Merge branch 'master' of git://git.denx.de/u-boot-sunxi
[oweals/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <linux/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18
19 #define BADBLOCK_MARKER_LENGTH  2
20 #define SECTOR_BYTES            512
21 #define ECCCLEAR                (0x1 << 8)
22 #define ECCRESULTREG1           (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD            4
25
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32
33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35         { CONFIG_NAND_OMAP_GPMC_WSCFG };
36 #else
37 /* wscfg is preset to zero since its a static variable */
38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39 #endif
40
41 /*
42  * Driver configurations
43  */
44 struct omap_nand_info {
45         struct bch_control *control;
46         enum omap_ecc ecc_scheme;
47         uint8_t cs;
48         uint8_t ws;             /* wait status pin (0,1) */
49 };
50
51 /* We are wasting a bit of memory but al least we are safe */
52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53
54 /*
55  * omap_nand_hwcontrol - Set the address pointers corretly for the
56  *                      following address/data/command operation
57  */
58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59                                 uint32_t ctrl)
60 {
61         register struct nand_chip *this = mtd_to_nand(mtd);
62         struct omap_nand_info *info = nand_get_controller_data(this);
63         int cs = info->cs;
64
65         /*
66          * Point the IO_ADDR to DATA and ADDRESS registers instead
67          * of chip address
68          */
69         switch (ctrl) {
70         case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
71                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
72                 break;
73         case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
74                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
75                 break;
76         case NAND_CTRL_CHANGE | NAND_NCE:
77                 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
78                 break;
79         }
80
81         if (cmd != NAND_CMD_NONE)
82                 writeb(cmd, this->IO_ADDR_W);
83 }
84
85 /* Check wait pin as dev ready indicator */
86 static int omap_dev_ready(struct mtd_info *mtd)
87 {
88         register struct nand_chip *this = mtd_to_nand(mtd);
89         struct omap_nand_info *info = nand_get_controller_data(this);
90         return gpmc_cfg->status & (1 << (8 + info->ws));
91 }
92
93 /*
94  * gen_true_ecc - This function will generate true ECC value, which
95  * can be used when correcting data read from NAND flash memory core
96  *
97  * @ecc_buf:    buffer to store ecc code
98  *
99  * @return:     re-formatted ECC value
100  */
101 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102 {
103         return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104                 ((ecc_buf[2] & 0x0F) << 8);
105 }
106
107 /*
108  * omap_correct_data - Compares the ecc read from nand spare area with ECC
109  * registers values and corrects one bit error if it has occurred
110  * Further details can be had from OMAP TRM and the following selected links:
111  * http://en.wikipedia.org/wiki/Hamming_code
112  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113  *
114  * @mtd:                 MTD device structure
115  * @dat:                 page data
116  * @read_ecc:            ecc read from nand flash
117  * @calc_ecc:            ecc read from ECC registers
118  *
119  * @return 0 if data is OK or corrected, else returns -1
120  */
121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
122                                 uint8_t *read_ecc, uint8_t *calc_ecc)
123 {
124         uint32_t orig_ecc, new_ecc, res, hm;
125         uint16_t parity_bits, byte;
126         uint8_t bit;
127
128         /* Regenerate the orginal ECC */
129         orig_ecc = gen_true_ecc(read_ecc);
130         new_ecc = gen_true_ecc(calc_ecc);
131         /* Get the XOR of real ecc */
132         res = orig_ecc ^ new_ecc;
133         if (res) {
134                 /* Get the hamming width */
135                 hm = hweight32(res);
136                 /* Single bit errors can be corrected! */
137                 if (hm == 12) {
138                         /* Correctable data! */
139                         parity_bits = res >> 16;
140                         bit = (parity_bits & 0x7);
141                         byte = (parity_bits >> 3) & 0x1FF;
142                         /* Flip the bit to correct */
143                         dat[byte] ^= (0x1 << bit);
144                 } else if (hm == 1) {
145                         printf("Error: Ecc is wrong\n");
146                         /* ECC itself is corrupted */
147                         return 2;
148                 } else {
149                         /*
150                          * hm distance != parity pairs OR one, could mean 2 bit
151                          * error OR potentially be on a blank page..
152                          * orig_ecc: contains spare area data from nand flash.
153                          * new_ecc: generated ecc while reading data area.
154                          * Note: if the ecc = 0, all data bits from which it was
155                          * generated are 0xFF.
