2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
5 * SPDX-License-Identifier: GPL-2.0+
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
17 #include <linux/mtd/omap_elm.h>
19 #define BADBLOCK_MARKER_LENGTH 2
20 #define SECTOR_BYTES 512
21 #define ECCCLEAR (0x1 << 8)
22 #define ECCRESULTREG1 (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD 4
27 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
34 * Driver configurations
36 struct omap_nand_info {
37 struct bch_control *control;
38 enum omap_ecc ecc_scheme;
42 /* We are wasting a bit of memory but al least we are safe */
43 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
46 * omap_nand_hwcontrol - Set the address pointers corretly for the
47 * following address/data/command operation
49 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
52 register struct nand_chip *this = mtd->priv;
53 struct omap_nand_info *info = this->priv;
57 * Point the IO_ADDR to DATA and ADDRESS registers instead
61 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
62 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
64 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
65 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
67 case NAND_CTRL_CHANGE | NAND_NCE:
68 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
72 if (cmd != NAND_CMD_NONE)
73 writeb(cmd, this->IO_ADDR_W);
76 #ifdef CONFIG_SPL_BUILD
77 /* Check wait pin as dev ready indicator */
78 int omap_spl_dev_ready(struct mtd_info *mtd)
80 return gpmc_cfg->status & (1 << 8);
86 * gen_true_ecc - This function will generate true ECC value, which
87 * can be used when correcting data read from NAND flash memory core
89 * @ecc_buf: buffer to store ecc code
91 * @return: re-formatted ECC value
93 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
95 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
96 ((ecc_buf[2] & 0x0F) << 8);
100 * omap_correct_data - Compares the ecc read from nand spare area with ECC
101 * registers values and corrects one bit error if it has occured
102 * Further details can be had from OMAP TRM and the following selected links:
103 * http://en.wikipedia.org/wiki/Hamming_code
104 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
106 * @mtd: MTD device structure
108 * @read_ecc: ecc read from nand flash
109 * @calc_ecc: ecc read from ECC registers
111 * @return 0 if data is OK or corrected, else returns -1
113 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
114 uint8_t *read_ecc, uint8_t *calc_ecc)
116 uint32_t orig_ecc, new_ecc, res, hm;
117 uint16_t parity_bits, byte;
120 /* Regenerate the orginal ECC */
121 orig_ecc = gen_true_ecc(read_ecc);
122 new_ecc = gen_true_ecc(calc_ecc);
123 /* Get the XOR of real ecc */
124 res = orig_ecc ^ new_ecc;
126 /* Get the hamming width */
128 /* Single bit errors can be corrected! */
130 /* Correctable data! */
131 parity_bits = res >> 16;
132 bit = (parity_bits & 0x7);
133 byte = (parity_bits >> 3) & 0x1FF;
134 /* Flip the bit to correct */
135 dat[byte] ^= (0x1 << bit);
136 } else if (hm == 1) {
137 printf("Error: Ecc is wrong\n");
138 /* ECC itself is corrupted */
142 * hm distance != parity pairs OR one, could mean 2 bit
143 * error OR potentially be on a blank page..
144 * orig_ecc: contains spare area data from nand flash.
145 * new_ecc: generated ecc while reading data area.
146 * Note: if the ecc = 0, all data bits from which it was
147 * generated are 0xFF.
148 * The 3 byte(24 bits) ecc is generated per 512byte
149 * chunk of a page. If orig_ecc(from spare area)
150 * is 0xFF && new_ecc(computed now from data area)=0x0,
151 * this means that data area is 0xFF and spare area is
152 * 0xFF. A sure sign of a erased page!
