2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
5 * SPDX-License-Identifier: GPL-2.0+
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
17 #include <linux/mtd/omap_elm.h>
19 #define BADBLOCK_MARKER_LENGTH 2
20 #define SECTOR_BYTES 512
21 #define ECCCLEAR (0x1 << 8)
22 #define ECCRESULTREG1 (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD 4
27 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
34 * omap_nand_hwcontrol - Set the address pointers corretly for the
35 * following address/data/command operation
37 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
40 register struct nand_chip *this = mtd->priv;
43 * Point the IO_ADDR to DATA and ADDRESS registers instead
47 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
48 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
50 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
51 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
53 case NAND_CTRL_CHANGE | NAND_NCE:
54 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
58 if (cmd != NAND_CMD_NONE)
59 writeb(cmd, this->IO_ADDR_W);
62 #ifdef CONFIG_SPL_BUILD
63 /* Check wait pin as dev ready indicator */
64 int omap_spl_dev_ready(struct mtd_info *mtd)
66 return gpmc_cfg->status & (1 << 8);
72 * gen_true_ecc - This function will generate true ECC value, which
73 * can be used when correcting data read from NAND flash memory core
75 * @ecc_buf: buffer to store ecc code
77 * @return: re-formatted ECC value
79 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
81 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
82 ((ecc_buf[2] & 0x0F) << 8);
86 * omap_correct_data - Compares the ecc read from nand spare area with ECC
87 * registers values and corrects one bit error if it has occured
88 * Further details can be had from OMAP TRM and the following selected links:
89 * http://en.wikipedia.org/wiki/Hamming_code
90 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
92 * @mtd: MTD device structure
94 * @read_ecc: ecc read from nand flash
95 * @calc_ecc: ecc read from ECC registers
97 * @return 0 if data is OK or corrected, else returns -1
99 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
100 uint8_t *read_ecc, uint8_t *calc_ecc)
102 uint32_t orig_ecc, new_ecc, res, hm;
103 uint16_t parity_bits, byte;
106 /* Regenerate the orginal ECC */
107 orig_ecc = gen_true_ecc(read_ecc);
108 new_ecc = gen_true_ecc(calc_ecc);
109 /* Get the XOR of real ecc */
110 res = orig_ecc ^ new_ecc;
112 /* Get the hamming width */
114 /* Single bit errors can be corrected! */
116 /* Correctable data! */
117 parity_bits = res >> 16;
118 bit = (parity_bits & 0x7);
119 byte = (parity_bits >> 3) & 0x1FF;
120 /* Flip the bit to correct */
121 dat[byte] ^= (0x1 << bit);
122 } else if (hm == 1) {
123 printf("Error: Ecc is wrong\n");
124 /* ECC itself is corrupted */
128 * hm distance != parity pairs OR one, could mean 2 bit
129 * error OR potentially be on a blank page..
130 * orig_ecc: contains spare area data from nand flash.
131 * new_ecc: generated ecc while reading data area.
132 * Note: if the ecc = 0, all data bits from which it was
133 * generated are 0xFF.
134 * The 3 byte(24 bits) ecc is generated per 512byte
135 * chunk of a page. If orig_ecc(from spare area)
136 * is 0xFF && new_ecc(computed now from data area)=0x0,
137 * this means that data area is 0xFF and spare area is
138 * 0xFF. A sure sign of a erased page!
140 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
142 printf("Error: Bad compare! failed\n");
143 /* detected 2 bit error */
151 * Driver configurations
153 struct omap_nand_info {
154 struct bch_control *control;
155 enum omap_ecc ecc_scheme;
159 * This can be a single instance cause all current users have only one NAND
160 * with nearly the same setup (BCH8, some with ELM and others with sw BCH
162 * When some users with other BCH strength will exists this have to change!