156                          * The 3 byte(24 bits) ecc is generated per 512byte
157                          * chunk of a page. If orig_ecc(from spare area)
158                          * is 0xFF && new_ecc(computed now from data area)=0x0,
159                          * this means that data area is 0xFF and spare area is
160                          * 0xFF. A sure sign of a erased page!
161                          */
162                         if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163                                 return 0;
164                         printf("Error: Bad compare! failed\n");
165                         /* detected 2 bit error */
166                         return -EBADMSG;
167                 }
168         }
169         return 0;
170 }
171
172 /*
173  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
174  * @mtd:        MTD device structure
175  * @mode:       Read/Write mode
176  */
177 __maybe_unused
178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
179 {
180         struct nand_chip        *nand   = mtd_to_nand(mtd);
181         struct omap_nand_info   *info   = nand_get_controller_data(nand);
182         unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183         unsigned int ecc_algo = 0;
184         unsigned int bch_type = 0;
185         unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186         u32 ecc_size_config_val = 0;
187         u32 ecc_config_val = 0;
188         int cs = info->cs;
189
190         /* configure GPMC for specific ecc-scheme */
191         switch (info->ecc_scheme) {
192         case OMAP_ECC_HAM1_CODE_SW:
193                 return;
194         case OMAP_ECC_HAM1_CODE_HW:
195                 ecc_algo = 0x0;
196                 bch_type = 0x0;
197                 bch_wrapmode = 0x00;
198                 eccsize0 = 0xFF;
199                 eccsize1 = 0xFF;
200                 break;
201         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202         case OMAP_ECC_BCH8_CODE_HW:
203                 ecc_algo = 0x1;
204                 bch_type = 0x1;
205                 if (mode == NAND_ECC_WRITE) {
206                         bch_wrapmode = 0x01;
207                         eccsize0 = 0;  /* extra bits in nibbles per sector */
208                         eccsize1 = 28; /* OOB bits in nibbles per sector */
209                 } else {
210                         bch_wrapmode = 0x01;
211                         eccsize0 = 26; /* ECC bits in nibbles per sector */
212                         eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
213                 }
214                 break;
215         case OMAP_ECC_BCH16_CODE_HW:
216                 ecc_algo = 0x1;
217                 bch_type = 0x2;
218                 if (mode == NAND_ECC_WRITE) {
219                         bch_wrapmode = 0x01;
220                         eccsize0 = 0;  /* extra bits in nibbles per sector */
221                         eccsize1 = 52; /* OOB bits in nibbles per sector */
222                 } else {
223                         bch_wrapmode = 0x01;
224                         eccsize0 = 52; /* ECC bits in nibbles per sector */
225                         eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
226                 }
227                 break;
228         default:
229                 return;
230         }
231         /* Clear ecc and enable bits */
232         writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233         /* Configure ecc size for BCH */
234         ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235         writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236
237         /* Configure device details for BCH engine */
238         ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
239                         (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
240                         (bch_wrapmode << 8)     | /* wrap mode */
241                         (dev_width << 7)        | /* bus width */
242                         (0x0 << 4)              | /* number of sectors */
243                         (cs <<  1)              | /* ECC CS */
244                         (0x1));                   /* enable ECC */
245         writel(ecc_config_val, &gpmc_cfg->ecc_config);
246 }
247
248 /*
249  *  omap_calculate_ecc - Read ECC result
250  *  @mtd:       MTD structure
251  *  @dat:       unused
252  *  @ecc_code:  ecc_code buffer
253  *  Using noninverted ECC can be considered ugly since writing a blank
254  *  page ie. padding will clear the ECC bytes. This is no problem as
255  *  long nobody is trying to write data on the seemingly unused page.
256  *  Reading an erased page will produce an ECC mismatch between
257  *  generated and read ECC bytes that has to be dealt with separately.
258  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259  *  is used, the result of read will be 0x0 while the ECC offsets of the
260  *  spare area will be 0xFF which will result in an ECC mismatch.
