Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / mtd / nand / raw / atmel / nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *      Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *      Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *      Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *      (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *      Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *      Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *                    (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *                     (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *               that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66
67 #include "pmecc.h"
68
69 #define ATMEL_HSMC_NFC_CFG                      0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)         (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK       GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)        (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX              GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE               BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE         BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE               BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE               BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK        GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)          (fls((x) / 512) - 1)
80
81 #define ATMEL_HSMC_NFC_CTRL                     0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN                  BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS                 BIT(1)
84
85 #define ATMEL_HSMC_NFC_SR                       0x8
86 #define ATMEL_HSMC_NFC_IER                      0xc
87 #define ATMEL_HSMC_NFC_IDR                      0x10
88 #define ATMEL_HSMC_NFC_IMR                      0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED               BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE               BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL               BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY                  BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR                    BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID                  GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE               BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE               BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE                  BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF                 BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB                   BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE                BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS                (ATMEL_HSMC_NFC_SR_DTOE | \
102                                                  ATMEL_HSMC_NFC_SR_UNDEF | \
103                                                  ATMEL_HSMC_NFC_SR_AWB | \
104                                                  ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)             BIT((x) + 24)
106
107 #define ATMEL_HSMC_NFC_ADDR                     0x18
108 #define ATMEL_HSMC_NFC_BANK                     0x1c
109
110 #define ATMEL_NFC_MAX_RB_ID                     7
111
112 #define ATMEL_NFC_SRAM_SIZE                     0x2400
113
114 #define ATMEL_NFC_CMD(pos, cmd)                 ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2                         BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)                ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)                      ((cs) << 22)
118 #define ATMEL_NFC_DATAEN                        BIT(25)
119 #define ATMEL_NFC_NFCWR                         BIT(26)
120
121 #define ATMEL_NFC_MAX_ADDR_CYCLES               5
122
123 #define ATMEL_NAND_ALE_OFFSET                   BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET                   BIT(22)
125
126 #define DEFAULT_TIMEOUT_MS                      1000
127 #define MIN_DMA_LEN                             128
128
129 static bool atmel_nand_avoid_dma __read_mostly;
130
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134 enum atmel_nand_rb_type {
135         ATMEL_NAND_NO_RB,
136         ATMEL_NAND_NATIVE_RB,
137         ATMEL_NAND_GPIO_RB,
138 };
139
140 struct atmel_nand_rb {
141         enum atmel_nand_rb_type type;
142         union {
143                 struct gpio_desc *gpio;
144                 int id;
145         };
146 };
147
148 struct atmel_nand_cs {
149         int id;
150         struct atmel_nand_rb rb;
151         struct gpio_desc *csgpio;
152         struct {
153                 void __iomem *virt;
154                 dma_addr_t dma;
155         } io;
156
157         struct atmel_smc_cs_conf smcconf;
158 };
159
160 struct atmel_nand {
161         struct list_head node;
162         struct device *dev;
163         struct nand_chip base;
164         struct atmel_nand_cs *activecs;
165         struct atmel_pmecc_user *pmecc;
166         struct gpio_desc *cdgpio;
167         int numcs;
168         struct atmel_nand_cs cs[];
169 };
170
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173         return container_of(chip, struct atmel_nand, base);
174 }
175
176 enum atmel_nfc_data_xfer {
177         ATMEL_NFC_NO_DATA,
178         ATMEL_NFC_READ_DATA,
179         ATMEL_NFC_WRITE_DATA,
180 };
181
182 struct atmel_nfc_op {
183         u8 cs;
184         u8 ncmds;
185         u8 cmds[2];
186         u8 naddrs;
187         u8 addrs[5];
188         enum atmel_nfc_data_xfer data;
189         u32 wait;
190         u32 errors;
191 };
192
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195
196 struct atmel_nand_controller_ops {
197         int (*probe)(struct platform_device *pdev,
198                      const struct atmel_nand_controller_caps *caps);
199         int (*remove)(struct atmel_nand_controller *nc);
200         void (*nand_init)(struct atmel_nand_controller *nc,
201                           struct atmel_nand *nand);
202         int (*ecc_init)(struct nand_chip *chip);
203         int (*setup_data_interface)(struct atmel_nand *nand, int csline,
204                                     const struct nand_data_interface *conf);
205 };
206
207 struct atmel_nand_controller_caps {
208         bool has_dma;
209         bool legacy_of_bindings;
210         u32 ale_offs;
211         u32 cle_offs;
212         const char *ebi_csa_regmap_name;
213         const struct atmel_nand_controller_ops *ops;
214 };
215
216 struct atmel_nand_controller {
217         struct nand_controller base;
218         const struct atmel_nand_controller_caps *caps;
219         struct device *dev;
220         struct regmap *smc;
221         struct dma_chan *dmac;
222         struct atmel_pmecc *pmecc;
223         struct list_head chips;
224         struct clk *mck;
225 };
226
227 static inline struct atmel_nand_controller *
228 to_nand_controller(struct nand_controller *ctl)
229 {
230         return container_of(ctl, struct atmel_nand_controller, base);
231 }
232
233 struct atmel_smc_nand_ebi_csa_cfg {
234         u32 offs;
235         u32 nfd0_on_d16;
236 };
237
238 struct atmel_smc_nand_controller {
239         struct atmel_nand_controller base;
240         struct regmap *ebi_csa_regmap;
241         struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
242 };
243
244 static inline struct atmel_smc_nand_controller *
245 to_smc_nand_controller(struct nand_controller *ctl)
246 {
247         return container_of(to_nand_controller(ctl),
248                             struct atmel_smc_nand_controller, base);
249 }
250
251 struct atmel_hsmc_nand_controller {
252         struct atmel_nand_controller base;
253         struct {
254                 struct gen_pool *pool;
255                 void __iomem *virt;
256                 dma_addr_t dma;
257         } sram;
258         const struct atmel_hsmc_reg_layout *hsmc_layout;
259         struct regmap *io;
260         struct atmel_nfc_op op;
261         struct completion complete;
262         int irq;
263
264         /* Only used when instantiating from legacy DT bindings. */
265         struct clk *clk;
266 };
267
268 static inline struct atmel_hsmc_nand_controller *
269 to_hsmc_nand_controller(struct nand_controller *ctl)
270 {
271         return container_of(to_nand_controller(ctl),
272                             struct atmel_hsmc_nand_controller, base);
273 }
274
275 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
276 {
277         op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
278         op->wait ^= status & op->wait;
279
280         return !op->wait || op->errors;
281 }
282
283 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
284 {
285         struct atmel_hsmc_nand_controller *nc = data;
286         u32 sr, rcvd;
287         bool done;
288
289         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
290
291         rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
292         done = atmel_nfc_op_done(&nc->op, sr);
293
294         if (rcvd)
295                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
296
297         if (done)
298                 complete(&nc->complete);
299
300         return rcvd ? IRQ_HANDLED : IRQ_NONE;
301 }
302
303 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
304                           unsigned int timeout_ms)
305 {
306         int ret;
307
308         if (!timeout_ms)
309                 timeout_ms = DEFAULT_TIMEOUT_MS;
310
311         if (poll) {
312                 u32 status;
313
314                 ret = regmap_read_poll_timeout(nc->base.smc,
315                                                ATMEL_HSMC_NFC_SR, status,
316                                                atmel_nfc_op_done(&nc->op,
317                                                                  status),
318                                                0, timeout_ms * 1000);
319         } else {
320                 init_completion(&nc->complete);
321                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
322                              nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
323                 ret = wait_for_completion_timeout(&nc->complete,
324                                                 msecs_to_jiffies(timeout_ms));
325                 if (!ret)
326                         ret = -ETIMEDOUT;
327                 else
328                         ret = 0;
329
330                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
331         }
332
333         if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
334                 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
335                 ret = -ETIMEDOUT;
336         }
337
338         if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
339                 dev_err(nc->base.dev, "Access to an undefined area\n");
340                 ret = -EIO;
341         }
342
343         if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
344                 dev_err(nc->base.dev, "Access while busy\n");
345                 ret = -EIO;
346         }
347
348         if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
349                 dev_err(nc->base.dev, "Wrong access size\n");
350                 ret = -EIO;
351         }
352
353         return ret;
354 }
355
356 static void atmel_nand_dma_transfer_finished(void *data)
357 {
358         struct completion *finished = data;
359
360         complete(finished);
361 }
362
363 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
364                                    void *buf, dma_addr_t dev_dma, size_t len,
365                                    enum dma_data_direction dir)
366 {
367         DECLARE_COMPLETION_ONSTACK(finished);
368         dma_addr_t src_dma, dst_dma, buf_dma;
369         struct dma_async_tx_descriptor *tx;
370         dma_cookie_t cookie;
371
372         buf_dma = dma_map_single(nc->dev, buf, len, dir);
373         if (dma_mapping_error(nc->dev, dev_dma)) {
374                 dev_err(nc->dev,
375                         "Failed to prepare a buffer for DMA access\n");
376                 goto err;
377         }
378
379         if (dir == DMA_FROM_DEVICE) {
380                 src_dma = dev_dma;
381                 dst_dma = buf_dma;
382         } else {
383                 src_dma = buf_dma;
384                 dst_dma = dev_dma;
385         }
386
387         tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
388                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
389         if (!tx) {
390                 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
391                 goto err_unmap;
392         }
393
394         tx->callback = atmel_nand_dma_transfer_finished;
395         tx->callback_param = &finished;
396
397         cookie = dmaengine_submit(tx);
398         if (dma_submit_error(cookie)) {
399                 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
400                 goto err_unmap;
401         }
402
403         dma_async_issue_pending(nc->dmac);
404         wait_for_completion(&finished);
405
406         return 0;
407
408 err_unmap:
409         dma_unmap_single(nc->dev, buf_dma, len, dir);
410
411 err:
412         dev_dbg(nc->dev, "Fall back to CPU I/O\n");
413
414         return -EIO;
415 }
416
417 static u8 atmel_nand_read_byte(struct nand_chip *chip)
418 {
419         struct atmel_nand *nand = to_atmel_nand(chip);
420
421         return ioread8(nand->activecs->io.virt);
422 }
423
424 static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
425 {
426         struct atmel_nand *nand = to_atmel_nand(chip);
427
428         if (chip->options & NAND_BUSWIDTH_16)
429                 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
430         else
431                 iowrite8(byte, nand->activecs->io.virt);
432 }
433
434 static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
435 {
436         struct atmel_nand *nand = to_atmel_nand(chip);
437         struct atmel_nand_controller *nc;
438
439         nc = to_nand_controller(chip->controller);
440
441         /*
442          * If the controller supports DMA, the buffer address is DMA-able and
443          * len is long enough to make DMA transfers profitable, let's trigger
444          * a DMA transfer. If it fails, fallback to PIO mode.
