2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
5 * SPDX-License-Identifier: GPL-2.0+
10 #include <asm/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
17 #include <linux/mtd/omap_elm.h>
19 #define BADBLOCK_MARKER_LENGTH 2
20 #define SECTOR_BYTES 512
21 #define ECCCLEAR (0x1 << 8)
22 #define ECCRESULTREG1 (0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD 4
27 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35 { CONFIG_NAND_OMAP_GPMC_WSCFG };
37 /* wscfg is preset to zero since its a static variable */
38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
42 * Driver configurations
44 struct omap_nand_info {
45 struct bch_control *control;
46 enum omap_ecc ecc_scheme;
48 uint8_t ws; /* wait status pin (0,1) */
51 /* We are wasting a bit of memory but al least we are safe */
52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
55 * omap_nand_hwcontrol - Set the address pointers corretly for the
56 * following address/data/command operation
58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
61 register struct nand_chip *this = mtd->priv;
62 struct omap_nand_info *info = this->priv;
66 * Point the IO_ADDR to DATA and ADDRESS registers instead
70 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
71 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
73 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
74 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
76 case NAND_CTRL_CHANGE | NAND_NCE:
77 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
81 if (cmd != NAND_CMD_NONE)
82 writeb(cmd, this->IO_ADDR_W);
85 /* Check wait pin as dev ready indicator */
86 static int omap_dev_ready(struct mtd_info *mtd)
88 register struct nand_chip *this = mtd->priv;
89 struct omap_nand_info *info = this->priv;
90 return gpmc_cfg->status & (1 << (8 + info->ws));
94 * gen_true_ecc - This function will generate true ECC value, which
95 * can be used when correcting data read from NAND flash memory core
97 * @ecc_buf: buffer to store ecc code
99 * @return: re-formatted ECC value
101 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
103 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104 ((ecc_buf[2] & 0x0F) << 8);
108 * omap_correct_data - Compares the ecc read from nand spare area with ECC
109 * registers values and corrects one bit error if it has occured
110 * Further details can be had from OMAP TRM and the following selected links:
111 * http://en.wikipedia.org/wiki/Hamming_code
112 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
114 * @mtd: MTD device structure
116 * @read_ecc: ecc read from nand flash
117 * @calc_ecc: ecc read from ECC registers
119 * @return 0 if data is OK or corrected, else returns -1
121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
122 uint8_t *read_ecc, uint8_t *calc_ecc)
124 uint32_t orig_ecc, new_ecc, res, hm;
125 uint16_t parity_bits, byte;
128 /* Regenerate the orginal ECC */
129 orig_ecc = gen_true_ecc(read_ecc);
130 new_ecc = gen_true_ecc(calc_ecc);
131 /* Get the XOR of real ecc */
132 res = orig_ecc ^ new_ecc;
134 /* Get the hamming width */
136 /* Single bit errors can be corrected! */
138 /* Correctable data! */
139 parity_bits = res >> 16;
140 bit = (parity_bits & 0x7);
141 byte = (parity_bits >> 3) & 0x1FF;
142 /* Flip the bit to correct */
143 dat[byte] ^= (0x1 << bit);
144 } else if (hm == 1) {
145 printf("Error: Ecc is wrong\n");
146 /* ECC itself is corrupted */
150 * hm distance != parity pairs OR one, could mean 2 bit
151 * error OR potentially be on a blank page..
152 * orig_ecc: contains spare area data from nand flash.
153 * new_ecc: generated ecc while reading data area.
154 * Note: if the ecc = 0, all data bits from which it was
155 * generated are 0xFF.
156 * The 3 byte(24 bits) ecc is generated per 512byte
157 * chunk of a page. If orig_ecc(from spare area)
158 * is 0xFF && new_ecc(computed now from data area)=0x0,
159 * this means that data area is 0xFF and spare area is
160 * 0xFF. A sure sign of a erased page!