261  */
262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
263                                 uint8_t *ecc_code)
264 {
265         struct nand_chip *chip = mtd_to_nand(mtd);
266         struct omap_nand_info *info = nand_get_controller_data(chip);
267         const uint32_t *ptr;
268         uint32_t val = 0;
269         int8_t i = 0, j;
270
271         switch (info->ecc_scheme) {
272         case OMAP_ECC_HAM1_CODE_HW:
273                 val = readl(&gpmc_cfg->ecc1_result);
274                 ecc_code[0] = val & 0xFF;
275                 ecc_code[1] = (val >> 16) & 0xFF;
276                 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
277                 break;
278 #ifdef CONFIG_BCH
279         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
280 #endif
281         case OMAP_ECC_BCH8_CODE_HW:
282                 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
283                 val = readl(ptr);
284                 ecc_code[i++] = (val >>  0) & 0xFF;
285                 ptr--;
286                 for (j = 0; j < 3; j++) {
287                         val = readl(ptr);
288                         ecc_code[i++] = (val >> 24) & 0xFF;
289                         ecc_code[i++] = (val >> 16) & 0xFF;
290                         ecc_code[i++] = (val >>  8) & 0xFF;
291                         ecc_code[i++] = (val >>  0) & 0xFF;
292                         ptr--;
293                 }
294                 break;
295         case OMAP_ECC_BCH16_CODE_HW:
296                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
297                 ecc_code[i++] = (val >>  8) & 0xFF;
298                 ecc_code[i++] = (val >>  0) & 0xFF;
299                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
300                 ecc_code[i++] = (val >> 24) & 0xFF;
301                 ecc_code[i++] = (val >> 16) & 0xFF;
302                 ecc_code[i++] = (val >>  8) & 0xFF;
303                 ecc_code[i++] = (val >>  0) & 0xFF;
304                 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
305                 ecc_code[i++] = (val >> 24) & 0xFF;
306                 ecc_code[i++] = (val >> 16) & 0xFF;
307                 ecc_code[i++] = (val >>  8) & 0xFF;
308                 ecc_code[i++] = (val >>  0) & 0xFF;
309                 for (j = 3; j >= 0; j--) {
310                         val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
311                                                                         );
312                         ecc_code[i++] = (val >> 24) & 0xFF;
313                         ecc_code[i++] = (val >> 16) & 0xFF;
314                         ecc_code[i++] = (val >>  8) & 0xFF;
315                         ecc_code[i++] = (val >>  0) & 0xFF;
316                 }
317                 break;
318         default:
319                 return -EINVAL;
320         }
321         /* ECC scheme specific syndrome customizations */
322         switch (info->ecc_scheme) {
323         case OMAP_ECC_HAM1_CODE_HW:
324                 break;
325 #ifdef CONFIG_BCH
326         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
327
328                 for (i = 0; i < chip->ecc.bytes; i++)
329                         *(ecc_code + i) = *(ecc_code + i) ^
330                                                 bch8_polynomial[i];
331                 break;
332 #endif
333         case OMAP_ECC_BCH8_CODE_HW:
334                 ecc_code[chip->ecc.bytes - 1] = 0x00;
335                 break;
336         case OMAP_ECC_BCH16_CODE_HW:
337                 break;
338         default:
339                 return -EINVAL;
340         }
341         return 0;
342 }
343
344 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
345
346 #define PREFETCH_CONFIG1_CS_SHIFT       24
347 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
348 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
349 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
350 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
351 #define ENABLE_PREFETCH                 (1 << 7)
352
353 /**
354  * omap_prefetch_enable - configures and starts prefetch transfer
355  * @fifo_th: fifo threshold to be used for read/ write
356  * @count: number of bytes to be transferred
357  * @is_write: prefetch read(0) or write post(1) mode
358  * @cs: chip select to use
359  */
360 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
361 {
362         uint32_t val;
363
364         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
365                 return -EINVAL;
366
367         if (readl(&gpmc_cfg->prefetch_control))
368                 return -EBUSY;
369
370         /* Set the amount of bytes to be prefetched */
371         writel(count, &gpmc_cfg->prefetch_config2);
372
373         val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
374                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
375         writel(val, &gpmc_cfg->prefetch_config1);
376
377         /*  Start the prefetch engine */
378         writel(1, &gpmc_cfg->prefetch_control);
379
380         return 0;
381 }
382
383 /**
384  * omap_prefetch_reset - disables and stops the prefetch engine
385  */
386 static void omap_prefetch_reset(void)
387 {
388         writel(0, &gpmc_cfg->prefetch_control);
389         writel(0, &gpmc_cfg->prefetch_config1);
390 }
391
392 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
393 {
394         int ret;
395         uint32_t cnt;
396         struct omap_nand_info *info = nand_get_controller_data(chip);
397
398         ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
399         if (ret < 0)
400                 return ret;
401
402         do {
403                 int i;
404
405                 cnt = readl(&gpmc_cfg->prefetch_status);
406                 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
407
408                 for (i = 0; i < cnt / 4; i++) {
409                         *buf++ = readl(CONFIG_SYS_NAND_BASE);
410                         len -= 4;
411                 }
412         } while (len);
413
414         omap_prefetch_reset();
415
416         return 0;
417 }
418
419 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
420 {
421         struct nand_chip *chip = mtd_to_nand(mtd);
422
423         if (chip->options & NAND_BUSWIDTH_16)
424                 nand_read_buf16(mtd, buf, len);
425         else
426                 nand_read_buf(mtd, buf, len);
427 }
428
429 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
430 {
431         int ret;
432         uint32_t head, tail;
433         struct nand_chip *chip = mtd_to_nand(mtd);
434
435         /*
436          * If the destination buffer is unaligned, start with reading
437          * the overlap byte-wise.