445          */
446         if (nc->dmac && virt_addr_valid(buf) &&
447             len >= MIN_DMA_LEN &&
448             !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
449                                      DMA_FROM_DEVICE))
450                 return;
451
452         if (chip->options & NAND_BUSWIDTH_16)
453                 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
454         else
455                 ioread8_rep(nand->activecs->io.virt, buf, len);
456 }
457
458 static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
459 {
460         struct atmel_nand *nand = to_atmel_nand(chip);
461         struct atmel_nand_controller *nc;
462
463         nc = to_nand_controller(chip->controller);
464
465         /*
466          * If the controller supports DMA, the buffer address is DMA-able and
467          * len is long enough to make DMA transfers profitable, let's trigger
468          * a DMA transfer. If it fails, fallback to PIO mode.
469          */
470         if (nc->dmac && virt_addr_valid(buf) &&
471             len >= MIN_DMA_LEN &&
472             !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
473                                      len, DMA_TO_DEVICE))
474                 return;
475
476         if (chip->options & NAND_BUSWIDTH_16)
477                 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
478         else
479                 iowrite8_rep(nand->activecs->io.virt, buf, len);
480 }
481
482 static int atmel_nand_dev_ready(struct nand_chip *chip)
483 {
484         struct atmel_nand *nand = to_atmel_nand(chip);
485
486         return gpiod_get_value(nand->activecs->rb.gpio);
487 }
488
489 static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
490 {
491         struct atmel_nand *nand = to_atmel_nand(chip);
492
493         if (cs < 0 || cs >= nand->numcs) {
494                 nand->activecs = NULL;
495                 chip->legacy.dev_ready = NULL;
496                 return;
497         }
498
499         nand->activecs = &nand->cs[cs];
500
501         if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
502                 chip->legacy.dev_ready = atmel_nand_dev_ready;
503 }
504
505 static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
506 {
507         struct atmel_nand *nand = to_atmel_nand(chip);
508         struct atmel_hsmc_nand_controller *nc;
509         u32 status;
510
511         nc = to_hsmc_nand_controller(chip->controller);
512
513         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
514
515         return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
516 }
517
518 static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
519 {
520         struct mtd_info *mtd = nand_to_mtd(chip);
521         struct atmel_nand *nand = to_atmel_nand(chip);
522         struct atmel_hsmc_nand_controller *nc;
523
524         nc = to_hsmc_nand_controller(chip->controller);
525
526         atmel_nand_select_chip(chip, cs);
527
528         if (!nand->activecs) {
529                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
530                              ATMEL_HSMC_NFC_CTRL_DIS);
531                 return;
532         }
533
534         if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
535                 chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
536
537         regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
538                            ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
539                            ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
540                            ATMEL_HSMC_NFC_CFG_RSPARE |
541                            ATMEL_HSMC_NFC_CFG_WSPARE,
542                            ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
543                            ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
544                            ATMEL_HSMC_NFC_CFG_RSPARE);
545         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
546                      ATMEL_HSMC_NFC_CTRL_EN);
547 }
548
549 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
550 {
551         u8 *addrs = nc->op.addrs;
552         unsigned int op = 0;
553         u32 addr, val;
554         int i, ret;
555
556         nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
557
558         for (i = 0; i < nc->op.ncmds; i++)
559                 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
560
561         if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
562                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
563
564         op |= ATMEL_NFC_CSID(nc->op.cs) |
565               ATMEL_NFC_ACYCLE(nc->op.naddrs);
566
567         if (nc->op.ncmds > 1)
568                 op |= ATMEL_NFC_VCMD2;
569
570         addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
571                (addrs[3] << 24);
572
573         if (nc->op.data != ATMEL_NFC_NO_DATA) {
574                 op |= ATMEL_NFC_DATAEN;
575                 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
576
577                 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
578                         op |= ATMEL_NFC_NFCWR;
579         }
580
581         /* Clear all flags. */
582         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
583
584         /* Send the command. */
585         regmap_write(nc->io, op, addr);
586
587         ret = atmel_nfc_wait(nc, poll, 0);
588         if (ret)
589                 dev_err(nc->base.dev,
590                         "Failed to send NAND command (err = %d)!",
591                         ret);
592
593         /* Reset the op state. */
594         memset(&nc->op, 0, sizeof(nc->op));
595
596         return ret;
597 }
598
599 static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
600                                      unsigned int ctrl)
601 {
602         struct atmel_nand *nand = to_atmel_nand(chip);
603         struct atmel_hsmc_nand_controller *nc;
604
605         nc = to_hsmc_nand_controller(chip->controller);
606
607         if (ctrl & NAND_ALE) {
608                 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
609                         return;
610
611                 nc->op.addrs[nc->op.naddrs++] = dat;
612         } else if (ctrl & NAND_CLE) {
613                 if (nc->op.ncmds > 1)
614                         return;
615
616                 nc->op.cmds[nc->op.ncmds++] = dat;
617         }
618
619         if (dat == NAND_CMD_NONE) {
620                 nc->op.cs = nand->activecs->id;
621                 atmel_nfc_exec_op(nc, true);
622         }
623 }
624
625 static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
626                                 unsigned int ctrl)
627 {
628         struct atmel_nand *nand = to_atmel_nand(chip);
629         struct atmel_nand_controller *nc;
630
631         nc = to_nand_controller(chip->controller);
632
633         if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
634                 if (ctrl & NAND_NCE)
635                         gpiod_set_value(nand->activecs->csgpio, 0);
636                 else
637                         gpiod_set_value(nand->activecs->csgpio, 1);
638         }
639
640         if (ctrl & NAND_ALE)
641                 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
642         else if (ctrl & NAND_CLE)
643                 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
644 }
645
646 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
647                                    bool oob_required)
648 {
649         struct mtd_info *mtd = nand_to_mtd(chip);
650         struct atmel_hsmc_nand_controller *nc;
651         int ret = -EIO;
652
653         nc = to_hsmc_nand_controller(chip->controller);
654
655         if (nc->base.dmac)
656                 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
657                                               nc->sram.dma, mtd->writesize,
658                                               DMA_TO_DEVICE);
659
660         /* Falling back to CPU copy. */
661         if (ret)
662                 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
663
664         if (oob_required)
665                 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
666                             mtd->oobsize);
667 }
668
669 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
670                                      bool oob_required)
671 {
672         struct mtd_info *mtd = nand_to_mtd(chip);
673         struct atmel_hsmc_nand_controller *nc;
674         int ret = -EIO;
675
676         nc = to_hsmc_nand_controller(chip->controller);
677
678         if (nc->base.dmac)
679                 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
680                                               mtd->writesize, DMA_FROM_DEVICE);
681
682         /* Falling back to CPU copy. */
683         if (ret)
684                 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
685
686         if (oob_required)
687                 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
688                               mtd->oobsize);
689 }
690
691 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
692 {
693         struct mtd_info *mtd = nand_to_mtd(chip);
694         struct atmel_hsmc_nand_controller *nc;
695
696         nc = to_hsmc_nand_controller(chip->controller);
697
698         if (column >= 0) {
699                 nc->op.addrs[nc->op.naddrs++] = column;
700
701                 /*
702                  * 2 address cycles for the column offset on large page NANDs.
