Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/iopoll.h>
13 #include <linux/module.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset.h>
18
19 /* Bad block marker length */
20 #define FMC2_BBM_LEN                    2
21
22 /* ECC step size */
23 #define FMC2_ECC_STEP_SIZE              512
24
25 /* BCHDSRx registers length */
26 #define FMC2_BCHDSRS_LEN                20
27
28 /* HECCR length */
29 #define FMC2_HECCR_LEN                  4
30
31 /* Max requests done for a 8k nand page size */
32 #define FMC2_MAX_SG                     16
33
34 /* Max chip enable */
35 #define FMC2_MAX_CE                     2
36
37 /* Max ECC buffer length */
38 #define FMC2_MAX_ECC_BUF_LEN            (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
39
40 #define FMC2_TIMEOUT_MS                 1000
41
42 /* Timings */
43 #define FMC2_THIZ                       1
44 #define FMC2_TIO                        8000
45 #define FMC2_TSYNC                      3000
46 #define FMC2_PCR_TIMING_MASK            0xf
47 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
48
49 /* FMC2 Controller Registers */
50 #define FMC2_BCR1                       0x0
51 #define FMC2_PCR                        0x80
52 #define FMC2_SR                         0x84
53 #define FMC2_PMEM                       0x88
54 #define FMC2_PATT                       0x8c
55 #define FMC2_HECCR                      0x94
56 #define FMC2_CSQCR                      0x200
57 #define FMC2_CSQCFGR1                   0x204
58 #define FMC2_CSQCFGR2                   0x208
59 #define FMC2_CSQCFGR3                   0x20c
60 #define FMC2_CSQAR1                     0x210
61 #define FMC2_CSQAR2                     0x214
62 #define FMC2_CSQIER                     0x220
63 #define FMC2_CSQISR                     0x224
64 #define FMC2_CSQICR                     0x228
65 #define FMC2_CSQEMSR                    0x230
66 #define FMC2_BCHIER                     0x250
67 #define FMC2_BCHISR                     0x254
68 #define FMC2_BCHICR                     0x258
69 #define FMC2_BCHPBR1                    0x260
70 #define FMC2_BCHPBR2                    0x264
71 #define FMC2_BCHPBR3                    0x268
72 #define FMC2_BCHPBR4                    0x26c
73 #define FMC2_BCHDSR0                    0x27c
74 #define FMC2_BCHDSR1                    0x280
75 #define FMC2_BCHDSR2                    0x284
76 #define FMC2_BCHDSR3                    0x288
77 #define FMC2_BCHDSR4                    0x28c
78
79 /* Register: FMC2_BCR1 */
80 #define FMC2_BCR1_FMC2EN                BIT(31)
81
82 /* Register: FMC2_PCR */
83 #define FMC2_PCR_PWAITEN                BIT(1)
84 #define FMC2_PCR_PBKEN                  BIT(2)
85 #define FMC2_PCR_PWID_MASK              GENMASK(5, 4)
86 #define FMC2_PCR_PWID(x)                (((x) & 0x3) << 4)
87 #define FMC2_PCR_PWID_BUSWIDTH_8        0
88 #define FMC2_PCR_PWID_BUSWIDTH_16       1
89 #define FMC2_PCR_ECCEN                  BIT(6)
90 #define FMC2_PCR_ECCALG                 BIT(8)
91 #define FMC2_PCR_TCLR_MASK              GENMASK(12, 9)
92 #define FMC2_PCR_TCLR(x)                (((x) & 0xf) << 9)
93 #define FMC2_PCR_TCLR_DEFAULT           0xf
94 #define FMC2_PCR_TAR_MASK               GENMASK(16, 13)
95 #define FMC2_PCR_TAR(x)                 (((x) & 0xf) << 13)
96 #define FMC2_PCR_TAR_DEFAULT            0xf
97 #define FMC2_PCR_ECCSS_MASK             GENMASK(19, 17)
98 #define FMC2_PCR_ECCSS(x)               (((x) & 0x7) << 17)
99 #define FMC2_PCR_ECCSS_512              1
100 #define FMC2_PCR_ECCSS_2048             3
101 #define FMC2_PCR_BCHECC                 BIT(24)
102 #define FMC2_PCR_WEN                    BIT(25)
103
104 /* Register: FMC2_SR */
105 #define FMC2_SR_NWRF                    BIT(6)
106
107 /* Register: FMC2_PMEM */
108 #define FMC2_PMEM_MEMSET(x)             (((x) & 0xff) << 0)
109 #define FMC2_PMEM_MEMWAIT(x)            (((x) & 0xff) << 8)
110 #define FMC2_PMEM_MEMHOLD(x)            (((x) & 0xff) << 16)
111 #define FMC2_PMEM_MEMHIZ(x)             (((x) & 0xff) << 24)
112 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
113
114 /* Register: FMC2_PATT */
115 #define FMC2_PATT_ATTSET(x)             (((x) & 0xff) << 0)
116 #define FMC2_PATT_ATTWAIT(x)            (((x) & 0xff) << 8)
117 #define FMC2_PATT_ATTHOLD(x)            (((x) & 0xff) << 16)
118 #define FMC2_PATT_ATTHIZ(x)             (((x) & 0xff) << 24)
119 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
120
121 /* Register: FMC2_CSQCR */
122 #define FMC2_CSQCR_CSQSTART             BIT(0)
123
124 /* Register: FMC2_CSQCFGR1 */
125 #define FMC2_CSQCFGR1_CMD2EN            BIT(1)
126 #define FMC2_CSQCFGR1_DMADEN            BIT(2)
127 #define FMC2_CSQCFGR1_ACYNBR(x)         (((x) & 0x7) << 4)
128 #define FMC2_CSQCFGR1_CMD1(x)           (((x) & 0xff) << 8)
129 #define FMC2_CSQCFGR1_CMD2(x)           (((x) & 0xff) << 16)
130 #define FMC2_CSQCFGR1_CMD1T             BIT(24)
131 #define FMC2_CSQCFGR1_CMD2T             BIT(25)
132
133 /* Register: FMC2_CSQCFGR2 */
134 #define FMC2_CSQCFGR2_SQSDTEN           BIT(0)
135 #define FMC2_CSQCFGR2_RCMD2EN           BIT(1)
136 #define FMC2_CSQCFGR2_DMASEN            BIT(2)
137 #define FMC2_CSQCFGR2_RCMD1(x)          (((x) & 0xff) << 8)
138 #define FMC2_CSQCFGR2_RCMD2(x)          (((x) & 0xff) << 16)
139 #define FMC2_CSQCFGR2_RCMD1T            BIT(24)
140 #define FMC2_CSQCFGR2_RCMD2T            BIT(25)
141
142 /* Register: FMC2_CSQCFGR3 */
143 #define FMC2_CSQCFGR3_SNBR(x)           (((x) & 0x1f) << 8)
144 #define FMC2_CSQCFGR3_AC1T              BIT(16)
145 #define FMC2_CSQCFGR3_AC2T              BIT(17)
146 #define FMC2_CSQCFGR3_AC3T              BIT(18)
147 #define FMC2_CSQCFGR3_AC4T              BIT(19)
148 #define FMC2_CSQCFGR3_AC5T              BIT(20)
149 #define FMC2_CSQCFGR3_SDT               BIT(21)
150 #define FMC2_CSQCFGR3_RAC1T             BIT(22)
151 #define FMC2_CSQCFGR3_RAC2T             BIT(23)
152
153 /* Register: FMC2_CSQCAR1 */
154 #define FMC2_CSQCAR1_ADDC1(x)           (((x) & 0xff) << 0)
155 #define FMC2_CSQCAR1_ADDC2(x)           (((x) & 0xff) << 8)
156 #define FMC2_CSQCAR1_ADDC3(x)           (((x) & 0xff) << 16)
157 #define FMC2_CSQCAR1_ADDC4(x)           (((x) & 0xff) << 24)
158
159 /* Register: FMC2_CSQCAR2 */
160 #define FMC2_CSQCAR2_ADDC5(x)           (((x) & 0xff) << 0)
161 #define FMC2_CSQCAR2_NANDCEN(x)         (((x) & 0x3) << 10)
162 #define FMC2_CSQCAR2_SAO(x)             (((x) & 0xffff) << 16)
163
164 /* Register: FMC2_CSQIER */
165 #define FMC2_CSQIER_TCIE                BIT(0)
166
167 /* Register: FMC2_CSQICR */
168 #define FMC2_CSQICR_CLEAR_IRQ           GENMASK(4, 0)
169
170 /* Register: FMC2_CSQEMSR */
171 #define FMC2_CSQEMSR_SEM                GENMASK(15, 0)
172
173 /* Register: FMC2_BCHIER */
174 #define FMC2_BCHIER_DERIE               BIT(1)
175 #define FMC2_BCHIER_EPBRIE              BIT(4)
176
177 /* Register: FMC2_BCHICR */
178 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
179
180 /* Register: FMC2_BCHDSR0 */
181 #define FMC2_BCHDSR0_DUE                BIT(0)
182 #define FMC2_BCHDSR0_DEF                BIT(1)
183 #define FMC2_BCHDSR0_DEN_MASK           GENMASK(7, 4)
184 #define FMC2_BCHDSR0_DEN_SHIFT          4
185
186 /* Register: FMC2_BCHDSR1 */
187 #define FMC2_BCHDSR1_EBP1_MASK          GENMASK(12, 0)
188 #define FMC2_BCHDSR1_EBP2_MASK          GENMASK(28, 16)
189 #define FMC2_BCHDSR1_EBP2_SHIFT         16
190
191 /* Register: FMC2_BCHDSR2 */
192 #define FMC2_BCHDSR2_EBP3_MASK          GENMASK(12, 0)
193 #define FMC2_BCHDSR2_EBP4_MASK          GENMASK(28, 16)
194 #define FMC2_BCHDSR2_EBP4_SHIFT         16
195
196 /* Register: FMC2_BCHDSR3 */
197 #define FMC2_BCHDSR3_EBP5_MASK          GENMASK(12, 0)
198 #define FMC2_BCHDSR3_EBP6_MASK          GENMASK(28, 16)
199 #define FMC2_BCHDSR3_EBP6_SHIFT         16
200
201 /* Register: FMC2_BCHDSR4 */
202 #define FMC2_BCHDSR4_EBP7_MASK          GENMASK(12, 0)
203 #define FMC2_BCHDSR4_EBP8_MASK          GENMASK(28, 16)
204 #define FMC2_BCHDSR4_EBP8_SHIFT         16
205
206 enum stm32_fmc2_ecc {
207         FMC2_ECC_HAM = 1,
208         FMC2_ECC_BCH4 = 4,
209         FMC2_ECC_BCH8 = 8
210 };
211
212 enum stm32_fmc2_irq_state {
213         FMC2_IRQ_UNKNOWN = 0,
214         FMC2_IRQ_BCH,
215         FMC2_IRQ_SEQ
216 };
217
218 struct stm32_fmc2_timings {
219         u8 tclr;
220         u8 tar;
221         u8 thiz;
222         u8 twait;
223         u8 thold_mem;
224         u8 tset_mem;
225         u8 thold_att;
226         u8 tset_att;
227 };
228
229 struct stm32_fmc2_nand {
230         struct nand_chip chip;
231         struct stm32_fmc2_timings timings;
232         int ncs;
233         int cs_used[FMC2_MAX_CE];
234 };
235
236 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
237 {
238         return container_of(chip, struct stm32_fmc2_nand, chip);
239 }
240
241 struct stm32_fmc2_nfc {
242         struct nand_controller base;
243         struct stm32_fmc2_nand nand;
244         struct device *dev;
245         void __iomem *io_base;
246         void __iomem *data_base[FMC2_MAX_CE];
247         void __iomem *cmd_base[FMC2_MAX_CE];
248         void __iomem *addr_base[FMC2_MAX_CE];
249         phys_addr_t io_phys_addr;
250         phys_addr_t data_phys_addr[FMC2_MAX_CE];
251         struct clk *clk;
252         u8 irq_state;
253
254         struct dma_chan *dma_tx_ch;
255         struct dma_chan *dma_rx_ch;
256         struct dma_chan *dma_ecc_ch;
257         struct sg_table dma_data_sg;
258         struct sg_table dma_ecc_sg;
259         u8 *ecc_buf;
260         int dma_ecc_len;
261
262         struct completion complete;
263         struct completion dma_data_complete;
264         struct completion dma_ecc_complete;
265
266         u8 cs_assigned;
267         int cs_sel;
268 };
269
270 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
271 {
272         return container_of(base, struct stm32_fmc2_nfc, base);
273 }
274
