERIC] check if the chip is write protected
497 * @mtd: MTD device structure
498 * Check, if the device is write protected
500 * The function expects, that the device is already selected
502 static int nand_check_wp (struct mtd_info *mtd)
504 struct nand_chip *this = mtd->priv;
505 /* Check the WP bit */
506 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
507 return (this->read_byte(mtd) & 0x80) ? 0 : 1;
511 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
512 * @mtd: MTD device structure
513 * @ofs: offset from device start
514 * @getchip: 0, if the chip is already selected
515 * @allowbbt: 1, if its allowed to access the bbt area
517 * Check, if the block is bad. Either by reading the bad block table or
518 * calling of the scan function.
520 static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
522 struct nand_chip *this = mtd->priv;
525 return this->block_bad(mtd, ofs, getchip);
527 /* Return info from the table */
528 return nand_isbad_bbt (mtd, ofs, allowbbt);
532 * nand_command - [DEFAULT] Send command to NAND device
533 * @mtd: MTD device structure
534 * @command: the command to be sent
535 * @column: the column address for this command, -1 if none
536 * @page_addr: the page address for this command, -1 if none
538 * Send command to NAND device. This function is used for small page
539 * devices (256/512 Bytes per page)
541 static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
543 register struct nand_chip *this = mtd->priv;
545 /* Begin command latch cycle */
546 this->hwcontrol(mtd, NAND_CTL_SETCLE);
548 * Write out the command to the device.
550 if (command == NAND_CMD_SEQIN) {
553 if (column >= mtd->oobblock) {
555 column -= mtd->oobblock;
556 readcmd = NAND_CMD_READOOB;
557 } else if (column < 256) {
558 /* First 256 bytes --> READ0 */
559 readcmd = NAND_CMD_READ0;
562 readcmd = NAND_CMD_READ1;
564 this->write_byte(mtd, readcmd);
566 this->write_byte(mtd, command);
568 /* Set ALE and clear CLE to start address cycle */
569 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
571 if (column != -1 || page_addr != -1) {
572 this->hwcontrol(mtd, NAND_CTL_SETALE);
574 /* Serially input address */
576 /* Adjust columns for 16 bit buswidth */
577 if (this->options & NAND_BUSWIDTH_16)
579 this->write_byte(mtd, column);
581 if (page_addr != -1) {
582 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
583 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
584 /* One more address cycle for devices > 32MiB */
585 if (this->chipsize > (32 << 20))
586 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
588 /* Latch in address */
589 this->hwcontrol(mtd, NAND_CTL_CLRALE);
593 * program and erase have their own busy handlers
594 * status and sequential in needs no delay
598 case NAND_CMD_PAGEPROG:
599 case NAND_CMD_ERASE1:
600 case NAND_CMD_ERASE2:
602 case NAND_CMD_STATUS:
608 udelay(this->chip_delay);
609 this->hwcontrol(mtd, NAND_CTL_SETCLE);
610 this->write_byte(mtd, NAND_CMD_STATUS);
611 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
612 while ( !(this->read_byte(mtd) & 0x40));
615 /* This applies to read commands */
618 * If we don't have access to the busy pin, we apply the given
621 if (!this->dev_ready) {
622 udelay (this->chip_delay);
627 /* Apply this short delay always to ensure that we do wait tWB in
628 * any case on any machine. */
630 /* wait until command is processed */
631 while (!this->dev_ready(mtd));
635 * nand_command_lp - [DEFAULT] Send command to NAND large page device
636 * @mtd: MTD device structure
637 * @command: the command to be sent
638 * @column: the column address for this command, -1 if none
639 * @page_addr: the page address for this command, -1 if none
641 * Send command to NAND device. This is the version for the new large page devices
642 * We dont have the seperate regions as we have in the small page devices.
643 * We must emulate NAND_CMD_READOOB to keep the code compatible.
646 static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
648 register struct nand_chip *this = mtd->priv;
650 /* Emulate NAND_CMD_READOOB */
651 if (command == NAND_CMD_READOOB) {
652 column += mtd->oobblock;
653 command = NAND_CMD_READ0;
657 /* Begin command latch cycle */
658 this->hwcontrol(mtd, NAND_CTL_SETCLE);
659 /* Write out the command to the device. */
660 this->write_byte(mtd, command);
661 /* End command latch cycle */
662 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
664 if (column != -1 || page_addr != -1) {
665 this->hwcontrol(mtd, NAND_CTL_SETALE);
667 /* Serially input address */
669 /* Adjust columns for 16 bit buswidth */
670 if (this->options & NAND_BUSWIDTH_16)
672 this->write_byte(mtd, column & 0xff);
673 this->write_byte(mtd, column >> 8);
675 if (page_addr != -1) {
676 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
677 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
678 /* One more address cycle for devices > 128MiB */
679 if (this->chipsize > (128 << 20))
680 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
682 /* Latch in address */
683 this->hwcontrol(mtd, NAND_CTL_CLRALE);
687 * program and erase have their own busy handlers
688 * status and sequential in needs no delay
692 case NAND_CMD_CACHEDPROG:
693 case NAND_CMD_PAGEPROG:
694 case NAND_CMD_ERASE1:
695 case NAND_CMD_ERASE2:
697 case NAND_CMD_STATUS:
704 udelay(this->chip_delay);
705 this->hwcontrol(mtd, NAND_CTL_SETCLE);
706 this->write_byte(mtd, NAND_CMD_STATUS);
707 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
708 while ( !(this->read_byte(mtd) & 0x40));
712 /* Begin command latch cycle */
713 this->hwcontrol(mtd, NAND_CTL_SETCLE);
714 /* Write out the start read command */
715 this->write_byte(mtd, NAND_CMD_READSTART);
716 /* End command latch cycle */
717 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
718 /* Fall through into ready check */
720 /* This applies to read commands */
723 * If we don't have access to the busy pin, we apply the given
726 if (!this->dev_ready) {
727 udelay (this->chip_delay);
732 /* Apply this short delay always to ensure that we do wait tWB in
733 * any case on any machine. */
735 /* wait until command is processed */
736 while (!this->dev_ready(mtd));
740 * nand_get_device - [GENERIC] Get chip for selected access
741 * @this: the nand chip descriptor
742 * @mtd: MTD device structure
743 * @new_state: the state which is requested
745 * Get the device and lock it for exclusive access
749 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
751 struct nand_chip *active = this;
753 DECLARE_WAITQUEUE (wait, current);
756 * Grab the lock and see if the device is available
759 /* Hardware controller shared among independend devices */
760 if (this->controller) {
761 spin_lock (&this->controller->lock);
762 if (this->controller->active)
763 active = this->controller->active;
765 this->controller->active = this;
766 spin_unlock (&this->controller->lock);
769 if (active == this) {
770 spin_lock (&this->chip_lock);
771 if (this->state == FL_READY) {
772 this->state = new_state;
773 spin_unlock (&this->chip_lock);
777 set_current_state (TASK_UNINTERRUPTIBLE);
778 add_wait_queue (&active->wq, &wait);
779 spin_unlock (&active->chip_lock);
781 remove_wait_queue (&active->wq, &wait);