703                  */
704                 if (mtd->writesize > 512)
705                         nc->op.addrs[nc->op.naddrs++] = column >> 8;
706         }
707
708         if (page >= 0) {
709                 nc->op.addrs[nc->op.naddrs++] = page;
710                 nc->op.addrs[nc->op.naddrs++] = page >> 8;
711
712                 if (chip->options & NAND_ROW_ADDR_3)
713                         nc->op.addrs[nc->op.naddrs++] = page >> 16;
714         }
715 }
716
717 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
718 {
719         struct atmel_nand *nand = to_atmel_nand(chip);
720         struct atmel_nand_controller *nc;
721         int ret;
722
723         nc = to_nand_controller(chip->controller);
724
725         if (raw)
726                 return 0;
727
728         ret = atmel_pmecc_enable(nand->pmecc, op);
729         if (ret)
730                 dev_err(nc->dev,
731                         "Failed to enable ECC engine (err = %d)\n", ret);
732
733         return ret;
734 }
735
736 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
737 {
738         struct atmel_nand *nand = to_atmel_nand(chip);
739
740         if (!raw)
741                 atmel_pmecc_disable(nand->pmecc);
742 }
743
744 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
745 {
746         struct atmel_nand *nand = to_atmel_nand(chip);
747         struct mtd_info *mtd = nand_to_mtd(chip);
748         struct atmel_nand_controller *nc;
749         struct mtd_oob_region oobregion;
750         void *eccbuf;
751         int ret, i;
752
753         nc = to_nand_controller(chip->controller);
754
755         if (raw)
756                 return 0;
757
758         ret = atmel_pmecc_wait_rdy(nand->pmecc);
759         if (ret) {
760                 dev_err(nc->dev,
761                         "Failed to transfer NAND page data (err = %d)\n",
762                         ret);
763                 return ret;
764         }
765
766         mtd_ooblayout_ecc(mtd, 0, &oobregion);
767         eccbuf = chip->oob_poi + oobregion.offset;
768
769         for (i = 0; i < chip->ecc.steps; i++) {
770                 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
771                                                    eccbuf);
772                 eccbuf += chip->ecc.bytes;
773         }
774
775         return 0;
776 }
777
778 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
779                                          bool raw)
780 {
781         struct atmel_nand *nand = to_atmel_nand(chip);
782         struct mtd_info *mtd = nand_to_mtd(chip);
783         struct atmel_nand_controller *nc;
784         struct mtd_oob_region oobregion;
785         int ret, i, max_bitflips = 0;
786         void *databuf, *eccbuf;
787
788         nc = to_nand_controller(chip->controller);
789
790         if (raw)
791                 return 0;
792
793         ret = atmel_pmecc_wait_rdy(nand->pmecc);
794         if (ret) {
795                 dev_err(nc->dev,
796                         "Failed to read NAND page data (err = %d)\n",
797                         ret);
798                 return ret;
799         }
800
801         mtd_ooblayout_ecc(mtd, 0, &oobregion);
802         eccbuf = chip->oob_poi + oobregion.offset;
803         databuf = buf;
804
805         for (i = 0; i < chip->ecc.steps; i++) {
806                 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
807                                                  eccbuf);
808                 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
809                         ret = nand_check_erased_ecc_chunk(databuf,
810                                                           chip->ecc.size,
811                                                           eccbuf,
812                                                           chip->ecc.bytes,
813                                                           NULL, 0,
814                                                           chip->ecc.strength);
815
816                 if (ret >= 0)
817                         max_bitflips = max(ret, max_bitflips);
818                 else
819                         mtd->ecc_stats.failed++;
820
821                 databuf += chip->ecc.size;
822                 eccbuf += chip->ecc.bytes;
823         }
824
825         return max_bitflips;
826 }
827
828 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
829                                      bool oob_required, int page, bool raw)
830 {
831         struct mtd_info *mtd = nand_to_mtd(chip);
832         struct atmel_nand *nand = to_atmel_nand(chip);
833         int ret;
834
835         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
836
837         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
838         if (ret)
839                 return ret;
840
841         atmel_nand_write_buf(chip, buf, mtd->writesize);
842
843         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
844         if (ret) {
845                 atmel_pmecc_disable(nand->pmecc);
846                 return ret;
847         }
848
849         atmel_nand_pmecc_disable(chip, raw);
850
851         atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
852
853         return nand_prog_page_end_op(chip);
854 }
855
856 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
857                                        int oob_required, int page)
858 {
859         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
860 }
861
862 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
863                                            const u8 *buf, int oob_required,
864                                            int page)
865 {
866         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
867 }
868
869 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
870                                     bool oob_required, int page, bool raw)
871 {
872         struct mtd_info *mtd = nand_to_mtd(chip);
873         int ret;
874
875         nand_read_page_op(chip, page, 0, NULL, 0);
876
877         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
878         if (ret)
879                 return ret;
880
881         atmel_nand_read_buf(chip, buf, mtd->writesize);
882         atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
883
884         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
885
886         atmel_nand_pmecc_disable(chip, raw);
887
888         return ret;
889 }
890
891 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
892                                       int oob_required, int page)
893 {
894         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
895 }
896
897 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
898                                           int oob_required, int page)
899 {
900         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
901 }
902
903 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
904                                           const u8 *buf, bool oob_required,
905                                           int page, bool raw)
906 {
907         struct mtd_info *mtd = nand_to_mtd(chip);
908         struct atmel_nand *nand = to_atmel_nand(chip);
909         struct atmel_hsmc_nand_controller *nc;
910         int ret, status;
911
912         nc = to_hsmc_nand_controller(chip->controller);
913
914         atmel_nfc_copy_to_sram(chip, buf, false);
915
916         nc->op.cmds[0] = NAND_CMD_SEQIN;
917         nc->op.ncmds = 1;
918         atmel_nfc_set_op_addr(chip, page, 0x0);
919         nc->op.cs = nand->activecs->id;
920         nc->op.data = ATMEL_NFC_WRITE_DATA;
921
922         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
923         if (ret)
924                 return ret;
925
926         ret = atmel_nfc_exec_op(nc, false);
927         if (ret) {
928                 atmel_nand_pmecc_disable(chip, raw);
929                 dev_err(nc->base.dev,
930                         "Failed to transfer NAND page data (err = %d)\n",
931                         ret);
932                 return ret;
933         }
934
935         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
936
937         atmel_nand_pmecc_disable(chip, raw);
938
939         if (ret)
940                 return ret;
941
942         atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
943
944         nc->op.cmds[0] = NAND_CMD_PAGEPROG;
945         nc->op.ncmds = 1;
946         nc->op.cs = nand->activecs->id;
947         ret = atmel_nfc_exec_op(nc, false);
948         if (ret)
949                 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
950                         ret);
951
952         status = chip->legacy.waitfunc(chip);
953         if (status & NAND_STATUS_FAIL)
954                 return -EIO;
955
956         return ret;
957 }
958
959 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
960                                             const u8 *buf, int oob_required,
961                                             int page)
962 {
963         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
964                                               false);
965 }
966
967 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
968                                                 const u8 *buf,
969                                                 int oob_required, int page)
970 {
971         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
972                                               true);
973 }
974
975 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
976                                          bool oob_required, int page,
977                                          bool raw)
978 {
979         struct mtd_info *mtd = nand_to_mtd(chip);
980         struct atmel_nand *nand = to_atmel_nand(chip);
981         struct atmel_hsmc_nand_controller *nc;
982         int ret;
983
984         nc = to_hsmc_nand_controller(chip->controller);
985
986         /*
987          * Optimized read page accessors only work when the NAND R/B pin is
988          * connected to a native SoC R/B pin. If that's not the case, fallback
989          * to the non-optimized one.