275 /* Timings configuration */
276 static void stm32_fmc2_timings_init(struct nand_chip *chip)
277 {
278         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
279         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
280         struct stm32_fmc2_timings *timings = &nand->timings;
281         u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
282         u32 pmem, patt;
283
284         /* Set tclr/tar timings */
285         pcr &= ~FMC2_PCR_TCLR_MASK;
286         pcr |= FMC2_PCR_TCLR(timings->tclr);
287         pcr &= ~FMC2_PCR_TAR_MASK;
288         pcr |= FMC2_PCR_TAR(timings->tar);
289
290         /* Set tset/twait/thold/thiz timings in common bank */
291         pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
292         pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
293         pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
294         pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
295
296         /* Set tset/twait/thold/thiz timings in attribut bank */
297         patt = FMC2_PATT_ATTSET(timings->tset_att);
298         patt |= FMC2_PATT_ATTWAIT(timings->twait);
299         patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
300         patt |= FMC2_PATT_ATTHIZ(timings->thiz);
301
302         writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
303         writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
304         writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
305 }
306
307 /* Controller configuration */
308 static void stm32_fmc2_setup(struct nand_chip *chip)
309 {
310         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
311         u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
312
313         /* Configure ECC algorithm (default configuration is Hamming) */
314         pcr &= ~FMC2_PCR_ECCALG;
315         pcr &= ~FMC2_PCR_BCHECC;
316         if (chip->ecc.strength == FMC2_ECC_BCH8) {
317                 pcr |= FMC2_PCR_ECCALG;
318                 pcr |= FMC2_PCR_BCHECC;
319         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
320                 pcr |= FMC2_PCR_ECCALG;
321         }
322
323         /* Set buswidth */
324         pcr &= ~FMC2_PCR_PWID_MASK;
325         if (chip->options & NAND_BUSWIDTH_16)
326                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
327
328         /* Set ECC sector size */
329         pcr &= ~FMC2_PCR_ECCSS_MASK;
330         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
331
332         writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
333 }
334
335 /* Select target */
336 static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
337 {
338         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
339         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
340         struct dma_slave_config dma_cfg;
341         int ret;
342
343         if (nand->cs_used[chipnr] == fmc2->cs_sel)
344                 return 0;
345
346         fmc2->cs_sel = nand->cs_used[chipnr];
347
348         /* FMC2 setup routine */
349         stm32_fmc2_setup(chip);
350
351         /* Apply timings */
352         stm32_fmc2_timings_init(chip);
353
354         if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
355                 memset(&dma_cfg, 0, sizeof(dma_cfg));
356                 dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
357                 dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
358                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
359                 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
360                 dma_cfg.src_maxburst = 32;
361                 dma_cfg.dst_maxburst = 32;
362
363                 ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
364                 if (ret) {
365                         dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
366                         return ret;
367                 }
368
369                 ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
370                 if (ret) {
371                         dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
372                         return ret;
373                 }
374         }
375
376         if (fmc2->dma_ecc_ch) {
377                 /*
378                  * Hamming: we read HECCR register
379                  * BCH4/BCH8: we read BCHDSRSx registers
380                  */
381                 memset(&dma_cfg, 0, sizeof(dma_cfg));
382                 dma_cfg.src_addr = fmc2->io_phys_addr;
383                 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
384                                     FMC2_HECCR : FMC2_BCHDSR0;
385                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
386
387                 ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
388                 if (ret) {
389                         dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
390                         return ret;
391                 }
392
393                 /* Calculate ECC length needed for one sector */
394                 fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
395                                     FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
396         }
397
398         return 0;
399 }
400
401 /* Set bus width to 16-bit or 8-bit */
402 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
403 {
404         u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
405
406         pcr &= ~FMC2_PCR_PWID_MASK;
407         if (set)
408                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
409         writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
410 }
411
412 /* Enable/disable ECC */
413 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
414 {
415         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
416
417         pcr &= ~FMC2_PCR_ECCEN;
418         if (enable)
419                 pcr |= FMC2_PCR_ECCEN;
420         writel(pcr, fmc2->io_base + FMC2_PCR);
421 }
422
423 /* Enable irq sources in case of the sequencer is used */
424 static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
425 {
426         u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
427
428         csqier |= FMC2_CSQIER_TCIE;
429
430         fmc2->irq_state = FMC2_IRQ_SEQ;
431
432         writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
433 }
434
435 /* Disable irq sources in case of the sequencer is used */
436 static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
437 {
438         u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
439
440         csqier &= ~FMC2_CSQIER_TCIE;
441
442         writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
443
444         fmc2->irq_state = FMC2_IRQ_UNKNOWN;
445 }
446
447 /* Clear irq sources in case of the sequencer is used */
448 static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
449 {
450         writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
451 }
452
453 /* Enable irq sources in case of bch is used */
454 static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
455                                              int mode)
456 {
457         u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
458
459         if (mode == NAND_ECC_WRITE)
460                 bchier |= FMC2_BCHIER_EPBRIE;
461         else
462                 bchier |= FMC2_BCHIER_DERIE;
463
464         fmc2->irq_state = FMC2_IRQ_BCH;
465
466         writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
467 }
468
469 /* Disable irq sources in case of bch is used */
470 static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
471 {
472         u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
473
474         bchier &= ~FMC2_BCHIER_DERIE;
475         bchier &= ~FMC2_BCHIER_EPBRIE;
476
477         writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
478
479         fmc2->irq_state = FMC2_IRQ_UNKNOWN;
480 }
481
482 /* Clear irq sources in case of bch is used */
483 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
484 {
485         writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
486 }
487
488 /*
489  * Enable ECC logic and reset syndrome/parity bits previously calculated
490  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
491  */
492 static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
493 {
494         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
495
496         stm32_fmc2_set_ecc(fmc2, false);
497
498         if (chip->ecc.strength != FMC2_ECC_HAM) {
499                 u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
500
501                 if (mode == NAND_ECC_WRITE)
502                         pcr |= FMC2_PCR_WEN;
503                 else
504                         pcr &= ~FMC2_PCR_WEN;
505                 writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
506
507                 reinit_completion(&fmc2->complete);
508                 stm32_fmc2_clear_bch_irq(fmc2);
509                 stm32_fmc2_enable_bch_irq(fmc2, mode);
510         }
511
512         stm32_fmc2_set_ecc(fmc2, true);
513 }
514
515 /*
516  * ECC Hamming calculation
517  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
518  * max of 1-bit)
519  */
520 static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
521 {
522         ecc[0] = ecc_sta;
523         ecc[1] = ecc_sta >> 8;
524         ecc[2] = ecc_sta >> 16;
525 }
526
527 static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
528                                     u8 *ecc)
529 {
530         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
531         u32 sr, heccr;
532         int ret;
533
534         ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
535                                          sr, sr & FMC2_SR_NWRF, 10,
536                                          FMC2_TIMEOUT_MS);
537         if (ret) {
538                 dev_err(fmc2->dev, "ham timeout\n");