785 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
789 * nand_wait - [DEFAULT] wait until the command is done
790 * @mtd: MTD device structure
791 * @this: NAND chip structure
792 * @state: state to select the max. timeout value
794 * Wait for command done. This applies to erase and program only
795 * Erase can take up to 400ms and program up to 20ms according to
796 * general NAND and SmartMedia specs
801 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
803 unsigned long timeo = jiffies;
806 if (state == FL_ERASING)
807 timeo += (HZ * 400) / 1000;
809 timeo += (HZ * 20) / 1000;
811 /* Apply this short delay always to ensure that we do wait tWB in
812 * any case on any machine. */
815 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
816 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
818 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
820 while (time_before(jiffies, timeo)) {
821 /* Check, if we were interrupted */
822 if (this->state != state)
825 if (this->dev_ready) {
826 if (this->dev_ready(mtd))
829 if (this->read_byte(mtd) & NAND_STATUS_READY)
834 status = (int) this->read_byte(mtd);
840 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
844 if (state == FL_ERASING)
845 timeo = CFG_HZ * 400;
849 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
850 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
852 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
857 if (get_timer(0) > timeo) {
862 if (this->dev_ready) {
863 if (this->dev_ready(mtd))
866 if (this->read_byte(mtd) & NAND_STATUS_READY)
870 #ifdef PPCHAMELON_NAND_TIMER_HACK
872 while (get_timer(0) < 10);
873 #endif /* PPCHAMELON_NAND_TIMER_HACK */
875 return this->read_byte(mtd);
880 * nand_write_page - [GENERIC] write one page
881 * @mtd: MTD device structure
882 * @this: NAND chip structure
883 * @page: startpage inside the chip, must be called with (page & this->pagemask)
884 * @oob_buf: out of band data buffer
885 * @oobsel: out of band selecttion structre
886 * @cached: 1 = enable cached programming if supported by chip
888 * Nand_page_program function is used for write and writev !
889 * This function will always program a full page of data
890 * If you call it with a non page aligned buffer, you're lost :)
892 * Cached programming is not supported yet.
894 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
895 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
899 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
900 int *oob_config = oobsel->eccpos;
901 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
904 /* FIXME: Enable cached programming */
907 /* Send command to begin auto page programming */
908 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
910 /* Write out complete page of data, take care of eccmode */
912 /* No ecc, write all */
914 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
915 this->write_buf(mtd, this->data_poi, mtd->oobblock);
918 /* Software ecc 3/256, write all */
920 for (; eccsteps; eccsteps--) {
921 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
922 for (i = 0; i < 3; i++, eccidx++)
923 oob_buf[oob_config[eccidx]] = ecc_code[i];
924 datidx += this->eccsize;
926 this->write_buf(mtd, this->data_poi, mtd->oobblock);
929 eccbytes = this->eccbytes;
930 for (; eccsteps; eccsteps--) {
931 /* enable hardware ecc logic for write */
932 this->enable_hwecc(mtd, NAND_ECC_WRITE);
933 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
934 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
935 for (i = 0; i < eccbytes; i++, eccidx++)
936 oob_buf[oob_config[eccidx]] = ecc_code[i];
937 /* If the hardware ecc provides syndromes then
938 * the ecc code must be written immidiately after
939 * the data bytes (words) */
940 if (this->options & NAND_HWECC_SYNDROME)
941 this->write_buf(mtd, ecc_code, eccbytes);
942 datidx += this->eccsize;
947 /* Write out OOB data */
948 if (this->options & NAND_HWECC_SYNDROME)
949 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
951 this->write_buf(mtd, oob_buf, mtd->oobsize);
953 /* Send command to actually program the data */
954 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
957 /* call wait ready function */
958 status = this->waitfunc (mtd, this, FL_WRITING);
959 /* See if device thinks it succeeded */
961 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
965 /* FIXME: Implement cached programming ! */
966 /* wait until cache is ready*/
967 /* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */
972 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
974 * nand_verify_pages - [GENERIC] verify the chip contents after a write
975 * @mtd: MTD device structure
976 * @this: NAND chip structure
977 * @page: startpage inside the chip, must be called with (page & this->pagemask)
978 * @numpages: number of pages to verify
979 * @oob_buf: out of band data buffer
980 * @oobsel: out of band selecttion structre
981 * @chipnr: number of the current chip
982 * @oobmode: 1 = full buffer verify, 0 = ecc only
984 * The NAND device assumes that it is always writing to a cleanly erased page.
985 * Hence, it performs its internal write verification only on bits that
986 * transitioned from 1 to 0. The device does NOT verify the whole page on a
987 * byte by byte basis. It is possible that the page was not completely erased
988 * or the page is becoming unusable due to wear. The read with ECC would catch
989 * the error later when the ECC page check fails, but we would rather catch
990 * it early in the page write stage. Better to write no data than invalid data.
992 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
993 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
995 int i, j, datidx = 0, oobofs = 0, res = -EIO;
996 int eccsteps = this->eccsteps;
1000 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
1002 /* Send command to read back the first page */
1003 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
1006 for (j = 0; j < eccsteps; j++) {
1007 /* Loop through and verify the data */
1008 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
1009 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1012 datidx += mtd->eccsize;
1013 /* Have we a hw generator layout ? */
1016 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
1017 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1020 oobofs += hweccbytes;
1023 /* check, if we must compare all data or if we just have to
1024 * compare the ecc bytes
1027 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
1028 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1032 /* Read always, else autoincrement fails */
1033 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1035 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1036 int ecccnt = oobsel->eccbytes;
1038 for (i = 0; i < ecccnt; i++) {
1039 int idx = oobsel->eccpos[i];
1040 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1041 DEBUG (MTD_DEBUG_LEVEL0,
1042 "%s: Failed ECC write "
1043 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1049 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1053 /* Apply delay or wait for ready/busy pin
1054 * Do this before the AUTOINCR check, so no problems
1055 * arise if a chip which does auto increment
1056 * is marked as NOAUTOINCR by the board driver.
