5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
23 * 04-14-2004 tglx: first working version for 2k page size chips
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
32 * David Woodhouse for adding multichip support
34 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
35 * rework for 2K page size chips
38 * Enable cached programming for 2k page size chips
39 * Check, if mtd->ecctype should be set to MTD_ECC_HW
40 * if we have HW ecc support.
41 * The AG-AND chips have nice features for speed improvement,
42 * which are not supported yet. Read / program 4 pages in one go.
44 * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
46 * This program is free software; you can redistribute it and/or modify
47 * it under the terms of the GNU General Public License version 2 as
48 * published by the Free Software Foundation.
54 #include <linux/delay.h>
55 #include <linux/errno.h>
56 #include <linux/sched.h>
57 #include <linux/slab.h>
58 #include <linux/types.h>
59 #include <linux/mtd/mtd.h>
60 #include <linux/mtd/nand.h>
61 #include <linux/mtd/nand_ecc.h>
62 #include <linux/mtd/compatmac.h>
63 #include <linux/interrupt.h>
64 #include <linux/bitops.h>
67 #ifdef CONFIG_MTD_PARTITIONS
68 #include <linux/mtd/partitions.h>
75 #ifdef CFG_NAND_LEGACY
76 #error CFG_NAND_LEGACY defined in a file not using the legacy NAND support!
79 #if (CONFIG_COMMANDS & CFG_CMD_NAND)
83 #include <linux/mtd/compat.h>
84 #include <linux/mtd/mtd.h>
85 #include <linux/mtd/nand.h>
86 #include <linux/mtd/nand_ecc.h>
89 #include <asm/errno.h>
91 #ifdef CONFIG_JFFS2_NAND
92 #include <jffs2/jffs2.h>
95 /* Define default oob placement schemes for large and small page devices */
96 static struct nand_oobinfo nand_oob_8 = {
97 .useecc = MTD_NANDECC_AUTOPLACE,
100 .oobfree = { {3, 2}, {6, 2} }
103 static struct nand_oobinfo nand_oob_16 = {
104 .useecc = MTD_NANDECC_AUTOPLACE,
106 .eccpos = {0, 1, 2, 3, 6, 7},
107 .oobfree = { {8, 8} }
110 static struct nand_oobinfo nand_oob_64 = {
111 .useecc = MTD_NANDECC_AUTOPLACE,
114 40, 41, 42, 43, 44, 45, 46, 47,
115 48, 49, 50, 51, 52, 53, 54, 55,
116 56, 57, 58, 59, 60, 61, 62, 63},
117 .oobfree = { {2, 38} }
120 /* This is used for padding purposes in nand_write_oob */
121 static u_char ffchars[] = {
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
133 * NAND low-level MTD interface functions
135 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
136 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
137 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
139 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
140 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
141 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
142 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
143 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
144 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
145 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
146 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
149 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
150 unsigned long count, loff_t to, size_t * retlen);
151 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
152 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
154 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
155 static void nand_sync (struct mtd_info *mtd);
157 /* Some internal functions */
158 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
159 struct nand_oobinfo *oobsel, int mode);
160 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
161 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
162 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
164 #define nand_verify_pages(...) (0)
167 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
170 * nand_release_device - [GENERIC] release chip
171 * @mtd: MTD device structure
173 * Deselect, release chip lock and wake up anyone waiting on the device
177 static void nand_release_device (struct mtd_info *mtd)
179 struct nand_chip *this = mtd->priv;
181 /* De-select the NAND device */
182 this->select_chip(mtd, -1);
183 /* Do we have a hardware controller ? */
184 if (this->controller) {
185 spin_lock(&this->controller->lock);
186 this->controller->active = NULL;
187 spin_unlock(&this->controller->lock);
189 /* Release the chip */
190 spin_lock (&this->chip_lock);
191 this->state = FL_READY;
193 spin_unlock (&this->chip_lock);
196 static void nand_release_device (struct mtd_info *mtd)
198 struct nand_chip *this = mtd->priv;
199 this->select_chip(mtd, -1); /* De-select the NAND device */
204 * nand_read_byte - [DEFAULT] read one byte from the chip
205 * @mtd: MTD device structure
207 * Default read function for 8bit buswith
209 static u_char nand_read_byte(struct mtd_info *mtd)
211 struct nand_chip *this = mtd->priv;
212 return readb(this->IO_ADDR_R);
216 * nand_write_byte - [DEFAULT] write one byte to the chip
217 * @mtd: MTD device structure
218 * @byte: pointer to data byte to write
220 * Default write function for 8it buswith
222 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
224 struct nand_chip *this = mtd->priv;
225 writeb(byte, this->IO_ADDR_W);
229 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
230 * @mtd: MTD device structure
232 * Default read function for 16bit buswith with
233 * endianess conversion
235 static u_char nand_read_byte16(struct mtd_info *mtd)
237 struct nand_chip *this = mtd->priv;
238 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
242 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
243 * @mtd: MTD device structure
244 * @byte: pointer to data byte to write
246 * Default write function for 16bit buswith with
247 * endianess conversion
249 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
251 struct nand_chip *this = mtd->priv;
252 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
256 * nand_read_word - [DEFAULT] read one word from the chip
257 * @mtd: MTD device structure
259 * Default read function for 16bit buswith without
260 * endianess conversion
262 static u16 nand_read_word(struct mtd_info *mtd)
264 struct nand_chip *this = mtd->priv;
265 return readw(this->IO_ADDR_R);
269 * nand_write_word - [DEFAULT] write one word to the chip
270 * @mtd: MTD device structure
271 * @word: data word to write
273 * Default write function for 16bit buswith without
274 * endianess conversion
276 static void nand_write_word(struct mtd_info *mtd, u16 word)
278 struct nand_chip *this = mtd->priv;
279 writew(word, this->IO_ADDR_W);
283 * nand_select_chip - [DEFAULT] control CE line
284 * @mtd: MTD device structure
285 * @chip: chipnumber to select, -1 for deselect
287 * Default select function for 1 chip devices.
289 static void nand_select_chip(struct mtd_info *mtd, int chip)
291 struct nand_chip *this = mtd->priv;
294 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
297 this->hwcontrol(mtd, NAND_CTL_SETNCE);
306 * nand_write_buf - [DEFAULT] write buffer to chip
307 * @mtd: MTD device structure
309 * @len: number of bytes to write
311 * Default write function for 8bit buswith
313 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
316 struct nand_chip *this = mtd->priv;
318 for (i=0; i<len; i++)
319 writeb(buf[i], this->IO_ADDR_W);
323 * nand_read_buf - [DEFAULT] read chip data into buffer
324 * @mtd: MTD device structure
325 * @buf: buffer to store date
326 * @len: number of bytes to read
328 * Default read function for 8bit buswith
330 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
333 struct nand_chip *this = mtd->priv;
335 for (i=0; i<len; i++)
336 buf[i] = readb(this->IO_ADDR_R);
340 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
341 * @mtd: MTD device structure
342 * @buf: buffer containing the data to compare
343 * @len: number of bytes to compare
345 * Default verify function for 8bit buswith
347 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
350 struct nand_chip *this = mtd->priv;
352 for (i=0; i<len; i++)
353 if (buf[i] != readb(this->IO_ADDR_R))
360 * nand_write_buf16 - [DEFAULT] write buffer to chip
361 * @mtd: MTD device structure
363 * @len: number of bytes to write
365 * Default write function for 16bit buswith
367 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
370 struct nand_chip *this = mtd->priv;
371 u16 *p = (u16 *) buf;
374 for (i=0; i<len; i++)
375 writew(p[i], this->IO_ADDR_W);
380 * nand_read_buf16 - [DEFAULT] read chip data into buffer
381 * @mtd: MTD device structure
382 * @buf: buffer to store date
383 * @len: number of bytes to read
385 * Default read function for 16bit buswith
387 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
390 struct nand_chip *this = mtd->priv;
391 u16 *p = (u16 *) buf;
394 for (i=0; i<len; i++)
395 p[i] = readw(this->IO_ADDR_R);
399 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
400 * @mtd: MTD device structure
401 * @buf: buffer containing the data to compare
402 * @len: number of bytes to compare
404 * Default verify function for 16bit buswith
406 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
409 struct nand_chip *this = mtd->priv;
410 u16 *p = (u16 *) buf;
413 for (i=0; i<len; i++)
414 if (p[i] != readw(this->IO_ADDR_R))
421 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
422 * @mtd: MTD device structure
423 * @ofs: offset from device start
424 * @getchip: 0, if the chip is already selected
426 * Check, if the block is bad.