539                 return ret;
540         }
541
542         heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
543
544         stm32_fmc2_ham_set_ecc(heccr, ecc);
545
546         /* Disable ECC */
547         stm32_fmc2_set_ecc(fmc2, false);
548
549         return 0;
550 }
551
552 static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
553                                   u8 *read_ecc, u8 *calc_ecc)
554 {
555         u8 bit_position = 0, b0, b1, b2;
556         u32 byte_addr = 0, b;
557         u32 i, shifting = 1;
558
559         /* Indicate which bit and byte is faulty (if any) */
560         b0 = read_ecc[0] ^ calc_ecc[0];
561         b1 = read_ecc[1] ^ calc_ecc[1];
562         b2 = read_ecc[2] ^ calc_ecc[2];
563         b = b0 | (b1 << 8) | (b2 << 16);
564
565         /* No errors */
566         if (likely(!b))
567                 return 0;
568
569         /* Calculate bit position */
570         for (i = 0; i < 3; i++) {
571                 switch (b % 4) {
572                 case 2:
573                         bit_position += shifting;
574                 case 1:
575                         break;
576                 default:
577                         return -EBADMSG;
578                 }
579                 shifting <<= 1;
580                 b >>= 2;
581         }
582
583         /* Calculate byte position */
584         shifting = 1;
585         for (i = 0; i < 9; i++) {
586                 switch (b % 4) {
587                 case 2:
588                         byte_addr += shifting;
589                 case 1:
590                         break;
591                 default:
592                         return -EBADMSG;
593                 }
594                 shifting <<= 1;
595                 b >>= 2;
596         }
597
598         /* Flip the bit */
599         dat[byte_addr] ^= (1 << bit_position);
600
601         return 1;
602 }
603
604 /*
605  * ECC BCH calculation and correction
606  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
607  * max of 4-bit/8-bit)
608  */
609 static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
610                                     u8 *ecc)
611 {
612         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
613         u32 bchpbr;
614
615         /* Wait until the BCH code is ready */
616         if (!wait_for_completion_timeout(&fmc2->complete,
617                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
618                 dev_err(fmc2->dev, "bch timeout\n");
619                 stm32_fmc2_disable_bch_irq(fmc2);
620                 return -ETIMEDOUT;
621         }
622
623         /* Read parity bits */
624         bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
625         ecc[0] = bchpbr;
626         ecc[1] = bchpbr >> 8;
627         ecc[2] = bchpbr >> 16;
628         ecc[3] = bchpbr >> 24;
629
630         bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
631         ecc[4] = bchpbr;
632         ecc[5] = bchpbr >> 8;
633         ecc[6] = bchpbr >> 16;
634
635         if (chip->ecc.strength == FMC2_ECC_BCH8) {
636                 ecc[7] = bchpbr >> 24;
637
638                 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
639                 ecc[8] = bchpbr;
640                 ecc[9] = bchpbr >> 8;
641                 ecc[10] = bchpbr >> 16;
642                 ecc[11] = bchpbr >> 24;
643
644                 bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
645                 ecc[12] = bchpbr;
646         }
647
648         /* Disable ECC */
649         stm32_fmc2_set_ecc(fmc2, false);
650
651         return 0;
652 }
653
654 /* BCH algorithm correction */
655 static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
656 {
657         u32 bchdsr0 = ecc_sta[0];
658         u32 bchdsr1 = ecc_sta[1];
659         u32 bchdsr2 = ecc_sta[2];
660         u32 bchdsr3 = ecc_sta[3];
661         u32 bchdsr4 = ecc_sta[4];
662         u16 pos[8];
663         int i, den;
664         unsigned int nb_errs = 0;
665
666         /* No errors found */
667         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
668                 return 0;
669
670         /* Too many errors detected */
671         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
672                 return -EBADMSG;
673
674         pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
675         pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
676         pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
677         pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
678         pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
679         pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
680         pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
681         pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
682
683         den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
684         for (i = 0; i < den; i++) {
685                 if (pos[i] < eccsize * 8) {
686                         change_bit(pos[i], (unsigned long *)dat);
687                         nb_errs++;
688                 }
689         }
690
691         return nb_errs;
692 }
693
694 static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
695                                   u8 *read_ecc, u8 *calc_ecc)
696 {
697         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
698         u32 ecc_sta[5];
699
700         /* Wait until the decoding error is ready */
701         if (!wait_for_completion_timeout(&fmc2->complete,
702                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
703                 dev_err(fmc2->dev, "bch timeout\n");
704                 stm32_fmc2_disable_bch_irq(fmc2);
705                 return -ETIMEDOUT;
706         }
707
708         ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
709         ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
710         ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
711         ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
712         ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
713
714         /* Disable ECC */
715         stm32_fmc2_set_ecc(fmc2, false);
716
717         return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
718 }
719
720 static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
721                                 int oob_required, int page)
722 {
723         struct mtd_info *mtd = nand_to_mtd(chip);
724         int ret, i, s, stat, eccsize = chip->ecc.size;
725         int eccbytes = chip->ecc.bytes;
726         int eccsteps = chip->ecc.steps;
727         int eccstrength = chip->ecc.strength;
728         u8 *p = buf;
729         u8 *ecc_calc = chip->ecc.calc_buf;
730         u8 *ecc_code = chip->ecc.code_buf;
731         unsigned int max_bitflips = 0;
732
733         ret = nand_read_page_op(chip, page, 0, NULL, 0);
734         if (ret)
735                 return ret;
736
737         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
738              s++, i += eccbytes, p += eccsize) {
739                 chip->ecc.hwctl(chip, NAND_ECC_READ);
740
741                 /* Read the nand page sector (512 bytes) */
742                 ret = nand_change_read_column_op(chip, s * eccsize, p,
743                                                  eccsize, false);
744                 if (ret)
745                         return ret;
746
747                 /* Read the corresponding ECC bytes */
748                 ret = nand_change_read_column_op(chip, i, ecc_code,
749                                                  eccbytes, false);
750                 if (ret)
751                         return ret;
752
753                 /* Correct the data */
754                 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
755                 if (stat == -EBADMSG)
756                         /* Check for empty pages with bitflips */
757                         stat = nand_check_erased_ecc_chunk(p, eccsize,
758                                                            ecc_code, eccbytes,
759                                                            NULL, 0,
760                                                            eccstrength);
761
762                 if (stat < 0) {
763                         mtd->ecc_stats.failed++;
764                 } else {
765                         mtd->ecc_stats.corrected += stat;
766                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
767                 }
768         }
769
770         /* Read oob */
771         if (oob_required) {
772                 ret = nand_change_read_column_op(chip, mtd->writesize,
773                                                  chip->oob_poi, mtd->oobsize,
774                                                  false);
775                 if (ret)
776                         return ret;
777         }
778
779         return max_bitflips;
780 }
781
782 /* Sequencer read/write configuration */
783 static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
784                                     int raw, bool write_data)
785 {
786         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
787         struct mtd_info *mtd = nand_to_mtd(chip);
788         u32 csqcfgr1, csqcfgr2, csqcfgr3;
789         u32 csqar1, csqar2;
790         u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
791         u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
792
793         if (write_data)
794                 pcr |= FMC2_PCR_WEN;
795         else
796                 pcr &= ~FMC2_PCR_WEN;
797         writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
798
799         /*
800          * - Set Program Page/Page Read command
801          * - Enable DMA request data
802          * - Set timings
803          */
804         csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
805         if (write_data)