990          */
991         if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
992                 nand_read_page_op(chip, page, 0, NULL, 0);
993
994                 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
995                                                 raw);
996         }
997
998         nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
999
1000         if (mtd->writesize > 512)
1001                 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1002
1003         atmel_nfc_set_op_addr(chip, page, 0x0);
1004         nc->op.cs = nand->activecs->id;
1005         nc->op.data = ATMEL_NFC_READ_DATA;
1006
1007         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1008         if (ret)
1009                 return ret;
1010
1011         ret = atmel_nfc_exec_op(nc, false);
1012         if (ret) {
1013                 atmel_nand_pmecc_disable(chip, raw);
1014                 dev_err(nc->base.dev,
1015                         "Failed to load NAND page data (err = %d)\n",
1016                         ret);
1017                 return ret;
1018         }
1019
1020         atmel_nfc_copy_from_sram(chip, buf, true);
1021
1022         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1023
1024         atmel_nand_pmecc_disable(chip, raw);
1025
1026         return ret;
1027 }
1028
1029 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1030                                            int oob_required, int page)
1031 {
1032         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1033                                              false);
1034 }
1035
1036 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1037                                                u8 *buf, int oob_required,
1038                                                int page)
1039 {
1040         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1041                                              true);
1042 }
1043
1044 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1045 {
1046         struct mtd_info *mtd = nand_to_mtd(chip);
1047         struct atmel_nand *nand = to_atmel_nand(chip);
1048         struct atmel_nand_controller *nc;
1049         struct atmel_pmecc_user_req req;
1050
1051         nc = to_nand_controller(chip->controller);
1052
1053         if (!nc->pmecc) {
1054                 dev_err(nc->dev, "HW ECC not supported\n");
1055                 return -ENOTSUPP;
1056         }
1057
1058         if (nc->caps->legacy_of_bindings) {
1059                 u32 val;
1060
1061                 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1062                                           &val))
1063                         chip->ecc.strength = val;
1064
1065                 if (!of_property_read_u32(nc->dev->of_node,
1066                                           "atmel,pmecc-sector-size",
1067                                           &val))
1068                         chip->ecc.size = val;
1069         }
1070
1071         if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1072                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1073         else if (chip->ecc.strength)
1074                 req.ecc.strength = chip->ecc.strength;
1075         else if (chip->base.eccreq.strength)
1076                 req.ecc.strength = chip->base.eccreq.strength;
1077         else
1078                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1079
1080         if (chip->ecc.size)
1081                 req.ecc.sectorsize = chip->ecc.size;
1082         else if (chip->base.eccreq.step_size)
1083                 req.ecc.sectorsize = chip->base.eccreq.step_size;
1084         else
1085                 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1086
1087         req.pagesize = mtd->writesize;
1088         req.oobsize = mtd->oobsize;
1089
1090         if (mtd->writesize <= 512) {
1091                 req.ecc.bytes = 4;
1092                 req.ecc.ooboffset = 0;
1093         } else {
1094                 req.ecc.bytes = mtd->oobsize - 2;
1095                 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1096         }
1097
1098         nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1099         if (IS_ERR(nand->pmecc))
1100                 return PTR_ERR(nand->pmecc);
1101
1102         chip->ecc.algo = NAND_ECC_BCH;
1103         chip->ecc.size = req.ecc.sectorsize;
1104         chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1105         chip->ecc.strength = req.ecc.strength;
1106
1107         chip->options |= NAND_NO_SUBPAGE_WRITE;
1108
1109         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1110
1111         return 0;
1112 }
1113
1114 static int atmel_nand_ecc_init(struct nand_chip *chip)
1115 {
1116         struct atmel_nand_controller *nc;
1117         int ret;
1118
1119         nc = to_nand_controller(chip->controller);
1120
1121         switch (chip->ecc.mode) {
1122         case NAND_ECC_NONE:
1123         case NAND_ECC_SOFT:
1124                 /*
1125                  * Nothing to do, the core will initialize everything for us.
1126                  */
1127                 break;
1128
1129         case NAND_ECC_HW:
1130                 ret = atmel_nand_pmecc_init(chip);
1131                 if (ret)
1132                         return ret;
1133
1134                 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1135                 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1136                 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1137                 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1138                 break;
1139
1140         default:
1141                 /* Other modes are not supported. */
1142                 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1143                         chip->ecc.mode);
1144                 return -ENOTSUPP;
1145         }
1146
1147         return 0;
1148 }
1149
1150 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1151 {
1152         int ret;
1153
1154         ret = atmel_nand_ecc_init(chip);
1155         if (ret)
1156                 return ret;
1157
1158         if (chip->ecc.mode != NAND_ECC_HW)
1159                 return 0;
1160
1161         /* Adjust the ECC operations for the HSMC IP. */
1162         chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1163         chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1164         chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1165         chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1166
1167         return 0;
1168 }
1169
1170 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1171                                         const struct nand_data_interface *conf,
1172                                         struct atmel_smc_cs_conf *smcconf)
1173 {
1174         u32 ncycles, totalcycles, timeps, mckperiodps;
1175         struct atmel_nand_controller *nc;
1176         int ret;
1177
1178         nc = to_nand_controller(nand->base.controller);
1179
1180         /* DDR interface not supported. */
1181         if (conf->type != NAND_SDR_IFACE)
1182                 return -ENOTSUPP;
1183
1184         /*
1185          * tRC < 30ns implies EDO mode. This controller does not support this
1186          * mode.
1187          */
1188         if (conf->timings.sdr.tRC_min < 30000)
1189                 return -ENOTSUPP;
1190
1191         atmel_smc_cs_conf_init(smcconf);
1192
1193         mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1194         mckperiodps *= 1000;
1195
1196         /*
1197          * Set write pulse timing. This one is easy to extract:
1198          *
1199          * NWE_PULSE = tWP
1200          */
1201         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1202         totalcycles = ncycles;
1203         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1204                                           ncycles);
1205         if (ret)
1206                 return ret;
1207
1208         /*
1209          * The write setup timing depends on the operation done on the NAND.
1210          * All operations goes through the same data bus, but the operation
1211          * type depends on the address we are writing to (ALE/CLE address
1212          * lines).
1213          * Since we have no way to differentiate the different operations at
1214          * the SMC level, we must consider the worst case (the biggest setup
1215          * time among all operation types):
1216          *
1217          * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1218          */
1219         timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1220                       conf->timings.sdr.tALS_min);
1221         timeps = max(timeps, conf->timings.sdr.tDS_min);
1222         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1223         ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1224         totalcycles += ncycles;
1225         ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1226                                           ncycles);
1227         if (ret)
1228                 return ret;
1229
1230         /*
1231          * As for the write setup timing, the write hold timing depends on the
1232          * operation done on the NAND:
1233          *
1234          * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1235          */
1236         timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1237                       conf->timings.sdr.tALH_min);
1238         timeps = max3(timeps, conf->timings.sdr.tDH_min,
1239                       conf->timings.sdr.tWH_min);
1240         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1241         totalcycles += ncycles;
1242
1243         /*
1244          * The write cycle timing is directly matching tWC, but is also
1245          * dependent on the other timings on the setup and hold timings we
1246          * calculated earlier, which gives:
1247          *
1248          * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1249          */
1250         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1251         ncycles = max(totalcycles, ncycles);
1252         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1253                                           ncycles);
1254         if (ret)
1255                 return ret;
1256
1257         /*
1258          * We don't want the CS line to be toggled between each byte/word
1259          * transfer to the NAND. The only way to guarantee that is to have the
1260          * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1261          *
1262          * NCS_WR_PULSE = NWE_CYCLE
1263          */
1264         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1265                                           ncycles);
1266         if (ret)
1267                 return ret;
1268
1269         /*
1270          * As for the write setup timing, the read hold timing depends on the
1271          * operation done on the NAND:
1272          *
1273          * NRD_HOLD = max(tREH, tRHOH)
1274          */
1275         timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1276         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1277         totalcycles = ncycles;
1278
1279         /*
1280          * TDF = tRHZ - NRD_HOLD
1281          */
1282         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1283         ncycles -= totalcycles;
1284
1285         /*
1286          * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1287          * we might end up with a config that does not fit in the TDF field.
1288          * Just take the max value in this case and hope that the NAND is more
1289          * tolerant than advertised.
1290          */
1291         if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1292                 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1293         else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1294                 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1295
1296         smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1297                          ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1298
1299         /*
1300          * Read pulse timing directly matches tRP:
1301          *
1302          * NRD_PULSE = tRP
1303          */
1304         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1305         totalcycles += ncycles;
1306         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1307                                           ncycles);
1308         if (ret)
1309                 return ret;
1310
1311         /*
1312          * The write cycle timing is directly matching tWC, but is also
1313          * dependent on the setup and hold timings we calculated earlier,
1314          * which gives:
1315          *
1316          * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1317          *
1318          * NRD_SETUP is always 0.
1319          */
1320         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1321         ncycles = max(totalcycles, ncycles);
1322         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1323                                           ncycles);
1324         if (ret)
1325                 return ret;
1326
1327         /*
1328          * We don't want the CS line to be toggled between each byte/word
1329          * transfer from the NAND. The only way to guarantee that is to have
1330          * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1331          *
1332          * NCS_RD_PULSE = NRD_CYCLE
1333          */
1334         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1335                                           ncycles);
1336         if (ret)
1337                 return ret;
1338
1339         /* Txxx timings are directly matching tXXX ones. */
1340         ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1341         ret = atmel_smc_cs_conf_set_timing(smcconf,
1342                                            ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1343                                            ncycles);
1344         if (ret)
1345                 return ret;
1346
1347         ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1348         ret = atmel_smc_cs_conf_set_timing(smcconf,
1349                                            ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1350                                            ncycles);
1351         /*
1352          * Version 4 of the ONFI spec mandates that tADL be at least 400
1353          * nanoseconds, but, depending on the master clock rate, 400 ns may not
1354          * fit in the tADL field of the SMC reg. We need to relax the check and
1355          * accept the -ERANGE return code.
1356          *
1357          * Note that previous versions of the ONFI spec had a lower tADL_min
1358          * (100 or 200 ns). It's not clear why this timing constraint got
1359          * increased but it seems most NANDs are fine with values lower than
1360          * 400ns, so we should be safe.