162 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
164 printf("Error: Bad compare! failed\n");
165 /* detected 2 bit error */
173 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
174 * @mtd: MTD device structure
175 * @mode: Read/Write mode
178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
180 struct nand_chip *nand = mtd->priv;
181 struct omap_nand_info *info = nand->priv;
182 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183 unsigned int ecc_algo = 0;
184 unsigned int bch_type = 0;
185 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186 u32 ecc_size_config_val = 0;
187 u32 ecc_config_val = 0;
190 /* configure GPMC for specific ecc-scheme */
191 switch (info->ecc_scheme) {
192 case OMAP_ECC_HAM1_CODE_SW:
194 case OMAP_ECC_HAM1_CODE_HW:
201 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202 case OMAP_ECC_BCH8_CODE_HW:
205 if (mode == NAND_ECC_WRITE) {
207 eccsize0 = 0; /* extra bits in nibbles per sector */
208 eccsize1 = 28; /* OOB bits in nibbles per sector */
211 eccsize0 = 26; /* ECC bits in nibbles per sector */
212 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
215 case OMAP_ECC_BCH16_CODE_HW:
218 if (mode == NAND_ECC_WRITE) {
220 eccsize0 = 0; /* extra bits in nibbles per sector */
221 eccsize1 = 52; /* OOB bits in nibbles per sector */
224 eccsize0 = 52; /* ECC bits in nibbles per sector */
225 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
231 /* Clear ecc and enable bits */
232 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233 /* Configure ecc size for BCH */
234 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
237 /* Configure device details for BCH engine */
238 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
239 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
240 (bch_wrapmode << 8) | /* wrap mode */
241 (dev_width << 7) | /* bus width */
242 (0x0 << 4) | /* number of sectors */
243 (cs << 1) | /* ECC CS */
244 (0x1)); /* enable ECC */
245 writel(ecc_config_val, &gpmc_cfg->ecc_config);
249 * omap_calculate_ecc - Read ECC result
250 * @mtd: MTD structure
252 * @ecc_code: ecc_code buffer
253 * Using noninverted ECC can be considered ugly since writing a blank
254 * page ie. padding will clear the ECC bytes. This is no problem as
255 * long nobody is trying to write data on the seemingly unused page.
256 * Reading an erased page will produce an ECC mismatch between
257 * generated and read ECC bytes that has to be dealt with separately.
258 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259 * is used, the result of read will be 0x0 while the ECC offsets of the
260 * spare area will be 0xFF which will result in an ECC mismatch.
262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
265 struct nand_chip *chip = mtd->priv;
266 struct omap_nand_info *info = chip->priv;
267 uint32_t *ptr, val = 0;
270 switch (info->ecc_scheme) {
271 case OMAP_ECC_HAM1_CODE_HW:
272 val = readl(&gpmc_cfg->ecc1_result);
273 ecc_code[0] = val & 0xFF;
274 ecc_code[1] = (val >> 16) & 0xFF;
275 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
278 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
280 case OMAP_ECC_BCH8_CODE_HW:
281 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
283 ecc_code[i++] = (val >> 0) & 0xFF;
285 for (j = 0; j < 3; j++) {
287 ecc_code[i++] = (val >> 24) & 0xFF;
288 ecc_code[i++] = (val >> 16) & 0xFF;
289 ecc_code[i++] = (val >> 8) & 0xFF;
290 ecc_code[i++] = (val >> 0) & 0xFF;
294 case OMAP_ECC_BCH16_CODE_HW:
295 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
296 ecc_code[i++] = (val >> 8) & 0xFF;
297 ecc_code[i++] = (val >> 0) & 0xFF;
298 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
299 ecc_code[i++] = (val >> 24) & 0xFF;
300 ecc_code[i++] = (val >> 16) & 0xFF;
301 ecc_code[i++] = (val >> 8) & 0xFF;
302 ecc_code[i++] = (val >> 0) & 0xFF;
303 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
304 ecc_code[i++] = (val >> 24) & 0xFF;
305 ecc_code[i++] = (val >> 16) & 0xFF;
306 ecc_code[i++] = (val >> 8) & 0xFF;
307 ecc_code[i++] = (val >> 0) & 0xFF;
308 for (j = 3; j >= 0; j--) {
309 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
311 ecc_code[i++] = (val >> 24) & 0xFF;
312 ecc_code[i++] = (val >> 16) & 0xFF;
313 ecc_code[i++] = (val >> 8) & 0xFF;
314 ecc_code[i++] = (val >> 0) & 0xFF;
320 /* ECC scheme specific syndrome customizations */
321 switch (info->ecc_scheme) {
322 case OMAP_ECC_HAM1_CODE_HW:
325 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
327 for (i = 0; i < chip->ecc.bytes; i++)
328 *(ecc_code + i) = *(ecc_code + i) ^
332 case OMAP_ECC_BCH8_CODE_HW:
333 ecc_code[chip->ecc.bytes - 1] = 0x00;