438          */
439         head = ((uint32_t) buf) % 4;
440         if (head) {
441                 omap_nand_read(mtd, buf, head);
442                 buf += head;
443                 len -= head;
444         }
445
446         /*
447          * Only transfer multiples of 4 bytes in a pre-fetched fashion.
448          * If there's a residue, care for it byte-wise afterwards.
449          */
450         tail = len % 4;
451
452         ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
453         if (ret < 0) {
454                 /* fallback in case the prefetch engine is busy */
455                 omap_nand_read(mtd, buf, len);
456         } else if (tail) {
457                 buf += len - tail;
458                 omap_nand_read(mtd, buf, tail);
459         }
460 }
461 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
462
463 #ifdef CONFIG_NAND_OMAP_ELM
464 /*
465  * omap_reverse_list - re-orders list elements in reverse order [internal]
466  * @list:       pointer to start of list
467  * @length:     length of list
468 */
469 static void omap_reverse_list(u8 *list, unsigned int length)
470 {
471         unsigned int i, j;
472         unsigned int half_length = length / 2;
473         u8 tmp;
474         for (i = 0, j = length - 1; i < half_length; i++, j--) {
475                 tmp = list[i];
476                 list[i] = list[j];
477                 list[j] = tmp;
478         }
479 }
480
481 /*
482  * omap_correct_data_bch - Compares the ecc read from nand spare area
483  * with ECC registers values and corrects one bit error if it has occurred
484  *
485  * @mtd:        MTD device structure
486  * @dat:        page data
487  * @read_ecc:   ecc read from nand flash (ignored)
488  * @calc_ecc:   ecc read from ECC registers
489  *
490  * @return 0 if data is OK or corrected, else returns -1
491  */
492 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
493                                 uint8_t *read_ecc, uint8_t *calc_ecc)
494 {
495         struct nand_chip *chip = mtd_to_nand(mtd);
496         struct omap_nand_info *info = nand_get_controller_data(chip);
497         struct nand_ecc_ctrl *ecc = &chip->ecc;
498         uint32_t error_count = 0, error_max;
499         uint32_t error_loc[ELM_MAX_ERROR_COUNT];
500         enum bch_level bch_type;
501         uint32_t i, ecc_flag = 0;
502         uint8_t count;
503         uint32_t byte_pos, bit_pos;
504         int err = 0;
505
506         /* check calculated ecc */
507         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
508                 if (calc_ecc[i] != 0x00)
509                         ecc_flag = 1;
510         }
511         if (!ecc_flag)
512                 return 0;
513
514         /* check for whether its a erased-page */
515         ecc_flag = 0;
516         for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
517                 if (read_ecc[i] != 0xff)
518                         ecc_flag = 1;
519         }
520         if (!ecc_flag)
521                 return 0;
522
523         /*
524          * while reading ECC result we read it in big endian.
525          * Hence while loading to ELM we have rotate to get the right endian.
