common: Drop linux/bitops.h from common header
[oweals/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <common.h>
8 #include <clk.h>
9 #include <dm.h>
10 #include <log.h>
11 #include <nand.h>
12 #include <reset.h>
13 #include <linux/bitops.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18
19 /* Bad block marker length */
20 #define FMC2_BBM_LEN                    2
21
22 /* ECC step size */
23 #define FMC2_ECC_STEP_SIZE              512
24
25 /* Command delay */
26 #define FMC2_RB_DELAY_US                30
27
28 /* Max chip enable */
29 #define FMC2_MAX_CE                     2
30
31 /* Timings */
32 #define FMC2_THIZ                       1
33 #define FMC2_TIO                        8000
34 #define FMC2_TSYNC                      3000
35 #define FMC2_PCR_TIMING_MASK            0xf
36 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
37
38 /* FMC2 Controller Registers */
39 #define FMC2_BCR1                       0x0
40 #define FMC2_PCR                        0x80
41 #define FMC2_SR                         0x84
42 #define FMC2_PMEM                       0x88
43 #define FMC2_PATT                       0x8c
44 #define FMC2_HECCR                      0x94
45 #define FMC2_BCHISR                     0x254
46 #define FMC2_BCHICR                     0x258
47 #define FMC2_BCHPBR1                    0x260
48 #define FMC2_BCHPBR2                    0x264
49 #define FMC2_BCHPBR3                    0x268
50 #define FMC2_BCHPBR4                    0x26c
51 #define FMC2_BCHDSR0                    0x27c
52 #define FMC2_BCHDSR1                    0x280
53 #define FMC2_BCHDSR2                    0x284
54 #define FMC2_BCHDSR3                    0x288
55 #define FMC2_BCHDSR4                    0x28c
56
57 /* Register: FMC2_BCR1 */
58 #define FMC2_BCR1_FMC2EN                BIT(31)
59
60 /* Register: FMC2_PCR */
61 #define FMC2_PCR_PWAITEN                BIT(1)
62 #define FMC2_PCR_PBKEN                  BIT(2)
63 #define FMC2_PCR_PWID_MASK              GENMASK(5, 4)
64 #define FMC2_PCR_PWID(x)                (((x) & 0x3) << 4)
65 #define FMC2_PCR_PWID_BUSWIDTH_8        0
66 #define FMC2_PCR_PWID_BUSWIDTH_16       1
67 #define FMC2_PCR_ECCEN                  BIT(6)
68 #define FMC2_PCR_ECCALG                 BIT(8)
69 #define FMC2_PCR_TCLR_MASK              GENMASK(12, 9)
70 #define FMC2_PCR_TCLR(x)                (((x) & 0xf) << 9)
71 #define FMC2_PCR_TCLR_DEFAULT           0xf
72 #define FMC2_PCR_TAR_MASK               GENMASK(16, 13)
73 #define FMC2_PCR_TAR(x)                 (((x) & 0xf) << 13)
74 #define FMC2_PCR_TAR_DEFAULT            0xf
75 #define FMC2_PCR_ECCSS_MASK             GENMASK(19, 17)
76 #define FMC2_PCR_ECCSS(x)               (((x) & 0x7) << 17)
77 #define FMC2_PCR_ECCSS_512              1
78 #define FMC2_PCR_ECCSS_2048             3
79 #define FMC2_PCR_BCHECC                 BIT(24)
80 #define FMC2_PCR_WEN                    BIT(25)
81
82 /* Register: FMC2_SR */
83 #define FMC2_SR_NWRF                    BIT(6)
84
85 /* Register: FMC2_PMEM */
86 #define FMC2_PMEM_MEMSET(x)             (((x) & 0xff) << 0)
87 #define FMC2_PMEM_MEMWAIT(x)            (((x) & 0xff) << 8)
88 #define FMC2_PMEM_MEMHOLD(x)            (((x) & 0xff) << 16)
89 #define FMC2_PMEM_MEMHIZ(x)             (((x) & 0xff) << 24)
90 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
91
92 /* Register: FMC2_PATT */
93 #define FMC2_PATT_ATTSET(x)             (((x) & 0xff) << 0)
94 #define FMC2_PATT_ATTWAIT(x)            (((x) & 0xff) << 8)
95 #define FMC2_PATT_ATTHOLD(x)            (((x) & 0xff) << 16)
96 #define FMC2_PATT_ATTHIZ(x)             (((x) & 0xff) << 24)
97 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
98
99 /* Register: FMC2_BCHISR */
100 #define FMC2_BCHISR_DERF                BIT(1)
101 #define FMC2_BCHISR_EPBRF               BIT(4)
102
103 /* Register: FMC2_BCHICR */
104 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
105
106 /* Register: FMC2_BCHDSR0 */
107 #define FMC2_BCHDSR0_DUE                BIT(0)
108 #define FMC2_BCHDSR0_DEF                BIT(1)
109 #define FMC2_BCHDSR0_DEN_MASK           GENMASK(7, 4)
110 #define FMC2_BCHDSR0_DEN_SHIFT          4
111
112 /* Register: FMC2_BCHDSR1 */
113 #define FMC2_BCHDSR1_EBP1_MASK          GENMASK(12, 0)
114 #define FMC2_BCHDSR1_EBP2_MASK          GENMASK(28, 16)
115 #define FMC2_BCHDSR1_EBP2_SHIFT         16
116
117 /* Register: FMC2_BCHDSR2 */
118 #define FMC2_BCHDSR2_EBP3_MASK          GENMASK(12, 0)
119 #define FMC2_BCHDSR2_EBP4_MASK          GENMASK(28, 16)
120 #define FMC2_BCHDSR2_EBP4_SHIFT         16
121
122 /* Register: FMC2_BCHDSR3 */
123 #define FMC2_BCHDSR3_EBP5_MASK          GENMASK(12, 0)
124 #define FMC2_BCHDSR3_EBP6_MASK          GENMASK(28, 16)
125 #define FMC2_BCHDSR3_EBP6_SHIFT         16
126
127 /* Register: FMC2_BCHDSR4 */
128 #define FMC2_BCHDSR4_EBP7_MASK          GENMASK(12, 0)
129 #define FMC2_BCHDSR4_EBP8_MASK          GENMASK(28, 16)
130 #define FMC2_BCHDSR4_EBP8_SHIFT         16
131