335 case OMAP_ECC_BCH16_CODE_HW:
343 #ifdef CONFIG_NAND_OMAP_ELM
345 * omap_reverse_list - re-orders list elements in reverse order [internal]
346 * @list: pointer to start of list
347 * @length: length of list
349 static void omap_reverse_list(u8 *list, unsigned int length)
352 unsigned int half_length = length / 2;
354 for (i = 0, j = length - 1; i < half_length; i++, j--) {
362 * omap_correct_data_bch - Compares the ecc read from nand spare area
363 * with ECC registers values and corrects one bit error if it has occured
365 * @mtd: MTD device structure
367 * @read_ecc: ecc read from nand flash (ignored)
368 * @calc_ecc: ecc read from ECC registers
370 * @return 0 if data is OK or corrected, else returns -1
372 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
373 uint8_t *read_ecc, uint8_t *calc_ecc)
375 struct nand_chip *chip = mtd->priv;
376 struct omap_nand_info *info = chip->priv;
377 struct nand_ecc_ctrl *ecc = &chip->ecc;
378 uint32_t error_count = 0, error_max;
379 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
380 enum bch_level bch_type;
381 uint32_t i, ecc_flag = 0;
383 uint32_t byte_pos, bit_pos;
386 /* check calculated ecc */
387 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
388 if (calc_ecc[i] != 0x00)
394 /* check for whether its a erased-page */
396 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
397 if (read_ecc[i] != 0xff)
404 * while reading ECC result we read it in big endian.
405 * Hence while loading to ELM we have rotate to get the right endian.
407 switch (info->ecc_scheme) {
408 case OMAP_ECC_BCH8_CODE_HW:
409 bch_type = BCH_8_BIT;
410 omap_reverse_list(calc_ecc, ecc->bytes - 1);
412 case OMAP_ECC_BCH16_CODE_HW:
413 bch_type = BCH_16_BIT;
414 omap_reverse_list(calc_ecc, ecc->bytes);
419 /* use elm module to check for errors */
420 elm_config(bch_type);
421 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
425 /* correct bch error */
426 for (count = 0; count < error_count; count++) {
427 switch (info->ecc_scheme) {
428 case OMAP_ECC_BCH8_CODE_HW:
429 /* 14th byte in ECC is reserved to match ROM layout */
430 error_max = SECTOR_BYTES + (ecc->bytes - 1);
432 case OMAP_ECC_BCH16_CODE_HW:
433 error_max = SECTOR_BYTES + ecc->bytes;
438 byte_pos = error_max - (error_loc[count] / 8) - 1;
439 bit_pos = error_loc[count] % 8;
440 if (byte_pos < SECTOR_BYTES) {
441 dat[byte_pos] ^= 1 << bit_pos;
442 printf("nand: bit-flip corrected @data=%d\n", byte_pos);
443 } else if (byte_pos < error_max) {
444 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
445 printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
449 printf("nand: error: invalid bit-flip location\n");
452 return (err) ? err : error_count;
455 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
457 #define PREFETCH_CONFIG1_CS_SHIFT 24
458 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
459 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
460 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
461 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
462 #define ENABLE_PREFETCH (1 << 7)
465 * omap_prefetch_enable - configures and starts prefetch transfer
466 * @fifo_th: fifo threshold to be used for read/ write
467 * @count: number of bytes to be transferred
468 * @is_write: prefetch read(0) or write post(1) mode
469 * @cs: chip select to use
471 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
475 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
478 if (readl(&gpmc_cfg->prefetch_control))
481 /* Set the amount of bytes to be prefetched */
482 writel(count, &gpmc_cfg->prefetch_config2);
484 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
485 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
486 writel(val, &gpmc_cfg->prefetch_config1);
488 /* Start the prefetch engine */
489 writel(1, &gpmc_cfg->prefetch_control);
495 * omap_prefetch_reset - disables and stops the prefetch engine
497 static void omap_prefetch_reset(void)
499 writel(0, &gpmc_cfg->prefetch_control);
500 writel(0, &gpmc_cfg->prefetch_config1);
503 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
507 struct omap_nand_info *info = chip->priv;
509 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
516 cnt = readl(&gpmc_cfg->prefetch_status);
517 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
519 for (i = 0; i < cnt / 4; i++) {
520 *buf++ = readl(CONFIG_SYS_NAND_BASE);
525 omap_prefetch_reset();
530 static void omap_nand_read_prefetch8(struct mtd_info *mtd, uint8_t *buf, int len)
534 struct nand_chip *chip = mtd->priv;
537 * If the destination buffer is unaligned, start with reading
538 * the overlap byte-wise.