1057 * Do this also before returning, so the chip is
1058 * ready for the next command.
1060 if (!this->dev_ready)
1061 udelay (this->chip_delay);
1063 while (!this->dev_ready(mtd));
1065 /* All done, return happy */
1070 /* Check, if the chip supports auto page increment */
1071 if (!NAND_CANAUTOINCR(this))
1072 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1075 * Terminate the read command. We come here in case of an error
1076 * So we must issue a reset command.
1079 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1085 * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
1086 * @mtd: MTD device structure
1087 * @from: offset to read from
1088 * @len: number of bytes to read
1089 * @retlen: pointer to variable to store the number of read bytes
1090 * @buf: the databuffer to put data
1092 * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
1094 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1096 return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
1101 * nand_read_ecc - [MTD Interface] Read data with ECC
1102 * @mtd: MTD device structure
1103 * @from: offset to read from
1104 * @len: number of bytes to read
1105 * @retlen: pointer to variable to store the number of read bytes
1106 * @buf: the databuffer to put data
1107 * @oob_buf: filesystem supplied oob data buffer
1108 * @oobsel: oob selection structure
1110 * NAND read with ECC
1112 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1113 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1115 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1116 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1117 struct nand_chip *this = mtd->priv;
1118 u_char *data_poi, *oob_data = oob_buf;
1119 u_char ecc_calc[32];
1120 u_char ecc_code[32];
1121 int eccmode, eccsteps;
1122 int *oob_config, datidx;
1123 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1129 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1131 /* Do not allow reads past end of device */
1132 if ((from + len) > mtd->size) {
1133 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1138 /* Grab the lock and see if the device is available */
1139 nand_get_device (this, mtd ,FL_READING);
1141 /* use userspace supplied oobinfo, if zero */
1143 oobsel = &mtd->oobinfo;
1145 /* Autoplace of oob data ? Use the default placement scheme */
1146 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1147 oobsel = this->autooob;
1149 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1150 oob_config = oobsel->eccpos;
1152 /* Select the NAND device */
1153 chipnr = (int)(from >> this->chip_shift);
1154 this->select_chip(mtd, chipnr);
1156 /* First we calculate the starting page */
1157 realpage = (int) (from >> this->page_shift);
1158 page = realpage & this->pagemask;
1160 /* Get raw starting column */
1161 col = from & (mtd->oobblock - 1);
1163 end = mtd->oobblock;
1164 ecc = this->eccsize;
1165 eccbytes = this->eccbytes;
1167 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1170 oobreadlen = mtd->oobsize;
1171 if (this->options & NAND_HWECC_SYNDROME)
1172 oobreadlen -= oobsel->eccbytes;
1174 /* Loop until all data read */
1175 while (read < len) {
1177 int aligned = (!col && (len - read) >= end);
1179 * If the read is not page aligned, we have to read into data buffer
1180 * due to ecc, else we read into return buffer direct
1183 data_poi = &buf[read];
1185 data_poi = this->data_buf;
1187 /* Check, if we have this page in the buffer
1189 * FIXME: Make it work when we must provide oob data too,
1190 * check the usage of data_buf oob field
1192 if (realpage == this->pagebuf && !oob_buf) {
1193 /* aligned read ? */
1195 memcpy (data_poi, this->data_buf, end);
1199 /* Check, if we must send the read command */
1201 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1205 /* get oob area, if we have no oob buffer from fs-driver */
1206 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1207 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1208 oob_data = &this->data_buf[end];
1210 eccsteps = this->eccsteps;
1213 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1214 /* XXX U-BOOT XXX */
1216 static unsigned long lastwhinge = 0;
1217 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1218 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1219 lastwhinge = jiffies;
1222 puts("Reading data from NAND FLASH without ECC is not recommended\n");
1224 this->read_buf(mtd, data_poi, end);
1228 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1229 this->read_buf(mtd, data_poi, end);
1230 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1231 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1235 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1236 this->enable_hwecc(mtd, NAND_ECC_READ);
1237 this->read_buf(mtd, &data_poi[datidx], ecc);
1239 /* HW ecc with syndrome calculation must read the
1240 * syndrome from flash immidiately after the data */
1242 /* Some hw ecc generators need to know when the
1243 * syndrome is read from flash */
1244 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1245 this->read_buf(mtd, &oob_data[i], eccbytes);
1246 /* We calc error correction directly, it checks the hw
1247 * generator for an error, reads back the syndrome and
1248 * does the error correction on the fly */
1249 if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
1250 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1251 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1255 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1262 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1264 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1268 /* Pick the ECC bytes out of the oob data */
1269 for (j = 0; j < oobsel->eccbytes; j++)
1270 ecc_code[j] = oob_data[oob_config[j]];
1272 /* correct data, if neccecary */
1273 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1274 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1276 /* Get next chunk of ecc bytes */
1279 /* Check, if we have a fs supplied oob-buffer,
1280 * This is the legacy mode. Used by YAFFS1
1281 * Should go away some day
1283 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1284 int *p = (int *)(&oob_data[mtd->oobsize]);
1288 if (ecc_status == -1) {
1289 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1295 /* check, if we have a fs supplied oob-buffer */
1297 /* without autoplace. Legacy mode used by YAFFS1 */
1298 switch(oobsel->useecc) {
1299 case MTD_NANDECC_AUTOPLACE:
1300 case MTD_NANDECC_AUTOPL_USR:
1301 /* Walk through the autoplace chunks */
1302 for (i = 0, j = 0; j < mtd->oobavail; i++) {
1303 int from = oobsel->oobfree[i][0];
1304 int num = oobsel->oobfree[i][1];
1305 memcpy(&oob_buf[oob], &oob_data[from], num);
1308 oob += mtd->oobavail;
1310 case MTD_NANDECC_PLACE:
1311 /* YAFFS1 legacy mode */
1312 oob_data += this->eccsteps * sizeof (int);
1314 oob_data += mtd->oobsize;
1318 /* Partial page read, transfer data into fs buffer */
1320 for (j = col; j < end && read < len; j++)
1321 buf[read++] = data_poi[j];
1322 this->pagebuf = realpage;
1324 read += mtd->oobblock;
1326 /* Apply delay or wait for ready/busy pin
1327 * Do this before the AUTOINCR check, so no problems
1328 * arise if a chip which does auto increment
1329 * is marked as NOAUTOINCR by the board driver.