1361          */
1362         if (ret && ret != -ERANGE)
1363                 return ret;
1364
1365         ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1366         ret = atmel_smc_cs_conf_set_timing(smcconf,
1367                                            ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1368                                            ncycles);
1369         if (ret)
1370                 return ret;
1371
1372         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1373         ret = atmel_smc_cs_conf_set_timing(smcconf,
1374                                            ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1375                                            ncycles);
1376         if (ret)
1377                 return ret;
1378
1379         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1380         ret = atmel_smc_cs_conf_set_timing(smcconf,
1381                                            ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1382                                            ncycles);
1383         if (ret)
1384                 return ret;
1385
1386         /* Attach the CS line to the NFC logic. */
1387         smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1388
1389         /* Set the appropriate data bus width. */
1390         if (nand->base.options & NAND_BUSWIDTH_16)
1391                 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1392
1393         /* Operate in NRD/NWE READ/WRITEMODE. */
1394         smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1395                          ATMEL_SMC_MODE_WRITEMODE_NWE;
1396
1397         return 0;
1398 }
1399
1400 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1401                                         int csline,
1402                                         const struct nand_data_interface *conf)
1403 {
1404         struct atmel_nand_controller *nc;
1405         struct atmel_smc_cs_conf smcconf;
1406         struct atmel_nand_cs *cs;
1407         int ret;
1408
1409         nc = to_nand_controller(nand->base.controller);
1410
1411         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1412         if (ret)
1413                 return ret;
1414
1415         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1416                 return 0;
1417
1418         cs = &nand->cs[csline];
1419         cs->smcconf = smcconf;
1420         atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1421
1422         return 0;
1423 }
1424
1425 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1426                                         int csline,
1427                                         const struct nand_data_interface *conf)
1428 {
1429         struct atmel_hsmc_nand_controller *nc;
1430         struct atmel_smc_cs_conf smcconf;
1431         struct atmel_nand_cs *cs;
1432         int ret;
1433
1434         nc = to_hsmc_nand_controller(nand->base.controller);
1435
1436         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1437         if (ret)
1438                 return ret;
1439
1440         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1441                 return 0;
1442
1443         cs = &nand->cs[csline];
1444         cs->smcconf = smcconf;
1445
1446         if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1447                 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1448
1449         atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1450                                  &cs->smcconf);
1451
1452         return 0;
1453 }
1454
1455 static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
1456                                         const struct nand_data_interface *conf)
1457 {
1458         struct atmel_nand *nand = to_atmel_nand(chip);
1459         struct atmel_nand_controller *nc;
1460
1461         nc = to_nand_controller(nand->base.controller);
1462
1463         if (csline >= nand->numcs ||
1464             (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1465                 return -EINVAL;
1466
1467         return nc->caps->ops->setup_data_interface(nand, csline, conf);
1468 }
1469
1470 static void atmel_nand_init(struct atmel_nand_controller *nc,
1471                             struct atmel_nand *nand)
1472 {
1473         struct nand_chip *chip = &nand->base;
1474         struct mtd_info *mtd = nand_to_mtd(chip);
1475
1476         mtd->dev.parent = nc->dev;
1477         nand->base.controller = &nc->base;
1478
1479         chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
1480         chip->legacy.read_byte = atmel_nand_read_byte;
1481         chip->legacy.write_byte = atmel_nand_write_byte;
1482         chip->legacy.read_buf = atmel_nand_read_buf;
1483         chip->legacy.write_buf = atmel_nand_write_buf;
1484         chip->legacy.select_chip = atmel_nand_select_chip;
1485
1486         if (!nc->mck || !nc->caps->ops->setup_data_interface)
1487                 chip->options |= NAND_KEEP_TIMINGS;
1488
1489         /* Some NANDs require a longer delay than the default one (20us). */
1490         chip->legacy.chip_delay = 40;
1491
1492         /*
1493          * Use a bounce buffer when the buffer passed by the MTD user is not
1494          * suitable for DMA.
1495          */
1496         if (nc->dmac)
1497                 chip->options |= NAND_USE_BOUNCE_BUFFER;
1498
1499         /* Default to HW ECC if pmecc is available. */
1500         if (nc->pmecc)
1501                 chip->ecc.mode = NAND_ECC_HW;
1502 }
1503
1504 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1505                                 struct atmel_nand *nand)
1506 {
1507         struct nand_chip *chip = &nand->base;
1508         struct atmel_smc_nand_controller *smc_nc;
1509         int i;
1510
1511         atmel_nand_init(nc, nand);
1512
1513         smc_nc = to_smc_nand_controller(chip->controller);
1514         if (!smc_nc->ebi_csa_regmap)
1515                 return;
1516
1517         /* Attach the CS to the NAND Flash logic. */
1518         for (i = 0; i < nand->numcs; i++)
1519                 regmap_update_bits(smc_nc->ebi_csa_regmap,
1520                                    smc_nc->ebi_csa->offs,
1521                                    BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1522
1523         if (smc_nc->ebi_csa->nfd0_on_d16)
1524                 regmap_update_bits(smc_nc->ebi_csa_regmap,
1525                                    smc_nc->ebi_csa->offs,
1526                                    smc_nc->ebi_csa->nfd0_on_d16,
1527                                    smc_nc->ebi_csa->nfd0_on_d16);
1528 }
1529
1530 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1531                                  struct atmel_nand *nand)
1532 {
1533         struct nand_chip *chip = &nand->base;
1534
1535         atmel_nand_init(nc, nand);
1536
1537         /* Overload some methods for the HSMC controller. */
1538         chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1539         chip->legacy.select_chip = atmel_hsmc_nand_select_chip;
1540 }
1541
1542 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1543 {
1544         struct nand_chip *chip = &nand->base;
1545         struct mtd_info *mtd = nand_to_mtd(chip);
1546         int ret;
1547
1548         ret = mtd_device_unregister(mtd);
1549         if (ret)
1550                 return ret;
1551
1552         nand_cleanup(chip);
1553         list_del(&nand->node);
1554
1555         return 0;
1556 }
1557
1558 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1559                                             struct device_node *np,
1560                                             int reg_cells)
1561 {
1562         struct atmel_nand *nand;
1563         struct gpio_desc *gpio;
1564         int numcs, ret, i;
1565
1566         numcs = of_property_count_elems_of_size(np, "reg",
1567                                                 reg_cells * sizeof(u32));
1568         if (numcs < 1) {
1569                 dev_err(nc->dev, "Missing or invalid reg property\n");
1570                 return ERR_PTR(-EINVAL);
1571         }
1572
1573         nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1574         if (!nand) {
1575                 dev_err(nc->dev, "Failed to allocate NAND object\n");
1576                 return ERR_PTR(-ENOMEM);
1577         }
1578
1579         nand->numcs = numcs;
1580
1581         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1582                                                       &np->fwnode, GPIOD_IN,
1583                                                       "nand-det");
1584         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1585                 dev_err(nc->dev,
1586                         "Failed to get detect gpio (err = %ld)\n",
1587                         PTR_ERR(gpio));
1588                 return ERR_CAST(gpio);
1589         }
1590
1591         if (!IS_ERR(gpio))
1592                 nand->cdgpio = gpio;
1593
1594         for (i = 0; i < numcs; i++) {
1595                 struct resource res;
1596                 u32 val;
1597
1598                 ret = of_address_to_resource(np, 0, &res);
1599                 if (ret) {
1600                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1601                                 ret);
1602                         return ERR_PTR(ret);
1603                 }
1604
1605                 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1606                                                  &val);
1607                 if (ret) {
1608                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1609                                 ret);
1610                         return ERR_PTR(ret);
1611                 }
1612
1613                 nand->cs[i].id = val;
1614
1615                 nand->cs[i].io.dma = res.start;
1616                 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1617                 if (IS_ERR(nand->cs[i].io.virt))
1618                         return ERR_CAST(nand->cs[i].io.virt);
1619
1620                 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1621                         if (val > ATMEL_NFC_MAX_RB_ID)
1622                                 return ERR_PTR(-EINVAL);
1623
1624                         nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1625                         nand->cs[i].rb.id = val;
1626                 } else {
1627                         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1628                                                         "rb", i, &np->fwnode,
1629                                                         GPIOD_IN, "nand-rb");
1630                         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1631                                 dev_err(nc->dev,
1632                                         "Failed to get R/B gpio (err = %ld)\n",
1633                                         PTR_ERR(gpio));
1634                                 return ERR_CAST(gpio);
1635                         }
1636
1637                         if (!IS_ERR(gpio)) {
1638                                 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1639                                 nand->cs[i].rb.gpio = gpio;
1640                         }
1641                 }
1642
1643                 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1644                                                               i, &np->fwnode,
1645                                                               GPIOD_OUT_HIGH,
1646                                                               "nand-cs");
1647                 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1648                         dev_err(nc->dev,
1649                                 "Failed to get CS gpio (err = %ld)\n",
1650                                 PTR_ERR(gpio));
1651                         return ERR_CAST(gpio);
1652                 }
1653
1654                 if (!IS_ERR(gpio))
1655                         nand->cs[i].csgpio = gpio;
1656         }
1657
1658         nand_set_flash_node(&nand->base, np);
1659
1660         return nand;
1661 }
1662
1663 static int
1664 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1665                                struct atmel_nand *nand)
1666 {
1667         struct nand_chip *chip = &nand->base;
1668         struct mtd_info *mtd = nand_to_mtd(chip);
1669         int ret;
1670
1671         /* No card inserted, skip this NAND. */
1672         if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1673                 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1674                 return 0;
1675         }
1676
1677         nc->caps->ops->nand_init(nc, nand);
1678
1679         ret = nand_scan(chip, nand->numcs);
1680         if (ret) {
1681                 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1682                 return ret;
1683         }
1684
1685         ret = mtd_device_register(mtd, NULL, 0);
1686         if (ret) {
1687                 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1688                 nand_cleanup(chip);
1689                 return ret;
1690         }
1691
1692         list_add_tail(&nand->node, &nc->chips);
1693
1694         return 0;
1695 }
1696
1697 static int
1698 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1699 {
1700         struct atmel_nand *nand, *tmp;
1701         int ret;
1702
1703         list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1704                 ret = atmel_nand_controller_remove_nand(nand);
1705                 if (ret)
1706                         return ret;
1707         }
1708
1709         return 0;
1710 }
1711
1712 static int
1713 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1714 {
1715         struct device *dev = nc->dev;
1716         struct platform_device *pdev = to_platform_device(dev);
1717         struct atmel_nand *nand;
1718         struct gpio_desc *gpio;
1719         struct resource *res;
1720
1721         /*
1722          * Legacy bindings only allow connecting a single NAND with a unique CS
1723          * line to the controller.