164 static __maybe_unused struct omap_nand_info omap_nand_info = {
169 * omap_reverse_list - re-orders list elements in reverse order [internal]
170 * @list: pointer to start of list
171 * @length: length of list
173 void omap_reverse_list(u8 *list, unsigned int length)
176 unsigned int half_length = length / 2;
178 for (i = 0, j = length - 1; i < half_length; i++, j--) {
186 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
187 * @mtd: MTD device structure
188 * @mode: Read/Write mode
191 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
193 struct nand_chip *nand = mtd->priv;
194 struct omap_nand_info *info = nand->priv;
195 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
196 unsigned int ecc_algo = 0;
197 unsigned int bch_type = 0;
198 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
199 u32 ecc_size_config_val = 0;
200 u32 ecc_config_val = 0;
202 /* configure GPMC for specific ecc-scheme */
203 switch (info->ecc_scheme) {
204 case OMAP_ECC_HAM1_CODE_SW:
206 case OMAP_ECC_HAM1_CODE_HW:
213 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
214 case OMAP_ECC_BCH8_CODE_HW:
217 if (mode == NAND_ECC_WRITE) {
219 eccsize0 = 0; /* extra bits in nibbles per sector */
220 eccsize1 = 28; /* OOB bits in nibbles per sector */
223 eccsize0 = 26; /* ECC bits in nibbles per sector */
224 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
227 case OMAP_ECC_BCH16_CODE_HW:
230 if (mode == NAND_ECC_WRITE) {
232 eccsize0 = 0; /* extra bits in nibbles per sector */
233 eccsize1 = 52; /* OOB bits in nibbles per sector */
236 eccsize0 = 52; /* ECC bits in nibbles per sector */
237 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
243 /* Clear ecc and enable bits */
244 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
245 /* Configure ecc size for BCH */
246 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
247 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
249 /* Configure device details for BCH engine */
250 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
251 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
252 (bch_wrapmode << 8) | /* wrap mode */
253 (dev_width << 7) | /* bus width */
254 (0x0 << 4) | /* number of sectors */
255 (cs << 1) | /* ECC CS */
256 (0x1)); /* enable ECC */
257 writel(ecc_config_val, &gpmc_cfg->ecc_config);
261 * omap_calculate_ecc - Read ECC result
262 * @mtd: MTD structure
264 * @ecc_code: ecc_code buffer
265 * Using noninverted ECC can be considered ugly since writing a blank
266 * page ie. padding will clear the ECC bytes. This is no problem as
267 * long nobody is trying to write data on the seemingly unused page.
268 * Reading an erased page will produce an ECC mismatch between
269 * generated and read ECC bytes that has to be dealt with separately.
270 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
271 * is used, the result of read will be 0x0 while the ECC offsets of the
272 * spare area will be 0xFF which will result in an ECC mismatch.
274 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
277 struct nand_chip *chip = mtd->priv;
278 struct omap_nand_info *info = chip->priv;
279 uint32_t *ptr, val = 0;
282 switch (info->ecc_scheme) {
283 case OMAP_ECC_HAM1_CODE_HW:
284 val = readl(&gpmc_cfg->ecc1_result);
285 ecc_code[0] = val & 0xFF;
286 ecc_code[1] = (val >> 16) & 0xFF;
287 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
290 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
292 case OMAP_ECC_BCH8_CODE_HW:
293 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
295 ecc_code[i++] = (val >> 0) & 0xFF;
297 for (j = 0; j < 3; j++) {
299 ecc_code[i++] = (val >> 24) & 0xFF;
300 ecc_code[i++] = (val >> 16) & 0xFF;
301 ecc_code[i++] = (val >> 8) & 0xFF;
302 ecc_code[i++] = (val >> 0) & 0xFF;
306 case OMAP_ECC_BCH16_CODE_HW:
307 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
308 ecc_code[i++] = (val >> 8) & 0xFF;
309 ecc_code[i++] = (val >> 0) & 0xFF;
310 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
311 ecc_code[i++] = (val >> 24) & 0xFF;