1331 if (!this->dev_ready)
1332 udelay (this->chip_delay);
1334 while (!this->dev_ready(mtd));
1339 /* For subsequent reads align to page boundary. */
1341 /* Increment page address */
1344 page = realpage & this->pagemask;
1345 /* Check, if we cross a chip boundary */
1348 this->select_chip(mtd, -1);
1349 this->select_chip(mtd, chipnr);
1351 /* Check, if the chip supports auto page increment
1352 * or if we have hit a block boundary.
1354 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1358 /* Deselect and wake up anyone waiting on the device */
1359 nand_release_device(mtd);
1362 * Return success, if no ECC failures, else -EBADMSG
1363 * fs driver will take care of that, because
1364 * retlen == desired len and result == -EBADMSG
1367 return ecc_failed ? -EBADMSG : 0;
1371 * nand_read_oob - [MTD Interface] NAND read out-of-band
1372 * @mtd: MTD device structure
1373 * @from: offset to read from
1374 * @len: number of bytes to read
1375 * @retlen: pointer to variable to store the number of read bytes
1376 * @buf: the databuffer to put data
1378 * NAND read out-of-band data from the spare area
1380 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1382 int i, col, page, chipnr;
1383 struct nand_chip *this = mtd->priv;
1384 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1386 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1388 /* Shift to get page */
1389 page = (int)(from >> this->page_shift);
1390 chipnr = (int)(from >> this->chip_shift);
1392 /* Mask to get column */
1393 col = from & (mtd->oobsize - 1);
1395 /* Initialize return length value */
1398 /* Do not allow reads past end of device */
1399 if ((from + len) > mtd->size) {
1400 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1405 /* Grab the lock and see if the device is available */
1406 nand_get_device (this, mtd , FL_READING);
1408 /* Select the NAND device */
1409 this->select_chip(mtd, chipnr);
1411 /* Send the read command */
1412 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1414 * Read the data, if we read more than one page
1415 * oob data, let the device transfer the data !
1419 int thislen = mtd->oobsize - col;
1420 thislen = min_t(int, thislen, len);
1421 this->read_buf(mtd, &buf[i], thislen);
1424 /* Apply delay or wait for ready/busy pin
1425 * Do this before the AUTOINCR check, so no problems
1426 * arise if a chip which does auto increment
1427 * is marked as NOAUTOINCR by the board driver.
1429 if (!this->dev_ready)
1430 udelay (this->chip_delay);
1432 while (!this->dev_ready(mtd));
1439 /* Check, if we cross a chip boundary */
1440 if (!(page & this->pagemask)) {
1442 this->select_chip(mtd, -1);
1443 this->select_chip(mtd, chipnr);
1446 /* Check, if the chip supports auto page increment
1447 * or if we have hit a block boundary.
1449 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1450 /* For subsequent page reads set offset to 0 */
1451 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1456 /* Deselect and wake up anyone waiting on the device */
1457 nand_release_device(mtd);
1465 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1466 * @mtd: MTD device structure
1467 * @buf: temporary buffer
1468 * @from: offset to read from
1469 * @len: number of bytes to read
1470 * @ooblen: number of oob data bytes to read
1472 * Read raw data including oob into buffer
1474 int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1476 struct nand_chip *this = mtd->priv;
1477 int page = (int) (from >> this->page_shift);
1478 int chip = (int) (from >> this->chip_shift);
1481 int pagesize = mtd->oobblock + mtd->oobsize;
1482 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1484 /* Do not allow reads past end of device */
1485 if ((from + len) > mtd->size) {
1486 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1490 /* Grab the lock and see if the device is available */
1491 nand_get_device (this, mtd , FL_READING);
1493 this->select_chip (mtd, chip);
1495 /* Add requested oob length */
1500 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1503 this->read_buf (mtd, &buf[cnt], pagesize);
1509 if (!this->dev_ready)
1510 udelay (this->chip_delay);
1512 while (!this->dev_ready(mtd));
1514 /* Check, if the chip supports auto page increment */
1515 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1519 /* Deselect and wake up anyone waiting on the device */
1520 nand_release_device(mtd);
1526 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1527 * @mtd: MTD device structure
1528 * @fsbuf: buffer given by fs driver
1529 * @oobsel: out of band selection structre
1530 * @autoplace: 1 = place given buffer into the oob bytes
1531 * @numpages: number of pages to prepare
1534 * 1. Filesystem buffer available and autoplacement is off,
1535 * return filesystem buffer
1536 * 2. No filesystem buffer or autoplace is off, return internal
1538 * 3. Filesystem buffer is given and autoplace selected
1539 * put data from fs buffer into internal buffer and
1540 * retrun internal buffer
1542 * Note: The internal buffer is filled with 0xff. This must
1543 * be done only once, when no autoplacement happens
1544 * Autoplacement sets the buffer dirty flag, which
1545 * forces the 0xff fill before using the buffer again.