428 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
430 int page, chipnr, res = 0;
431 struct nand_chip *this = mtd->priv;
435 page = (int)(ofs >> this->page_shift);
436 chipnr = (int)(ofs >> this->chip_shift);
438 /* Grab the lock and see if the device is available */
439 nand_get_device (this, mtd, FL_READING);
441 /* Select the NAND device */
442 this->select_chip(mtd, chipnr);
446 if (this->options & NAND_BUSWIDTH_16) {
447 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
448 bad = cpu_to_le16(this->read_word(mtd));
449 if (this->badblockpos & 0x1)
451 if ((bad & 0xFF) != 0xff)
454 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
455 if (this->read_byte(mtd) != 0xff)
460 /* Deselect and wake up anyone waiting on the device */
461 nand_release_device(mtd);
468 * nand_default_block_markbad - [DEFAULT] mark a block bad
469 * @mtd: MTD device structure
470 * @ofs: offset from device start
472 * This is the default implementation, which can be overridden by
473 * a hardware specific driver.
475 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
477 struct nand_chip *this = mtd->priv;
478 u_char buf[2] = {0, 0};
482 /* Get block number */
483 block = ((int) ofs) >> this->bbt_erase_shift;
484 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
486 /* Do we have a flash based bad block table ? */
487 if (this->options & NAND_USE_FLASH_BBT)
488 return nand_update_bbt (mtd, ofs);
490 /* We write two bytes, so we dont have to mess with 16 bit access */
491 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
492 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
496 * nand_check_wp - [GENERIC] check if the chip is write protected
497 * @mtd: MTD device structure
498 * Check, if the device is write protected
500 * The function expects, that the device is already selected
502 static int nand_check_wp (struct mtd_info *mtd)
504 struct nand_chip *this = mtd->priv;
505 /* Check the WP bit */
506 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
507 return (this->read_byte(mtd) & 0x80) ? 0 : 1;
511 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
512 * @mtd: MTD device structure
513 * @ofs: offset from device start
514 * @getchip: 0, if the chip is already selected
515 * @allowbbt: 1, if its allowed to access the bbt area
517 * Check, if the block is bad. Either by reading the bad block table or
518 * calling of the scan function.
520 static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
522 struct nand_chip *this = mtd->priv;
525 return this->block_bad(mtd, ofs, getchip);
527 /* Return info from the table */
528 return nand_isbad_bbt (mtd, ofs, allowbbt);
532 * nand_command - [DEFAULT] Send command to NAND device
533 * @mtd: MTD device structure
534 * @command: the command to be sent
535 * @column: the column address for this command, -1 if none
536 * @page_addr: the page address for this command, -1 if none
538 * Send command to NAND device. This function is used for small page
539 * devices (256/512 Bytes per page)
541 static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
543 register struct nand_chip *this = mtd->priv;
545 /* Begin command latch cycle */
546 this->hwcontrol(mtd, NAND_CTL_SETCLE);
548 * Write out the command to the device.
550 if (command == NAND_CMD_SEQIN) {
553 if (column >= mtd->oobblock) {
555 column -= mtd->oobblock;
556 readcmd = NAND_CMD_READOOB;
557 } else if (column < 256) {
558 /* First 256 bytes --> READ0 */
559 readcmd = NAND_CMD_READ0;
562 readcmd = NAND_CMD_READ1;
564 this->write_byte(mtd, readcmd);
566 this->write_byte(mtd, command);
568 /* Set ALE and clear CLE to start address cycle */
569 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
571 if (column != -1 || page_addr != -1) {
572 this->hwcontrol(mtd, NAND_CTL_SETALE);
574 /* Serially input address */
576 /* Adjust columns for 16 bit buswidth */
577 if (this->options & NAND_BUSWIDTH_16)
579 this->write_byte(mtd, column);
581 if (page_addr != -1) {
582 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
583 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
584 /* One more address cycle for devices > 32MiB */
585 if (this->chipsize > (32 << 20))
586 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
588 /* Latch in address */
589 this->hwcontrol(mtd, NAND_CTL_CLRALE);
593 * program and erase have their own busy handlers
594 * status and sequential in needs no delay
598 case NAND_CMD_PAGEPROG:
599 case NAND_CMD_ERASE1:
600 case NAND_CMD_ERASE2:
602 case NAND_CMD_STATUS:
608 udelay(this->chip_delay);
609 this->hwcontrol(mtd, NAND_CTL_SETCLE);
610 this->write_byte(mtd, NAND_CMD_STATUS);
611 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
612 while ( !(this->read_byte(mtd) & 0x40));
615 /* This applies to read commands */
618 * If we don't have access to the busy pin, we apply the given
621 if (!this->dev_ready) {
622 udelay (this->chip_delay);
627 /* Apply this short delay always to ensure that we do wait tWB in
628 * any case on any machine. */
630 /* wait until command is processed */
631 while (!this->dev_ready(mtd));
635 * nand_command_lp - [DEFAULT] Send command to NAND large page device
636 * @mtd: MTD device structure
637 * @command: the command to be sent
638 * @column: the column address for this command, -1 if none
639 * @page_addr: the page address for this command, -1 if none
641 * Send command to NAND device. This is the version for the new large page devices
642 * We dont have the seperate regions as we have in the small page devices.
643 * We must emulate NAND_CMD_READOOB to keep the code compatible.