154 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
156 printf("Error: Bad compare! failed\n");
157 /* detected 2 bit error */
165 * omap_reverse_list - re-orders list elements in reverse order [internal]
166 * @list: pointer to start of list
167 * @length: length of list
169 void omap_reverse_list(u8 *list, unsigned int length)
172 unsigned int half_length = length / 2;
174 for (i = 0, j = length - 1; i < half_length; i++, j--) {
182 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
183 * @mtd: MTD device structure
184 * @mode: Read/Write mode
187 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
189 struct nand_chip *nand = mtd->priv;
190 struct omap_nand_info *info = nand->priv;
191 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
192 unsigned int ecc_algo = 0;
193 unsigned int bch_type = 0;
194 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
195 u32 ecc_size_config_val = 0;
196 u32 ecc_config_val = 0;
199 /* configure GPMC for specific ecc-scheme */
200 switch (info->ecc_scheme) {
201 case OMAP_ECC_HAM1_CODE_SW:
203 case OMAP_ECC_HAM1_CODE_HW:
210 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
211 case OMAP_ECC_BCH8_CODE_HW:
214 if (mode == NAND_ECC_WRITE) {
216 eccsize0 = 0; /* extra bits in nibbles per sector */
217 eccsize1 = 28; /* OOB bits in nibbles per sector */
220 eccsize0 = 26; /* ECC bits in nibbles per sector */
221 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
224 case OMAP_ECC_BCH16_CODE_HW:
227 if (mode == NAND_ECC_WRITE) {
229 eccsize0 = 0; /* extra bits in nibbles per sector */
230 eccsize1 = 52; /* OOB bits in nibbles per sector */
233 eccsize0 = 52; /* ECC bits in nibbles per sector */
234 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
240 /* Clear ecc and enable bits */
241 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
242 /* Configure ecc size for BCH */
243 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
244 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
246 /* Configure device details for BCH engine */
247 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
248 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
249 (bch_wrapmode << 8) | /* wrap mode */
250 (dev_width << 7) | /* bus width */
251 (0x0 << 4) | /* number of sectors */
252 (cs << 1) | /* ECC CS */
253 (0x1)); /* enable ECC */
254 writel(ecc_config_val, &gpmc_cfg->ecc_config);
258 * omap_calculate_ecc - Read ECC result
259 * @mtd: MTD structure
261 * @ecc_code: ecc_code buffer
262 * Using noninverted ECC can be considered ugly since writing a blank
263 * page ie. padding will clear the ECC bytes. This is no problem as
264 * long nobody is trying to write data on the seemingly unused page.
265 * Reading an erased page will produce an ECC mismatch between
266 * generated and read ECC bytes that has to be dealt with separately.
267 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
268 * is used, the result of read will be 0x0 while the ECC offsets of the
269 * spare area will be 0xFF which will result in an ECC mismatch.
271 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
274 struct nand_chip *chip = mtd->priv;
275 struct omap_nand_info *info = chip->priv;
276 uint32_t *ptr, val = 0;
279 switch (info->ecc_scheme) {
280 case OMAP_ECC_HAM1_CODE_HW:
281 val = readl(&gpmc_cfg->ecc1_result);
282 ecc_code[0] = val & 0xFF;
283 ecc_code[1] = (val >> 16) & 0xFF;
284 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
287 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
289 case OMAP_ECC_BCH8_CODE_HW:
290 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
292 ecc_code[i++] = (val >> 0) & 0xFF;
294 for (j = 0; j < 3; j++) {
296 ecc_code[i++] = (val >> 24) & 0xFF;
297 ecc_code[i++] = (val >> 16) & 0xFF;
298 ecc_code[i++] = (val >> 8) & 0xFF;
299 ecc_code[i++] = (val >> 0) & 0xFF;
303 case OMAP_ECC_BCH16_CODE_HW:
304 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
305 ecc_code[i++] = (val >> 8) & 0xFF;
306 ecc_code[i++] = (val >> 0) & 0xFF;
307 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