1548 static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1549 int autoplace, int numpages)
1551 struct nand_chip *this = mtd->priv;
1554 /* Zero copy fs supplied buffer */
1555 if (fsbuf && !autoplace)
1558 /* Check, if the buffer must be filled with ff again */
1559 if (this->oobdirty) {
1560 memset (this->oob_buf, 0xff,
1561 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1565 /* If we have no autoplacement or no fs buffer use the internal one */
1566 if (!autoplace || !fsbuf)
1567 return this->oob_buf;
1569 /* Walk through the pages and place the data */
1572 while (numpages--) {
1573 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1574 int to = ofs + oobsel->oobfree[i][0];
1575 int num = oobsel->oobfree[i][1];
1576 memcpy (&this->oob_buf[to], fsbuf, num);
1580 ofs += mtd->oobavail;
1582 return this->oob_buf;
1585 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1588 * nand_write - [MTD Interface] compability function for nand_write_ecc
1589 * @mtd: MTD device structure
1590 * @to: offset to write to
1591 * @len: number of bytes to write
1592 * @retlen: pointer to variable to store the number of written bytes
1593 * @buf: the data to write
1595 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1598 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1600 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1604 * nand_write_ecc - [MTD Interface] NAND write with ECC
1605 * @mtd: MTD device structure
1606 * @to: offset to write to
1607 * @len: number of bytes to write
1608 * @retlen: pointer to variable to store the number of written bytes
1609 * @buf: the data to write
1610 * @eccbuf: filesystem supplied oob data buffer
1611 * @oobsel: oob selection structure
1613 * NAND write with ECC
1615 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1616 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1618 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1619 int autoplace = 0, numpages, totalpages;
1620 struct nand_chip *this = mtd->priv;
1621 u_char *oobbuf, *bufstart;
1622 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1624 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1626 /* Initialize retlen, in case of early exit */
1629 /* Do not allow write past end of device */
1630 if ((to + len) > mtd->size) {
1631 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1635 /* reject writes, which are not page aligned */
1636 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1637 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1641 /* Grab the lock and see if the device is available */
1642 nand_get_device (this, mtd, FL_WRITING);
1644 /* Calculate chipnr */
1645 chipnr = (int)(to >> this->chip_shift);
1646 /* Select the NAND device */
1647 this->select_chip(mtd, chipnr);
1649 /* Check, if it is write protected */
1650 if (nand_check_wp(mtd))
1653 /* if oobsel is NULL, use chip defaults */
1655 oobsel = &mtd->oobinfo;
1657 /* Autoplace of oob data ? Use the default placement scheme */
1658 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1659 oobsel = this->autooob;
1662 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1665 /* Setup variables and oob buffer */
1666 totalpages = len >> this->page_shift;
1667 page = (int) (to >> this->page_shift);
1668 /* Invalidate the page cache, if we write to the cached page */
1669 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1672 /* Set it relative to chip */
1673 page &= this->pagemask;
1675 /* Calc number of pages we can write in one go */
1676 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1677 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1678 bufstart = (u_char *)buf;
1680 /* Loop until all data is written */
1681 while (written < len) {
1683 this->data_poi = (u_char*) &buf[written];
1684 /* Write one page. If this is the last page to write
1685 * or the last page in this block, then use the
1686 * real pageprogram command, else select cached programming
1687 * if supported by the chip.
1689 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1691 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1695 oob += mtd->oobsize;
1696 /* Update written bytes count */
1697 written += mtd->oobblock;
1701 /* Increment page address */
1704 /* Have we hit a block boundary ? Then we have to verify and
1705 * if verify is ok, we have to setup the oob buffer for
1708 if (!(page & (ppblock - 1))){
1710 this->data_poi = bufstart;
1711 ret = nand_verify_pages (mtd, this, startpage,
1713 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1715 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1720 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1722 eccbuf += (page - startpage) * ofs;
1723 totalpages -= page - startpage;
1724 numpages = min (totalpages, ppblock);
1725 page &= this->pagemask;
1727 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1728 autoplace, numpages);
1729 /* Check, if we cross a chip boundary */
1732 this->select_chip(mtd, -1);
1733 this->select_chip(mtd, chipnr);
1737 /* Verify the remaining pages */
1739 this->data_poi = bufstart;
1740 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1741 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1745 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1748 /* Deselect and wake up anyone waiting on the device */
1749 nand_release_device(mtd);
1756 * nand_write_oob - [MTD Interface] NAND write out-of-band
1757 * @mtd: MTD device structure
1758 * @to: offset to write to
1759 * @len: number of bytes to write
1760 * @retlen: pointer to variable to store the number of written bytes
1761 * @buf: the data to write
1763 * NAND write out-of-band
1765 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1767 int column, page, status, ret = -EIO, chipnr;
1768 struct nand_chip *this = mtd->priv;
1770 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1772 /* Shift to get page */
1773 page = (int) (to >> this->page_shift);
1774 chipnr = (int) (to >> this->chip_shift);
1776 /* Mask to get column */
1777 column = to & (mtd->oobsize - 1);
1779 /* Initialize return length value */
1782 /* Do not allow write past end of page */
1783 if ((column + len) > mtd->oobsize) {
1784 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1788 /* Grab the lock and see if the device is available */
1789 nand_get_device (this, mtd, FL_WRITING);
1791 /* Select the NAND device */
1792 this->select_chip(mtd, chipnr);
1794 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1795 in one of my DiskOnChip 2000 test units) will clear the whole
1796 data page too if we don't do this. I have no clue why, but
1797 I seem to have 'fixed' it in the doc2000 driver in
1798 August 1999. dwmw2. */
1799 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1801 /* Check, if it is write protected */
1802 if (nand_check_wp(mtd))
1805 /* Invalidate the page cache, if we write to the cached page */
1806 if (page == this->pagebuf)
1809 if (NAND_MUST_PAD(this)) {
1810 /* Write out desired data */
1811 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1812 /* prepad 0xff for partial programming */
1813 this->write_buf(mtd, ffchars, column);
1815 this->write_buf(mtd, buf, len);
1816 /* postpad 0xff for partial programming */
1817 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1819 /* Write out desired data */
1820 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1822 this->write_buf(mtd, buf, len);
1824 /* Send command to program the OOB data */
1825 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1827 status = this->waitfunc (mtd, this, FL_WRITING);
1829 /* See if device thinks it succeeded */
1830 if (status & 0x01) {
1831 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1838 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1839 /* Send command to read back the data */
1840 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1842 if (this->verify_buf(mtd, buf, len)) {
1843 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1850 /* Deselect and wake up anyone waiting on the device */
1851 nand_release_device(mtd);
1856 /* XXX U-BOOT XXX */
1859 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1860 * @mtd: MTD device structure
1861 * @vecs: the iovectors to write
1862 * @count: number of vectors
1863 * @to: offset to write to
1864 * @retlen: pointer to variable to store the number of written bytes
1866 * NAND write with kvec. This just calls the ecc function
1868 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1869 loff_t to, size_t * retlen)
1871 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1875 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1876 * @mtd: MTD device structure
1877 * @vecs: the iovectors to write
1878 * @count: number of vectors
1879 * @to: offset to write to
1880 * @retlen: pointer to variable to store the number of written bytes
1881 * @eccbuf: filesystem supplied oob data buffer
1882 * @oobsel: oob selection structure
1884 * NAND write with iovec with ecc
1886 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1887 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1889 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1890 int oob, numpages, autoplace = 0, startpage;
1891 struct nand_chip *this = mtd->priv;
1892 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1893 u_char *oobbuf, *bufstart;
1895 /* Preset written len for early exit */
1898 /* Calculate total length of data */
1900 for (i = 0; i < count; i++)
1901 total_len += (int) vecs[i].iov_len;
1903 DEBUG (MTD_DEBUG_LEVEL3,
1904 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1906 /* Do not allow write past end of page */
1907 if ((to + total_len) > mtd->size) {
1908 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1912 /* reject writes, which are not page aligned */
1913 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1914 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1918 /* Grab the lock and see if the device is available */
1919 nand_get_device (this, mtd, FL_WRITING);
1921 /* Get the current chip-nr */
1922 chipnr = (int) (to >> this->chip_shift);
1923 /* Select the NAND device */
1924 this->select_chip(mtd, chipnr);
1926 /* Check, if it is write protected */
1927 if (nand_check_wp(mtd))
1930 /* if oobsel is NULL, use chip defaults */
1932 oobsel = &mtd->oobinfo;
1934 /* Autoplace of oob data ? Use the default placement scheme */
1935 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1936 oobsel = this->autooob;
1939 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1942 /* Setup start page */
1943 page = (int) (to >> this->page_shift);
1944 /* Invalidate the page cache, if we write to the cached page */
1945 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1948 startpage = page & this->pagemask;
1950 /* Loop until all kvec' data has been written */
1953 /* If the given tuple is >= pagesize then
1954 * write it out from the iov
1956 if ((vecs->iov_len - len) >= mtd->oobblock) {
1957 /* Calc number of pages we can write
1958 * out of this iov in one go */
1959 numpages = (vecs->iov_len - len) >> this->page_shift;
1960 /* Do not cross block boundaries */
1961 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1962 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1963 bufstart = (u_char *)vecs->iov_base;
1965 this->data_poi = bufstart;
1967 for (i = 1; i <= numpages; i++) {
1968 /* Write one page. If this is the last page to write
1969 * then use the real pageprogram command, else select
1970 * cached programming if supported by the chip.