526          */
527         switch (info->ecc_scheme) {
528         case OMAP_ECC_BCH8_CODE_HW:
529                 bch_type = BCH_8_BIT;
530                 omap_reverse_list(calc_ecc, ecc->bytes - 1);
531                 break;
532         case OMAP_ECC_BCH16_CODE_HW:
533                 bch_type = BCH_16_BIT;
534                 omap_reverse_list(calc_ecc, ecc->bytes);
535                 break;
536         default:
537                 return -EINVAL;
538         }
539         /* use elm module to check for errors */
540         elm_config(bch_type);
541         err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
542         if (err)
543                 return err;
544
545         /* correct bch error */
546         for (count = 0; count < error_count; count++) {
547                 switch (info->ecc_scheme) {
548                 case OMAP_ECC_BCH8_CODE_HW:
549                         /* 14th byte in ECC is reserved to match ROM layout */
550                         error_max = SECTOR_BYTES + (ecc->bytes - 1);
551                         break;
552                 case OMAP_ECC_BCH16_CODE_HW:
553                         error_max = SECTOR_BYTES + ecc->bytes;
554                         break;
555                 default:
556                         return -EINVAL;
557                 }
558                 byte_pos = error_max - (error_loc[count] / 8) - 1;
559                 bit_pos  = error_loc[count] % 8;
560                 if (byte_pos < SECTOR_BYTES) {
561                         dat[byte_pos] ^= 1 << bit_pos;
562                         debug("nand: bit-flip corrected @data=%d\n", byte_pos);
563                 } else if (byte_pos < error_max) {
564                         read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
565                         debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
566                                                                 SECTOR_BYTES);
567                 } else {
568                         err = -EBADMSG;
569                         printf("nand: error: invalid bit-flip location\n");
570                 }
571         }
572         return (err) ? err : error_count;
573 }
574
575 /**
576  * omap_read_page_bch - hardware ecc based page read function
577  * @mtd:        mtd info structure
578  * @chip:       nand chip info structure
579  * @buf:        buffer to store read data
580  * @oob_required: caller expects OOB data read to chip->oob_poi
581  * @page:       page number to read
582  *
583  */
584 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
585                                 uint8_t *buf, int oob_required, int page)
586 {
587         int i, eccsize = chip->ecc.size;
588         int eccbytes = chip->ecc.bytes;
589         int eccsteps = chip->ecc.steps;
590         uint8_t *p = buf;
591         uint8_t *ecc_calc = chip->buffers->ecccalc;
592         uint8_t *ecc_code = chip->buffers->ecccode;
593         uint32_t *eccpos = chip->ecc.layout->eccpos;
594         uint8_t *oob = chip->oob_poi;
595         uint32_t data_pos;
596         uint32_t oob_pos;
597
598         data_pos = 0;
599         /* oob area start */
600         oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
601         oob += chip->ecc.layout->eccpos[0];
602
603         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
604                                 oob += eccbytes) {
605                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
606                 /* read data */
607                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
608                 chip->read_buf(mtd, p, eccsize);
609
610                 /* read respective ecc from oob area */
611                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
612                 chip->read_buf(mtd, oob, eccbytes);
613                 /* read syndrome */
614                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
615
616                 data_pos += eccsize;
617                 oob_pos += eccbytes;
618         }
619
620         for (i = 0; i < chip->ecc.total; i++)
621                 ecc_code[i] = chip->oob_poi[eccpos[i]];
622
623         eccsteps = chip->ecc.steps;
624         p = buf;
625
626         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
627                 int stat;
628
629                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
630                 if (stat < 0)
631                         mtd->ecc_stats.failed++;
632                 else
633                         mtd->ecc_stats.corrected += stat;
634         }
635         return 0;
636 }
637 #endif /* CONFIG_NAND_OMAP_ELM */
638
639 /*
640  * OMAP3 BCH8 support (with BCH library)
641  */
642 #ifdef CONFIG_BCH
643 /**
644  * omap_correct_data_bch_sw - Decode received data and correct errors
645  * @mtd: MTD device structure
646  * @data: page data
647  * @read_ecc: ecc read from nand flash
648  * @calc_ecc: ecc read from HW ECC registers
649  */
650 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
651                                  u_char *read_ecc, u_char *calc_ecc)
652 {
653         int i, count;
654         /* cannot correct more than 8 errors */
655         unsigned int errloc[8];
656         struct nand_chip *chip = mtd_to_nand(mtd);
657         struct omap_nand_info *info = nand_get_controller_data(chip);
658
659         count = decode_bch(info->control, NULL, SECTOR_BYTES,
660                                 read_ecc, calc_ecc, NULL, errloc);
661         if (count > 0) {
662                 /* correct errors */
663                 for (i = 0; i < count; i++) {
664                         /* correct data only, not ecc bytes */
665                         if (errloc[i] < SECTOR_BYTES << 3)
666                                 data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
667                         debug("corrected bitflip %u\n", errloc[i]);
668 #ifdef DEBUG
669                         puts("read_ecc: ");
670                         /*
671                          * BCH8 have 13 bytes of ECC; BCH4 needs adoption
672                          * here!