312 ecc_code[i++] = (val >> 16) & 0xFF;
313 ecc_code[i++] = (val >> 8) & 0xFF;
314 ecc_code[i++] = (val >> 0) & 0xFF;
315 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
316 ecc_code[i++] = (val >> 24) & 0xFF;
317 ecc_code[i++] = (val >> 16) & 0xFF;
318 ecc_code[i++] = (val >> 8) & 0xFF;
319 ecc_code[i++] = (val >> 0) & 0xFF;
320 for (j = 3; j >= 0; j--) {
321 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
323 ecc_code[i++] = (val >> 24) & 0xFF;
324 ecc_code[i++] = (val >> 16) & 0xFF;
325 ecc_code[i++] = (val >> 8) & 0xFF;
326 ecc_code[i++] = (val >> 0) & 0xFF;
332 /* ECC scheme specific syndrome customizations */
333 switch (info->ecc_scheme) {
334 case OMAP_ECC_HAM1_CODE_HW:
337 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
339 for (i = 0; i < chip->ecc.bytes; i++)
340 *(ecc_code + i) = *(ecc_code + i) ^
344 case OMAP_ECC_BCH8_CODE_HW:
345 ecc_code[chip->ecc.bytes - 1] = 0x00;
347 case OMAP_ECC_BCH16_CODE_HW:
355 #ifdef CONFIG_NAND_OMAP_ELM
357 * omap_correct_data_bch - Compares the ecc read from nand spare area
358 * with ECC registers values and corrects one bit error if it has occured
360 * @mtd: MTD device structure
362 * @read_ecc: ecc read from nand flash (ignored)
363 * @calc_ecc: ecc read from ECC registers
365 * @return 0 if data is OK or corrected, else returns -1
367 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
368 uint8_t *read_ecc, uint8_t *calc_ecc)
370 struct nand_chip *chip = mtd->priv;
371 struct omap_nand_info *info = chip->priv;
372 struct nand_ecc_ctrl *ecc = &chip->ecc;
373 uint32_t error_count = 0, error_max;
374 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
375 enum bch_level bch_type;
376 uint32_t i, ecc_flag = 0;
377 uint8_t count, err = 0;
378 uint32_t byte_pos, bit_pos;
380 /* check calculated ecc */
381 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
382 if (calc_ecc[i] != 0x00)
388 /* check for whether its a erased-page */
390 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
391 if (read_ecc[i] != 0xff)
398 * while reading ECC result we read it in big endian.
399 * Hence while loading to ELM we have rotate to get the right endian.
401 switch (info->ecc_scheme) {
402 case OMAP_ECC_BCH8_CODE_HW:
403 bch_type = BCH_8_BIT;
404 omap_reverse_list(calc_ecc, ecc->bytes - 1);
406 case OMAP_ECC_BCH16_CODE_HW:
407 bch_type = BCH_16_BIT;
408 omap_reverse_list(calc_ecc, ecc->bytes);
413 /* use elm module to check for errors */
414 elm_config(bch_type);
415 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
419 /* correct bch error */
420 for (count = 0; count < error_count; count++) {
421 switch (info->ecc_scheme) {
422 case OMAP_ECC_BCH8_CODE_HW:
423 /* 14th byte in ECC is reserved to match ROM layout */
424 error_max = SECTOR_BYTES + (ecc->bytes - 1);
426 case OMAP_ECC_BCH16_CODE_HW:
427 error_max = SECTOR_BYTES + ecc->bytes;
432 byte_pos = error_max - (error_loc[count] / 8) - 1;
433 bit_pos = error_loc[count] % 8;
434 if (byte_pos < SECTOR_BYTES) {
435 dat[byte_pos] ^= 1 << bit_pos;
436 printf("nand: bit-flip corrected @data=%d\n", byte_pos);
437 } else if (byte_pos < error_max) {
438 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
439 printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
443 printf("nand: error: invalid bit-flip location\n");
446 return (err) ? err : error_count;
450 * omap_read_page_bch - hardware ecc based page read function
451 * @mtd: mtd info structure
452 * @chip: nand chip info structure
453 * @buf: buffer to store read data
454 * @oob_required: caller expects OOB data read to chip->oob_poi
455 * @page: page number to read
458 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
459 uint8_t *buf, int oob_required, int page)
461 int i, eccsize = chip->ecc.size;
462 int eccbytes = chip->ecc.bytes;
463 int eccsteps = chip->ecc.steps;
465 uint8_t *ecc_calc = chip->buffers->ecccalc;
466 uint8_t *ecc_code = chip->buffers->ecccode;
467 uint32_t *eccpos = chip->ecc.layout->eccpos;
468 uint8_t *oob = chip->oob_poi;
474 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