308 ecc_code[i++] = (val >> 24) & 0xFF;
309 ecc_code[i++] = (val >> 16) & 0xFF;
310 ecc_code[i++] = (val >> 8) & 0xFF;
311 ecc_code[i++] = (val >> 0) & 0xFF;
312 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
313 ecc_code[i++] = (val >> 24) & 0xFF;
314 ecc_code[i++] = (val >> 16) & 0xFF;
315 ecc_code[i++] = (val >> 8) & 0xFF;
316 ecc_code[i++] = (val >> 0) & 0xFF;
317 for (j = 3; j >= 0; j--) {
318 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
320 ecc_code[i++] = (val >> 24) & 0xFF;
321 ecc_code[i++] = (val >> 16) & 0xFF;
322 ecc_code[i++] = (val >> 8) & 0xFF;
323 ecc_code[i++] = (val >> 0) & 0xFF;
329 /* ECC scheme specific syndrome customizations */
330 switch (info->ecc_scheme) {
331 case OMAP_ECC_HAM1_CODE_HW:
334 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
336 for (i = 0; i < chip->ecc.bytes; i++)
337 *(ecc_code + i) = *(ecc_code + i) ^
341 case OMAP_ECC_BCH8_CODE_HW:
342 ecc_code[chip->ecc.bytes - 1] = 0x00;
344 case OMAP_ECC_BCH16_CODE_HW:
352 #ifdef CONFIG_NAND_OMAP_ELM
354 * omap_correct_data_bch - Compares the ecc read from nand spare area
355 * with ECC registers values and corrects one bit error if it has occured
357 * @mtd: MTD device structure
359 * @read_ecc: ecc read from nand flash (ignored)
360 * @calc_ecc: ecc read from ECC registers
362 * @return 0 if data is OK or corrected, else returns -1
364 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
365 uint8_t *read_ecc, uint8_t *calc_ecc)
367 struct nand_chip *chip = mtd->priv;
368 struct omap_nand_info *info = chip->priv;
369 struct nand_ecc_ctrl *ecc = &chip->ecc;
370 uint32_t error_count = 0, error_max;
371 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
372 enum bch_level bch_type;
373 uint32_t i, ecc_flag = 0;
374 uint8_t count, err = 0;
375 uint32_t byte_pos, bit_pos;
377 /* check calculated ecc */
378 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
379 if (calc_ecc[i] != 0x00)
385 /* check for whether its a erased-page */
387 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
388 if (read_ecc[i] != 0xff)
395 * while reading ECC result we read it in big endian.
396 * Hence while loading to ELM we have rotate to get the right endian.
398 switch (info->ecc_scheme) {
399 case OMAP_ECC_BCH8_CODE_HW:
400 bch_type = BCH_8_BIT;
401 omap_reverse_list(calc_ecc, ecc->bytes - 1);
403 case OMAP_ECC_BCH16_CODE_HW:
404 bch_type = BCH_16_BIT;
405 omap_reverse_list(calc_ecc, ecc->bytes);
410 /* use elm module to check for errors */
411 elm_config(bch_type);
412 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
416 /* correct bch error */
417 for (count = 0; count < error_count; count++) {
418 switch (info->ecc_scheme) {
419 case OMAP_ECC_BCH8_CODE_HW:
420 /* 14th byte in ECC is reserved to match ROM layout */
421 error_max = SECTOR_BYTES + (ecc->bytes - 1);
423 case OMAP_ECC_BCH16_CODE_HW:
424 error_max = SECTOR_BYTES + ecc->bytes;
429 byte_pos = error_max - (error_loc[count] / 8) - 1;
430 bit_pos = error_loc[count] % 8;
431 if (byte_pos < SECTOR_BYTES) {
432 dat[byte_pos] ^= 1 << bit_pos;
433 printf("nand: bit-flip corrected @data=%d\n", byte_pos);
434 } else if (byte_pos < error_max) {
435 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
436 printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
440 printf("nand: error: invalid bit-flip location\n");
443 return (err) ? err : error_count;
447 * omap_read_page_bch - hardware ecc based page read function
448 * @mtd: mtd info structure
449 * @chip: nand chip info structure
450 * @buf: buffer to store read data
451 * @oob_required: caller expects OOB data read to chip->oob_poi
452 * @page: page number to read
455 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
456 uint8_t *buf, int oob_required, int page)
458 int i, eccsize = chip->ecc.size;
459 int eccbytes = chip->ecc.bytes;
460 int eccsteps = chip->ecc.steps;
462 uint8_t *ecc_calc = chip->buffers->ecccalc;
463 uint8_t *ecc_code = chip->buffers->ecccode;
464 uint32_t *eccpos = chip->ecc.layout->eccpos;
465 uint8_t *oob = chip->oob_poi;
471 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