806                 csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
807         else
808                 csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
809                             FMC2_CSQCFGR1_CMD2EN |
810                             FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
811                             FMC2_CSQCFGR1_CMD2T;
812
813         /*
814          * - Set Random Data Input/Random Data Read command
815          * - Enable the sequencer to access the Spare data area
816          * - Enable  DMA request status decoding for read
817          * - Set timings
818          */
819         if (write_data)
820                 csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
821         else
822                 csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
823                            FMC2_CSQCFGR2_RCMD2EN |
824                            FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
825                            FMC2_CSQCFGR2_RCMD1T |
826                            FMC2_CSQCFGR2_RCMD2T;
827         if (!raw) {
828                 csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
829                 csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
830         }
831
832         /*
833          * - Set the number of sectors to be written
834          * - Set timings
835          */
836         csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
837         if (write_data) {
838                 csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
839                 if (chip->options & NAND_ROW_ADDR_3)
840                         csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
841                 else
842                         csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
843         }
844
845         /*
846          * Set the fourth first address cycles
847          * Byte 1 and byte 2 => column, we start at 0x0
848          * Byte 3 and byte 4 => page
849          */
850         csqar1 = FMC2_CSQCAR1_ADDC3(page);
851         csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
852
853         /*
854          * - Set chip enable number
855          * - Set ECC byte offset in the spare area
856          * - Calculate the number of address cycles to be issued
857          * - Set byte 5 of address cycle if needed
858          */
859         csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
860         if (chip->options & NAND_BUSWIDTH_16)
861                 csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
862         else
863                 csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
864         if (chip->options & NAND_ROW_ADDR_3) {
865                 csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
866                 csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
867         } else {
868                 csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
869         }
870
871         writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
872         writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
873         writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
874         writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
875         writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
876 }
877
878 static void stm32_fmc2_dma_callback(void *arg)
879 {
880         complete((struct completion *)arg);
881 }
882
883 /* Read/write data from/to a page */
884 static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
885                            int raw, bool write_data)
886 {
887         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
888         struct dma_async_tx_descriptor *desc_data, *desc_ecc;
889         struct scatterlist *sg;
890         struct dma_chan *dma_ch = fmc2->dma_rx_ch;
891         enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
892         enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
893         u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
894         int eccsteps = chip->ecc.steps;
895         int eccsize = chip->ecc.size;
896         const u8 *p = buf;
897         int s, ret;
898
899         /* Configure DMA data */
900         if (write_data) {
901                 dma_data_dir = DMA_TO_DEVICE;
902                 dma_transfer_dir = DMA_MEM_TO_DEV;
903                 dma_ch = fmc2->dma_tx_ch;
904         }
905
906         for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
907                 sg_set_buf(sg, p, eccsize);
908                 p += eccsize;
909         }
910
911         ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
912                          eccsteps, dma_data_dir);
913         if (ret < 0)
914                 return ret;
915
916         desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
917                                             eccsteps, dma_transfer_dir,
918                                             DMA_PREP_INTERRUPT);
919         if (!desc_data) {
920                 ret = -ENOMEM;
921                 goto err_unmap_data;
922         }
923
924         reinit_completion(&fmc2->dma_data_complete);
925         reinit_completion(&fmc2->complete);
926         desc_data->callback = stm32_fmc2_dma_callback;
927         desc_data->callback_param = &fmc2->dma_data_complete;
928         ret = dma_submit_error(dmaengine_submit(desc_data));
929         if (ret)
930                 goto err_unmap_data;
931
932         dma_async_issue_pending(dma_ch);
933
934         if (!write_data && !raw) {
935                 /* Configure DMA ECC status */
936                 p = fmc2->ecc_buf;
937                 for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
938                         sg_set_buf(sg, p, fmc2->dma_ecc_len);
939                         p += fmc2->dma_ecc_len;
940                 }
941
942                 ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
943                                  eccsteps, dma_data_dir);
944                 if (ret < 0)
945                         goto err_unmap_data;
946
947                 desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
948                                                    fmc2->dma_ecc_sg.sgl,
949                                                    eccsteps, dma_transfer_dir,
950                                                    DMA_PREP_INTERRUPT);
951                 if (!desc_ecc) {
952                         ret = -ENOMEM;
953                         goto err_unmap_ecc;
954                 }
955
956                 reinit_completion(&fmc2->dma_ecc_complete);
957                 desc_ecc->callback = stm32_fmc2_dma_callback;
958                 desc_ecc->callback_param = &fmc2->dma_ecc_complete;
959                 ret = dma_submit_error(dmaengine_submit(desc_ecc));
960                 if (ret)
961                         goto err_unmap_ecc;
962
963                 dma_async_issue_pending(fmc2->dma_ecc_ch);
964         }
965
966         stm32_fmc2_clear_seq_irq(fmc2);
967         stm32_fmc2_enable_seq_irq(fmc2);
968
969         /* Start the transfer */
970         csqcr |= FMC2_CSQCR_CSQSTART;
971         writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
972
973         /* Wait end of sequencer transfer */
974         if (!wait_for_completion_timeout(&fmc2->complete,
975                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
976                 dev_err(fmc2->dev, "seq timeout\n");
977                 stm32_fmc2_disable_seq_irq(fmc2);
978                 dmaengine_terminate_all(dma_ch);
979                 if (!write_data && !raw)
980                         dmaengine_terminate_all(fmc2->dma_ecc_ch);
981                 ret = -ETIMEDOUT;
982                 goto err_unmap_ecc;
983         }
984
985         /* Wait DMA data transfer completion */
986         if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
987                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
988                 dev_err(fmc2->dev, "data DMA timeout\n");
989                 dmaengine_terminate_all(dma_ch);
990                 ret = -ETIMEDOUT;
991         }
992
993         /* Wait DMA ECC transfer completion */
994         if (!write_data && !raw) {
995                 if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
996                                         msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
997                         dev_err(fmc2->dev, "ECC DMA timeout\n");
998                         dmaengine_terminate_all(fmc2->dma_ecc_ch);
999                         ret = -ETIMEDOUT;
1000                 }
1001         }
1002
1003 err_unmap_ecc:
1004         if (!write_data && !raw)
1005                 dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
1006                              eccsteps, dma_data_dir);
1007
1008 err_unmap_data:
1009         dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
1010
1011         return ret;
1012 }
1013
1014 static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
1015                                       const u8 *buf, int oob_required,
1016                                       int page, int raw)
1017 {
1018         struct mtd_info *mtd = nand_to_mtd(chip);
1019         int ret;
1020
1021         /* Configure the sequencer */
1022         stm32_fmc2_rw_page_init(chip, page, raw, true);
1023
1024         /* Write the page */
1025         ret = stm32_fmc2_xfer(chip, buf, raw, true);
1026         if (ret)
1027                 return ret;
1028
1029         /* Write oob */
1030         if (oob_required) {
1031                 ret = nand_change_write_column_op(chip, mtd->writesize,
1032                                                   chip->oob_poi, mtd->oobsize,
1033                                                   false);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         return nand_prog_page_end_op(chip);