646 static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
648 register struct nand_chip *this = mtd->priv;
650 /* Emulate NAND_CMD_READOOB */
651 if (command == NAND_CMD_READOOB) {
652 column += mtd->oobblock;
653 command = NAND_CMD_READ0;
657 /* Begin command latch cycle */
658 this->hwcontrol(mtd, NAND_CTL_SETCLE);
659 /* Write out the command to the device. */
660 this->write_byte(mtd, command);
661 /* End command latch cycle */
662 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
664 if (column != -1 || page_addr != -1) {
665 this->hwcontrol(mtd, NAND_CTL_SETALE);
667 /* Serially input address */
669 /* Adjust columns for 16 bit buswidth */
670 if (this->options & NAND_BUSWIDTH_16)
672 this->write_byte(mtd, column & 0xff);
673 this->write_byte(mtd, column >> 8);
675 if (page_addr != -1) {
676 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
677 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
678 /* One more address cycle for devices > 128MiB */
679 if (this->chipsize > (128 << 20))
680 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
682 /* Latch in address */
683 this->hwcontrol(mtd, NAND_CTL_CLRALE);
687 * program and erase have their own busy handlers
688 * status and sequential in needs no delay
692 case NAND_CMD_CACHEDPROG:
693 case NAND_CMD_PAGEPROG:
694 case NAND_CMD_ERASE1:
695 case NAND_CMD_ERASE2:
697 case NAND_CMD_STATUS:
704 udelay(this->chip_delay);
705 this->hwcontrol(mtd, NAND_CTL_SETCLE);
706 this->write_byte(mtd, NAND_CMD_STATUS);
707 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
708 while ( !(this->read_byte(mtd) & 0x40));
712 /* Begin command latch cycle */
713 this->hwcontrol(mtd, NAND_CTL_SETCLE);
714 /* Write out the start read command */
715 this->write_byte(mtd, NAND_CMD_READSTART);
716 /* End command latch cycle */
717 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
718 /* Fall through into ready check */
720 /* This applies to read commands */
723 * If we don't have access to the busy pin, we apply the given
726 if (!this->dev_ready) {
727 udelay (this->chip_delay);
732 /* Apply this short delay always to ensure that we do wait tWB in
733 * any case on any machine. */
735 /* wait until command is processed */
736 while (!this->dev_ready(mtd));
740 * nand_get_device - [GENERIC] Get chip for selected access
741 * @this: the nand chip descriptor
742 * @mtd: MTD device structure
743 * @new_state: the state which is requested
745 * Get the device and lock it for exclusive access
749 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
751 struct nand_chip *active = this;
753 DECLARE_WAITQUEUE (wait, current);
756 * Grab the lock and see if the device is available
759 /* Hardware controller shared among independend devices */
760 if (this->controller) {
761 spin_lock (&this->controller->lock);
762 if (this->controller->active)
763 active = this->controller->active;
765 this->controller->active = this;
766 spin_unlock (&this->controller->lock);
769 if (active == this) {
770 spin_lock (&this->chip_lock);
771 if (this->state == FL_READY) {
772 this->state = new_state;
773 spin_unlock (&this->chip_lock);
777 set_current_state (TASK_UNINTERRUPTIBLE);
778 add_wait_queue (&active->wq, &wait);
779 spin_unlock (&active->chip_lock);
781 remove_wait_queue (&active->wq, &wait);
785 static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {}
789 * nand_wait - [DEFAULT] wait until the command is done
790 * @mtd: MTD device structure
791 * @this: NAND chip structure
792 * @state: state to select the max. timeout value
794 * Wait for command done. This applies to erase and program only
795 * Erase can take up to 400ms and program up to 20ms according to
796 * general NAND and SmartMedia specs
801 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
803 unsigned long timeo = jiffies;
806 if (state == FL_ERASING)
807 timeo += (HZ * 400) / 1000;
809 timeo += (HZ * 20) / 1000;
811 /* Apply this short delay always to ensure that we do wait tWB in
812 * any case on any machine. */
815 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
816 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
818 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
820 while (time_before(jiffies, timeo)) {
821 /* Check, if we were interrupted */
822 if (this->state != state)
825 if (this->dev_ready) {
826 if (this->dev_ready(mtd))
829 if (this->read_byte(mtd) & NAND_STATUS_READY)
834 status = (int) this->read_byte(mtd);
840 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
844 if (state == FL_ERASING)
845 timeo = CFG_HZ * 400;
849 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
850 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
852 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
857 if (get_timer(0) > timeo) {
862 if (this->dev_ready) {
863 if (this->dev_ready(mtd))
866 if (this->read_byte(mtd) & NAND_STATUS_READY)
870 #ifdef PPCHAMELON_NAND_TIMER_HACK
872 while (get_timer(0) < 10);
873 #endif /* PPCHAMELON_NAND_TIMER_HACK */
875 return this->read_byte(mtd);
880 * nand_write_page - [GENERIC] write one page
881 * @mtd: MTD device structure
882 * @this: NAND chip structure
883 * @page: startpage inside the chip, must be called with (page & this->pagemask)
884 * @oob_buf: out of band data buffer
885 * @oobsel: out of band selecttion structre
886 * @cached: 1 = enable cached programming if supported by chip
888 * Nand_page_program function is used for write and writev !
889 * This function will always program a full page of data
890 * If you call it with a non page aligned buffer, you're lost :)
892 * Cached programming is not supported yet.
894 static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
895 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
899 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
900 uint *oob_config = oobsel->eccpos;
901 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
904 /* FIXME: Enable cached programming */
907 /* Send command to begin auto page programming */
908 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
910 /* Write out complete page of data, take care of eccmode */
912 /* No ecc, write all */
914 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
915 this->write_buf(mtd, this->data_poi, mtd->oobblock);
918 /* Software ecc 3/256, write all */
920 for (; eccsteps; eccsteps--) {
921 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
922 for (i = 0; i < 3; i++, eccidx++)
923 oob_buf[oob_config[eccidx]] = ecc_code[i];
924 datidx += this->eccsize;
926 this->write_buf(mtd, this->data_poi, mtd->oobblock);
929 eccbytes = this->eccbytes;
930 for (; eccsteps; eccsteps--) {
931 /* enable hardware ecc logic for write */
932 this->enable_hwecc(mtd, NAND_ECC_WRITE);
933 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
934 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
935 for (i = 0; i < eccbytes; i++, eccidx++)
936 oob_buf[oob_config[eccidx]] = ecc_code[i];
937 /* If the hardware ecc provides syndromes then
938 * the ecc code must be written immidiately after
939 * the data bytes (words) */
940 if (this->options & NAND_HWECC_SYNDROME)
941 this->write_buf(mtd, ecc_code, eccbytes);
942 datidx += this->eccsize;
947 /* Write out OOB data */
948 if (this->options & NAND_HWECC_SYNDROME)
949 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
951 this->write_buf(mtd, oob_buf, mtd->oobsize);
953 /* Send command to actually program the data */
954 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
957 /* call wait ready function */
958 status = this->waitfunc (mtd, this, FL_WRITING);
959 /* See if device thinks it succeeded */
961 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
965 /* FIXME: Implement cached programming ! */
966 /* wait until cache is ready*/
967 /* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */
972 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
974 * nand_verify_pages - [GENERIC] verify the chip contents after a write
975 * @mtd: MTD device structure
976 * @this: NAND chip structure
977 * @page: startpage inside the chip, must be called with (page & this->pagemask)
978 * @numpages: number of pages to verify
979 * @oob_buf: out of band data buffer
980 * @oobsel: out of band selecttion structre
981 * @chipnr: number of the current chip
982 * @oobmode: 1 = full buffer verify, 0 = ecc only
984 * The NAND device assumes that it is always writing to a cleanly erased page.
985 * Hence, it performs its internal write verification only on bits that
986 * transitioned from 1 to 0. The device does NOT verify the whole page on a
987 * byte by byte basis. It is possible that the page was not completely erased
988 * or the page is becoming unusable due to wear. The read with ECC would catch
989 * the error later when the ECC page check fails, but we would rather catch
990 * it early in the page write stage. Better to write no data than invalid data.
992 static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
993 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
995 int i, j, datidx = 0, oobofs = 0, res = -EIO;
996 int eccsteps = this->eccsteps;
1000 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
1002 /* Send command to read back the first page */
1003 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
1006 for (j = 0; j < eccsteps; j++) {
1007 /* Loop through and verify the data */
1008 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
1009 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1012 datidx += mtd->eccsize;
1013 /* Have we a hw generator layout ? */
1016 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
1017 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1020 oobofs += hweccbytes;
1023 /* check, if we must compare all data or if we just have to
1024 * compare the ecc bytes
1027 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
1028 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1032 /* Read always, else autoincrement fails */
1033 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1035 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1036 int ecccnt = oobsel->eccbytes;
1038 for (i = 0; i < ecccnt; i++) {
1039 int idx = oobsel->eccpos[i];
1040 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1041 DEBUG (MTD_DEBUG_LEVEL0,
1042 "%s: Failed ECC write "
1043 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1049 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1053 /* Apply delay or wait for ready/busy pin
1054 * Do this before the AUTOINCR check, so no problems
1055 * arise if a chip which does auto increment
1056 * is marked as NOAUTOINCR by the board driver.