132 #define FMC2_NSEC_PER_SEC               1000000000L
133
134 enum stm32_fmc2_ecc {
135         FMC2_ECC_HAM = 1,
136         FMC2_ECC_BCH4 = 4,
137         FMC2_ECC_BCH8 = 8
138 };
139
140 struct stm32_fmc2_timings {
141         u8 tclr;
142         u8 tar;
143         u8 thiz;
144         u8 twait;
145         u8 thold_mem;
146         u8 tset_mem;
147         u8 thold_att;
148         u8 tset_att;
149 };
150
151 struct stm32_fmc2_nand {
152         struct nand_chip chip;
153         struct stm32_fmc2_timings timings;
154         int ncs;
155         int cs_used[FMC2_MAX_CE];
156 };
157
158 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
159 {
160         return container_of(chip, struct stm32_fmc2_nand, chip);
161 }
162
163 struct stm32_fmc2_nfc {
164         struct nand_hw_control base;
165         struct stm32_fmc2_nand nand;
166         struct nand_ecclayout ecclayout;
167         void __iomem *io_base;
168         void __iomem *data_base[FMC2_MAX_CE];
169         void __iomem *cmd_base[FMC2_MAX_CE];
170         void __iomem *addr_base[FMC2_MAX_CE];
171         struct clk clk;
172
173         u8 cs_assigned;
174         int cs_sel;
175 };
176
177 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
178 {
179         return container_of(base, struct stm32_fmc2_nfc, base);
180 }
181
182 /* Timings configuration */
183 static void stm32_fmc2_timings_init(struct nand_chip *chip)
184 {
185         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
186         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
187         struct stm32_fmc2_timings *timings = &nand->timings;
188         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
189         u32 pmem, patt;
190
191         /* Set tclr/tar timings */
192         pcr &= ~FMC2_PCR_TCLR_MASK;
193         pcr |= FMC2_PCR_TCLR(timings->tclr);
194         pcr &= ~FMC2_PCR_TAR_MASK;
195         pcr |= FMC2_PCR_TAR(timings->tar);
196
197         /* Set tset/twait/thold/thiz timings in common bank */
198         pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
199         pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
200         pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
201         pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
202
203         /* Set tset/twait/thold/thiz timings in attribut bank */
204         patt = FMC2_PATT_ATTSET(timings->tset_att);
205         patt |= FMC2_PATT_ATTWAIT(timings->twait);
206         patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
207         patt |= FMC2_PATT_ATTHIZ(timings->thiz);
208
209         writel(pcr, fmc2->io_base + FMC2_PCR);
210         writel(pmem, fmc2->io_base + FMC2_PMEM);
211         writel(patt, fmc2->io_base + FMC2_PATT);
212 }
213
214 /* Controller configuration */
215 static void stm32_fmc2_setup(struct nand_chip *chip)
216 {
217         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
218         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
219
220         /* Configure ECC algorithm (default configuration is Hamming) */
221         pcr &= ~FMC2_PCR_ECCALG;
222         pcr &= ~FMC2_PCR_BCHECC;
223         if (chip->ecc.strength == FMC2_ECC_BCH8) {
224                 pcr |= FMC2_PCR_ECCALG;
225                 pcr |= FMC2_PCR_BCHECC;
226         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
227                 pcr |= FMC2_PCR_ECCALG;
228         }
229
230         /* Set buswidth */
231         pcr &= ~FMC2_PCR_PWID_MASK;
232         if (chip->options & NAND_BUSWIDTH_16)
233                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
234
235         /* Set ECC sector size */
236         pcr &= ~FMC2_PCR_ECCSS_MASK;
237         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
238
239         writel(pcr, fmc2->io_base + FMC2_PCR);
240 }
241
242 /* Select target */
243 static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr)
244 {
245         struct nand_chip *chip = mtd_to_nand(mtd);
246         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
247         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
248
249         if (chipnr < 0 || chipnr >= nand->ncs)
250                 return;
251
252         if (nand->cs_used[chipnr] == fmc2->cs_sel)
253                 return;
254
255         fmc2->cs_sel = nand->cs_used[chipnr];
256         chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel];
257         chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel];
258
259         /* FMC2 setup routine */
260         stm32_fmc2_setup(chip);
261
262         /* Apply timings */
263         stm32_fmc2_timings_init(chip);
264 }
265
266 /* Set bus width to 16-bit or 8-bit */
267 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
268 {
269         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
270
271         pcr &= ~FMC2_PCR_PWID_MASK;
272         if (set)
273                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
274         writel(pcr, fmc2->io_base + FMC2_PCR);