673                          */
674                         for (i = 0; i < 13; i++)
675                                 printf("%02x ", read_ecc[i]);
676                         puts("\n");
677                         puts("calc_ecc: ");
678                         for (i = 0; i < 13; i++)
679                                 printf("%02x ", calc_ecc[i]);
680                         puts("\n");
681 #endif
682                 }
683         } else if (count < 0) {
684                 puts("ecc unrecoverable error\n");
685         }
686         return count;
687 }
688
689 /**
690  * omap_free_bch - Release BCH ecc resources
691  * @mtd: MTD device structure
692  */
693 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
694 {
695         struct nand_chip *chip = mtd_to_nand(mtd);
696         struct omap_nand_info *info = nand_get_controller_data(chip);
697
698         if (info->control) {
699                 free_bch(info->control);
700                 info->control = NULL;
701         }
702 }
703 #endif /* CONFIG_BCH */
704
705 /**
706  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
707  * @nand: NAND chip device structure
708  * @ecc_scheme: ecc scheme to configure
709  * @pagesize: number of main-area bytes per page of NAND device
710  * @oobsize: number of OOB/spare bytes per page of NAND device
711  */
712 static int omap_select_ecc_scheme(struct nand_chip *nand,
713         enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
714         struct omap_nand_info   *info           = nand_get_controller_data(nand);
715         struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
716         int eccsteps = pagesize / SECTOR_BYTES;
717         int i;
718
719         switch (ecc_scheme) {
720         case OMAP_ECC_HAM1_CODE_SW:
721                 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
722                 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
723                  * initialized in nand_scan_tail(), so just set ecc.mode */
724                 info->control           = NULL;
725                 nand->ecc.mode          = NAND_ECC_SOFT;
726                 nand->ecc.layout        = NULL;
727                 nand->ecc.size          = 0;
728                 break;
729
730         case OMAP_ECC_HAM1_CODE_HW:
731                 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
732                 /* check ecc-scheme requirements before updating ecc info */
733                 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
734                         printf("nand: error: insufficient OOB: require=%d\n", (
735                                 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
736                         return -EINVAL;
737                 }
738                 info->control           = NULL;
739                 /* populate ecc specific fields */
740                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
741                 nand->ecc.mode          = NAND_ECC_HW;
742                 nand->ecc.strength      = 1;
743                 nand->ecc.size          = SECTOR_BYTES;
744                 nand->ecc.bytes         = 3;
745                 nand->ecc.hwctl         = omap_enable_hwecc;
746                 nand->ecc.correct       = omap_correct_data;
747                 nand->ecc.calculate     = omap_calculate_ecc;
748                 /* define ecc-layout */
749                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
750                 for (i = 0; i < ecclayout->eccbytes; i++) {
751                         if (nand->options & NAND_BUSWIDTH_16)
752                                 ecclayout->eccpos[i] = i + 2;
753                         else
754                                 ecclayout->eccpos[i] = i + 1;
755                 }
756                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
757                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
758                                                 BADBLOCK_MARKER_LENGTH;
759                 break;
760
761         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
762 #ifdef CONFIG_BCH
763                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
764                 /* check ecc-scheme requirements before updating ecc info */
765                 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
766                         printf("nand: error: insufficient OOB: require=%d\n", (
767                                 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
768                         return -EINVAL;
769                 }
770                 /* check if BCH S/W library can be used for error detection */
771                 info->control = init_bch(13, 8, 0x201b);
772                 if (!info->control) {
773                         printf("nand: error: could not init_bch()\n");
774                         return -ENODEV;
775                 }
776                 /* populate ecc specific fields */
777                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
778                 nand->ecc.mode          = NAND_ECC_HW;
779                 nand->ecc.strength      = 8;
780                 nand->ecc.size          = SECTOR_BYTES;
781                 nand->ecc.bytes         = 13;
782                 nand->ecc.hwctl         = omap_enable_hwecc;
783                 nand->ecc.correct       = omap_correct_data_bch_sw;
784                 nand->ecc.calculate     = omap_calculate_ecc;
785                 /* define ecc-layout */
786                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
787                 ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
788                 for (i = 1; i < ecclayout->eccbytes; i++) {
789                         if (i % nand->ecc.bytes)
790                                 ecclayout->eccpos[i] =