475 oob += chip->ecc.layout->eccpos[0];
477 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
479 chip->ecc.hwctl(mtd, NAND_ECC_READ);
481 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
482 chip->read_buf(mtd, p, eccsize);
484 /* read respective ecc from oob area */
485 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
486 chip->read_buf(mtd, oob, eccbytes);
488 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
494 for (i = 0; i < chip->ecc.total; i++)
495 ecc_code[i] = chip->oob_poi[eccpos[i]];
497 eccsteps = chip->ecc.steps;
500 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
503 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
505 mtd->ecc_stats.failed++;
507 mtd->ecc_stats.corrected += stat;
511 #endif /* CONFIG_NAND_OMAP_ELM */
514 * OMAP3 BCH8 support (with BCH library)
518 * omap_correct_data_bch_sw - Decode received data and correct errors
519 * @mtd: MTD device structure
521 * @read_ecc: ecc read from nand flash
522 * @calc_ecc: ecc read from HW ECC registers
524 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
525 u_char *read_ecc, u_char *calc_ecc)
528 /* cannot correct more than 8 errors */
529 unsigned int errloc[8];
530 struct nand_chip *chip = mtd->priv;
531 struct omap_nand_info *info = chip->priv;
533 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
537 for (i = 0; i < count; i++) {
538 /* correct data only, not ecc bytes */
539 if (errloc[i] < 8*512)
540 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
541 printf("corrected bitflip %u\n", errloc[i]);
545 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
548 for (i = 0; i < 13; i++)
549 printf("%02x ", read_ecc[i]);
552 for (i = 0; i < 13; i++)
553 printf("%02x ", calc_ecc[i]);
557 } else if (count < 0) {
558 puts("ecc unrecoverable error\n");
564 * omap_free_bch - Release BCH ecc resources
565 * @mtd: MTD device structure
567 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
569 struct nand_chip *chip = mtd->priv;
570 struct omap_nand_info *info = chip->priv;
573 free_bch(info->control);
574 info->control = NULL;
577 #endif /* CONFIG_BCH */
580 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
581 * @nand: NAND chip device structure
582 * @ecc_scheme: ecc scheme to configure
583 * @pagesize: number of main-area bytes per page of NAND device
584 * @oobsize: number of OOB/spare bytes per page of NAND device
586 static int omap_select_ecc_scheme(struct nand_chip *nand,
587 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
588 struct omap_nand_info *info = nand->priv;
589 struct nand_ecclayout *ecclayout = &omap_ecclayout;
590 int eccsteps = pagesize / SECTOR_BYTES;
593 switch (ecc_scheme) {
594 case OMAP_ECC_HAM1_CODE_SW:
595 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
596 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
597 * initialized in nand_scan_tail(), so just set ecc.mode */
598 info->control = NULL;
599 nand->ecc.mode = NAND_ECC_SOFT;
600 nand->ecc.layout = NULL;
604 case OMAP_ECC_HAM1_CODE_HW:
605 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
606 /* check ecc-scheme requirements before updating ecc info */
607 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
608 printf("nand: error: insufficient OOB: require=%d\n", (
609 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
612 info->control = NULL;
613 /* populate ecc specific fields */
614 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
615 nand->ecc.mode = NAND_ECC_HW;
616 nand->ecc.strength = 1;
617 nand->ecc.size = SECTOR_BYTES;
619 nand->ecc.hwctl = omap_enable_hwecc;
620 nand->ecc.correct = omap_correct_data;
621 nand->ecc.calculate = omap_calculate_ecc;
622 /* define ecc-layout */
623 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
624 for (i = 0; i < ecclayout->eccbytes; i++) {
625 if (nand->options & NAND_BUSWIDTH_16)
626 ecclayout->eccpos[i] = i + 2;
628 ecclayout->eccpos[i] = i + 1;
630 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
631 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
632 BADBLOCK_MARKER_LENGTH;