540 head = ((uint32_t) buf) % 4;
542 nand_read_buf(mtd, buf, head);
548 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
549 * If there's a residue, care for it byte-wise afterwards.
553 ret = __read_prefetch_aligned(chip, (uint32_t *) buf, len - tail);
555 /* fallback in case the prefetch engine is busy */
556 nand_read_buf(mtd, buf, len);
559 nand_read_buf(mtd, buf, tail);
562 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
565 * omap_read_page_bch - hardware ecc based page read function
566 * @mtd: mtd info structure
567 * @chip: nand chip info structure
568 * @buf: buffer to store read data
569 * @oob_required: caller expects OOB data read to chip->oob_poi
570 * @page: page number to read
573 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
574 uint8_t *buf, int oob_required, int page)
576 int i, eccsize = chip->ecc.size;
577 int eccbytes = chip->ecc.bytes;
578 int eccsteps = chip->ecc.steps;
580 uint8_t *ecc_calc = chip->buffers->ecccalc;
581 uint8_t *ecc_code = chip->buffers->ecccode;
582 uint32_t *eccpos = chip->ecc.layout->eccpos;
583 uint8_t *oob = chip->oob_poi;
589 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
590 oob += chip->ecc.layout->eccpos[0];
592 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
594 chip->ecc.hwctl(mtd, NAND_ECC_READ);
596 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
597 chip->read_buf(mtd, p, eccsize);
599 /* read respective ecc from oob area */
600 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
601 chip->read_buf(mtd, oob, eccbytes);
603 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
609 for (i = 0; i < chip->ecc.total; i++)
610 ecc_code[i] = chip->oob_poi[eccpos[i]];
612 eccsteps = chip->ecc.steps;
615 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
618 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
620 mtd->ecc_stats.failed++;
622 mtd->ecc_stats.corrected += stat;
626 #endif /* CONFIG_NAND_OMAP_ELM */
629 * OMAP3 BCH8 support (with BCH library)
633 * omap_correct_data_bch_sw - Decode received data and correct errors
634 * @mtd: MTD device structure
636 * @read_ecc: ecc read from nand flash
637 * @calc_ecc: ecc read from HW ECC registers
639 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
640 u_char *read_ecc, u_char *calc_ecc)
643 /* cannot correct more than 8 errors */
644 unsigned int errloc[8];
645 struct nand_chip *chip = mtd->priv;
646 struct omap_nand_info *info = chip->priv;
648 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
652 for (i = 0; i < count; i++) {
653 /* correct data only, not ecc bytes */
654 if (errloc[i] < 8*512)
655 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
656 printf("corrected bitflip %u\n", errloc[i]);
660 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
663 for (i = 0; i < 13; i++)
664 printf("%02x ", read_ecc[i]);
667 for (i = 0; i < 13; i++)
668 printf("%02x ", calc_ecc[i]);
672 } else if (count < 0) {
673 puts("ecc unrecoverable error\n");
679 * omap_free_bch - Release BCH ecc resources
680 * @mtd: MTD device structure
682 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
684 struct nand_chip *chip = mtd->priv;
685 struct omap_nand_info *info = chip->priv;
688 free_bch(info->control);
689 info->control = NULL;
692 #endif /* CONFIG_BCH */
695 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
696 * @nand: NAND chip device structure
697 * @ecc_scheme: ecc scheme to configure
698 * @pagesize: number of main-area bytes per page of NAND device
699 * @oobsize: number of OOB/spare bytes per page of NAND device
701 static int omap_select_ecc_scheme(struct nand_chip *nand,
702 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
703 struct omap_nand_info *info = nand->priv;
704 struct nand_ecclayout *ecclayout = &omap_ecclayout;
705 int eccsteps = pagesize / SECTOR_BYTES;
708 switch (ecc_scheme) {
709 case OMAP_ECC_HAM1_CODE_SW:
710 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
711 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
712 * initialized in nand_scan_tail(), so just set ecc.mode */
713 info->control = NULL;
714 nand->ecc.mode = NAND_ECC_SOFT;
715 nand->ecc.layout = NULL;
719 case OMAP_ECC_HAM1_CODE_HW:
720 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
721 /* check ecc-scheme requirements before updating ecc info */
722 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
723 printf("nand: error: insufficient OOB: require=%d\n", (
724 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
727 info->control = NULL;
728 /* populate ecc specific fields */
729 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