275 }
276
277 /* Enable/disable ECC */
278 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
279 {
280         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
281
282         pcr &= ~FMC2_PCR_ECCEN;
283         if (enable)
284                 pcr |= FMC2_PCR_ECCEN;
285         writel(pcr, fmc2->io_base + FMC2_PCR);
286 }
287
288 /* Clear irq sources in case of bch is used */
289 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
290 {
291         writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
292 }
293
294 /* Send command and address cycles */
295 static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd,
296                                 unsigned int ctrl)
297 {
298         struct nand_chip *chip = mtd_to_nand(mtd);
299         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
300
301         if (cmd == NAND_CMD_NONE)
302                 return;
303
304         if (ctrl & NAND_CLE) {
305                 writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]);
306                 return;
307         }
308
309         writeb(cmd, fmc2->addr_base[fmc2->cs_sel]);
310 }
311
312 /*
313  * Enable ECC logic and reset syndrome/parity bits previously calculated
314  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
315  */
316 static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode)
317 {
318         struct nand_chip *chip = mtd_to_nand(mtd);
319         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
320
321         stm32_fmc2_set_ecc(fmc2, false);
322
323         if (chip->ecc.strength != FMC2_ECC_HAM) {
324                 u32 pcr = readl(fmc2->io_base + FMC2_PCR);
325
326                 if (mode == NAND_ECC_WRITE)
327                         pcr |= FMC2_PCR_WEN;
328                 else
329                         pcr &= ~FMC2_PCR_WEN;
330                 writel(pcr, fmc2->io_base + FMC2_PCR);
331
332                 stm32_fmc2_clear_bch_irq(fmc2);
333         }
334
335         stm32_fmc2_set_ecc(fmc2, true);
336 }
337
338 /*
339  * ECC Hamming calculation
340  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
341  * max of 1-bit)
342  */
343 static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data,
344                                     u8 *ecc)
345 {
346         struct nand_chip *chip = mtd_to_nand(mtd);
347         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
348         u32 heccr, sr;
349         int ret;
350
351         ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr,
352                                  sr & FMC2_SR_NWRF, 10000);
353         if (ret < 0) {
354                 pr_err("Ham timeout\n");
355                 return ret;
356         }
357
358         heccr = readl(fmc2->io_base + FMC2_HECCR);
359
360         ecc[0] = heccr;
361         ecc[1] = heccr >> 8;
362         ecc[2] = heccr >> 16;
363
364         /* Disable ecc */
365         stm32_fmc2_set_ecc(fmc2, false);
366
367         return 0;
368 }
369
370 static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat,
371                                   u8 *read_ecc, u8 *calc_ecc)
372 {
373         u8 bit_position = 0, b0, b1, b2;
374         u32 byte_addr = 0, b;
375         u32 i, shifting = 1;
376
377         /* Indicate which bit and byte is faulty (if any) */
378         b0 = read_ecc[0] ^ calc_ecc[0];
379         b1 = read_ecc[1] ^ calc_ecc[1];
380         b2 = read_ecc[2] ^ calc_ecc[2];
381         b = b0 | (b1 << 8) | (b2 << 16);
382
383         /* No errors */
384         if (likely(!b))
385                 return 0;
386
387         /* Calculate bit position */
388         for (i = 0; i < 3; i++) {
389                 switch (b % 4) {
390                 case 2:
391                         bit_position += shifting;
392                 case 1:
393                         break;
394                 default:
395                         return -EBADMSG;
396                 }
397                 shifting <<= 1;
398                 b >>= 2;
399         }
400
401         /* Calculate byte position */
402         shifting = 1;
403         for (i = 0; i < 9; i++) {
404                 switch (b % 4) {
405                 case 2:
406                         byte_addr += shifting;
407                 case 1:
408                         break;
409                 default:
410                         return -EBADMSG;
411                 }
412                 shifting <<= 1;
413                 b >>= 2;
414         }
415
416         /* Flip the bit */
417         dat[byte_addr] ^= (1 << bit_position);
418
419         return 1;
420 }
421
422 /*
423  * ECC BCH calculation and correction
424  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
425  * max of 4-bit/8-bit)
426  */
427
428 static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data,
429                                     u8 *ecc)
430 {
431         struct nand_chip *chip = mtd_to_nand(mtd);
432         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