1972 ret = nand_write_page (mtd, this, page & this->pagemask,
1973 &oobbuf[oob], oobsel, i != numpages);
1976 this->data_poi += mtd->oobblock;
1977 len += mtd->oobblock;
1978 oob += mtd->oobsize;
1981 /* Check, if we have to switch to the next tuple */
1982 if (len >= (int) vecs->iov_len) {
1988 /* We must use the internal buffer, read data out of each
1989 * tuple until we have a full page to write
1992 while (cnt < mtd->oobblock) {
1993 if (vecs->iov_base != NULL && vecs->iov_len)
1994 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1995 /* Check, if we have to switch to the next tuple */
1996 if (len >= (int) vecs->iov_len) {
2002 this->pagebuf = page;
2003 this->data_poi = this->data_buf;
2004 bufstart = this->data_poi;
2006 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
2007 ret = nand_write_page (mtd, this, page & this->pagemask,
2014 this->data_poi = bufstart;
2015 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2019 written += mtd->oobblock * numpages;
2024 startpage = page & this->pagemask;
2025 /* Check, if we cross a chip boundary */
2028 this->select_chip(mtd, -1);
2029 this->select_chip(mtd, chipnr);
2034 /* Deselect and wake up anyone waiting on the device */
2035 nand_release_device(mtd);
2043 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2044 * @mtd: MTD device structure
2045 * @page: the page address of the block which will be erased
2047 * Standard erase command for NAND chips
2049 static void single_erase_cmd (struct mtd_info *mtd, int page)
2051 struct nand_chip *this = mtd->priv;
2052 /* Send commands to erase a block */
2053 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2054 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2058 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2059 * @mtd: MTD device structure
2060 * @page: the page address of the block which will be erased
2062 * AND multi block erase command function
2063 * Erase 4 consecutive blocks
2065 static void multi_erase_cmd (struct mtd_info *mtd, int page)
2067 struct nand_chip *this = mtd->priv;
2068 /* Send commands to erase a block */
2069 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2070 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2071 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2072 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2073 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2077 * nand_erase - [MTD Interface] erase block(s)
2078 * @mtd: MTD device structure
2079 * @instr: erase instruction
2081 * Erase one ore more blocks
2083 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2085 return nand_erase_nand (mtd, instr, 0);
2089 * nand_erase_intern - [NAND Interface] erase block(s)
2090 * @mtd: MTD device structure
2091 * @instr: erase instruction
2092 * @allowbbt: allow erasing the bbt area
2094 * Erase one ore more blocks
2096 int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2098 int page, len, status, pages_per_block, ret, chipnr;
2099 struct nand_chip *this = mtd->priv;
2101 DEBUG (MTD_DEBUG_LEVEL3,
2102 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2104 /* Start address must align on block boundary */
2105 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2106 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2110 /* Length must align on block boundary */
2111 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2112 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2116 /* Do not allow erase past end of device */
2117 if ((instr->len + instr->addr) > mtd->size) {
2118 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2122 instr->fail_addr = 0xffffffff;
2124 /* Grab the lock and see if the device is available */
2125 nand_get_device (this, mtd, FL_ERASING);
2127 /* Shift to get first page */
2128 page = (int) (instr->addr >> this->page_shift);
2129 chipnr = (int) (instr->addr >> this->chip_shift);
2131 /* Calculate pages in each block */
2132 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2134 /* Select the NAND device */
2135 this->select_chip(mtd, chipnr);
2137 /* Check the WP bit */
2138 /* Check, if it is write protected */
2139 if (nand_check_wp(mtd)) {
2140 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2141 instr->state = MTD_ERASE_FAILED;
2145 /* Loop through the pages */
2148 instr->state = MTD_ERASING;
2151 /* Check if we have a bad block, we do not erase bad blocks ! */
2152 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2153 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2154 instr->state = MTD_ERASE_FAILED;
2158 /* Invalidate the page cache, if we erase the block which contains
2159 the current cached page */
2160 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2163 this->erase_cmd (mtd, page & this->pagemask);
2165 status = this->waitfunc (mtd, this, FL_ERASING);
2167 /* See if block erase succeeded */
2168 if (status & 0x01) {
2169 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2170 instr->state = MTD_ERASE_FAILED;
2171 instr->fail_addr = (page << this->page_shift);
2175 /* Increment page address and decrement length */
2176 len -= (1 << this->phys_erase_shift);
2177 page += pages_per_block;
2179 /* Check, if we cross a chip boundary */
2180 if (len && !(page & this->pagemask)) {
2182 this->select_chip(mtd, -1);
2183 this->select_chip(mtd, chipnr);
2186 instr->state = MTD_ERASE_DONE;
2190 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2191 /* Do call back function */
2193 mtd_erase_callback(instr);
2195 /* Deselect and wake up anyone waiting on the device */
2196 nand_release_device(mtd);
2198 /* Return more or less happy */
2203 * nand_sync - [MTD Interface] sync
2204 * @mtd: MTD device structure
2206 * Sync is actually a wait for chip ready function
2208 static void nand_sync (struct mtd_info *mtd)
2210 struct nand_chip *this = mtd->priv;
2212 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2214 /* Grab the lock and see if the device is available */
2215 nand_get_device (this, mtd, FL_SYNCING);
2216 /* Release it and go back */
2217 nand_release_device (mtd);
2222 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2223 * @mtd: MTD device structure
2224 * @ofs: offset relative to mtd start
2226 static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2228 /* Check for invalid offset */
2229 if (ofs > mtd->size)
2232 return nand_block_checkbad (mtd, ofs, 1, 0);
2236 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2237 * @mtd: MTD device structure
2238 * @ofs: offset relative to mtd start
2240 static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2242 struct nand_chip *this = mtd->priv;
2245 if ((ret = nand_block_isbad(mtd, ofs))) {
2246 /* If it was bad already, return success and do nothing. */
2252 return this->block_markbad(mtd, ofs);
2256 * nand_scan - [NAND Interface] Scan for the NAND device
2257 * @mtd: MTD device structure
2258 * @maxchips: Number of chips to scan for
2260 * This fills out all the not initialized function pointers
2261 * with the defaults.