635 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
637 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
638 /* check ecc-scheme requirements before updating ecc info */
639 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
640 printf("nand: error: insufficient OOB: require=%d\n", (
641 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
644 /* check if BCH S/W library can be used for error detection */
645 info->control = init_bch(13, 8, 0x201b);
646 if (!info->control) {
647 printf("nand: error: could not init_bch()\n");
650 /* populate ecc specific fields */
651 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
652 nand->ecc.mode = NAND_ECC_HW;
653 nand->ecc.strength = 8;
654 nand->ecc.size = SECTOR_BYTES;
655 nand->ecc.bytes = 13;
656 nand->ecc.hwctl = omap_enable_hwecc;
657 nand->ecc.correct = omap_correct_data_bch_sw;
658 nand->ecc.calculate = omap_calculate_ecc;
659 /* define ecc-layout */
660 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
661 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
662 for (i = 1; i < ecclayout->eccbytes; i++) {
663 if (i % nand->ecc.bytes)
664 ecclayout->eccpos[i] =
665 ecclayout->eccpos[i - 1] + 1;
667 ecclayout->eccpos[i] =
668 ecclayout->eccpos[i - 1] + 2;
670 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
671 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
672 BADBLOCK_MARKER_LENGTH;
675 printf("nand: error: CONFIG_BCH required for ECC\n");
679 case OMAP_ECC_BCH8_CODE_HW:
680 #ifdef CONFIG_NAND_OMAP_ELM
681 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
682 /* check ecc-scheme requirements before updating ecc info */
683 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
684 printf("nand: error: insufficient OOB: require=%d\n", (
685 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
688 /* intialize ELM for ECC error detection */
690 info->control = NULL;
691 /* populate ecc specific fields */
692 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
693 nand->ecc.mode = NAND_ECC_HW;
694 nand->ecc.strength = 8;
695 nand->ecc.size = SECTOR_BYTES;
696 nand->ecc.bytes = 14;
697 nand->ecc.hwctl = omap_enable_hwecc;
698 nand->ecc.correct = omap_correct_data_bch;
699 nand->ecc.calculate = omap_calculate_ecc;
700 nand->ecc.read_page = omap_read_page_bch;
701 /* define ecc-layout */
702 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
703 for (i = 0; i < ecclayout->eccbytes; i++)
704 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
705 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
706 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
707 BADBLOCK_MARKER_LENGTH;
710 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
714 case OMAP_ECC_BCH16_CODE_HW:
715 #ifdef CONFIG_NAND_OMAP_ELM
716 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
717 /* check ecc-scheme requirements before updating ecc info */
718 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
719 printf("nand: error: insufficient OOB: require=%d\n", (
720 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
723 /* intialize ELM for ECC error detection */
725 /* populate ecc specific fields */
726 nand->ecc.mode = NAND_ECC_HW;
727 nand->ecc.size = SECTOR_BYTES;
728 nand->ecc.bytes = 26;
729 nand->ecc.strength = 16;
730 nand->ecc.hwctl = omap_enable_hwecc;
731 nand->ecc.correct = omap_correct_data_bch;
732 nand->ecc.calculate = omap_calculate_ecc;
733 nand->ecc.read_page = omap_read_page_bch;
734 /* define ecc-layout */
735 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
736 for (i = 0; i < ecclayout->eccbytes; i++)
737 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
738 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
739 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
740 BADBLOCK_MARKER_LENGTH;
743 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
747 debug("nand: error: ecc scheme not enabled or supported\n");
751 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
752 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
753 nand->ecc.layout = ecclayout;