433         u32 bchpbr, bchisr;
434         int ret;
435
436         /* Wait until the BCH code is ready */
437         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
438                                  bchisr & FMC2_BCHISR_EPBRF, 10000);
439         if (ret < 0) {
440                 pr_err("Bch timeout\n");
441                 return ret;
442         }
443
444         /* Read parity bits */
445         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1);
446         ecc[0] = bchpbr;
447         ecc[1] = bchpbr >> 8;
448         ecc[2] = bchpbr >> 16;
449         ecc[3] = bchpbr >> 24;
450
451         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2);
452         ecc[4] = bchpbr;
453         ecc[5] = bchpbr >> 8;
454         ecc[6] = bchpbr >> 16;
455
456         if (chip->ecc.strength == FMC2_ECC_BCH8) {
457                 ecc[7] = bchpbr >> 24;
458
459                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3);
460                 ecc[8] = bchpbr;
461                 ecc[9] = bchpbr >> 8;
462                 ecc[10] = bchpbr >> 16;
463                 ecc[11] = bchpbr >> 24;
464
465                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4);
466                 ecc[12] = bchpbr;
467         }
468
469         /* Disable ecc */
470         stm32_fmc2_set_ecc(fmc2, false);
471
472         return 0;
473 }
474
475 /* BCH algorithm correction */
476 static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat,
477                                   u8 *read_ecc, u8 *calc_ecc)
478 {
479         struct nand_chip *chip = mtd_to_nand(mtd);
480         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
481         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
482         u16 pos[8];
483         int i, ret, den, eccsize = chip->ecc.size;
484         unsigned int nb_errs = 0;
485
486         /* Wait until the decoding error is ready */
487         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
488                                  bchisr & FMC2_BCHISR_DERF, 10000);
489         if (ret < 0) {
490                 pr_err("Bch timeout\n");
491                 return ret;
492         }
493
494         bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0);
495         bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1);
496         bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2);
497         bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3);
498         bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4);
499
500         /* Disable ECC */
501         stm32_fmc2_set_ecc(fmc2, false);
502
503         /* No errors found */
504         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
505                 return 0;
506
507         /* Too many errors detected */
508         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
509                 return -EBADMSG;
510
511         pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
512         pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
513         pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
514         pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
515         pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
516         pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
517         pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
518         pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
519
520         den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
521         for (i = 0; i < den; i++) {
522                 if (pos[i] < eccsize * 8) {
523                         __change_bit(pos[i], (unsigned long *)dat);
524                         nb_errs++;
525                 }
526         }
527
528         return nb_errs;
529 }
530
531 static int stm32_fmc2_read_page(struct mtd_info *mtd,
532                                 struct nand_chip *chip, u8 *buf,
533                                 int oob_required, int page)
534 {
535         int i, s, stat, eccsize = chip->ecc.size;
536         int eccbytes = chip->ecc.bytes;
537         int eccsteps = chip->ecc.steps;
538         int eccstrength = chip->ecc.strength;
539         u8 *p = buf;
540         u8 *ecc_calc = chip->buffers->ecccalc;
541         u8 *ecc_code = chip->buffers->ecccode;
542         unsigned int max_bitflips = 0;
543
544         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
545              s++, i += eccbytes, p += eccsize) {
546                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
547
548                 /* Read the nand page sector (512 bytes) */
549                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
550                 chip->read_buf(mtd, p, eccsize);
551
552                 /* Read the corresponding ECC bytes */
553                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
554                 chip->read_buf(mtd, ecc_code, eccbytes);
555
556                 /* Correct the data */