1039 }
1040
1041 static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
1042                                            const u8 *buf,
1043                                            int oob_required,
1044                                            int page)
1045 {
1046         int ret;
1047
1048         /* Select the target */
1049         ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1050         if (ret)
1051                 return ret;
1052
1053         return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
1054 }
1055
1056 static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
1057                                                const u8 *buf,
1058                                                int oob_required,
1059                                                int page)
1060 {
1061         int ret;
1062
1063         /* Select the target */
1064         ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1065         if (ret)
1066                 return ret;
1067
1068         return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
1069 }
1070
1071 /* Get a status indicating which sectors have errors */
1072 static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
1073 {
1074         u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
1075
1076         return csqemsr & FMC2_CSQEMSR_SEM;
1077 }
1078
1079 static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
1080                                         u8 *read_ecc, u8 *calc_ecc)
1081 {
1082         struct mtd_info *mtd = nand_to_mtd(chip);
1083         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1084         int eccbytes = chip->ecc.bytes;
1085         int eccsteps = chip->ecc.steps;
1086         int eccstrength = chip->ecc.strength;
1087         int i, s, eccsize = chip->ecc.size;
1088         u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
1089         u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
1090         unsigned int max_bitflips = 0;
1091
1092         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1093                 int stat = 0;
1094
1095                 if (eccstrength == FMC2_ECC_HAM) {
1096                         /* Ecc_sta = FMC2_HECCR */
1097                         if (sta_map & BIT(s)) {
1098                                 stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
1099                                 stat = stm32_fmc2_ham_correct(chip, dat,
1100                                                               &read_ecc[i],
1101                                                               &calc_ecc[i]);
1102                         }
1103                         ecc_sta++;
1104                 } else {
1105                         /*
1106                          * Ecc_sta[0] = FMC2_BCHDSR0
1107                          * Ecc_sta[1] = FMC2_BCHDSR1
1108                          * Ecc_sta[2] = FMC2_BCHDSR2
1109                          * Ecc_sta[3] = FMC2_BCHDSR3
1110                          * Ecc_sta[4] = FMC2_BCHDSR4
1111                          */
1112                         if (sta_map & BIT(s))
1113                                 stat = stm32_fmc2_bch_decode(eccsize, dat,
1114                                                              ecc_sta);
1115                         ecc_sta += 5;
1116                 }
1117
1118                 if (stat == -EBADMSG)
1119                         /* Check for empty pages with bitflips */
1120                         stat = nand_check_erased_ecc_chunk(dat, eccsize,
1121                                                            &read_ecc[i],
1122                                                            eccbytes,
1123                                                            NULL, 0,
1124                                                            eccstrength);
1125
1126                 if (stat < 0) {
1127                         mtd->ecc_stats.failed++;
1128                 } else {
1129                         mtd->ecc_stats.corrected += stat;
1130                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1131                 }
1132         }
1133
1134         return max_bitflips;
1135 }
1136
1137 static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
1138                                           int oob_required, int page)
1139 {
1140         struct mtd_info *mtd = nand_to_mtd(chip);
1141         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1142         u8 *ecc_calc = chip->ecc.calc_buf;
1143         u8 *ecc_code = chip->ecc.code_buf;
1144         u16 sta_map;
1145         int ret;
1146
1147         /* Select the target */
1148         ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1149         if (ret)
1150                 return ret;
1151
1152         /* Configure the sequencer */
1153         stm32_fmc2_rw_page_init(chip, page, 0, false);
1154
1155         /* Read the page */
1156         ret = stm32_fmc2_xfer(chip, buf, 0, false);
1157         if (ret)
1158                 return ret;
1159
1160         sta_map = stm32_fmc2_get_mapping_status(fmc2);
1161
1162         /* Check if errors happen */
1163         if (likely(!sta_map)) {
1164                 if (oob_required)
1165                         return nand_change_read_column_op(chip, mtd->writesize,
1166                                                           chip->oob_poi,
1167                                                           mtd->oobsize, false);
1168
1169                 return 0;
1170         }
1171
1172         /* Read oob */
1173         ret = nand_change_read_column_op(chip, mtd->writesize,
1174                                          chip->oob_poi, mtd->oobsize, false);
1175         if (ret)
1176                 return ret;
1177
1178         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1179                                          chip->ecc.total);
1180         if (ret)
1181                 return ret;
1182
1183         /* Correct data */
1184         return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1185 }
1186
1187 static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
1188                                               int oob_required, int page)
1189 {
1190         struct mtd_info *mtd = nand_to_mtd(chip);
1191         int ret;
1192
1193         /* Select the target */
1194         ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
1195         if (ret)
1196                 return ret;
1197
1198         /* Configure the sequencer */
1199         stm32_fmc2_rw_page_init(chip, page, 1, false);
1200
1201         /* Read the page */
1202         ret = stm32_fmc2_xfer(chip, buf, 1, false);
1203         if (ret)
1204                 return ret;
1205
1206         /* Read oob */
1207         if (oob_required)
1208                 return nand_change_read_column_op(chip, mtd->writesize,
1209                                                   chip->oob_poi, mtd->oobsize,
1210                                                   false);
1211
1212         return 0;
1213 }
1214
1215 static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
1216 {
1217         struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
1218
1219         if (fmc2->irq_state == FMC2_IRQ_SEQ)
1220                 /* Sequencer is used */
1221                 stm32_fmc2_disable_seq_irq(fmc2);
1222         else if (fmc2->irq_state == FMC2_IRQ_BCH)
1223                 /* BCH is used */
1224                 stm32_fmc2_disable_bch_irq(fmc2);
1225
1226         complete(&fmc2->complete);
1227
1228         return IRQ_HANDLED;
1229 }
1230
1231 static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
1232                                  unsigned int len, bool force_8bit)
1233 {
1234         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1235         void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
1236
1237         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1238                 /* Reconfigure bus width to 8-bit */
1239                 stm32_fmc2_set_buswidth_16(fmc2, false);
1240
1241         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1242                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1243                         *(u8 *)buf = readb_relaxed(io_addr_r);
1244                         buf += sizeof(u8);
1245                         len -= sizeof(u8);
1246                 }
1247
1248                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1249                     len >= sizeof(u16)) {
1250                         *(u16 *)buf = readw_relaxed(io_addr_r);
1251                         buf += sizeof(u16);
1252                         len -= sizeof(u16);
1253                 }
1254         }
1255
1256         /* Buf is aligned */
1257         while (len >= sizeof(u32)) {
1258                 *(u32 *)buf = readl_relaxed(io_addr_r);
1259                 buf += sizeof(u32);
1260                 len -= sizeof(u32);
1261         }
1262
1263         /* Read remaining bytes */
1264         if (len >= sizeof(u16)) {
1265                 *(u16 *)buf = readw_relaxed(io_addr_r);
1266                 buf += sizeof(u16);
1267                 len -= sizeof(u16);
1268         }
1269
1270         if (len)
1271                 *(u8 *)buf = readb_relaxed(io_addr_r);
1272
1273         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1274                 /* Reconfigure bus width to 16-bit */
1275                 stm32_fmc2_set_buswidth_16(fmc2, true);
1276 }
1277
1278 static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
1279                                   unsigned int len, bool force_8bit)
1280 {
1281         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1282         void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
1283
1284         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1285                 /* Reconfigure bus width to 8-bit */