472 oob += chip->ecc.layout->eccpos[0];
474 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
476 chip->ecc.hwctl(mtd, NAND_ECC_READ);
478 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
479 chip->read_buf(mtd, p, eccsize);
481 /* read respective ecc from oob area */
482 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
483 chip->read_buf(mtd, oob, eccbytes);
485 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
491 for (i = 0; i < chip->ecc.total; i++)
492 ecc_code[i] = chip->oob_poi[eccpos[i]];
494 eccsteps = chip->ecc.steps;
497 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
500 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
502 mtd->ecc_stats.failed++;
504 mtd->ecc_stats.corrected += stat;
508 #endif /* CONFIG_NAND_OMAP_ELM */
511 * OMAP3 BCH8 support (with BCH library)
515 * omap_correct_data_bch_sw - Decode received data and correct errors
516 * @mtd: MTD device structure
518 * @read_ecc: ecc read from nand flash
519 * @calc_ecc: ecc read from HW ECC registers
521 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
522 u_char *read_ecc, u_char *calc_ecc)
525 /* cannot correct more than 8 errors */
526 unsigned int errloc[8];
527 struct nand_chip *chip = mtd->priv;
528 struct omap_nand_info *info = chip->priv;
530 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
534 for (i = 0; i < count; i++) {
535 /* correct data only, not ecc bytes */
536 if (errloc[i] < 8*512)
537 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
538 printf("corrected bitflip %u\n", errloc[i]);
542 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
545 for (i = 0; i < 13; i++)
546 printf("%02x ", read_ecc[i]);
549 for (i = 0; i < 13; i++)
550 printf("%02x ", calc_ecc[i]);
554 } else if (count < 0) {
555 puts("ecc unrecoverable error\n");
561 * omap_free_bch - Release BCH ecc resources
562 * @mtd: MTD device structure
564 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
566 struct nand_chip *chip = mtd->priv;
567 struct omap_nand_info *info = chip->priv;
570 free_bch(info->control);
571 info->control = NULL;
574 #endif /* CONFIG_BCH */
577 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
578 * @nand: NAND chip device structure
579 * @ecc_scheme: ecc scheme to configure
580 * @pagesize: number of main-area bytes per page of NAND device
581 * @oobsize: number of OOB/spare bytes per page of NAND device
583 static int omap_select_ecc_scheme(struct nand_chip *nand,
584 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
585 struct omap_nand_info *info = nand->priv;
586 struct nand_ecclayout *ecclayout = &omap_ecclayout;
587 int eccsteps = pagesize / SECTOR_BYTES;
590 switch (ecc_scheme) {
591 case OMAP_ECC_HAM1_CODE_SW:
592 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
593 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
594 * initialized in nand_scan_tail(), so just set ecc.mode */
595 info->control = NULL;
596 nand->ecc.mode = NAND_ECC_SOFT;
597 nand->ecc.layout = NULL;
601 case OMAP_ECC_HAM1_CODE_HW:
602 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
603 /* check ecc-scheme requirements before updating ecc info */
604 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
605 printf("nand: error: insufficient OOB: require=%d\n", (
606 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
609 info->control = NULL;
610 /* populate ecc specific fields */
611 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
612 nand->ecc.mode = NAND_ECC_HW;
613 nand->ecc.strength = 1;
614 nand->ecc.size = SECTOR_BYTES;
616 nand->ecc.hwctl = omap_enable_hwecc;
617 nand->ecc.correct = omap_correct_data;
618 nand->ecc.calculate = omap_calculate_ecc;
619 /* define ecc-layout */
620 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
621 for (i = 0; i < ecclayout->eccbytes; i++) {
622 if (nand->options & NAND_BUSWIDTH_16)
623 ecclayout->eccpos[i] = i + 2;
625 ecclayout->eccpos[i] = i + 1;
627 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
628 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
629 BADBLOCK_MARKER_LENGTH;