557                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
558                 if (stat == -EBADMSG)
559                         /* Check for empty pages with bitflips */
560                         stat = nand_check_erased_ecc_chunk(p, eccsize,
561                                                            ecc_code, eccbytes,
562                                                            NULL, 0,
563                                                            eccstrength);
564
565                 if (stat < 0) {
566                         mtd->ecc_stats.failed++;
567                 } else {
568                         mtd->ecc_stats.corrected += stat;
569                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
570                 }
571         }
572
573         /* Read oob */
574         if (oob_required) {
575                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
576                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
577         }
578
579         return max_bitflips;
580 }
581
582 /* Controller initialization */
583 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
584 {
585         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
586         u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1);
587
588         /* Set CS used to undefined */
589         fmc2->cs_sel = -1;
590
591         /* Enable wait feature and nand flash memory bank */
592         pcr |= FMC2_PCR_PWAITEN;
593         pcr |= FMC2_PCR_PBKEN;
594
595         /* Set buswidth to 8 bits mode for identification */
596         pcr &= ~FMC2_PCR_PWID_MASK;
597
598         /* ECC logic is disabled */
599         pcr &= ~FMC2_PCR_ECCEN;
600
601         /* Default mode */
602         pcr &= ~FMC2_PCR_ECCALG;
603         pcr &= ~FMC2_PCR_BCHECC;
604         pcr &= ~FMC2_PCR_WEN;
605
606         /* Set default ECC sector size */
607         pcr &= ~FMC2_PCR_ECCSS_MASK;
608         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
609
610         /* Set default tclr/tar timings */
611         pcr &= ~FMC2_PCR_TCLR_MASK;
612         pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
613         pcr &= ~FMC2_PCR_TAR_MASK;
614         pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
615
616         /* Enable FMC2 controller */
617         bcr1 |= FMC2_BCR1_FMC2EN;
618
619         writel(bcr1, fmc2->io_base + FMC2_BCR1);
620         writel(pcr, fmc2->io_base + FMC2_PCR);
621         writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
622         writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
623 }
624
625 /* Controller timings */
626 static void stm32_fmc2_calc_timings(struct nand_chip *chip,
627                                     const struct nand_sdr_timings *sdrt)
628 {
629         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
630         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
631         struct stm32_fmc2_timings *tims = &nand->timings;
632         unsigned long hclk = clk_get_rate(&fmc2->clk);
633         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
634         unsigned long timing, tar, tclr, thiz, twait;
635         unsigned long tset_mem, tset_att, thold_mem, thold_att;
636
637         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
638         timing = DIV_ROUND_UP(tar, hclkp) - 1;
639         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
640
641         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
642         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
643         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
644
645         tims->thiz = FMC2_THIZ;
646         thiz = (tims->thiz + 1) * hclkp;
647
648         /*
649          * tWAIT > tRP
650          * tWAIT > tWP
651          * tWAIT > tREA + tIO
652          */
653         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
654         twait = max_t(unsigned long, twait, sdrt->tWP_min);
655         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
656         timing = DIV_ROUND_UP(twait, hclkp);
657         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
658
659         /*
660          * tSETUP_MEM > tCS - tWAIT
661          * tSETUP_MEM > tALS - tWAIT
662          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
663          */
664         tset_mem = hclkp;
665         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
666                 tset_mem = sdrt->tCS_min - twait;
667         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
668                 tset_mem = sdrt->tALS_min - twait;
669         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
670             (tset_mem < sdrt->tDS_min - (twait - thiz)))
671                 tset_mem = sdrt->tDS_min - (twait - thiz);
672         timing = DIV_ROUND_UP(tset_mem, hclkp);
673         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
674
675         /*
676          * tHOLD_MEM > tCH