2262 * The flash ID is read and the mtd/chip structures are
2263 * filled with the appropriate values. Buffers are allocated if
2264 * they are not provided by the board driver
2267 int nand_scan (struct mtd_info *mtd, int maxchips)
2269 int i, j, nand_maf_id, nand_dev_id, busw;
2270 struct nand_chip *this = mtd->priv;
2272 /* Get buswidth to select the correct functions*/
2273 busw = this->options & NAND_BUSWIDTH_16;
2275 /* check for proper chip_delay setup, set 20us if not */
2276 if (!this->chip_delay)
2277 this->chip_delay = 20;
2279 /* check, if a user supplied command function given */
2280 if (this->cmdfunc == NULL)
2281 this->cmdfunc = nand_command;
2283 /* check, if a user supplied wait function given */
2284 if (this->waitfunc == NULL)
2285 this->waitfunc = nand_wait;
2287 if (!this->select_chip)
2288 this->select_chip = nand_select_chip;
2289 if (!this->write_byte)
2290 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2291 if (!this->read_byte)
2292 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2293 if (!this->write_word)
2294 this->write_word = nand_write_word;
2295 if (!this->read_word)
2296 this->read_word = nand_read_word;
2297 if (!this->block_bad)
2298 this->block_bad = nand_block_bad;
2299 if (!this->block_markbad)
2300 this->block_markbad = nand_default_block_markbad;
2301 if (!this->write_buf)
2302 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2303 if (!this->read_buf)
2304 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2305 if (!this->verify_buf)
2306 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2307 if (!this->scan_bbt)
2308 this->scan_bbt = nand_default_bbt;
2310 /* Select the device */
2311 this->select_chip(mtd, 0);
2313 /* Send the command for reading device ID */
2314 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2316 /* Read manufacturer and device IDs */
2317 nand_maf_id = this->read_byte(mtd);
2318 nand_dev_id = this->read_byte(mtd);
2320 /* Print and store flash device information */
2321 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2323 if (nand_dev_id != nand_flash_ids[i].id)
2326 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2327 this->chipsize = nand_flash_ids[i].chipsize << 20;
2329 /* New devices have all the information in additional id bytes */
2330 if (!nand_flash_ids[i].pagesize) {
2332 /* The 3rd id byte contains non relevant data ATM */
2333 extid = this->read_byte(mtd);
2334 /* The 4th id byte is the important one */
2335 extid = this->read_byte(mtd);
2337 mtd->oobblock = 1024 << (extid & 0x3);
2340 mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
2342 /* Calc blocksize. Blocksize is multiples of 64KiB */
2343 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2345 /* Get buswidth information */
2346 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2349 /* Old devices have this data hardcoded in the
2350 * device id table */
2351 mtd->erasesize = nand_flash_ids[i].erasesize;
2352 mtd->oobblock = nand_flash_ids[i].pagesize;
2353 mtd->oobsize = mtd->oobblock / 32;
2354 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2357 /* Check, if buswidth is correct. Hardware drivers should set
2359 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2360 printk (KERN_INFO "NAND device: Manufacturer ID:"
2361 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2362 nand_manuf_ids[i].name , mtd->name);
2363 printk (KERN_WARNING
2364 "NAND bus width %d instead %d bit\n",
2365 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2367 this->select_chip(mtd, -1);
2371 /* Calculate the address shift from the page size */
2372 this->page_shift = ffs(mtd->oobblock) - 1;
2373 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2374 this->chip_shift = ffs(this->chipsize) - 1;
2376 /* Set the bad block position */
2377 this->badblockpos = mtd->oobblock > 512 ?
2378 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2380 /* Get chip options, preserve non chip based options */
2381 this->options &= ~NAND_CHIPOPTIONS_MSK;
2382 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2383 /* Set this as a default. Board drivers can override it, if neccecary */
2384 this->options |= NAND_NO_AUTOINCR;
2385 /* Check if this is a not a samsung device. Do not clear the options
2386 * for chips which are not having an extended id.