632 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
634 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
635 /* check ecc-scheme requirements before updating ecc info */
636 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
637 printf("nand: error: insufficient OOB: require=%d\n", (
638 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
641 /* check if BCH S/W library can be used for error detection */
642 info->control = init_bch(13, 8, 0x201b);
643 if (!info->control) {
644 printf("nand: error: could not init_bch()\n");
647 /* populate ecc specific fields */
648 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
649 nand->ecc.mode = NAND_ECC_HW;
650 nand->ecc.strength = 8;
651 nand->ecc.size = SECTOR_BYTES;
652 nand->ecc.bytes = 13;
653 nand->ecc.hwctl = omap_enable_hwecc;
654 nand->ecc.correct = omap_correct_data_bch_sw;
655 nand->ecc.calculate = omap_calculate_ecc;
656 /* define ecc-layout */
657 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
658 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
659 for (i = 1; i < ecclayout->eccbytes; i++) {
660 if (i % nand->ecc.bytes)
661 ecclayout->eccpos[i] =
662 ecclayout->eccpos[i - 1] + 1;
664 ecclayout->eccpos[i] =
665 ecclayout->eccpos[i - 1] + 2;
667 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
668 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
669 BADBLOCK_MARKER_LENGTH;
672 printf("nand: error: CONFIG_BCH required for ECC\n");
676 case OMAP_ECC_BCH8_CODE_HW:
677 #ifdef CONFIG_NAND_OMAP_ELM
678 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
679 /* check ecc-scheme requirements before updating ecc info */
680 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
681 printf("nand: error: insufficient OOB: require=%d\n", (
682 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
685 /* intialize ELM for ECC error detection */
687 info->control = NULL;
688 /* populate ecc specific fields */
689 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
690 nand->ecc.mode = NAND_ECC_HW;
691 nand->ecc.strength = 8;
692 nand->ecc.size = SECTOR_BYTES;
693 nand->ecc.bytes = 14;
694 nand->ecc.hwctl = omap_enable_hwecc;
695 nand->ecc.correct = omap_correct_data_bch;
696 nand->ecc.calculate = omap_calculate_ecc;
697 nand->ecc.read_page = omap_read_page_bch;
698 /* define ecc-layout */
699 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
700 for (i = 0; i < ecclayout->eccbytes; i++)
701 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
702 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
703 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
704 BADBLOCK_MARKER_LENGTH;
707 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
711 case OMAP_ECC_BCH16_CODE_HW:
712 #ifdef CONFIG_NAND_OMAP_ELM
713 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
714 /* check ecc-scheme requirements before updating ecc info */
715 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
716 printf("nand: error: insufficient OOB: require=%d\n", (
717 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
720 /* intialize ELM for ECC error detection */
722 /* populate ecc specific fields */
723 nand->ecc.mode = NAND_ECC_HW;
724 nand->ecc.size = SECTOR_BYTES;
725 nand->ecc.bytes = 26;
726 nand->ecc.strength = 16;
727 nand->ecc.hwctl = omap_enable_hwecc;
728 nand->ecc.correct = omap_correct_data_bch;
729 nand->ecc.calculate = omap_calculate_ecc;
730 nand->ecc.read_page = omap_read_page_bch;
731 /* define ecc-layout */
732 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
733 for (i = 0; i < ecclayout->eccbytes; i++)
734 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
735 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
736 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
737 BADBLOCK_MARKER_LENGTH;
740 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
744 debug("nand: error: ecc scheme not enabled or supported\n");
748 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
749 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
750 nand->ecc.layout = ecclayout;
752 info->ecc_scheme = ecc_scheme;