677          * tHOLD_MEM > tREH - tSETUP_MEM
678          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
679          */
680         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
681         if (sdrt->tREH_min > tset_mem &&
682             (thold_mem < sdrt->tREH_min - tset_mem))
683                 thold_mem = sdrt->tREH_min - tset_mem;
684         if ((sdrt->tRC_min > tset_mem + twait) &&
685             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
686                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
687         if ((sdrt->tWC_min > tset_mem + twait) &&
688             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
689                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
690         timing = DIV_ROUND_UP(thold_mem, hclkp);
691         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
692
693         /*
694          * tSETUP_ATT > tCS - tWAIT
695          * tSETUP_ATT > tCLS - tWAIT
696          * tSETUP_ATT > tALS - tWAIT
697          * tSETUP_ATT > tRHW - tHOLD_MEM
698          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
699          */
700         tset_att = hclkp;
701         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
702                 tset_att = sdrt->tCS_min - twait;
703         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
704                 tset_att = sdrt->tCLS_min - twait;
705         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
706                 tset_att = sdrt->tALS_min - twait;
707         if (sdrt->tRHW_min > thold_mem &&
708             (tset_att < sdrt->tRHW_min - thold_mem))
709                 tset_att = sdrt->tRHW_min - thold_mem;
710         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
711             (tset_att < sdrt->tDS_min - (twait - thiz)))
712                 tset_att = sdrt->tDS_min - (twait - thiz);
713         timing = DIV_ROUND_UP(tset_att, hclkp);
714         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
715
716         /*
717          * tHOLD_ATT > tALH
718          * tHOLD_ATT > tCH
719          * tHOLD_ATT > tCLH
720          * tHOLD_ATT > tCOH
721          * tHOLD_ATT > tDH
722          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
723          * tHOLD_ATT > tADL - tSETUP_MEM
724          * tHOLD_ATT > tWH - tSETUP_MEM
725          * tHOLD_ATT > tWHR - tSETUP_MEM
726          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
727          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
728          */
729         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
730         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
731         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
732         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
733         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
734         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
735             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
736                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
737         if (sdrt->tADL_min > tset_mem &&
738             (thold_att < sdrt->tADL_min - tset_mem))
739                 thold_att = sdrt->tADL_min - tset_mem;
740         if (sdrt->tWH_min > tset_mem &&
741             (thold_att < sdrt->tWH_min - tset_mem))
742                 thold_att = sdrt->tWH_min - tset_mem;
743         if (sdrt->tWHR_min > tset_mem &&
744             (thold_att < sdrt->tWHR_min - tset_mem))
745                 thold_att = sdrt->tWHR_min - tset_mem;
746         if ((sdrt->tRC_min > tset_att + twait) &&
747             (thold_att < sdrt->tRC_min - (tset_att + twait)))
748                 thold_att = sdrt->tRC_min - (tset_att + twait);
749         if ((sdrt->tWC_min > tset_att + twait) &&
750             (thold_att < sdrt->tWC_min - (tset_att + twait)))
751                 thold_att = sdrt->tWC_min - (tset_att + twait);
752         timing = DIV_ROUND_UP(thold_att, hclkp);
753         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
754 }
755
756 static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr,
757                                       const struct nand_data_interface *conf)
758 {
759         struct nand_chip *chip = mtd_to_nand(mtd);
760         const struct nand_sdr_timings *sdrt;
761
762         sdrt = nand_get_sdr_timings(conf);
763         if (IS_ERR(sdrt))
764                 return PTR_ERR(sdrt);
765
766         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
767                 return 0;
768
769         stm32_fmc2_calc_timings(chip, sdrt);
770
771         /* Apply timings */
772         stm32_fmc2_timings_init(chip);
773
774         return 0;
775 }
776
777 /* NAND callbacks setup */
778 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
779 {
780         chip->ecc.hwctl = stm32_fmc2_hwctl;
781
782         /*
783          * Specific callbacks to read/write a page depending on
784          * the algo used (Hamming, BCH).