2388 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2389 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2391 /* Check for AND chips with 4 page planes */
2392 if (this->options & NAND_4PAGE_ARRAY)
2393 this->erase_cmd = multi_erase_cmd;
2395 this->erase_cmd = single_erase_cmd;
2397 /* Do not replace user supplied command function ! */
2398 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2399 this->cmdfunc = nand_command_lp;
2401 /* Try to identify manufacturer */
2402 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
2403 if (nand_manuf_ids[j].id == nand_maf_id)
2409 if (!nand_flash_ids[i].name) {
2410 printk (KERN_WARNING "No NAND device found!!!\n");
2411 this->select_chip(mtd, -1);
2415 for (i=1; i < maxchips; i++) {
2416 this->select_chip(mtd, i);
2418 /* Send the command for reading device ID */
2419 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2421 /* Read manufacturer and device IDs */
2422 if (nand_maf_id != this->read_byte(mtd) ||
2423 nand_dev_id != this->read_byte(mtd))
2427 printk(KERN_INFO "%d NAND chips detected\n", i);
2429 /* Allocate buffers, if neccecary */
2430 if (!this->oob_buf) {
2432 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2433 this->oob_buf = kmalloc (len, GFP_KERNEL);
2434 if (!this->oob_buf) {
2435 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2438 this->options |= NAND_OOBBUF_ALLOC;
2441 if (!this->data_buf) {
2443 len = mtd->oobblock + mtd->oobsize;
2444 this->data_buf = kmalloc (len, GFP_KERNEL);
2445 if (!this->data_buf) {
2446 if (this->options & NAND_OOBBUF_ALLOC)
2447 kfree (this->oob_buf);
2448 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2451 this->options |= NAND_DATABUF_ALLOC;
2454 /* Store the number of chips and calc total size for mtd */
2456 mtd->size = i * this->chipsize;
2457 /* Convert chipsize to number of pages per chip -1. */
2458 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2459 /* Preset the internal oob buffer */
2460 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2462 /* If no default placement scheme is given, select an
2463 * appropriate one */
2464 if (!this->autooob) {
2465 /* Select the appropriate default oob placement scheme for
2466 * placement agnostic filesystems */
2467 switch (mtd->oobsize) {
2469 this->autooob = &nand_oob_8;
2472 this->autooob = &nand_oob_16;
2475 this->autooob = &nand_oob_64;
2478 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2484 /* The number of bytes available for the filesystem to place fs dependend
2486 if (this->options & NAND_BUSWIDTH_16) {
2487 mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
2488 if (this->autooob->eccbytes & 0x01)
2491 mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
2494 * check ECC mode, default to software
2495 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2496 * fallback to software ECC
2498 this->eccsize = 256; /* set default eccsize */
2501 switch (this->eccmode) {
2502 case NAND_ECC_HW12_2048:
2503 if (mtd->oobblock < 2048) {
2504 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2506 this->eccmode = NAND_ECC_SOFT;
2507 this->calculate_ecc = nand_calculate_ecc;
2508 this->correct_data = nand_correct_data;
2510 this->eccsize = 2048;
2513 case NAND_ECC_HW3_512:
2514 case NAND_ECC_HW6_512:
2515 case NAND_ECC_HW8_512:
2516 if (mtd->oobblock == 256) {
2517 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2518 this->eccmode = NAND_ECC_SOFT;
2519 this->calculate_ecc = nand_calculate_ecc;
2520 this->correct_data = nand_correct_data;
2522 this->eccsize = 512; /* set eccsize to 512 */
2525 case NAND_ECC_HW3_256:
2529 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2530 this->eccmode = NAND_ECC_NONE;
2534 this->calculate_ecc = nand_calculate_ecc;
2535 this->correct_data = nand_correct_data;
2539 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2543 /* Check hardware ecc function availability and adjust number of ecc bytes per
2546 switch (this->eccmode) {
2547 case NAND_ECC_HW12_2048:
2548 this->eccbytes += 4;
2549 case NAND_ECC_HW8_512:
2550 this->eccbytes += 2;
2551 case NAND_ECC_HW6_512:
2552 this->eccbytes += 3;
2553 case NAND_ECC_HW3_512:
2554 case NAND_ECC_HW3_256:
2555 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2557 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2561 mtd->eccsize = this->eccsize;
2563 /* Set the number of read / write steps for one page to ensure ECC generation */
2564 switch (this->eccmode) {
2565 case NAND_ECC_HW12_2048:
2566 this->eccsteps = mtd->oobblock / 2048;
2568 case NAND_ECC_HW3_512:
2569 case NAND_ECC_HW6_512:
2570 case NAND_ECC_HW8_512:
2571 this->eccsteps = mtd->oobblock / 512;
2573 case NAND_ECC_HW3_256:
2575 this->eccsteps = mtd->oobblock / 256;
2583 /* XXX U-BOOT XXX */
2585 /* Initialize state, waitqueue and spinlock */
2586 this->state = FL_READY;
2587 init_waitqueue_head (&this->wq);
2588 spin_lock_init (&this->chip_lock);
2591 /* De-select the device */
2592 this->select_chip(mtd, -1);
2594 /* Invalidate the pagebuffer reference */
2597 /* Fill in remaining MTD driver data */
2598 mtd->type = MTD_NANDFLASH;
2599 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2600 mtd->ecctype = MTD_ECC_SW;
2601 mtd->erase = nand_erase;
2603 mtd->unpoint = NULL;
2604 mtd->read = nand_read;
2605 mtd->write = nand_write;
2606 mtd->read_ecc = nand_read_ecc;
2607 mtd->write_ecc = nand_write_ecc;
2608 mtd->read_oob = nand_read_oob;
2609 mtd->write_oob = nand_write_oob;
2610 /* XXX U-BOOT XXX */
2613 mtd->writev = nand_writev;
2614 mtd->writev_ecc = nand_writev_ecc;
2616 mtd->sync = nand_sync;
2617 /* XXX U-BOOT XXX */
2621 mtd->suspend = NULL;
2624 mtd->block_isbad = nand_block_isbad;
2625 mtd->block_markbad = nand_block_markbad;
2627 /* and make the autooob the default one */
2628 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2629 /* XXX U-BOOT XXX */
2631 mtd->owner = THIS_MODULE;
2633 /* Build bad block table */
2634 return this->scan_bbt (mtd);
2638 * nand_release - [NAND Interface] Free resources held by the NAND device
2639 * @mtd: MTD device structure
2641 void nand_release (struct mtd_info *mtd)
2643 struct nand_chip *this = mtd->priv;
2645 #ifdef CONFIG_MTD_PARTITIONS
2646 /* Deregister partitions */
2647 del_mtd_partitions (mtd);
2649 /* Deregister the device */
2650 /* XXX U-BOOT XXX */
2652 del_mtd_device (mtd);
2654 /* Free bad block table memory, if allocated */
2657 /* Buffer allocated by nand_scan ? */
2658 if (this->options & NAND_OOBBUF_ALLOC)
2659 kfree (this->oob_buf);
2660 /* Buffer allocated by nand_scan ? */
2661 if (this->options & NAND_DATABUF_ALLOC)
2662 kfree (this->data_buf);