1724          */
1725         nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1726                             GFP_KERNEL);
1727         if (!nand)
1728                 return -ENOMEM;
1729
1730         nand->numcs = 1;
1731
1732         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1733         nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1734         if (IS_ERR(nand->cs[0].io.virt))
1735                 return PTR_ERR(nand->cs[0].io.virt);
1736
1737         nand->cs[0].io.dma = res->start;
1738
1739         /*
1740          * The old driver was hardcoding the CS id to 3 for all sama5
1741          * controllers. Since this id is only meaningful for the sama5
1742          * controller we can safely assign this id to 3 no matter the
1743          * controller.
1744          * If one wants to connect a NAND to a different CS line, he will
1745          * have to use the new bindings.
1746          */
1747         nand->cs[0].id = 3;
1748
1749         /* R/B GPIO. */
1750         gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1751         if (IS_ERR(gpio)) {
1752                 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1753                         PTR_ERR(gpio));
1754                 return PTR_ERR(gpio);
1755         }
1756
1757         if (gpio) {
1758                 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1759                 nand->cs[0].rb.gpio = gpio;
1760         }
1761
1762         /* CS GPIO. */
1763         gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1764         if (IS_ERR(gpio)) {
1765                 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1766                         PTR_ERR(gpio));
1767                 return PTR_ERR(gpio);
1768         }
1769
1770         nand->cs[0].csgpio = gpio;
1771
1772         /* Card detect GPIO. */
1773         gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1774         if (IS_ERR(gpio)) {
1775                 dev_err(dev,
1776                         "Failed to get detect gpio (err = %ld)\n",
1777                         PTR_ERR(gpio));
1778                 return PTR_ERR(gpio);
1779         }
1780
1781         nand->cdgpio = gpio;
1782
1783         nand_set_flash_node(&nand->base, nc->dev->of_node);
1784
1785         return atmel_nand_controller_add_nand(nc, nand);
1786 }
1787
1788 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1789 {
1790         struct device_node *np, *nand_np;
1791         struct device *dev = nc->dev;
1792         int ret, reg_cells;
1793         u32 val;
1794
1795         /* We do not retrieve the SMC syscon when parsing old DTs. */
1796         if (nc->caps->legacy_of_bindings)
1797                 return atmel_nand_controller_legacy_add_nands(nc);
1798
1799         np = dev->of_node;
1800
1801         ret = of_property_read_u32(np, "#address-cells", &val);
1802         if (ret) {
1803                 dev_err(dev, "missing #address-cells property\n");
1804                 return ret;
1805         }
1806
1807         reg_cells = val;
1808
1809         ret = of_property_read_u32(np, "#size-cells", &val);
1810         if (ret) {
1811                 dev_err(dev, "missing #size-cells property\n");
1812                 return ret;
1813         }
1814
1815         reg_cells += val;
1816
1817         for_each_child_of_node(np, nand_np) {
1818                 struct atmel_nand *nand;
1819
1820                 nand = atmel_nand_create(nc, nand_np, reg_cells);
1821                 if (IS_ERR(nand)) {
1822                         ret = PTR_ERR(nand);
1823                         goto err;
1824                 }
1825
1826                 ret = atmel_nand_controller_add_nand(nc, nand);
1827                 if (ret)
1828                         goto err;
1829         }
1830
1831         return 0;
1832
1833 err:
1834         atmel_nand_controller_remove_nands(nc);
1835
1836         return ret;
1837 }
1838
1839 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1840 {
1841         if (nc->dmac)
1842                 dma_release_channel(nc->dmac);
1843
1844         clk_put(nc->mck);
1845 }
1846
1847 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1848         .offs = AT91SAM9260_MATRIX_EBICSA,
1849 };
1850
1851 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1852         .offs = AT91SAM9261_MATRIX_EBICSA,
1853 };
1854
1855 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1856         .offs = AT91SAM9263_MATRIX_EBI0CSA,
1857 };
1858
1859 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1860         .offs = AT91SAM9RL_MATRIX_EBICSA,
1861 };
1862
1863 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1864         .offs = AT91SAM9G45_MATRIX_EBICSA,
1865 };
1866
1867 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1868         .offs = AT91SAM9N12_MATRIX_EBICSA,
1869 };
1870
1871 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1872         .offs = AT91SAM9X5_MATRIX_EBICSA,
1873 };
1874
1875 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1876         .offs = AT91_SFR_CCFG_EBICSA,
1877         .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1878 };
1879
1880 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1881         {
1882                 .compatible = "atmel,at91sam9260-matrix",
1883                 .data = &at91sam9260_ebi_csa,
1884         },
1885         {
1886                 .compatible = "atmel,at91sam9261-matrix",
1887                 .data = &at91sam9261_ebi_csa,
1888         },
1889         {
1890                 .compatible = "atmel,at91sam9263-matrix",
1891                 .data = &at91sam9263_ebi_csa,
1892         },
1893         {
1894                 .compatible = "atmel,at91sam9rl-matrix",
1895                 .data = &at91sam9rl_ebi_csa,
1896         },
1897         {
1898                 .compatible = "atmel,at91sam9g45-matrix",
1899                 .data = &at91sam9g45_ebi_csa,
1900         },
1901         {
1902                 .compatible = "atmel,at91sam9n12-matrix",
1903                 .data = &at91sam9n12_ebi_csa,
1904         },
1905         {
1906                 .compatible = "atmel,at91sam9x5-matrix",
1907                 .data = &at91sam9x5_ebi_csa,
1908         },
1909         {
1910                 .compatible = "microchip,sam9x60-sfr",
1911                 .data = &sam9x60_ebi_csa,
1912         },
1913         { /* sentinel */ },
1914 };
1915
1916 static int atmel_nand_attach_chip(struct nand_chip *chip)
1917 {
1918         struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1919         struct atmel_nand *nand = to_atmel_nand(chip);
1920         struct mtd_info *mtd = nand_to_mtd(chip);
1921         int ret;
1922
1923         ret = nc->caps->ops->ecc_init(chip);
1924         if (ret)
1925                 return ret;
1926
1927         if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1928                 /*
1929                  * We keep the MTD name unchanged to avoid breaking platforms
1930                  * where the MTD cmdline parser is used and the bootloader
1931                  * has not been updated to use the new naming scheme.
1932                  */
1933                 mtd->name = "atmel_nand";
1934         } else if (!mtd->name) {
1935                 /*
1936                  * If the new bindings are used and the bootloader has not been
1937                  * updated to pass a new mtdparts parameter on the cmdline, you
1938                  * should define the following property in your nand node:
1939                  *
1940                  *      label = "atmel_nand";
1941                  *
1942                  * This way, mtd->name will be set by the core when
1943                  * nand_set_flash_node() is called.