1057 * Do this also before returning, so the chip is
1058 * ready for the next command.
1060 if (!this->dev_ready)
1061 udelay (this->chip_delay);
1063 while (!this->dev_ready(mtd));
1065 /* All done, return happy */
1070 /* Check, if the chip supports auto page increment */
1071 if (!NAND_CANAUTOINCR(this))
1072 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1075 * Terminate the read command. We come here in case of an error
1076 * So we must issue a reset command.
1079 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1085 * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
1086 * @mtd: MTD device structure
1087 * @from: offset to read from
1088 * @len: number of bytes to read
1089 * @retlen: pointer to variable to store the number of read bytes
1090 * @buf: the databuffer to put data
1092 * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
1094 static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1096 return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
1101 * nand_read_ecc - [MTD Interface] Read data with ECC
1102 * @mtd: MTD device structure
1103 * @from: offset to read from
1104 * @len: number of bytes to read
1105 * @retlen: pointer to variable to store the number of read bytes
1106 * @buf: the databuffer to put data
1107 * @oob_buf: filesystem supplied oob data buffer
1108 * @oobsel: oob selection structure
1110 * NAND read with ECC
1112 static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1113 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1115 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1116 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1117 struct nand_chip *this = mtd->priv;
1118 u_char *data_poi, *oob_data = oob_buf;
1119 u_char ecc_calc[32];
1120 u_char ecc_code[32];
1121 int eccmode, eccsteps;
1122 unsigned *oob_config;
1124 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1130 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1132 /* Do not allow reads past end of device */
1133 if ((from + len) > mtd->size) {
1134 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1139 /* Grab the lock and see if the device is available */
1140 nand_get_device (this, mtd ,FL_READING);
1142 /* use userspace supplied oobinfo, if zero */
1144 oobsel = &mtd->oobinfo;
1146 /* Autoplace of oob data ? Use the default placement scheme */
1147 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1148 oobsel = this->autooob;
1150 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1151 oob_config = oobsel->eccpos;
1153 /* Select the NAND device */
1154 chipnr = (int)(from >> this->chip_shift);
1155 this->select_chip(mtd, chipnr);
1157 /* First we calculate the starting page */
1158 realpage = (int) (from >> this->page_shift);
1159 page = realpage & this->pagemask;
1161 /* Get raw starting column */
1162 col = from & (mtd->oobblock - 1);
1164 end = mtd->oobblock;
1165 ecc = this->eccsize;
1166 eccbytes = this->eccbytes;
1168 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1171 oobreadlen = mtd->oobsize;
1172 if (this->options & NAND_HWECC_SYNDROME)
1173 oobreadlen -= oobsel->eccbytes;
1175 /* Loop until all data read */
1176 while (read < len) {
1178 int aligned = (!col && (len - read) >= end);
1180 * If the read is not page aligned, we have to read into data buffer
1181 * due to ecc, else we read into return buffer direct
1184 data_poi = &buf[read];
1186 data_poi = this->data_buf;
1188 /* Check, if we have this page in the buffer
1190 * FIXME: Make it work when we must provide oob data too,
1191 * check the usage of data_buf oob field
1193 if (realpage == this->pagebuf && !oob_buf) {
1194 /* aligned read ? */
1196 memcpy (data_poi, this->data_buf, end);
1200 /* Check, if we must send the read command */
1202 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1206 /* get oob area, if we have no oob buffer from fs-driver */
1207 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1208 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1209 oob_data = &this->data_buf[end];
1211 eccsteps = this->eccsteps;
1214 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1215 /* XXX U-BOOT XXX */
1217 static unsigned long lastwhinge = 0;
1218 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1219 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1220 lastwhinge = jiffies;
1223 puts("Reading data from NAND FLASH without ECC is not recommended\n");
1225 this->read_buf(mtd, data_poi, end);
1229 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1230 this->read_buf(mtd, data_poi, end);
1231 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1232 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1236 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1237 this->enable_hwecc(mtd, NAND_ECC_READ);
1238 this->read_buf(mtd, &data_poi[datidx], ecc);
1240 /* HW ecc with syndrome calculation must read the
1241 * syndrome from flash immidiately after the data */
1243 /* Some hw ecc generators need to know when the
1244 * syndrome is read from flash */
1245 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1246 this->read_buf(mtd, &oob_data[i], eccbytes);
1247 /* We calc error correction directly, it checks the hw
1248 * generator for an error, reads back the syndrome and
1249 * does the error correction on the fly */
1250 if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
1251 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1252 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1256 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1263 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1265 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1269 /* Pick the ECC bytes out of the oob data */
1270 for (j = 0; j < oobsel->eccbytes; j++)
1271 ecc_code[j] = oob_data[oob_config[j]];
1273 /* correct data, if neccecary */
1274 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1275 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1277 /* Get next chunk of ecc bytes */
1280 /* Check, if we have a fs supplied oob-buffer,
1281 * This is the legacy mode. Used by YAFFS1
1282 * Should go away some day
1284 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1285 int *p = (int *)(&oob_data[mtd->oobsize]);
1289 if (ecc_status == -1) {
1290 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1296 /* check, if we have a fs supplied oob-buffer */
1298 /* without autoplace. Legacy mode used by YAFFS1 */
1299 switch(oobsel->useecc) {
1300 case MTD_NANDECC_AUTOPLACE:
1301 case MTD_NANDECC_AUTOPL_USR:
1302 /* Walk through the autoplace chunks */
1303 for (i = 0, j = 0; j < mtd->oobavail; i++) {
1304 int from = oobsel->oobfree[i][0];
1305 int num = oobsel->oobfree[i][1];
1306 memcpy(&oob_buf[oob], &oob_data[from], num);
1309 oob += mtd->oobavail;
1311 case MTD_NANDECC_PLACE:
1312 /* YAFFS1 legacy mode */
1313 oob_data += this->eccsteps * sizeof (int);
1315 oob_data += mtd->oobsize;
1319 /* Partial page read, transfer data into fs buffer */
1321 for (j = col; j < end && read < len; j++)
1322 buf[read++] = data_poi[j];
1323 this->pagebuf = realpage;
1325 read += mtd->oobblock;
1327 /* Apply delay or wait for ready/busy pin
1328 * Do this before the AUTOINCR check, so no problems
1329 * arise if a chip which does auto increment
1330 * is marked as NOAUTOINCR by the board driver.
1332 if (!this->dev_ready)
1333 udelay (this->chip_delay);
1335 while (!this->dev_ready(mtd));
1340 /* For subsequent reads align to page boundary. */
1342 /* Increment page address */
1345 page = realpage & this->pagemask;
1346 /* Check, if we cross a chip boundary */
1349 this->select_chip(mtd, -1);
1350 this->select_chip(mtd, chipnr);
1352 /* Check, if the chip supports auto page increment
1353 * or if we have hit a block boundary.