1286                 stm32_fmc2_set_buswidth_16(fmc2, false);
1287
1288         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1289                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1290                         writeb_relaxed(*(u8 *)buf, io_addr_w);
1291                         buf += sizeof(u8);
1292                         len -= sizeof(u8);
1293                 }
1294
1295                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1296                     len >= sizeof(u16)) {
1297                         writew_relaxed(*(u16 *)buf, io_addr_w);
1298                         buf += sizeof(u16);
1299                         len -= sizeof(u16);
1300                 }
1301         }
1302
1303         /* Buf is aligned */
1304         while (len >= sizeof(u32)) {
1305                 writel_relaxed(*(u32 *)buf, io_addr_w);
1306                 buf += sizeof(u32);
1307                 len -= sizeof(u32);
1308         }
1309
1310         /* Write remaining bytes */
1311         if (len >= sizeof(u16)) {
1312                 writew_relaxed(*(u16 *)buf, io_addr_w);
1313                 buf += sizeof(u16);
1314                 len -= sizeof(u16);
1315         }
1316
1317         if (len)
1318                 writeb_relaxed(*(u8 *)buf, io_addr_w);
1319
1320         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1321                 /* Reconfigure bus width to 16-bit */
1322                 stm32_fmc2_set_buswidth_16(fmc2, true);
1323 }
1324
1325 static int stm32_fmc2_exec_op(struct nand_chip *chip,
1326                               const struct nand_operation *op,
1327                               bool check_only)
1328 {
1329         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1330         const struct nand_op_instr *instr = NULL;
1331         unsigned int op_id, i;
1332         int ret;
1333
1334         ret = stm32_fmc2_select_chip(chip, op->cs);
1335         if (ret)
1336                 return ret;
1337
1338         if (check_only)
1339                 return ret;
1340
1341         for (op_id = 0; op_id < op->ninstrs; op_id++) {
1342                 instr = &op->instrs[op_id];
1343
1344                 switch (instr->type) {
1345                 case NAND_OP_CMD_INSTR:
1346                         writeb_relaxed(instr->ctx.cmd.opcode,
1347                                        fmc2->cmd_base[fmc2->cs_sel]);
1348                         break;
1349
1350                 case NAND_OP_ADDR_INSTR:
1351                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
1352                                 writeb_relaxed(instr->ctx.addr.addrs[i],
1353                                                fmc2->addr_base[fmc2->cs_sel]);
1354                         break;
1355
1356                 case NAND_OP_DATA_IN_INSTR:
1357                         stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
1358                                              instr->ctx.data.len,
1359                                              instr->ctx.data.force_8bit);
1360                         break;
1361
1362                 case NAND_OP_DATA_OUT_INSTR:
1363                         stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
1364                                               instr->ctx.data.len,
1365                                               instr->ctx.data.force_8bit);
1366                         break;
1367
1368                 case NAND_OP_WAITRDY_INSTR:
1369                         ret = nand_soft_waitrdy(chip,
1370                                                 instr->ctx.waitrdy.timeout_ms);
1371                         break;
1372                 }
1373         }
1374
1375         return ret;
1376 }
1377
1378 /* Controller initialization */
1379 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
1380 {
1381         u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
1382         u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
1383
1384         /* Set CS used to undefined */
1385         fmc2->cs_sel = -1;
1386
1387         /* Enable wait feature and nand flash memory bank */
1388         pcr |= FMC2_PCR_PWAITEN;
1389         pcr |= FMC2_PCR_PBKEN;
1390
1391         /* Set buswidth to 8 bits mode for identification */
1392         pcr &= ~FMC2_PCR_PWID_MASK;
1393
1394         /* ECC logic is disabled */
1395         pcr &= ~FMC2_PCR_ECCEN;
1396
1397         /* Default mode */
1398         pcr &= ~FMC2_PCR_ECCALG;
1399         pcr &= ~FMC2_PCR_BCHECC;
1400         pcr &= ~FMC2_PCR_WEN;
1401
1402         /* Set default ECC sector size */
1403         pcr &= ~FMC2_PCR_ECCSS_MASK;
1404         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
1405
1406         /* Set default tclr/tar timings */
1407         pcr &= ~FMC2_PCR_TCLR_MASK;
1408         pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
1409         pcr &= ~FMC2_PCR_TAR_MASK;
1410         pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
1411
1412         /* Enable FMC2 controller */
1413         bcr1 |= FMC2_BCR1_FMC2EN;
1414
1415         writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
1416         writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
1417         writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
1418         writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
1419 }
1420
1421 /* Controller timings */
1422 static void stm32_fmc2_calc_timings(struct nand_chip *chip,
1423                                     const struct nand_sdr_timings *sdrt)
1424 {
1425         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1426         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1427         struct stm32_fmc2_timings *tims = &nand->timings;
1428         unsigned long hclk = clk_get_rate(fmc2->clk);
1429         unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1430         unsigned long timing, tar, tclr, thiz, twait;
1431         unsigned long tset_mem, tset_att, thold_mem, thold_att;
1432
1433         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1434         timing = DIV_ROUND_UP(tar, hclkp) - 1;
1435         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1436
1437         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1438         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1439         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1440
1441         tims->thiz = FMC2_THIZ;
1442         thiz = (tims->thiz + 1) * hclkp;
1443
1444         /*
1445          * tWAIT > tRP
1446          * tWAIT > tWP
1447          * tWAIT > tREA + tIO
1448          */
1449         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1450         twait = max_t(unsigned long, twait, sdrt->tWP_min);
1451         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1452         timing = DIV_ROUND_UP(twait, hclkp);
1453         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1454
1455         /*
1456          * tSETUP_MEM > tCS - tWAIT
1457          * tSETUP_MEM > tALS - tWAIT
1458          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1459          */
1460         tset_mem = hclkp;
1461         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1462                 tset_mem = sdrt->tCS_min - twait;
1463         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1464                 tset_mem = sdrt->tALS_min - twait;
1465         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1466             (tset_mem < sdrt->tDS_min - (twait - thiz)))
1467                 tset_mem = sdrt->tDS_min - (twait - thiz);
1468         timing = DIV_ROUND_UP(tset_mem, hclkp);
1469         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1470
1471         /*
1472          * tHOLD_MEM > tCH
1473          * tHOLD_MEM > tREH - tSETUP_MEM
1474          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1475          */
1476         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1477         if (sdrt->tREH_min > tset_mem &&
1478             (thold_mem < sdrt->tREH_min - tset_mem))
1479                 thold_mem = sdrt->tREH_min - tset_mem;
1480         if ((sdrt->tRC_min > tset_mem + twait) &&
1481             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1482                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
1483         if ((sdrt->tWC_min > tset_mem + twait) &&
1484             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1485                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
1486         timing = DIV_ROUND_UP(thold_mem, hclkp);
1487         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1488
1489         /*
1490          * tSETUP_ATT > tCS - tWAIT
1491          * tSETUP_ATT > tCLS - tWAIT
1492          * tSETUP_ATT > tALS - tWAIT
1493          * tSETUP_ATT > tRHW - tHOLD_MEM
1494          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1495          */
1496         tset_att = hclkp;
1497         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1498                 tset_att = sdrt->tCS_min - twait;
1499         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1500                 tset_att = sdrt->tCLS_min - twait;
1501         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1502                 tset_att = sdrt->tALS_min - twait;
1503         if (sdrt->tRHW_min > thold_mem &&
1504             (tset_att < sdrt->tRHW_min - thold_mem))
1505                 tset_att = sdrt->tRHW_min - thold_mem;
1506         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1507             (tset_att < sdrt->tDS_min - (twait - thiz)))
1508                 tset_att = sdrt->tDS_min - (twait - thiz);
1509         timing = DIV_ROUND_UP(tset_att, hclkp);
1510         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1511
1512         /*
1513          * tHOLD_ATT > tALH
1514          * tHOLD_ATT > tCH
1515          * tHOLD_ATT > tCLH
1516          * tHOLD_ATT > tCOH