730 nand->ecc.mode = NAND_ECC_HW;
731 nand->ecc.strength = 1;
732 nand->ecc.size = SECTOR_BYTES;
734 nand->ecc.hwctl = omap_enable_hwecc;
735 nand->ecc.correct = omap_correct_data;
736 nand->ecc.calculate = omap_calculate_ecc;
737 /* define ecc-layout */
738 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
739 for (i = 0; i < ecclayout->eccbytes; i++) {
740 if (nand->options & NAND_BUSWIDTH_16)
741 ecclayout->eccpos[i] = i + 2;
743 ecclayout->eccpos[i] = i + 1;
745 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
746 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
747 BADBLOCK_MARKER_LENGTH;
750 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
752 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
753 /* check ecc-scheme requirements before updating ecc info */
754 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
755 printf("nand: error: insufficient OOB: require=%d\n", (
756 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
759 /* check if BCH S/W library can be used for error detection */
760 info->control = init_bch(13, 8, 0x201b);
761 if (!info->control) {
762 printf("nand: error: could not init_bch()\n");
765 /* populate ecc specific fields */
766 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
767 nand->ecc.mode = NAND_ECC_HW;
768 nand->ecc.strength = 8;
769 nand->ecc.size = SECTOR_BYTES;
770 nand->ecc.bytes = 13;
771 nand->ecc.hwctl = omap_enable_hwecc;
772 nand->ecc.correct = omap_correct_data_bch_sw;
773 nand->ecc.calculate = omap_calculate_ecc;
774 /* define ecc-layout */
775 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
776 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
777 for (i = 1; i < ecclayout->eccbytes; i++) {
778 if (i % nand->ecc.bytes)
779 ecclayout->eccpos[i] =
780 ecclayout->eccpos[i - 1] + 1;
782 ecclayout->eccpos[i] =
783 ecclayout->eccpos[i - 1] + 2;
785 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
786 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
787 BADBLOCK_MARKER_LENGTH;
790 printf("nand: error: CONFIG_BCH required for ECC\n");
794 case OMAP_ECC_BCH8_CODE_HW:
795 #ifdef CONFIG_NAND_OMAP_ELM
796 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
797 /* check ecc-scheme requirements before updating ecc info */
798 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
799 printf("nand: error: insufficient OOB: require=%d\n", (
800 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
803 /* intialize ELM for ECC error detection */
805 info->control = NULL;
806 /* populate ecc specific fields */
807 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
808 nand->ecc.mode = NAND_ECC_HW;
809 nand->ecc.strength = 8;
810 nand->ecc.size = SECTOR_BYTES;
811 nand->ecc.bytes = 14;
812 nand->ecc.hwctl = omap_enable_hwecc;
813 nand->ecc.correct = omap_correct_data_bch;
814 nand->ecc.calculate = omap_calculate_ecc;
815 nand->ecc.read_page = omap_read_page_bch;
816 /* define ecc-layout */
817 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
818 for (i = 0; i < ecclayout->eccbytes; i++)
819 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
820 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
821 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
822 BADBLOCK_MARKER_LENGTH;
825 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
829 case OMAP_ECC_BCH16_CODE_HW:
830 #ifdef CONFIG_NAND_OMAP_ELM
831 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
832 /* check ecc-scheme requirements before updating ecc info */
833 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
834 printf("nand: error: insufficient OOB: require=%d\n", (
835 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
838 /* intialize ELM for ECC error detection */
840 /* populate ecc specific fields */
841 nand->ecc.mode = NAND_ECC_HW;
842 nand->ecc.size = SECTOR_BYTES;
843 nand->ecc.bytes = 26;
844 nand->ecc.strength = 16;
845 nand->ecc.hwctl = omap_enable_hwecc;
846 nand->ecc.correct = omap_correct_data_bch;
847 nand->ecc.calculate = omap_calculate_ecc;
848 nand->ecc.read_page = omap_read_page_bch;
849 /* define ecc-layout */
850 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
851 for (i = 0; i < ecclayout->eccbytes; i++)
852 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
853 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
854 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
855 BADBLOCK_MARKER_LENGTH;
858 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
862 debug("nand: error: ecc scheme not enabled or supported\n");
866 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