1355 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1359 /* Deselect and wake up anyone waiting on the device */
1360 nand_release_device(mtd);
1363 * Return success, if no ECC failures, else -EBADMSG
1364 * fs driver will take care of that, because
1365 * retlen == desired len and result == -EBADMSG
1368 return ecc_failed ? -EBADMSG : 0;
1372 * nand_read_oob - [MTD Interface] NAND read out-of-band
1373 * @mtd: MTD device structure
1374 * @from: offset to read from
1375 * @len: number of bytes to read
1376 * @retlen: pointer to variable to store the number of read bytes
1377 * @buf: the databuffer to put data
1379 * NAND read out-of-band data from the spare area
1381 static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1383 int i, col, page, chipnr;
1384 struct nand_chip *this = mtd->priv;
1385 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1387 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1389 /* Shift to get page */
1390 page = (int)(from >> this->page_shift);
1391 chipnr = (int)(from >> this->chip_shift);
1393 /* Mask to get column */
1394 col = from & (mtd->oobsize - 1);
1396 /* Initialize return length value */
1399 /* Do not allow reads past end of device */
1400 if ((from + len) > mtd->size) {
1401 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1406 /* Grab the lock and see if the device is available */
1407 nand_get_device (this, mtd , FL_READING);
1409 /* Select the NAND device */
1410 this->select_chip(mtd, chipnr);
1412 /* Send the read command */
1413 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1415 * Read the data, if we read more than one page
1416 * oob data, let the device transfer the data !
1420 int thislen = mtd->oobsize - col;
1421 thislen = min_t(int, thislen, len);
1422 this->read_buf(mtd, &buf[i], thislen);
1425 /* Apply delay or wait for ready/busy pin
1426 * Do this before the AUTOINCR check, so no problems
1427 * arise if a chip which does auto increment
1428 * is marked as NOAUTOINCR by the board driver.
1430 if (!this->dev_ready)
1431 udelay (this->chip_delay);
1433 while (!this->dev_ready(mtd));
1440 /* Check, if we cross a chip boundary */
1441 if (!(page & this->pagemask)) {
1443 this->select_chip(mtd, -1);
1444 this->select_chip(mtd, chipnr);
1447 /* Check, if the chip supports auto page increment
1448 * or if we have hit a block boundary.
1450 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1451 /* For subsequent page reads set offset to 0 */
1452 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1457 /* Deselect and wake up anyone waiting on the device */
1458 nand_release_device(mtd);
1466 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1467 * @mtd: MTD device structure
1468 * @buf: temporary buffer
1469 * @from: offset to read from
1470 * @len: number of bytes to read
1471 * @ooblen: number of oob data bytes to read
1473 * Read raw data including oob into buffer
1475 int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1477 struct nand_chip *this = mtd->priv;
1478 int page = (int) (from >> this->page_shift);
1479 int chip = (int) (from >> this->chip_shift);
1482 int pagesize = mtd->oobblock + mtd->oobsize;
1483 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1485 /* Do not allow reads past end of device */
1486 if ((from + len) > mtd->size) {
1487 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1491 /* Grab the lock and see if the device is available */
1492 nand_get_device (this, mtd , FL_READING);
1494 this->select_chip (mtd, chip);
1496 /* Add requested oob length */
1501 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1504 this->read_buf (mtd, &buf[cnt], pagesize);
1510 if (!this->dev_ready)
1511 udelay (this->chip_delay);
1513 while (!this->dev_ready(mtd));
1515 /* Check, if the chip supports auto page increment */
1516 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1520 /* Deselect and wake up anyone waiting on the device */
1521 nand_release_device(mtd);
1527 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1528 * @mtd: MTD device structure
1529 * @fsbuf: buffer given by fs driver
1530 * @oobsel: out of band selection structre
1531 * @autoplace: 1 = place given buffer into the oob bytes
1532 * @numpages: number of pages to prepare
1535 * 1. Filesystem buffer available and autoplacement is off,
1536 * return filesystem buffer
1537 * 2. No filesystem buffer or autoplace is off, return internal
1539 * 3. Filesystem buffer is given and autoplace selected
1540 * put data from fs buffer into internal buffer and
1541 * retrun internal buffer
1543 * Note: The internal buffer is filled with 0xff. This must
1544 * be done only once, when no autoplacement happens
1545 * Autoplacement sets the buffer dirty flag, which
1546 * forces the 0xff fill before using the buffer again.
1549 static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1550 int autoplace, int numpages)
1552 struct nand_chip *this = mtd->priv;
1555 /* Zero copy fs supplied buffer */
1556 if (fsbuf && !autoplace)
1559 /* Check, if the buffer must be filled with ff again */
1560 if (this->oobdirty) {
1561 memset (this->oob_buf, 0xff,
1562 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1566 /* If we have no autoplacement or no fs buffer use the internal one */
1567 if (!autoplace || !fsbuf)
1568 return this->oob_buf;
1570 /* Walk through the pages and place the data */
1573 while (numpages--) {
1574 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1575 int to = ofs + oobsel->oobfree[i][0];
1576 int num = oobsel->oobfree[i][1];
1577 memcpy (&this->oob_buf[to], fsbuf, num);
1581 ofs += mtd->oobavail;
1583 return this->oob_buf;
1586 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1589 * nand_write - [MTD Interface] compability function for nand_write_ecc
1590 * @mtd: MTD device structure
1591 * @to: offset to write to
1592 * @len: number of bytes to write
1593 * @retlen: pointer to variable to store the number of written bytes
1594 * @buf: the data to write
1596 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1599 static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1601 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1605 * nand_write_ecc - [MTD Interface] NAND write with ECC
1606 * @mtd: MTD device structure
1607 * @to: offset to write to
1608 * @len: number of bytes to write
1609 * @retlen: pointer to variable to store the number of written bytes
1610 * @buf: the data to write
1611 * @eccbuf: filesystem supplied oob data buffer
1612 * @oobsel: oob selection structure
1614 * NAND write with ECC
1616 static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1617 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1619 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1620 int autoplace = 0, numpages, totalpages;
1621 struct nand_chip *this = mtd->priv;
1622 u_char *oobbuf, *bufstart;
1623 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1625 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1627 /* Initialize retlen, in case of early exit */
1630 /* Do not allow write past end of device */
1631 if ((to + len) > mtd->size) {
1632 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1636 /* reject writes, which are not page aligned */
1637 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1638 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1642 /* Grab the lock and see if the device is available */
1643 nand_get_device (this, mtd, FL_WRITING);
1645 /* Calculate chipnr */
1646 chipnr = (int)(to >> this->chip_shift);
1647 /* Select the NAND device */
1648 this->select_chip(mtd, chipnr);
1650 /* Check, if it is write protected */
1651 if (nand_check_wp(mtd))
1654 /* if oobsel is NULL, use chip defaults */
1656 oobsel = &mtd->oobinfo;
1658 /* Autoplace of oob data ? Use the default placement scheme */
1659 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1660 oobsel = this->autooob;
1663 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1666 /* Setup variables and oob buffer */
1667 totalpages = len >> this->page_shift;
1668 page = (int) (to >> this->page_shift);
1669 /* Invalidate the page cache, if we write to the cached page */
1670 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1673 /* Set it relative to chip */
1674 page &= this->pagemask;
1676 /* Calc number of pages we can write in one go */
1677 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1678 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1679 bufstart = (u_char *)buf;
1681 /* Loop until all data is written */
1682 while (written < len) {
1684 this->data_poi = (u_char*) &buf[written];
1685 /* Write one page. If this is the last page to write
1686 * or the last page in this block, then use the
1687 * real pageprogram command, else select cached programming
1688 * if supported by the chip.