1517          * tHOLD_ATT > tDH
1518          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1519          * tHOLD_ATT > tADL - tSETUP_MEM
1520          * tHOLD_ATT > tWH - tSETUP_MEM
1521          * tHOLD_ATT > tWHR - tSETUP_MEM
1522          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1523          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1524          */
1525         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1526         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1527         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1528         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1529         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1530         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1531             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1532                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1533         if (sdrt->tADL_min > tset_mem &&
1534             (thold_att < sdrt->tADL_min - tset_mem))
1535                 thold_att = sdrt->tADL_min - tset_mem;
1536         if (sdrt->tWH_min > tset_mem &&
1537             (thold_att < sdrt->tWH_min - tset_mem))
1538                 thold_att = sdrt->tWH_min - tset_mem;
1539         if (sdrt->tWHR_min > tset_mem &&
1540             (thold_att < sdrt->tWHR_min - tset_mem))
1541                 thold_att = sdrt->tWHR_min - tset_mem;
1542         if ((sdrt->tRC_min > tset_att + twait) &&
1543             (thold_att < sdrt->tRC_min - (tset_att + twait)))
1544                 thold_att = sdrt->tRC_min - (tset_att + twait);
1545         if ((sdrt->tWC_min > tset_att + twait) &&
1546             (thold_att < sdrt->tWC_min - (tset_att + twait)))
1547                 thold_att = sdrt->tWC_min - (tset_att + twait);
1548         timing = DIV_ROUND_UP(thold_att, hclkp);
1549         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1550 }
1551
1552 static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
1553                                       const struct nand_data_interface *conf)
1554 {
1555         const struct nand_sdr_timings *sdrt;
1556
1557         sdrt = nand_get_sdr_timings(conf);
1558         if (IS_ERR(sdrt))
1559                 return PTR_ERR(sdrt);
1560
1561         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1562                 return 0;
1563
1564         stm32_fmc2_calc_timings(chip, sdrt);
1565
1566         /* Apply timings */
1567         stm32_fmc2_timings_init(chip);
1568
1569         return 0;
1570 }
1571
1572 /* DMA configuration */
1573 static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
1574 {
1575         int ret;
1576
1577         fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
1578         fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
1579         fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
1580
1581         if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
1582                 dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
1583                 return 0;
1584         }
1585
1586         ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1587         if (ret)
1588                 return ret;
1589
1590         /* Allocate a buffer to store ECC status registers */
1591         fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
1592                                      GFP_KERNEL);
1593         if (!fmc2->ecc_buf)
1594                 return -ENOMEM;
1595
1596         ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1597         if (ret)
1598                 return ret;
1599
1600         init_completion(&fmc2->dma_data_complete);
1601         init_completion(&fmc2->dma_ecc_complete);
1602
1603         return 0;
1604 }
1605
1606 /* NAND callbacks setup */
1607 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
1608 {
1609         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1610
1611         /*
1612          * Specific callbacks to read/write a page depending on
1613          * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1614          */
1615         if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
1616                 /* DMA => use sequencer mode callbacks */
1617                 chip->ecc.correct = stm32_fmc2_sequencer_correct;
1618                 chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
1619                 chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
1620                 chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
1621                 chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
1622         } else {
1623                 /* No DMA => use polling mode callbacks */
1624                 chip->ecc.hwctl = stm32_fmc2_hwctl;
1625                 if (chip->ecc.strength == FMC2_ECC_HAM) {
1626                         /* Hamming is used */
1627                         chip->ecc.calculate = stm32_fmc2_ham_calculate;
1628                         chip->ecc.correct = stm32_fmc2_ham_correct;
1629                         chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1630                 } else {
1631                         /* BCH is used */
1632                         chip->ecc.calculate = stm32_fmc2_bch_calculate;
1633                         chip->ecc.correct = stm32_fmc2_bch_correct;
1634                         chip->ecc.read_page = stm32_fmc2_read_page;
1635                 }
1636         }
1637
1638         /* Specific configurations depending on the algo used */
1639         if (chip->ecc.strength == FMC2_ECC_HAM)
1640                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1641         else if (chip->ecc.strength == FMC2_ECC_BCH8)
1642                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1643         else
1644                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1645 }
1646
1647 /* FMC2 layout */
1648 static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1649                                          struct mtd_oob_region *oobregion)
1650 {
1651         struct nand_chip *chip = mtd_to_nand(mtd);
1652         struct nand_ecc_ctrl *ecc = &chip->ecc;
1653
1654         if (section)
1655                 return -ERANGE;
1656
1657         oobregion->length = ecc->total;
1658         oobregion->offset = FMC2_BBM_LEN;
1659
1660         return 0;
1661 }
1662
1663 static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
1664                                           struct mtd_oob_region *oobregion)
1665 {
1666         struct nand_chip *chip = mtd_to_nand(mtd);
1667         struct nand_ecc_ctrl *ecc = &chip->ecc;
1668
1669         if (section)
1670                 return -ERANGE;
1671
1672         oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1673         oobregion->offset = ecc->total + FMC2_BBM_LEN;
1674
1675         return 0;
1676 }
1677
1678 static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
1679         .ecc = stm32_fmc2_nand_ooblayout_ecc,
1680         .free = stm32_fmc2_nand_ooblayout_free,
1681 };
1682
1683 /* FMC2 caps */
1684 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
1685 {
1686         /* Hamming */
1687         if (strength == FMC2_ECC_HAM)
1688                 return 4;
1689
1690         /* BCH8 */
1691         if (strength == FMC2_ECC_BCH8)
1692                 return 14;
1693
1694         /* BCH4 */
1695         return 8;
1696 }
1697
1698 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
1699                      FMC2_ECC_STEP_SIZE,
1700                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1701
1702 /* FMC2 controller ops */
1703 static int stm32_fmc2_attach_chip(struct nand_chip *chip)
1704 {
1705         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
1706         struct mtd_info *mtd = nand_to_mtd(chip);
1707         int ret;
1708
1709         /*
1710          * Only NAND_ECC_HW mode is actually supported
1711          * Hamming => ecc.strength = 1
1712          * BCH4 => ecc.strength = 4
1713          * BCH8 => ecc.strength = 8
1714          * ECC sector size = 512
1715          */
1716         if (chip->ecc.mode != NAND_ECC_HW) {
1717                 dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
1718                 return -EINVAL;
1719         }
1720
1721         ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
1722                                    mtd->oobsize - FMC2_BBM_LEN);
1723         if (ret) {
1724                 dev_err(fmc2->dev, "no valid ECC settings set\n");
1725                 return ret;
1726         }
1727
1728         if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1729                 dev_err(fmc2->dev, "nand page size is not supported\n");
1730                 return -EINVAL;
1731         }
1732
1733         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1734                 chip->bbt_options |= NAND_BBT_NO_OOB;
1735
1736         /* NAND callbacks setup */
1737         stm32_fmc2_nand_callbacks_setup(chip);
1738
1739         /* Define ECC layout */
1740         mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
1741
1742         /* Configure bus width to 16-bit */
1743         if (chip->options & NAND_BUSWIDTH_16)
1744                 stm32_fmc2_set_buswidth_16(fmc2, true);
1745
1746         return 0;
1747 }
1748
1749 static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
1750         .attach_chip = stm32_fmc2_attach_chip,
1751         .exec_op = stm32_fmc2_exec_op,
1752         .setup_data_interface = stm32_fmc2_setup_interface,
1753 };
1754
1755 /* FMC2 probe */
1756 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
1757                                   struct device_node *dn)
1758 {
1759         struct stm32_fmc2_nand *nand = &fmc2->nand;
1760         u32 cs;
1761         int ret, i;
1762
1763         if (!of_get_property(dn, "reg", &nand->ncs))
1764                 return -EINVAL;
1765