867 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
868 nand->ecc.layout = ecclayout;
870 info->ecc_scheme = ecc_scheme;
874 #ifndef CONFIG_SPL_BUILD
876 * omap_nand_switch_ecc - switch the ECC operation between different engines
877 * (h/w and s/w) and different algorithms (hamming and BCHx)
879 * @hardware - true if one of the HW engines should be used
880 * @eccstrength - the number of bits that could be corrected
881 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
883 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
885 struct nand_chip *nand;
886 struct mtd_info *mtd;
889 if (nand_curr_device < 0 ||
890 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
891 !nand_info[nand_curr_device].name) {
892 printf("nand: error: no NAND devices found\n");
896 mtd = &nand_info[nand_curr_device];
898 nand->options |= NAND_OWN_BUFFERS;
899 nand->options &= ~NAND_SUBPAGE_READ;
900 /* Setup the ecc configurations again */
902 if (eccstrength == 1) {
903 err = omap_select_ecc_scheme(nand,
904 OMAP_ECC_HAM1_CODE_HW,
905 mtd->writesize, mtd->oobsize);
906 } else if (eccstrength == 8) {
907 err = omap_select_ecc_scheme(nand,
908 OMAP_ECC_BCH8_CODE_HW,
909 mtd->writesize, mtd->oobsize);
911 printf("nand: error: unsupported ECC scheme\n");
915 if (eccstrength == 1) {
916 err = omap_select_ecc_scheme(nand,
917 OMAP_ECC_HAM1_CODE_SW,
918 mtd->writesize, mtd->oobsize);
919 } else if (eccstrength == 8) {
920 err = omap_select_ecc_scheme(nand,
921 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
922 mtd->writesize, mtd->oobsize);
924 printf("nand: error: unsupported ECC scheme\n");
929 /* Update NAND handling after ECC mode switch */
931 err = nand_scan_tail(mtd);
934 #endif /* CONFIG_SPL_BUILD */
937 * Board-specific NAND initialization. The following members of the
938 * argument are board-specific:
939 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
940 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
941 * - cmd_ctrl: hardwarespecific function for accesing control-lines
942 * - waitfunc: hardwarespecific function for accesing device ready/busy line
943 * - ecc.hwctl: function to enable (reset) hardware ecc generator
944 * - ecc.mode: mode of ecc, see defines
945 * - chip_delay: chip dependent delay for transfering data from array to
947 * - options: various chip options. They can partly be set to inform
948 * nand_scan about special functionality. See the defines for further
951 int board_nand_init(struct nand_chip *nand)
953 int32_t gpmc_config = 0;
957 * xloader/Uboot's gpmc configuration would have configured GPMC for
958 * nand type of memory. The following logic scans and latches on to the
959 * first CS with NAND type memory.
960 * TBD: need to make this logic generic to handle multiple CS NAND
963 while (cs < GPMC_MAX_CS) {
964 /* Check if NAND type is set */
965 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
971 if (cs >= GPMC_MAX_CS) {
972 printf("nand: error: Unable to find NAND settings in "
973 "GPMC Configuration - quitting\n");
977 gpmc_config = readl(&gpmc_cfg->config);
978 /* Disable Write protect */
980 writel(gpmc_config, &gpmc_cfg->config);
982 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
983 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
984 omap_nand_info[cs].control = NULL;
985 omap_nand_info[cs].cs = cs;
986 omap_nand_info[cs].ws = wscfg[cs];
987 nand->priv = &omap_nand_info[cs];
988 nand->cmd_ctrl = omap_nand_hwcontrol;
989 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
990 nand->chip_delay = 100;
991 nand->ecc.layout = &omap_ecclayout;
993 /* configure driver and controller based on NAND device bus-width */
994 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
995 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
996 nand->options |= NAND_BUSWIDTH_16;
997 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
999 nand->options &= ~NAND_BUSWIDTH_16;
1000 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1002 /* select ECC scheme */
1003 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1004 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1005 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1007 /* pagesize and oobsize are not required to configure sw ecc-scheme */
1008 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1014 /* TODO: Implement for 16-bit bus width */
1015 if (nand->options & NAND_BUSWIDTH_16)
1016 nand->read_buf = nand_read_buf16;
1017 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1019 nand->read_buf = omap_nand_read_prefetch8;
1022 nand->read_buf = nand_read_buf;
1025 nand->dev_ready = omap_dev_ready;