1690 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1692 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1696 oob += mtd->oobsize;
1697 /* Update written bytes count */
1698 written += mtd->oobblock;
1702 /* Increment page address */
1705 /* Have we hit a block boundary ? Then we have to verify and
1706 * if verify is ok, we have to setup the oob buffer for
1709 if (!(page & (ppblock - 1))){
1711 this->data_poi = bufstart;
1712 ret = nand_verify_pages (mtd, this, startpage,
1714 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1716 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1721 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1723 eccbuf += (page - startpage) * ofs;
1724 totalpages -= page - startpage;
1725 numpages = min (totalpages, ppblock);
1726 page &= this->pagemask;
1730 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1731 autoplace, numpages);
1732 /* Check, if we cross a chip boundary */
1735 this->select_chip(mtd, -1);
1736 this->select_chip(mtd, chipnr);
1740 /* Verify the remaining pages */
1742 this->data_poi = bufstart;
1743 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1744 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1748 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1751 /* Deselect and wake up anyone waiting on the device */
1752 nand_release_device(mtd);
1759 * nand_write_oob - [MTD Interface] NAND write out-of-band
1760 * @mtd: MTD device structure
1761 * @to: offset to write to
1762 * @len: number of bytes to write
1763 * @retlen: pointer to variable to store the number of written bytes
1764 * @buf: the data to write
1766 * NAND write out-of-band
1768 static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1770 int column, page, status, ret = -EIO, chipnr;
1771 struct nand_chip *this = mtd->priv;
1773 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1775 /* Shift to get page */
1776 page = (int) (to >> this->page_shift);
1777 chipnr = (int) (to >> this->chip_shift);
1779 /* Mask to get column */
1780 column = to & (mtd->oobsize - 1);
1782 /* Initialize return length value */
1785 /* Do not allow write past end of page */
1786 if ((column + len) > mtd->oobsize) {
1787 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1791 /* Grab the lock and see if the device is available */
1792 nand_get_device (this, mtd, FL_WRITING);
1794 /* Select the NAND device */
1795 this->select_chip(mtd, chipnr);
1797 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1798 in one of my DiskOnChip 2000 test units) will clear the whole
1799 data page too if we don't do this. I have no clue why, but
1800 I seem to have 'fixed' it in the doc2000 driver in
1801 August 1999. dwmw2. */
1802 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1804 /* Check, if it is write protected */
1805 if (nand_check_wp(mtd))
1808 /* Invalidate the page cache, if we write to the cached page */
1809 if (page == this->pagebuf)
1812 if (NAND_MUST_PAD(this)) {
1813 /* Write out desired data */
1814 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1815 /* prepad 0xff for partial programming */
1816 this->write_buf(mtd, ffchars, column);
1818 this->write_buf(mtd, buf, len);
1819 /* postpad 0xff for partial programming */
1820 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1822 /* Write out desired data */
1823 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1825 this->write_buf(mtd, buf, len);
1827 /* Send command to program the OOB data */
1828 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1830 status = this->waitfunc (mtd, this, FL_WRITING);
1832 /* See if device thinks it succeeded */
1833 if (status & 0x01) {
1834 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1841 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1842 /* Send command to read back the data */
1843 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1845 if (this->verify_buf(mtd, buf, len)) {
1846 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1853 /* Deselect and wake up anyone waiting on the device */
1854 nand_release_device(mtd);
1859 /* XXX U-BOOT XXX */
1862 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1863 * @mtd: MTD device structure
1864 * @vecs: the iovectors to write
1865 * @count: number of vectors
1866 * @to: offset to write to
1867 * @retlen: pointer to variable to store the number of written bytes
1869 * NAND write with kvec. This just calls the ecc function
1871 static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1872 loff_t to, size_t * retlen)
1874 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1878 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1879 * @mtd: MTD device structure
1880 * @vecs: the iovectors to write
1881 * @count: number of vectors
1882 * @to: offset to write to
1883 * @retlen: pointer to variable to store the number of written bytes
1884 * @eccbuf: filesystem supplied oob data buffer
1885 * @oobsel: oob selection structure
1887 * NAND write with iovec with ecc
1889 static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1890 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1892 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1893 int oob, numpages, autoplace = 0, startpage;
1894 struct nand_chip *this = mtd->priv;
1895 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1896 u_char *oobbuf, *bufstart;
1898 /* Preset written len for early exit */
1901 /* Calculate total length of data */
1903 for (i = 0; i < count; i++)
1904 total_len += (int) vecs[i].iov_len;
1906 DEBUG (MTD_DEBUG_LEVEL3,
1907 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1909 /* Do not allow write past end of page */
1910 if ((to + total_len) > mtd->size) {
1911 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1915 /* reject writes, which are not page aligned */
1916 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1917 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1921 /* Grab the lock and see if the device is available */
1922 nand_get_device (this, mtd, FL_WRITING);
1924 /* Get the current chip-nr */
1925 chipnr = (int) (to >> this->chip_shift);
1926 /* Select the NAND device */
1927 this->select_chip(mtd, chipnr);
1929 /* Check, if it is write protected */
1930 if (nand_check_wp(mtd))
1933 /* if oobsel is NULL, use chip defaults */
1935 oobsel = &mtd->oobinfo;
1937 /* Autoplace of oob data ? Use the default placement scheme */
1938 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1939 oobsel = this->autooob;
1942 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1945 /* Setup start page */
1946 page = (int) (to >> this->page_shift);
1947 /* Invalidate the page cache, if we write to the cached page */
1948 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1951 startpage = page & this->pagemask;
1953 /* Loop until all kvec' data has been written */
1956 /* If the given tuple is >= pagesize then
1957 * write it out from the iov
1959 if ((vecs->iov_len - len) >= mtd->oobblock) {
1960 /* Calc number of pages we can write
1961 * out of this iov in one go */
1962 numpages = (vecs->iov_len - len) >> this->page_shift;
1963 /* Do not cross block boundaries */
1964 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1965 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1966 bufstart = (u_char *)vecs->iov_base;
1968 this->data_poi = bufstart;
1970 for (i = 1; i <= numpages; i++) {
1971 /* Write one page. If this is the last page to write
1972 * then use the real pageprogram command, else select
1973 * cached programming if supported by the chip.