1766         nand->ncs /= sizeof(u32);
1767         if (!nand->ncs) {
1768                 dev_err(fmc2->dev, "invalid reg property size\n");
1769                 return -EINVAL;
1770         }
1771
1772         for (i = 0; i < nand->ncs; i++) {
1773                 ret = of_property_read_u32_index(dn, "reg", i, &cs);
1774                 if (ret) {
1775                         dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
1776                                 ret);
1777                         return ret;
1778                 }
1779
1780                 if (cs > FMC2_MAX_CE) {
1781                         dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
1782                         return -EINVAL;
1783                 }
1784
1785                 if (fmc2->cs_assigned & BIT(cs)) {
1786                         dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
1787                         return -EINVAL;
1788                 }
1789
1790                 fmc2->cs_assigned |= BIT(cs);
1791                 nand->cs_used[i] = cs;
1792         }
1793
1794         nand_set_flash_node(&nand->chip, dn);
1795
1796         return 0;
1797 }
1798
1799 static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
1800 {
1801         struct device_node *dn = fmc2->dev->of_node;
1802         struct device_node *child;
1803         int nchips = of_get_child_count(dn);
1804         int ret = 0;
1805
1806         if (!nchips) {
1807                 dev_err(fmc2->dev, "NAND chip not defined\n");
1808                 return -EINVAL;
1809         }
1810
1811         if (nchips > 1) {
1812                 dev_err(fmc2->dev, "too many NAND chips defined\n");
1813                 return -EINVAL;
1814         }
1815
1816         for_each_child_of_node(dn, child) {
1817                 ret = stm32_fmc2_parse_child(fmc2, child);
1818                 if (ret < 0) {
1819                         of_node_put(child);
1820                         return ret;
1821                 }
1822         }
1823
1824         return ret;
1825 }
1826
1827 static int stm32_fmc2_probe(struct platform_device *pdev)
1828 {
1829         struct device *dev = &pdev->dev;
1830         struct reset_control *rstc;
1831         struct stm32_fmc2_nfc *fmc2;
1832         struct stm32_fmc2_nand *nand;
1833         struct resource *res;
1834         struct mtd_info *mtd;
1835         struct nand_chip *chip;
1836         int chip_cs, mem_region, ret, irq;
1837
1838         fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
1839         if (!fmc2)
1840                 return -ENOMEM;
1841
1842         fmc2->dev = dev;
1843         nand_controller_init(&fmc2->base);
1844         fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
1845
1846         ret = stm32_fmc2_parse_dt(fmc2);
1847         if (ret)
1848                 return ret;
1849
1850         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1851         fmc2->io_base = devm_ioremap_resource(dev, res);
1852         if (IS_ERR(fmc2->io_base))
1853                 return PTR_ERR(fmc2->io_base);
1854
1855         fmc2->io_phys_addr = res->start;
1856
1857         for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
1858              chip_cs++, mem_region += 3) {
1859                 if (!(fmc2->cs_assigned & BIT(chip_cs)))
1860                         continue;
1861
1862                 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1863                 fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1864                 if (IS_ERR(fmc2->data_base[chip_cs]))
1865                         return PTR_ERR(fmc2->data_base[chip_cs]);
1866
1867                 fmc2->data_phys_addr[chip_cs] = res->start;
1868
1869                 res = platform_get_resource(pdev, IORESOURCE_MEM,
1870                                             mem_region + 1);
1871                 fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1872                 if (IS_ERR(fmc2->cmd_base[chip_cs]))
1873                         return PTR_ERR(fmc2->cmd_base[chip_cs]);
1874
1875                 res = platform_get_resource(pdev, IORESOURCE_MEM,
1876                                             mem_region + 2);
1877                 fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1878                 if (IS_ERR(fmc2->addr_base[chip_cs]))
1879                         return PTR_ERR(fmc2->addr_base[chip_cs]);
1880         }
1881
1882         irq = platform_get_irq(pdev, 0);
1883         if (irq < 0) {
1884                 if (irq != -EPROBE_DEFER)
1885                         dev_err(dev, "IRQ error missing or invalid\n");
1886                 return irq;
1887         }
1888
1889         ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
1890                                dev_name(dev), fmc2);
1891         if (ret) {
1892                 dev_err(dev, "failed to request irq\n");
1893                 return ret;
1894         }
1895
1896         init_completion(&fmc2->complete);
1897
1898         fmc2->clk = devm_clk_get(dev, NULL);
1899         if (IS_ERR(fmc2->clk))
1900                 return PTR_ERR(fmc2->clk);
1901
1902         ret = clk_prepare_enable(fmc2->clk);
1903         if (ret) {
1904                 dev_err(dev, "can not enable the clock\n");
1905                 return ret;
1906         }
1907
1908         rstc = devm_reset_control_get(dev, NULL);
1909         if (!IS_ERR(rstc)) {
1910                 reset_control_assert(rstc);
1911                 reset_control_deassert(rstc);
1912         }
1913
1914         /* DMA setup */
1915         ret = stm32_fmc2_dma_setup(fmc2);
1916         if (ret)
1917                 return ret;
1918
1919         /* FMC2 init routine */
1920         stm32_fmc2_init(fmc2);
1921
1922         nand = &fmc2->nand;
1923         chip = &nand->chip;
1924         mtd = nand_to_mtd(chip);
1925         mtd->dev.parent = dev;
1926
1927         chip->controller = &fmc2->base;
1928         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1929                          NAND_USE_BOUNCE_BUFFER;
1930
1931         /* Default ECC settings */
1932         chip->ecc.mode = NAND_ECC_HW;
1933         chip->ecc.size = FMC2_ECC_STEP_SIZE;
1934         chip->ecc.strength = FMC2_ECC_BCH8;
1935
1936         /* Scan to find existence of the device */
1937         ret = nand_scan(chip, nand->ncs);
1938         if (ret)
1939                 goto err_scan;
1940
1941         ret = mtd_device_register(mtd, NULL, 0);
1942         if (ret)
1943                 goto err_device_register;
1944
1945         platform_set_drvdata(pdev, fmc2);
1946
1947         return 0;
1948
1949 err_device_register:
1950         nand_cleanup(chip);
1951
1952 err_scan:
1953         if (fmc2->dma_ecc_ch)
1954                 dma_release_channel(fmc2->dma_ecc_ch);
1955         if (fmc2->dma_tx_ch)
1956                 dma_release_channel(fmc2->dma_tx_ch);
1957         if (fmc2->dma_rx_ch)
1958                 dma_release_channel(fmc2->dma_rx_ch);
1959
1960         sg_free_table(&fmc2->dma_data_sg);
1961         sg_free_table(&fmc2->dma_ecc_sg);
1962
1963         clk_disable_unprepare(fmc2->clk);
1964
1965         return ret;
1966 }
1967
1968 static int stm32_fmc2_remove(struct platform_device *pdev)
1969 {
1970         struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
1971         struct stm32_fmc2_nand *nand = &fmc2->nand;
1972
1973         nand_release(&nand->chip);
1974
1975         if (fmc2->dma_ecc_ch)
1976                 dma_release_channel(fmc2->dma_ecc_ch);
1977         if (fmc2->dma_tx_ch)
1978                 dma_release_channel(fmc2->dma_tx_ch);
1979         if (fmc2->dma_rx_ch)
1980                 dma_release_channel(fmc2->dma_rx_ch);
1981
1982         sg_free_table(&fmc2->dma_data_sg);
1983         sg_free_table(&fmc2->dma_ecc_sg);
1984
1985         clk_disable_unprepare(fmc2->clk);
1986
1987         return 0;
1988 }
1989
1990 static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
1991 {
1992         struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
1993
1994         clk_disable_unprepare(fmc2->clk);
1995
1996         pinctrl_pm_select_sleep_state(dev);
1997
1998         return 0;
1999 }
2000
2001 static int __maybe_unused stm32_fmc2_resume(struct device *dev)
2002 {
2003         struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
2004         struct stm32_fmc2_nand *nand = &fmc2->nand;
2005         int chip_cs, ret;
2006
2007         pinctrl_pm_select_default_state(dev);
2008
2009         ret = clk_prepare_enable(fmc2->clk);
2010         if (ret) {
2011                 dev_err(dev, "can not enable the clock\n");
2012                 return ret;
2013         }
2014
2015         stm32_fmc2_init(fmc2);
2016
2017         for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2018                 if (!(fmc2->cs_assigned & BIT(chip_cs)))
2019                         continue;
2020
2021                 nand_reset(&nand->chip, chip_cs);
2022         }
2023
2024         return 0;
2025 }
2026
2027 static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
2028                          stm32_fmc2_resume);
2029
2030 static const struct of_device_id stm32_fmc2_match[] = {
2031         {.compatible = "st,stm32mp15-fmc2"},
2032         {}
2033 };
2034 MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
2035
2036 static struct platform_driver stm32_fmc2_driver = {
2037         .probe  = stm32_fmc2_probe,
2038         .remove = stm32_fmc2_remove,
2039         .driver = {
2040                 .name = "stm32_fmc2_nand",
2041                 .of_match_table = stm32_fmc2_match,
2042                 .pm = &stm32_fmc2_pm_ops,
2043         },
2044 };
2045 module_platform_driver(stm32_fmc2_driver);
2046
2047 MODULE_ALIAS("platform:stm32_fmc2_nand");
2048 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2049 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
2050 MODULE_LICENSE("GPL v2");