791                                                 ecclayout->eccpos[i - 1] + 1;
792                         else
793                                 ecclayout->eccpos[i] =
794                                                 ecclayout->eccpos[i - 1] + 2;
795                 }
796                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
797                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
798                                                 BADBLOCK_MARKER_LENGTH;
799                 break;
800 #else
801                 printf("nand: error: CONFIG_BCH required for ECC\n");
802                 return -EINVAL;
803 #endif
804
805         case OMAP_ECC_BCH8_CODE_HW:
806 #ifdef CONFIG_NAND_OMAP_ELM
807                 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
808                 /* check ecc-scheme requirements before updating ecc info */
809                 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
810                         printf("nand: error: insufficient OOB: require=%d\n", (
811                                 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
812                         return -EINVAL;
813                 }
814                 /* intialize ELM for ECC error detection */
815                 elm_init();
816                 info->control           = NULL;
817                 /* populate ecc specific fields */
818                 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
819                 nand->ecc.mode          = NAND_ECC_HW;
820                 nand->ecc.strength      = 8;
821                 nand->ecc.size          = SECTOR_BYTES;
822                 nand->ecc.bytes         = 14;
823                 nand->ecc.hwctl         = omap_enable_hwecc;
824                 nand->ecc.correct       = omap_correct_data_bch;
825                 nand->ecc.calculate     = omap_calculate_ecc;
826                 nand->ecc.read_page     = omap_read_page_bch;
827                 /* define ecc-layout */
828                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
829                 for (i = 0; i < ecclayout->eccbytes; i++)
830                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
831                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
832                 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
833                                                 BADBLOCK_MARKER_LENGTH;
834                 break;
835 #else
836                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
837                 return -EINVAL;
838 #endif
839
840         case OMAP_ECC_BCH16_CODE_HW:
841 #ifdef CONFIG_NAND_OMAP_ELM
842                 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
843                 /* check ecc-scheme requirements before updating ecc info */
844                 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
845                         printf("nand: error: insufficient OOB: require=%d\n", (
846                                 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
847                         return -EINVAL;
848                 }
849                 /* intialize ELM for ECC error detection */
850                 elm_init();
851                 /* populate ecc specific fields */
852                 nand->ecc.mode          = NAND_ECC_HW;
853                 nand->ecc.size          = SECTOR_BYTES;
854                 nand->ecc.bytes         = 26;
855                 nand->ecc.strength      = 16;
856                 nand->ecc.hwctl         = omap_enable_hwecc;
857                 nand->ecc.correct       = omap_correct_data_bch;
858                 nand->ecc.calculate     = omap_calculate_ecc;
859                 nand->ecc.read_page     = omap_read_page_bch;
860                 /* define ecc-layout */
861                 ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
862                 for (i = 0; i < ecclayout->eccbytes; i++)
863                         ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
864                 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
865                 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
866                                                 BADBLOCK_MARKER_LENGTH;
867                 break;
868 #else
869                 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
870                 return -EINVAL;
871 #endif
872         default:
873                 debug("nand: error: ecc scheme not enabled or supported\n");
874                 return -EINVAL;
875         }
876
877         /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
878         if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
879                 nand->ecc.layout = ecclayout;
880
881         info->ecc_scheme = ecc_scheme;
882         return 0;
883 }
884
885 #ifndef CONFIG_SPL_BUILD
886 /*
887  * omap_nand_switch_ecc - switch the ECC operation between different engines
888  * (h/w and s/w) and different algorithms (hamming and BCHx)
889  *
890  * @hardware            - true if one of the HW engines should be used
891  * @eccstrength         - the number of bits that could be corrected
892  *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
893  */
894 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
895 {
896         struct nand_chip *nand;
897         struct mtd_info *mtd;
898         int err = 0;
899
900         if (nand_curr_device < 0 ||
901             nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
902             !nand_info[nand_curr_device]) {
903                 printf("nand: error: no NAND devices found\n");
904                 return -ENODEV;
905         }
906
907         mtd = nand_info[nand_curr_device];
908         nand = mtd_to_nand(mtd);
909         nand->options |= NAND_OWN_BUFFERS;
910         nand->options &= ~NAND_SUBPAGE_READ;