785          */
786         if (chip->ecc.strength == FMC2_ECC_HAM) {
787                 /* Hamming is used */
788                 chip->ecc.calculate = stm32_fmc2_ham_calculate;
789                 chip->ecc.correct = stm32_fmc2_ham_correct;
790                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
791                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
792                 return;
793         }
794
795         /* BCH is used */
796         chip->ecc.read_page = stm32_fmc2_read_page;
797         chip->ecc.calculate = stm32_fmc2_bch_calculate;
798         chip->ecc.correct = stm32_fmc2_bch_correct;
799
800         if (chip->ecc.strength == FMC2_ECC_BCH8)
801                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
802         else
803                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
804 }
805
806 /* FMC2 caps */
807 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
808 {
809         /* Hamming */
810         if (strength == FMC2_ECC_HAM)
811                 return 4;
812
813         /* BCH8 */
814         if (strength == FMC2_ECC_BCH8)
815                 return 14;
816
817         /* BCH4 */
818         return 8;
819 }
820
821 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
822                      FMC2_ECC_STEP_SIZE,
823                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
824
825 /* FMC2 probe */
826 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
827                                   ofnode node)
828 {
829         struct stm32_fmc2_nand *nand = &fmc2->nand;
830         u32 cs[FMC2_MAX_CE];
831         int ret, i;
832
833         if (!ofnode_get_property(node, "reg", &nand->ncs))
834                 return -EINVAL;
835
836         nand->ncs /= sizeof(u32);
837         if (!nand->ncs) {
838                 pr_err("Invalid reg property size\n");
839                 return -EINVAL;
840         }
841
842         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
843         if (ret < 0) {
844                 pr_err("Could not retrieve reg property\n");
845                 return -EINVAL;
846         }
847
848         for (i = 0; i < nand->ncs; i++) {
849                 if (cs[i] > FMC2_MAX_CE) {
850                         pr_err("Invalid reg value: %d\n",
851                                nand->cs_used[i]);
852                         return -EINVAL;
853                 }
854
855                 if (fmc2->cs_assigned & BIT(cs[i])) {
856                         pr_err("Cs already assigned: %d\n",
857                                nand->cs_used[i]);
858                         return -EINVAL;
859                 }
860
861                 fmc2->cs_assigned |= BIT(cs[i]);
862                 nand->cs_used[i] = cs[i];
863         }
864
865         nand->chip.flash_node = ofnode_to_offset(node);
866
867         return 0;
868 }
869
870 static int stm32_fmc2_parse_dt(struct udevice *dev,
871                                struct stm32_fmc2_nfc *fmc2)
872 {
873         ofnode child;
874         int ret, nchips = 0;
875
876         dev_for_each_subnode(child, dev)
877                 nchips++;
878
879         if (!nchips) {
880                 pr_err("NAND chip not defined\n");
881                 return -EINVAL;
882         }
883
884         if (nchips > 1) {
885                 pr_err("Too many NAND chips defined\n");
886                 return -EINVAL;
887         }
888
889         dev_for_each_subnode(child, dev) {
890                 ret = stm32_fmc2_parse_child(fmc2, child);
891                 if (ret)
892                         return ret;
893         }
894
895         return 0;
896 }
897
898 static int stm32_fmc2_probe(struct udevice *dev)
899 {
900         struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev);
901         struct stm32_fmc2_nand *nand = &fmc2->nand;
902         struct nand_chip *chip = &nand->chip;
903         struct mtd_info *mtd = &chip->mtd;
904         struct nand_ecclayout *ecclayout;
905         struct resource resource;
906         struct reset_ctl reset;
907         int oob_index, chip_cs, mem_region, ret;
908         unsigned int i;
909
910         spin_lock_init(&fmc2->controller.lock);
911         init_waitqueue_head(&fmc2->controller.wq);
912
913         ret = stm32_fmc2_parse_dt(dev, fmc2);
914         if (ret)
915                 return ret;
916
917         /* Get resources */
918         ret = dev_read_resource(dev, 0, &resource);
919         if (ret) {
920                 pr_err("Resource io_base not found");
921                 return ret;
922         }
923         fmc2->io_base = (void __iomem *)resource.start;
924
925         for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
926              chip_cs++, mem_region += 3) {
927                 if (!(fmc2->cs_assigned & BIT(chip_cs)))
928                         continue;
929
930                 ret = dev_read_resource(dev, mem_region, &resource);
931                 if (ret) {
932                         pr_err("Resource data_base not found for cs%d",