756 #ifndef CONFIG_SPL_BUILD
758 * omap_nand_switch_ecc - switch the ECC operation between different engines
759 * (h/w and s/w) and different algorithms (hamming and BCHx)
761 * @hardware - true if one of the HW engines should be used
762 * @eccstrength - the number of bits that could be corrected
763 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
765 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
767 struct nand_chip *nand;
768 struct mtd_info *mtd;
771 if (nand_curr_device < 0 ||
772 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
773 !nand_info[nand_curr_device].name) {
774 printf("nand: error: no NAND devices found\n");
778 mtd = &nand_info[nand_curr_device];
780 nand->options |= NAND_OWN_BUFFERS;
781 nand->options &= ~NAND_SUBPAGE_READ;
782 /* Setup the ecc configurations again */
784 if (eccstrength == 1) {
785 err = omap_select_ecc_scheme(nand,
786 OMAP_ECC_HAM1_CODE_HW,
787 mtd->writesize, mtd->oobsize);
788 } else if (eccstrength == 8) {
789 err = omap_select_ecc_scheme(nand,
790 OMAP_ECC_BCH8_CODE_HW,
791 mtd->writesize, mtd->oobsize);
793 printf("nand: error: unsupported ECC scheme\n");
797 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
798 mtd->writesize, mtd->oobsize);
801 /* Update NAND handling after ECC mode switch */
803 err = nand_scan_tail(mtd);
806 #endif /* CONFIG_SPL_BUILD */
809 * Board-specific NAND initialization. The following members of the
810 * argument are board-specific:
811 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
812 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
813 * - cmd_ctrl: hardwarespecific function for accesing control-lines
814 * - waitfunc: hardwarespecific function for accesing device ready/busy line
815 * - ecc.hwctl: function to enable (reset) hardware ecc generator
816 * - ecc.mode: mode of ecc, see defines
817 * - chip_delay: chip dependent delay for transfering data from array to
819 * - options: various chip options. They can partly be set to inform
820 * nand_scan about special functionality. See the defines for further
823 int board_nand_init(struct nand_chip *nand)
825 int32_t gpmc_config = 0;
829 * xloader/Uboot's gpmc configuration would have configured GPMC for
830 * nand type of memory. The following logic scans and latches on to the
831 * first CS with NAND type memory.
832 * TBD: need to make this logic generic to handle multiple CS NAND
835 while (cs < GPMC_MAX_CS) {
836 /* Check if NAND type is set */
837 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
843 if (cs >= GPMC_MAX_CS) {
844 printf("nand: error: Unable to find NAND settings in "
845 "GPMC Configuration - quitting\n");
849 gpmc_config = readl(&gpmc_cfg->config);
850 /* Disable Write protect */
852 writel(gpmc_config, &gpmc_cfg->config);
854 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
855 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
856 omap_nand_info[cs].control = NULL;
857 omap_nand_info[cs].cs = cs;
858 nand->priv = &omap_nand_info[cs];
859 nand->cmd_ctrl = omap_nand_hwcontrol;
860 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
861 nand->chip_delay = 100;
862 nand->ecc.layout = &omap_ecclayout;
864 /* configure driver and controller based on NAND device bus-width */
865 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
866 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
867 nand->options |= NAND_BUSWIDTH_16;
868 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
870 nand->options &= ~NAND_BUSWIDTH_16;
871 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
873 /* select ECC scheme */
874 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
875 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
876 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
878 /* pagesize and oobsize are not required to configure sw ecc-scheme */
879 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
885 #ifdef CONFIG_SPL_BUILD
886 if (nand->options & NAND_BUSWIDTH_16)
887 nand->read_buf = nand_read_buf16;
889 nand->read_buf = nand_read_buf;
890 nand->dev_ready = omap_spl_dev_ready;