755 info->ecc_scheme = ecc_scheme;
759 #ifndef CONFIG_SPL_BUILD
761 * omap_nand_switch_ecc - switch the ECC operation between different engines
762 * (h/w and s/w) and different algorithms (hamming and BCHx)
764 * @hardware - true if one of the HW engines should be used
765 * @eccstrength - the number of bits that could be corrected
766 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
768 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
770 struct nand_chip *nand;
771 struct mtd_info *mtd;
774 if (nand_curr_device < 0 ||
775 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
776 !nand_info[nand_curr_device].name) {
777 printf("nand: error: no NAND devices found\n");
781 mtd = &nand_info[nand_curr_device];
783 nand->options |= NAND_OWN_BUFFERS;
784 nand->options &= ~NAND_SUBPAGE_READ;
785 /* Setup the ecc configurations again */
787 if (eccstrength == 1) {
788 err = omap_select_ecc_scheme(nand,
789 OMAP_ECC_HAM1_CODE_HW,
790 mtd->writesize, mtd->oobsize);
791 } else if (eccstrength == 8) {
792 err = omap_select_ecc_scheme(nand,
793 OMAP_ECC_BCH8_CODE_HW,
794 mtd->writesize, mtd->oobsize);
796 printf("nand: error: unsupported ECC scheme\n");
800 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
801 mtd->writesize, mtd->oobsize);
804 /* Update NAND handling after ECC mode switch */
806 err = nand_scan_tail(mtd);
809 #endif /* CONFIG_SPL_BUILD */
812 * Board-specific NAND initialization. The following members of the
813 * argument are board-specific:
814 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
815 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
816 * - cmd_ctrl: hardwarespecific function for accesing control-lines
817 * - waitfunc: hardwarespecific function for accesing device ready/busy line
818 * - ecc.hwctl: function to enable (reset) hardware ecc generator
819 * - ecc.mode: mode of ecc, see defines
820 * - chip_delay: chip dependent delay for transfering data from array to
822 * - options: various chip options. They can partly be set to inform
823 * nand_scan about special functionality. See the defines for further
826 int board_nand_init(struct nand_chip *nand)
828 int32_t gpmc_config = 0;
832 * xloader/Uboot's gpmc configuration would have configured GPMC for
833 * nand type of memory. The following logic scans and latches on to the
834 * first CS with NAND type memory.
835 * TBD: need to make this logic generic to handle multiple CS NAND
838 while (cs < GPMC_MAX_CS) {
839 /* Check if NAND type is set */
840 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
846 if (cs >= GPMC_MAX_CS) {
847 printf("nand: error: Unable to find NAND settings in "
848 "GPMC Configuration - quitting\n");
852 gpmc_config = readl(&gpmc_cfg->config);
853 /* Disable Write protect */
855 writel(gpmc_config, &gpmc_cfg->config);
857 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
858 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
859 nand->priv = &omap_nand_info;
860 nand->cmd_ctrl = omap_nand_hwcontrol;
861 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
862 nand->chip_delay = 100;
863 nand->ecc.layout = &omap_ecclayout;
865 /* configure driver and controller based on NAND device bus-width */
866 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
867 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
868 nand->options |= NAND_BUSWIDTH_16;
869 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
871 nand->options &= ~NAND_BUSWIDTH_16;
872 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
874 /* select ECC scheme */
875 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
876 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
877 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
879 /* pagesize and oobsize are not required to configure sw ecc-scheme */
880 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
886 #ifdef CONFIG_SPL_BUILD
887 if (nand->options & NAND_BUSWIDTH_16)
888 nand->read_buf = nand_read_buf16;
890 nand->read_buf = nand_read_buf;
891 nand->dev_ready = omap_spl_dev_ready;