1975 ret = nand_write_page (mtd, this, page & this->pagemask,
1976 &oobbuf[oob], oobsel, i != numpages);
1979 this->data_poi += mtd->oobblock;
1980 len += mtd->oobblock;
1981 oob += mtd->oobsize;
1984 /* Check, if we have to switch to the next tuple */
1985 if (len >= (int) vecs->iov_len) {
1991 /* We must use the internal buffer, read data out of each
1992 * tuple until we have a full page to write
1995 while (cnt < mtd->oobblock) {
1996 if (vecs->iov_base != NULL && vecs->iov_len)
1997 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1998 /* Check, if we have to switch to the next tuple */
1999 if (len >= (int) vecs->iov_len) {
2005 this->pagebuf = page;
2006 this->data_poi = this->data_buf;
2007 bufstart = this->data_poi;
2009 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
2010 ret = nand_write_page (mtd, this, page & this->pagemask,
2017 this->data_poi = bufstart;
2018 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2022 written += mtd->oobblock * numpages;
2027 startpage = page & this->pagemask;
2028 /* Check, if we cross a chip boundary */
2031 this->select_chip(mtd, -1);
2032 this->select_chip(mtd, chipnr);
2037 /* Deselect and wake up anyone waiting on the device */
2038 nand_release_device(mtd);
2046 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2047 * @mtd: MTD device structure
2048 * @page: the page address of the block which will be erased
2050 * Standard erase command for NAND chips
2052 static void single_erase_cmd (struct mtd_info *mtd, int page)
2054 struct nand_chip *this = mtd->priv;
2055 /* Send commands to erase a block */
2056 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2057 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2061 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2062 * @mtd: MTD device structure
2063 * @page: the page address of the block which will be erased
2065 * AND multi block erase command function
2066 * Erase 4 consecutive blocks
2068 static void multi_erase_cmd (struct mtd_info *mtd, int page)
2070 struct nand_chip *this = mtd->priv;
2071 /* Send commands to erase a block */
2072 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2073 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2074 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2075 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2076 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2080 * nand_erase - [MTD Interface] erase block(s)
2081 * @mtd: MTD device structure
2082 * @instr: erase instruction
2084 * Erase one ore more blocks
2086 static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2088 return nand_erase_nand (mtd, instr, 0);
2092 * nand_erase_intern - [NAND Interface] erase block(s)
2093 * @mtd: MTD device structure
2094 * @instr: erase instruction
2095 * @allowbbt: allow erasing the bbt area
2097 * Erase one ore more blocks
2099 int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2101 int page, len, status, pages_per_block, ret, chipnr;
2102 struct nand_chip *this = mtd->priv;
2104 DEBUG (MTD_DEBUG_LEVEL3,
2105 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2107 /* Start address must align on block boundary */
2108 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2109 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2113 /* Length must align on block boundary */
2114 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2115 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2119 /* Do not allow erase past end of device */
2120 if ((instr->len + instr->addr) > mtd->size) {
2121 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2125 instr->fail_addr = 0xffffffff;
2127 /* Grab the lock and see if the device is available */
2128 nand_get_device (this, mtd, FL_ERASING);
2130 /* Shift to get first page */
2131 page = (int) (instr->addr >> this->page_shift);
2132 chipnr = (int) (instr->addr >> this->chip_shift);
2134 /* Calculate pages in each block */
2135 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2137 /* Select the NAND device */
2138 this->select_chip(mtd, chipnr);
2140 /* Check the WP bit */
2141 /* Check, if it is write protected */
2142 if (nand_check_wp(mtd)) {
2143 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2144 instr->state = MTD_ERASE_FAILED;
2148 /* Loop through the pages */
2151 instr->state = MTD_ERASING;
2154 #ifndef NAND_ALLOW_ERASE_ALL
2155 /* Check if we have a bad block, we do not erase bad blocks ! */
2156 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2157 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2158 instr->state = MTD_ERASE_FAILED;
2162 /* Invalidate the page cache, if we erase the block which contains
2163 the current cached page */
2164 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2167 this->erase_cmd (mtd, page & this->pagemask);
2169 status = this->waitfunc (mtd, this, FL_ERASING);
2171 /* See if block erase succeeded */
2172 if (status & 0x01) {
2173 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2174 instr->state = MTD_ERASE_FAILED;
2175 instr->fail_addr = (page << this->page_shift);
2179 /* Increment page address and decrement length */
2180 len -= (1 << this->phys_erase_shift);
2181 page += pages_per_block;
2183 /* Check, if we cross a chip boundary */
2184 if (len && !(page & this->pagemask)) {
2186 this->select_chip(mtd, -1);
2187 this->select_chip(mtd, chipnr);
2190 instr->state = MTD_ERASE_DONE;
2194 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2195 /* Do call back function */
2197 mtd_erase_callback(instr);
2199 /* Deselect and wake up anyone waiting on the device */
2200 nand_release_device(mtd);
2202 /* Return more or less happy */
2207 * nand_sync - [MTD Interface] sync
2208 * @mtd: MTD device structure
2210 * Sync is actually a wait for chip ready function
2212 static void nand_sync (struct mtd_info *mtd)
2214 struct nand_chip *this = mtd->priv;
2216 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2218 /* Grab the lock and see if the device is available */
2219 nand_get_device (this, mtd, FL_SYNCING);
2220 /* Release it and go back */
2221 nand_release_device (mtd);
2226 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2227 * @mtd: MTD device structure
2228 * @ofs: offset relative to mtd start
2230 static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2232 /* Check for invalid offset */
2233 if (ofs > mtd->size)
2236 return nand_block_checkbad (mtd, ofs, 1, 0);
2240 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2241 * @mtd: MTD device structure
2242 * @ofs: offset relative to mtd start
2244 static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2246 struct nand_chip *this = mtd->priv;
2249 if ((ret = nand_block_isbad(mtd, ofs))) {
2250 /* If it was bad already, return success and do nothing. */
2256 return this->block_markbad(mtd, ofs);
2260 * nand_scan - [NAND Interface] Scan for the NAND device
2261 * @mtd: MTD device structure
2262 * @maxchips: Number of chips to scan for
2264 * This fills out all the not initialized function pointers
2265 * with the defaults.
2266 * The flash ID is read and the mtd/chip structures are
2267 * filled with the appropriate values. Buffers are allocated if
2268 * they are not provided by the board driver
2271 int nand_scan (struct mtd_info *mtd, int maxchips)
2273 int i, j, nand_maf_id, nand_dev_id, busw;
2274 struct nand_chip *this = mtd->priv;
2276 /* Get buswidth to select the correct functions*/
2277 busw = this->options & NAND_BUSWIDTH_16;
2279 /* check for proper chip_delay setup, set 20us if not */
2280 if (!this->chip_delay)
2281 this->chip_delay = 20;
2283 /* check, if a user supplied command function given */
2284 if (this->cmdfunc == NULL)
2285 this->cmdfunc = nand_command;
2287 /* check, if a user supplied wait function given */
2288 if (this->waitfunc == NULL)
2289 this->waitfunc = nand_wait;
2291 if (!this->select_chip)
2292 this->select_chip = nand_select_chip;
2293 if (!this->write_byte)
2294 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2295 if (!this->read_byte)
2296 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2297 if (!this->write_word)
2298 this->write_word = nand_write_word;
2299 if (!this->read_word)
2300 this->read_word = nand_read_word;
2301 if (!this->block_bad)
2302 this->block_bad = nand_block_bad;
2303 if (!this->block_markbad)
2304 this->block_markbad = nand_default_block_markbad;
2305 if (!this->write_buf)
2306 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2307 if (!this->read_buf)
2308 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2309 if (!this->verify_buf)
2310 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2311 if (!this->scan_bbt)
2312 this->scan_bbt = nand_default_bbt;
2314 /* Select the device */
2315 this->select_chip(mtd, 0);
2317 /* Send the command for reading device ID */
2318 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2320 /* Read manufacturer and device IDs */
2321 nand_maf_id = this->read_byte(mtd);
2322 nand_dev_id = this->read_byte(mtd);
2324 /* Print and store flash device information */
2325 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2327 if (nand_dev_id != nand_flash_ids[i].id)
2330 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2331 this->chipsize = nand_flash_ids[i].chipsize << 20;
2333 /* New devices have all the information in additional id bytes */
2334 if (!nand_flash_ids[i].pagesize) {
2336 /* The 3rd id byte contains non relevant data ATM */
2337 extid = this->read_byte(mtd);
2338 /* The 4th id byte is the important one */
2339 extid = this->read_byte(mtd);
2341 mtd->oobblock = 1024 << (extid & 0x3);
2344 mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
2346 /* Calc blocksize. Blocksize is multiples of 64KiB */
2347 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2349 /* Get buswidth information */
2350 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2353 /* Old devices have this data hardcoded in the
2354 * device id table */
2355 mtd->erasesize = nand_flash_ids[i].erasesize;
2356 mtd->oobblock = nand_flash_ids[i].pagesize;
2357 mtd->oobsize = mtd->oobblock / 32;
2358 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2361 /* Check, if buswidth is correct. Hardware drivers should set
2363 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2364 printk (KERN_INFO "NAND device: Manufacturer ID:"
2365 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2366 nand_manuf_ids[i].name , mtd->name);
2367 printk (KERN_WARNING
2368 "NAND bus width %d instead %d bit\n",
2369 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2371 this->select_chip(mtd, -1);
2375 /* Calculate the address shift from the page size */
2376 this->page_shift = ffs(mtd->oobblock) - 1;
2377 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2378 this->chip_shift = ffs(this->chipsize) - 1;
2380 /* Set the bad block position */
2381 this->badblockpos = mtd->oobblock > 512 ?