1944                  */
1945                 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1946                                            "%s:nand.%d", dev_name(nc->dev),
1947                                            nand->cs[0].id);
1948                 if (!mtd->name) {
1949                         dev_err(nc->dev, "Failed to allocate mtd->name\n");
1950                         return -ENOMEM;
1951                 }
1952         }
1953
1954         return 0;
1955 }
1956
1957 static const struct nand_controller_ops atmel_nand_controller_ops = {
1958         .attach_chip = atmel_nand_attach_chip,
1959         .setup_data_interface = atmel_nand_setup_data_interface,
1960 };
1961
1962 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1963                                 struct platform_device *pdev,
1964                                 const struct atmel_nand_controller_caps *caps)
1965 {
1966         struct device *dev = &pdev->dev;
1967         struct device_node *np = dev->of_node;
1968         int ret;
1969
1970         nand_controller_init(&nc->base);
1971         nc->base.ops = &atmel_nand_controller_ops;
1972         INIT_LIST_HEAD(&nc->chips);
1973         nc->dev = dev;
1974         nc->caps = caps;
1975
1976         platform_set_drvdata(pdev, nc);
1977
1978         nc->pmecc = devm_atmel_pmecc_get(dev);
1979         if (IS_ERR(nc->pmecc)) {
1980                 ret = PTR_ERR(nc->pmecc);
1981                 if (ret != -EPROBE_DEFER)
1982                         dev_err(dev, "Could not get PMECC object (err = %d)\n",
1983                                 ret);
1984                 return ret;
1985         }
1986
1987         if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
1988                 dma_cap_mask_t mask;
1989
1990                 dma_cap_zero(mask);
1991                 dma_cap_set(DMA_MEMCPY, mask);
1992
1993                 nc->dmac = dma_request_channel(mask, NULL, NULL);
1994                 if (!nc->dmac)
1995                         dev_err(nc->dev, "Failed to request DMA channel\n");
1996         }
1997
1998         /* We do not retrieve the SMC syscon when parsing old DTs. */
1999         if (nc->caps->legacy_of_bindings)
2000                 return 0;
2001
2002         nc->mck = of_clk_get(dev->parent->of_node, 0);
2003         if (IS_ERR(nc->mck)) {
2004                 dev_err(dev, "Failed to retrieve MCK clk\n");
2005                 return PTR_ERR(nc->mck);
2006         }
2007
2008         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2009         if (!np) {
2010                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2011                 return -EINVAL;
2012         }
2013
2014         nc->smc = syscon_node_to_regmap(np);
2015         of_node_put(np);
2016         if (IS_ERR(nc->smc)) {
2017                 ret = PTR_ERR(nc->smc);
2018                 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2019                 return ret;
2020         }
2021
2022         return 0;
2023 }
2024
2025 static int
2026 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2027 {
2028         struct device *dev = nc->base.dev;
2029         const struct of_device_id *match;
2030         struct device_node *np;
2031         int ret;
2032
2033         /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2034         if (nc->base.caps->legacy_of_bindings)
2035                 return 0;
2036
2037         np = of_parse_phandle(dev->parent->of_node,
2038                               nc->base.caps->ebi_csa_regmap_name, 0);
2039         if (!np)
2040                 return 0;
2041
2042         match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2043         if (!match) {
2044                 of_node_put(np);
2045                 return 0;
2046         }
2047
2048         nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2049         of_node_put(np);
2050         if (IS_ERR(nc->ebi_csa_regmap)) {
2051                 ret = PTR_ERR(nc->ebi_csa_regmap);
2052                 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2053                 return ret;
2054         }
2055
2056         nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2057
2058         /*
2059          * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2060          * add 4 to ->ebi_csa->offs.
2061          */
2062         if (of_device_is_compatible(dev->parent->of_node,
2063                                     "atmel,at91sam9263-ebi1"))
2064                 nc->ebi_csa->offs += 4;
2065
2066         return 0;
2067 }
2068
2069 static int
2070 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2071 {
2072         struct regmap_config regmap_conf = {
2073                 .reg_bits = 32,
2074                 .val_bits = 32,
2075                 .reg_stride = 4,
2076         };
2077
2078         struct device *dev = nc->base.dev;
2079         struct device_node *nand_np, *nfc_np;
2080         void __iomem *iomem;
2081         struct resource res;
2082         int ret;
2083
2084         nand_np = dev->of_node;
2085         nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2086         if (!nfc_np) {
2087                 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2088                 return -ENODEV;
2089         }
2090
2091         nc->clk = of_clk_get(nfc_np, 0);
2092         if (IS_ERR(nc->clk)) {
2093                 ret = PTR_ERR(nc->clk);
2094                 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2095                         ret);
2096                 goto out;
2097         }
2098
2099         ret = clk_prepare_enable(nc->clk);
2100         if (ret) {
2101                 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2102                         ret);
2103                 goto out;
2104         }
2105
2106         nc->irq = of_irq_get(nand_np, 0);
2107         if (nc->irq <= 0) {
2108                 ret = nc->irq ?: -ENXIO;
2109                 if (ret != -EPROBE_DEFER)
2110                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2111                                 ret);
2112                 goto out;
2113         }
2114
2115         ret = of_address_to_resource(nfc_np, 0, &res);
2116         if (ret) {
2117                 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2118                         ret);
2119                 goto out;
2120         }
2121
2122         iomem = devm_ioremap_resource(dev, &res);
2123         if (IS_ERR(iomem)) {
2124                 ret = PTR_ERR(iomem);
2125                 goto out;
2126         }
2127
2128         regmap_conf.name = "nfc-io";
2129         regmap_conf.max_register = resource_size(&res) - 4;
2130         nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2131         if (IS_ERR(nc->io)) {
2132                 ret = PTR_ERR(nc->io);
2133                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2134                         ret);
2135                 goto out;
2136         }
2137
2138         ret = of_address_to_resource(nfc_np, 1, &res);
2139         if (ret) {
2140                 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2141                         ret);
2142                 goto out;
2143         }
2144
2145         iomem = devm_ioremap_resource(dev, &res);
2146         if (IS_ERR(iomem)) {
2147                 ret = PTR_ERR(iomem);
2148                 goto out;
2149         }
2150
2151         regmap_conf.name = "smc";
2152         regmap_conf.max_register = resource_size(&res) - 4;
2153         nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2154         if (IS_ERR(nc->base.smc)) {
2155                 ret = PTR_ERR(nc->base.smc);
2156                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2157                         ret);
2158                 goto out;
2159         }
2160
2161         ret = of_address_to_resource(nfc_np, 2, &res);
2162         if (ret) {
2163                 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2164                         ret);
2165                 goto out;
2166         }
2167
2168         nc->sram.virt = devm_ioremap_resource(dev, &res);
2169         if (IS_ERR(nc->sram.virt)) {
2170                 ret = PTR_ERR(nc->sram.virt);
2171                 goto out;
2172         }
2173
2174         nc->sram.dma = res.start;
2175
2176 out:
2177         of_node_put(nfc_np);
2178
2179         return ret;
2180 }
2181
2182 static int
2183 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2184 {
2185         struct device *dev = nc->base.dev;
2186         struct device_node *np;
2187         int ret;
2188
2189         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2190         if (!np) {
2191                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2192                 return -EINVAL;
2193         }
2194
2195         nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2196
2197         nc->irq = of_irq_get(np, 0);
2198         of_node_put(np);
2199         if (nc->irq <= 0) {
2200                 ret = nc->irq ?: -ENXIO;
2201                 if (ret != -EPROBE_DEFER)
2202                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2203                                 ret);
2204                 return ret;
2205         }
2206
2207         np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2208         if (!np) {
2209                 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2210                 return -EINVAL;
2211         }
2212
2213         nc->io = syscon_node_to_regmap(np);
2214         of_node_put(np);
2215         if (IS_ERR(nc->io)) {
2216                 ret = PTR_ERR(nc->io);
2217                 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2218                 return ret;
2219         }
2220
2221         nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2222                                          "atmel,nfc-sram", 0);
2223         if (!nc->sram.pool) {
2224                 dev_err(nc->base.dev, "Missing SRAM\n");
2225                 return -ENOMEM;
2226         }
2227
2228         nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2229                                                            ATMEL_NFC_SRAM_SIZE,
2230                                                            &nc->sram.dma);
2231         if (!nc->sram.virt) {
2232                 dev_err(nc->base.dev,
2233                         "Could not allocate memory from the NFC SRAM pool\n");
2234                 return -ENOMEM;
2235         }
2236
2237         return 0;
2238 }
2239
2240 static int
2241 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2242 {
2243         struct atmel_hsmc_nand_controller *hsmc_nc;
2244         int ret;
2245
2246         ret = atmel_nand_controller_remove_nands(nc);
2247         if (ret)
2248                 return ret;
2249
2250         hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2251         if (hsmc_nc->sram.pool)
2252                 gen_pool_free(hsmc_nc->sram.pool,
2253                               (unsigned long)hsmc_nc->sram.virt,
2254                               ATMEL_NFC_SRAM_SIZE);
2255
2256         if (hsmc_nc->clk) {
2257                 clk_disable_unprepare(hsmc_nc->clk);
2258                 clk_put(hsmc_nc->clk);
2259         }
2260
2261         atmel_nand_controller_cleanup(nc);
2262
2263         return 0;
2264 }
2265
2266 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2267                                 const struct atmel_nand_controller_caps *caps)
2268 {
2269         struct device *dev = &pdev->dev;
2270         struct atmel_hsmc_nand_controller *nc;
2271         int ret;
2272
2273         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2274         if (!nc)
2275                 return -ENOMEM;
2276
2277         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2278         if (ret)
2279                 return ret;
2280
2281         if (caps->legacy_of_bindings)
2282                 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2283         else
2284                 ret = atmel_hsmc_nand_controller_init(nc);
2285
2286         if (ret)
2287                 return ret;
2288
2289         /* Make sure all irqs are masked before registering our IRQ handler. */
2290         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2291         ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2292                                IRQF_SHARED, "nfc", nc);
2293         if (ret) {
2294                 dev_err(dev,
2295                         "Could not get register NFC interrupt handler (err = %d)\n",
2296                         ret);
2297                 goto err;
2298         }
2299
2300         /* Initial NFC configuration. */
2301         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2302                      ATMEL_HSMC_NFC_CFG_DTO_MAX);
2303
2304         ret = atmel_nand_controller_add_nands(&nc->base);
2305         if (ret)
2306                 goto err;
2307
2308         return 0;
2309
2310 err:
2311         atmel_hsmc_nand_controller_remove(&nc->base);
2312
2313         return ret;
2314 }
2315
2316 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2317         .probe = atmel_hsmc_nand_controller_probe,
2318         .remove = atmel_hsmc_nand_controller_remove,
2319         .ecc_init = atmel_hsmc_nand_ecc_init,
2320         .nand_init = atmel_hsmc_nand_init,
2321         .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2322 };
2323
2324 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2325         .has_dma = true,
2326         .ale_offs = BIT(21),
2327         .cle_offs = BIT(22),
2328         .ops = &atmel_hsmc_nc_ops,
2329 };
2330
2331 /* Only used to parse old bindings. */
2332 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2333         .has_dma = true,
2334         .ale_offs = BIT(21),
2335         .cle_offs = BIT(22),
2336         .ops = &atmel_hsmc_nc_ops,
2337         .legacy_of_bindings = true,
2338 };
2339
2340 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2341                                 const struct atmel_nand_controller_caps *caps)
2342 {
2343         struct device *dev = &pdev->dev;
2344         struct atmel_smc_nand_controller *nc;
2345         int ret;
2346
2347         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2348         if (!nc)
2349                 return -ENOMEM;
2350
2351         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2352         if (ret)
2353                 return ret;
2354
2355         ret = atmel_smc_nand_controller_init(nc);
2356         if (ret)
2357                 return ret;
2358
2359         return atmel_nand_controller_add_nands(&nc->base);
2360 }
2361
2362 static int
2363 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2364 {
2365         int ret;
2366
2367         ret = atmel_nand_controller_remove_nands(nc);
2368         if (ret)
2369                 return ret;
2370
2371         atmel_nand_controller_cleanup(nc);
2372
2373         return 0;
2374 }
2375
2376 /*
2377  * The SMC reg layout of at91rm9200 is completely different which prevents us
2378  * from re-using atmel_smc_nand_setup_data_interface() for the
2379  * ->setup_data_interface() hook.