911         /* Setup the ecc configurations again */
912         if (hardware) {
913                 if (eccstrength == 1) {
914                         err = omap_select_ecc_scheme(nand,
915                                         OMAP_ECC_HAM1_CODE_HW,
916                                         mtd->writesize, mtd->oobsize);
917                 } else if (eccstrength == 8) {
918                         err = omap_select_ecc_scheme(nand,
919                                         OMAP_ECC_BCH8_CODE_HW,
920                                         mtd->writesize, mtd->oobsize);
921                 } else if (eccstrength == 16) {
922                         err = omap_select_ecc_scheme(nand,
923                                         OMAP_ECC_BCH16_CODE_HW,
924                                         mtd->writesize, mtd->oobsize);
925                 } else {
926                         printf("nand: error: unsupported ECC scheme\n");
927                         return -EINVAL;
928                 }
929         } else {
930                 if (eccstrength == 1) {
931                         err = omap_select_ecc_scheme(nand,
932                                         OMAP_ECC_HAM1_CODE_SW,
933                                         mtd->writesize, mtd->oobsize);
934                 } else if (eccstrength == 8) {
935                         err = omap_select_ecc_scheme(nand,
936                                         OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
937                                         mtd->writesize, mtd->oobsize);
938                 } else {
939                         printf("nand: error: unsupported ECC scheme\n");
940                         return -EINVAL;
941                 }
942         }
943
944         /* Update NAND handling after ECC mode switch */
945         if (!err)
946                 err = nand_scan_tail(mtd);
947         return err;
948 }
949 #endif /* CONFIG_SPL_BUILD */
950
951 /*
952  * Board-specific NAND initialization. The following members of the
953  * argument are board-specific:
954  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
955  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
956  * - cmd_ctrl: hardwarespecific function for accesing control-lines
957  * - waitfunc: hardwarespecific function for accesing device ready/busy line
958  * - ecc.hwctl: function to enable (reset) hardware ecc generator
959  * - ecc.mode: mode of ecc, see defines
960  * - chip_delay: chip dependent delay for transfering data from array to
961  *   read regs (tR)
962  * - options: various chip options. They can partly be set to inform
963  *   nand_scan about special functionality. See the defines for further
964  *   explanation
965  */
966 int board_nand_init(struct nand_chip *nand)
967 {
968         int32_t gpmc_config = 0;
969         int cs = cs_next++;
970         int err = 0;
971         /*
972          * xloader/Uboot's gpmc configuration would have configured GPMC for
973          * nand type of memory. The following logic scans and latches on to the
974          * first CS with NAND type memory.
975          * TBD: need to make this logic generic to handle multiple CS NAND
976          * devices.
977          */
978         while (cs < GPMC_MAX_CS) {
979                 /* Check if NAND type is set */
980                 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
981                         /* Found it!! */
982                         break;
983                 }
984                 cs++;
985         }
986         if (cs >= GPMC_MAX_CS) {
987                 printf("nand: error: Unable to find NAND settings in "
988                         "GPMC Configuration - quitting\n");
989                 return -ENODEV;
990         }
991
992         gpmc_config = readl(&gpmc_cfg->config);
993         /* Disable Write protect */
994         gpmc_config |= 0x10;
995         writel(gpmc_config, &gpmc_cfg->config);
996
997         nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
998         nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
999         omap_nand_info[cs].control = NULL;
1000         omap_nand_info[cs].cs = cs;
1001         omap_nand_info[cs].ws = wscfg[cs];
1002         nand_set_controller_data(nand, &omap_nand_info[cs]);
1003         nand->cmd_ctrl  = omap_nand_hwcontrol;
1004         nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
1005         nand->chip_delay = 100;
1006         nand->ecc.layout = &omap_ecclayout;
1007
1008         /* configure driver and controller based on NAND device bus-width */
1009         gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1010 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1011         nand->options |= NAND_BUSWIDTH_16;
1012         writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1013 #else
1014         nand->options &= ~NAND_BUSWIDTH_16;
1015         writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1016 #endif
1017         /* select ECC scheme */
1018 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1019         err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1020                         CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1021 #else
1022         /* pagesize and oobsize are not required to configure sw ecc-scheme */
1023         err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1024                         0, 0);
1025 #endif
1026         if (err)
1027                 return err;
1028
1029 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1030         nand->read_buf = omap_nand_read_prefetch;
1031 #else
1032         if (nand->options & NAND_BUSWIDTH_16)
1033                 nand->read_buf = nand_read_buf16;
1034         else
1035                 nand->read_buf = nand_read_buf;
1036 #endif
1037
1038         nand->dev_ready = omap_dev_ready;
1039
1040         return 0;
1041 }