933                                chip_cs);
934                         return ret;
935                 }
936                 fmc2->data_base[chip_cs] = (void __iomem *)resource.start;
937
938                 ret = dev_read_resource(dev, mem_region + 1, &resource);
939                 if (ret) {
940                         pr_err("Resource cmd_base not found for cs%d",
941                                chip_cs);
942                         return ret;
943                 }
944                 fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start;
945
946                 ret = dev_read_resource(dev, mem_region + 2, &resource);
947                 if (ret) {
948                         pr_err("Resource addr_base not found for cs%d",
949                                chip_cs);
950                         return ret;
951                 }
952                 fmc2->addr_base[chip_cs] = (void __iomem *)resource.start;
953         }
954
955         /* Enable the clock */
956         ret = clk_get_by_index(dev, 0, &fmc2->clk);
957         if (ret)
958                 return ret;
959
960         ret = clk_enable(&fmc2->clk);
961         if (ret)
962                 return ret;
963
964         /* Reset */
965         ret = reset_get_by_index(dev, 0, &reset);
966         if (!ret) {
967                 reset_assert(&reset);
968                 udelay(2);
969                 reset_deassert(&reset);
970         }
971
972         /* FMC2 init routine */
973         stm32_fmc2_init(fmc2);
974
975         chip->controller = &fmc2->base;
976         chip->select_chip = stm32_fmc2_select_chip;
977         chip->setup_data_interface = stm32_fmc2_setup_interface;
978         chip->cmd_ctrl = stm32_fmc2_cmd_ctrl;
979         chip->chip_delay = FMC2_RB_DELAY_US;
980         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
981                          NAND_USE_BOUNCE_BUFFER;
982
983         /* Default ECC settings */
984         chip->ecc.mode = NAND_ECC_HW;
985         chip->ecc.size = FMC2_ECC_STEP_SIZE;
986         chip->ecc.strength = FMC2_ECC_BCH8;
987
988         /* Scan to find existence of the device */
989         ret = nand_scan_ident(mtd, nand->ncs, NULL);
990         if (ret)
991                 return ret;
992
993         /*
994          * Only NAND_ECC_HW mode is actually supported
995          * Hamming => ecc.strength = 1
996          * BCH4 => ecc.strength = 4
997          * BCH8 => ecc.strength = 8
998          * ECC sector size = 512
999          */
1000         if (chip->ecc.mode != NAND_ECC_HW) {
1001                 pr_err("Nand_ecc_mode is not well defined in the DT\n");
1002                 return -EINVAL;
1003         }
1004
1005         ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps,
1006                                   mtd->oobsize - FMC2_BBM_LEN);
1007         if (ret) {
1008                 pr_err("No valid ECC settings set\n");
1009                 return ret;
1010         }
1011
1012         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1013                 chip->bbt_options |= NAND_BBT_NO_OOB;
1014
1015         /* NAND callbacks setup */
1016         stm32_fmc2_nand_callbacks_setup(chip);
1017
1018         /* Define ECC layout */
1019         ecclayout = &fmc2->ecclayout;
1020         ecclayout->eccbytes = chip->ecc.bytes *
1021                               (mtd->writesize / chip->ecc.size);
1022         oob_index = FMC2_BBM_LEN;
1023         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1024                 ecclayout->eccpos[i] = oob_index;
1025         ecclayout->oobfree->offset = oob_index;
1026         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1027         chip->ecc.layout = ecclayout;
1028
1029         /* Configure bus width to 16-bit */
1030         if (chip->options & NAND_BUSWIDTH_16)
1031                 stm32_fmc2_set_buswidth_16(fmc2, true);
1032
1033         /* Scan the device to fill MTD data-structures */
1034         ret = nand_scan_tail(mtd);
1035         if (ret)
1036                 return ret;
1037
1038         return nand_register(0, mtd);
1039 }
1040
1041 static const struct udevice_id stm32_fmc2_match[] = {
1042         { .compatible = "st,stm32mp15-fmc2" },
1043         { /* Sentinel */ }
1044 };
1045
1046 U_BOOT_DRIVER(stm32_fmc2_nand) = {
1047         .name = "stm32_fmc2_nand",
1048         .id = UCLASS_MTD,
1049         .of_match = stm32_fmc2_match,
1050         .probe = stm32_fmc2_probe,
1051         .priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
1052 };
1053
1054 void board_nand_init(void)
1055 {
1056         struct udevice *dev;
1057         int ret;
1058
1059         ret = uclass_get_device_by_driver(UCLASS_MTD,
1060                                           DM_GET_DRIVER(stm32_fmc2_nand),
1061                                           &dev);
1062         if (ret && ret != -ENODEV)
1063                 pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n",
1064                        ret);
1065 }