2380  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2381  * ->setup_data_interface() unassigned.
2382  */
2383 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2384         .probe = atmel_smc_nand_controller_probe,
2385         .remove = atmel_smc_nand_controller_remove,
2386         .ecc_init = atmel_nand_ecc_init,
2387         .nand_init = atmel_smc_nand_init,
2388 };
2389
2390 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2391         .ale_offs = BIT(21),
2392         .cle_offs = BIT(22),
2393         .ebi_csa_regmap_name = "atmel,matrix",
2394         .ops = &at91rm9200_nc_ops,
2395 };
2396
2397 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2398         .probe = atmel_smc_nand_controller_probe,
2399         .remove = atmel_smc_nand_controller_remove,
2400         .ecc_init = atmel_nand_ecc_init,
2401         .nand_init = atmel_smc_nand_init,
2402         .setup_data_interface = atmel_smc_nand_setup_data_interface,
2403 };
2404
2405 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2406         .ale_offs = BIT(21),
2407         .cle_offs = BIT(22),
2408         .ebi_csa_regmap_name = "atmel,matrix",
2409         .ops = &atmel_smc_nc_ops,
2410 };
2411
2412 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2413         .ale_offs = BIT(22),
2414         .cle_offs = BIT(21),
2415         .ebi_csa_regmap_name = "atmel,matrix",
2416         .ops = &atmel_smc_nc_ops,
2417 };
2418
2419 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2420         .has_dma = true,
2421         .ale_offs = BIT(21),
2422         .cle_offs = BIT(22),
2423         .ebi_csa_regmap_name = "atmel,matrix",
2424         .ops = &atmel_smc_nc_ops,
2425 };
2426
2427 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2428         .has_dma = true,
2429         .ale_offs = BIT(21),
2430         .cle_offs = BIT(22),
2431         .ebi_csa_regmap_name = "microchip,sfr",
2432         .ops = &atmel_smc_nc_ops,
2433 };
2434
2435 /* Only used to parse old bindings. */
2436 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2437         .ale_offs = BIT(21),
2438         .cle_offs = BIT(22),
2439         .ops = &atmel_smc_nc_ops,
2440         .legacy_of_bindings = true,
2441 };
2442
2443 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2444         .ale_offs = BIT(22),
2445         .cle_offs = BIT(21),
2446         .ops = &atmel_smc_nc_ops,
2447         .legacy_of_bindings = true,
2448 };
2449
2450 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2451         .has_dma = true,
2452         .ale_offs = BIT(21),
2453         .cle_offs = BIT(22),
2454         .ops = &atmel_smc_nc_ops,
2455         .legacy_of_bindings = true,
2456 };
2457
2458 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2459         {
2460                 .compatible = "atmel,at91rm9200-nand-controller",
2461                 .data = &atmel_rm9200_nc_caps,
2462         },
2463         {
2464                 .compatible = "atmel,at91sam9260-nand-controller",
2465                 .data = &atmel_sam9260_nc_caps,
2466         },
2467         {
2468                 .compatible = "atmel,at91sam9261-nand-controller",
2469                 .data = &atmel_sam9261_nc_caps,
2470         },
2471         {
2472                 .compatible = "atmel,at91sam9g45-nand-controller",
2473                 .data = &atmel_sam9g45_nc_caps,
2474         },
2475         {
2476                 .compatible = "atmel,sama5d3-nand-controller",
2477                 .data = &atmel_sama5_nc_caps,
2478         },
2479         {
2480                 .compatible = "microchip,sam9x60-nand-controller",
2481                 .data = &microchip_sam9x60_nc_caps,
2482         },
2483         /* Support for old/deprecated bindings: */
2484         {
2485                 .compatible = "atmel,at91rm9200-nand",
2486                 .data = &atmel_rm9200_nand_caps,
2487         },
2488         {
2489                 .compatible = "atmel,sama5d4-nand",
2490                 .data = &atmel_rm9200_nand_caps,
2491         },
2492         {
2493                 .compatible = "atmel,sama5d2-nand",
2494                 .data = &atmel_rm9200_nand_caps,
2495         },
2496         { /* sentinel */ },
2497 };
2498 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2499
2500 static int atmel_nand_controller_probe(struct platform_device *pdev)
2501 {
2502         const struct atmel_nand_controller_caps *caps;
2503
2504         if (pdev->id_entry)
2505                 caps = (void *)pdev->id_entry->driver_data;
2506         else
2507                 caps = of_device_get_match_data(&pdev->dev);
2508
2509         if (!caps) {
2510                 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2511                 return -EINVAL;
2512         }
2513
2514         if (caps->legacy_of_bindings) {
2515                 struct device_node *nfc_node;
2516                 u32 ale_offs = 21;
2517
2518                 /*
2519                  * If we are parsing legacy DT props and the DT contains a
2520                  * valid NFC node, forward the request to the sama5 logic.
2521                  */
2522                 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2523                                                    "atmel,sama5d3-nfc");
2524                 if (nfc_node) {
2525                         caps = &atmel_sama5_nand_caps;
2526                         of_node_put(nfc_node);
2527                 }
2528
2529                 /*
2530                  * Even if the compatible says we are dealing with an
2531                  * at91rm9200 controller, the atmel,nand-has-dma specify that
2532                  * this controller supports DMA, which means we are in fact
2533                  * dealing with an at91sam9g45+ controller.
2534                  */
2535                 if (!caps->has_dma &&
2536                     of_property_read_bool(pdev->dev.of_node,
2537                                           "atmel,nand-has-dma"))
2538                         caps = &atmel_sam9g45_nand_caps;
2539
2540                 /*
2541                  * All SoCs except the at91sam9261 are assigning ALE to A21 and
2542                  * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2543                  * actually dealing with an at91sam9261 controller.
2544                  */
2545                 of_property_read_u32(pdev->dev.of_node,
2546                                      "atmel,nand-addr-offset", &ale_offs);
2547                 if (ale_offs != 21)
2548                         caps = &atmel_sam9261_nand_caps;
2549         }
2550
2551         return caps->ops->probe(pdev, caps);
2552 }
2553
2554 static int atmel_nand_controller_remove(struct platform_device *pdev)
2555 {
2556         struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2557
2558         return nc->caps->ops->remove(nc);
2559 }
2560
2561 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2562 {
2563         struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2564         struct atmel_nand *nand;
2565
2566         if (nc->pmecc)
2567                 atmel_pmecc_reset(nc->pmecc);
2568
2569         list_for_each_entry(nand, &nc->chips, node) {
2570                 int i;
2571
2572                 for (i = 0; i < nand->numcs; i++)
2573                         nand_reset(&nand->base, i);
2574         }
2575
2576         return 0;
2577 }
2578
2579 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2580                          atmel_nand_controller_resume);
2581
2582 static struct platform_driver atmel_nand_controller_driver = {
2583         .driver = {
2584                 .name = "atmel-nand-controller",
2585                 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2586                 .pm = &atmel_nand_controller_pm_ops,
2587         },
2588         .probe = atmel_nand_controller_probe,
2589         .remove = atmel_nand_controller_remove,
2590 };
2591 module_platform_driver(atmel_nand_controller_driver);
2592
2593 MODULE_LICENSE("GPL");
2594 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2595 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2596 MODULE_ALIAS("platform:atmel-nand-controller");