2382 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2384 /* Get chip options, preserve non chip based options */
2385 this->options &= ~NAND_CHIPOPTIONS_MSK;
2386 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2387 /* Set this as a default. Board drivers can override it, if neccecary */
2388 this->options |= NAND_NO_AUTOINCR;
2389 /* Check if this is a not a samsung device. Do not clear the options
2390 * for chips which are not having an extended id.
2392 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2393 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2395 /* Check for AND chips with 4 page planes */
2396 if (this->options & NAND_4PAGE_ARRAY)
2397 this->erase_cmd = multi_erase_cmd;
2399 this->erase_cmd = single_erase_cmd;
2401 /* Do not replace user supplied command function ! */
2402 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2403 this->cmdfunc = nand_command_lp;
2405 /* Try to identify manufacturer */
2406 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
2407 if (nand_manuf_ids[j].id == nand_maf_id)
2413 if (!nand_flash_ids[i].name) {
2414 printk (KERN_WARNING "No NAND device found!!!\n");
2415 this->select_chip(mtd, -1);
2419 for (i=1; i < maxchips; i++) {
2420 this->select_chip(mtd, i);
2422 /* Send the command for reading device ID */
2423 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2425 /* Read manufacturer and device IDs */
2426 if (nand_maf_id != this->read_byte(mtd) ||
2427 nand_dev_id != this->read_byte(mtd))
2431 printk(KERN_INFO "%d NAND chips detected\n", i);
2433 /* Allocate buffers, if neccecary */
2434 if (!this->oob_buf) {
2436 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2437 this->oob_buf = kmalloc (len, GFP_KERNEL);
2438 if (!this->oob_buf) {
2439 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2442 this->options |= NAND_OOBBUF_ALLOC;
2445 if (!this->data_buf) {
2447 len = mtd->oobblock + mtd->oobsize;
2448 this->data_buf = kmalloc (len, GFP_KERNEL);
2449 if (!this->data_buf) {
2450 if (this->options & NAND_OOBBUF_ALLOC)
2451 kfree (this->oob_buf);
2452 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2455 this->options |= NAND_DATABUF_ALLOC;
2458 /* Store the number of chips and calc total size for mtd */
2460 mtd->size = i * this->chipsize;
2461 /* Convert chipsize to number of pages per chip -1. */
2462 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2463 /* Preset the internal oob buffer */
2464 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2466 /* If no default placement scheme is given, select an
2467 * appropriate one */
2468 if (!this->autooob) {
2469 /* Select the appropriate default oob placement scheme for
2470 * placement agnostic filesystems */
2471 switch (mtd->oobsize) {
2473 this->autooob = &nand_oob_8;
2476 this->autooob = &nand_oob_16;
2479 this->autooob = &nand_oob_64;
2482 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2488 /* The number of bytes available for the filesystem to place fs dependend
2490 if (this->options & NAND_BUSWIDTH_16) {
2491 mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
2492 if (this->autooob->eccbytes & 0x01)
2495 mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
2498 * check ECC mode, default to software
2499 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2500 * fallback to software ECC
2502 this->eccsize = 256; /* set default eccsize */
2505 switch (this->eccmode) {
2506 case NAND_ECC_HW12_2048:
2507 if (mtd->oobblock < 2048) {
2508 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2510 this->eccmode = NAND_ECC_SOFT;
2511 this->calculate_ecc = nand_calculate_ecc;
2512 this->correct_data = nand_correct_data;
2514 this->eccsize = 2048;
2517 case NAND_ECC_HW3_512:
2518 case NAND_ECC_HW6_512:
2519 case NAND_ECC_HW8_512:
2520 if (mtd->oobblock == 256) {
2521 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2522 this->eccmode = NAND_ECC_SOFT;
2523 this->calculate_ecc = nand_calculate_ecc;
2524 this->correct_data = nand_correct_data;
2526 this->eccsize = 512; /* set eccsize to 512 */
2529 case NAND_ECC_HW3_256:
2533 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2534 this->eccmode = NAND_ECC_NONE;
2538 this->calculate_ecc = nand_calculate_ecc;
2539 this->correct_data = nand_correct_data;
2543 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2547 /* Check hardware ecc function availability and adjust number of ecc bytes per
2550 switch (this->eccmode) {
2551 case NAND_ECC_HW12_2048:
2552 this->eccbytes += 4;
2553 case NAND_ECC_HW8_512:
2554 this->eccbytes += 2;
2555 case NAND_ECC_HW6_512:
2556 this->eccbytes += 3;
2557 case NAND_ECC_HW3_512:
2558 case NAND_ECC_HW3_256:
2559 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2561 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2565 mtd->eccsize = this->eccsize;
2567 /* Set the number of read / write steps for one page to ensure ECC generation */
2568 switch (this->eccmode) {
2569 case NAND_ECC_HW12_2048:
2570 this->eccsteps = mtd->oobblock / 2048;
2572 case NAND_ECC_HW3_512:
2573 case NAND_ECC_HW6_512:
2574 case NAND_ECC_HW8_512:
2575 this->eccsteps = mtd->oobblock / 512;
2577 case NAND_ECC_HW3_256:
2579 this->eccsteps = mtd->oobblock / 256;
2587 /* XXX U-BOOT XXX */
2589 /* Initialize state, waitqueue and spinlock */
2590 this->state = FL_READY;
2591 init_waitqueue_head (&this->wq);
2592 spin_lock_init (&this->chip_lock);
2595 /* De-select the device */
2596 this->select_chip(mtd, -1);
2598 /* Invalidate the pagebuffer reference */
2601 /* Fill in remaining MTD driver data */
2602 mtd->type = MTD_NANDFLASH;
2603 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2604 mtd->ecctype = MTD_ECC_SW;
2605 mtd->erase = nand_erase;
2607 mtd->unpoint = NULL;
2608 mtd->read = nand_read;
2609 mtd->write = nand_write;
2610 mtd->read_ecc = nand_read_ecc;
2611 mtd->write_ecc = nand_write_ecc;
2612 mtd->read_oob = nand_read_oob;
2613 mtd->write_oob = nand_write_oob;
2614 /* XXX U-BOOT XXX */
2617 mtd->writev = nand_writev;
2618 mtd->writev_ecc = nand_writev_ecc;
2620 mtd->sync = nand_sync;
2621 /* XXX U-BOOT XXX */
2625 mtd->suspend = NULL;
2628 mtd->block_isbad = nand_block_isbad;
2629 mtd->block_markbad = nand_block_markbad;
2631 /* and make the autooob the default one */
2632 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2633 /* XXX U-BOOT XXX */
2635 mtd->owner = THIS_MODULE;
2637 /* Build bad block table */
2638 return this->scan_bbt (mtd);
2642 * nand_release - [NAND Interface] Free resources held by the NAND device
2643 * @mtd: MTD device structure
2645 void nand_release (struct mtd_info *mtd)
2647 struct nand_chip *this = mtd->priv;
2649 #ifdef CONFIG_MTD_PARTITIONS
2650 /* Deregister partitions */
2651 del_mtd_partitions (mtd);
2653 /* Deregister the device */
2654 /* XXX U-BOOT XXX */
2656 del_mtd_device (mtd);
2658 /* Free bad block table memory, if allocated */
2661 /* Buffer allocated by nand_scan ? */
2662 if (this->options & NAND_OOBBUF_ALLOC)
2663 kfree (this->oob_buf);
2664 /* Buffer allocated by nand_scan ? */
2665 if (this->options & NAND_DATABUF_ALLOC)
2666 kfree (this->data_buf);