SPDX: Convert all of our single license tags to Linux Kernel style
[oweals/u-boot.git] / drivers / mtd / nand / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
6  */
7
8 #include <common.h>
9 #include <nand.h>
10 #include <linux/err.h>
11 #include <asm/io.h>
12 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
13         defined(CONFIG_MX51) || defined(CONFIG_MX53)
14 #include <asm/arch/imx-regs.h>
15 #endif
16 #include "mxc_nand.h"
17
18 #define DRIVER_NAME "mxc_nand"
19
20 struct mxc_nand_host {
21         struct nand_chip                *nand;
22
23         struct mxc_nand_regs __iomem    *regs;
24 #ifdef MXC_NFC_V3_2
25         struct mxc_nand_ip_regs __iomem *ip_regs;
26 #endif
27         int                             spare_only;
28         int                             status_request;
29         int                             pagesize_2k;
30         int                             clk_act;
31         uint16_t                        col_addr;
32         unsigned int                    page_addr;
33 };
34
35 static struct mxc_nand_host mxc_host;
36 static struct mxc_nand_host *host = &mxc_host;
37
38 /* Define delays in microsec for NAND device operations */
39 #define TROP_US_DELAY   2000
40 /* Macros to get byte and bit positions of ECC */
41 #define COLPOS(x)  ((x) >> 3)
42 #define BITPOS(x) ((x) & 0xf)
43
44 /* Define single bit Error positions in Main & Spare area */
45 #define MAIN_SINGLEBIT_ERROR 0x4
46 #define SPARE_SINGLEBIT_ERROR 0x1
47
48 /* OOB placement block for use with hardware ecc generation */
49 #if defined(MXC_NFC_V1)
50 #ifndef CONFIG_SYS_NAND_LARGEPAGE
51 static struct nand_ecclayout nand_hw_eccoob = {
52         .eccbytes = 5,
53         .eccpos = {6, 7, 8, 9, 10},
54         .oobfree = { {0, 5}, {11, 5}, }
55 };
56 #else
57 static struct nand_ecclayout nand_hw_eccoob2k = {
58         .eccbytes = 20,
59         .eccpos = {
60                 6, 7, 8, 9, 10,
61                 22, 23, 24, 25, 26,
62                 38, 39, 40, 41, 42,
63                 54, 55, 56, 57, 58,
64         },
65         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
66 };
67 #endif
68 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
69 #ifndef CONFIG_SYS_NAND_LARGEPAGE
70 static struct nand_ecclayout nand_hw_eccoob = {
71         .eccbytes = 9,
72         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
73         .oobfree = { {2, 5} }
74 };
75 #else
76 static struct nand_ecclayout nand_hw_eccoob2k = {
77         .eccbytes = 36,
78         .eccpos = {
79                 7, 8, 9, 10, 11, 12, 13, 14, 15,
80                 23, 24, 25, 26, 27, 28, 29, 30, 31,
81                 39, 40, 41, 42, 43, 44, 45, 46, 47,
82                 55, 56, 57, 58, 59, 60, 61, 62, 63,
83         },
84         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
85 };
86 #endif
87 #endif
88
89 static int is_16bit_nand(void)
90 {
91 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
92         return 1;
93 #else
94         return 0;
95 #endif
96 }
97
98 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
99 {
100         uint32_t *d = dest;
101
102         size >>= 2;
103         while (size--)
104                 __raw_writel(__raw_readl(source++), d++);
105         return dest;
106 }
107
108 /*
109  * This function polls the NANDFC to wait for the basic operation to
110  * complete by checking the INT bit.
111  */
112 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
113                                 uint16_t param)
114 {
115         uint32_t tmp;
116
117         while (max_retries-- > 0) {
118 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
119                 tmp = readnfc(&host->regs->config2);
120                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
121                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
122                         writenfc(tmp, &host->regs->config2);
123 #elif defined(MXC_NFC_V3_2)
124                 tmp = readnfc(&host->ip_regs->ipc);
125                 if (tmp & NFC_V3_IPC_INT) {
126                         tmp &= ~NFC_V3_IPC_INT;
127                         writenfc(tmp, &host->ip_regs->ipc);
128 #endif
129                         break;
130                 }
131                 udelay(1);
132         }
133         if (max_retries < 0) {
134                 pr_debug("%s(%d): INT not set\n",
135                                 __func__, param);
136         }
137 }
138
139 /*
140  * This function issues the specified command to the NAND device and
141  * waits for completion.
142  */
143 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
144 {
145         pr_debug("send_cmd(host, 0x%x)\n", cmd);
146
147         writenfc(cmd, &host->regs->flash_cmd);
148         writenfc(NFC_CMD, &host->regs->operation);
149
150         /* Wait for operation to complete */
151         wait_op_done(host, TROP_US_DELAY, cmd);
152 }
153
154 /*
155  * This function sends an address (or partial address) to the
156  * NAND device. The address is used to select the source/destination for
157  * a NAND command.
158  */
159 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
160 {
161         pr_debug("send_addr(host, 0x%x)\n", addr);
162
163         writenfc(addr, &host->regs->flash_addr);
164         writenfc(NFC_ADDR, &host->regs->operation);
165
166         /* Wait for operation to complete */
167         wait_op_done(host, TROP_US_DELAY, addr);
168 }
169
170 /*
171  * This function requests the NANDFC to initiate the transfer
172  * of data currently in the NANDFC RAM buffer to the NAND device.
173  */
174 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
175                         int spare_only)
176 {
177         if (spare_only)
178                 pr_debug("send_prog_page (%d)\n", spare_only);
179
180         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
181                 int i;
182                 /*
183                  *  The controller copies the 64 bytes of spare data from
184                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
185                  *  Copy the contiguous data starting in spare_area[0] to
186                  *  the four spare area buffers.
187                  */
188                 for (i = 1; i < 4; i++) {
189                         void __iomem *src = &host->regs->spare_area[0][i * 16];
190                         void __iomem *dst = &host->regs->spare_area[i][0];
191
192                         mxc_nand_memcpy32(dst, src, 16);
193                 }
194         }
195
196 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
197         writenfc(buf_id, &host->regs->buf_addr);
198 #elif defined(MXC_NFC_V3_2)
199         uint32_t tmp = readnfc(&host->regs->config1);
200         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
201         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
202         writenfc(tmp, &host->regs->config1);
203 #endif
204
205         /* Configure spare or page+spare access */
206         if (!host->pagesize_2k) {
207                 uint32_t config1 = readnfc(&host->regs->config1);
208                 if (spare_only)
209                         config1 |= NFC_CONFIG1_SP_EN;
210                 else
211                         config1 &= ~NFC_CONFIG1_SP_EN;
212                 writenfc(config1, &host->regs->config1);
213         }
214
215         writenfc(NFC_INPUT, &host->regs->operation);
216
217         /* Wait for operation to complete */
218         wait_op_done(host, TROP_US_DELAY, spare_only);
219 }
220
221 /*
222  * Requests NANDFC to initiate the transfer of data from the
223  * NAND device into in the NANDFC ram buffer.
224  */
225 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
226                 int spare_only)
227 {
228         pr_debug("send_read_page (%d)\n", spare_only);
229
230 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
231         writenfc(buf_id, &host->regs->buf_addr);
232 #elif defined(MXC_NFC_V3_2)
233         uint32_t tmp = readnfc(&host->regs->config1);
234         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
235         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
236         writenfc(tmp, &host->regs->config1);
237 #endif
238
239         /* Configure spare or page+spare access */
240         if (!host->pagesize_2k) {
241                 uint32_t config1 = readnfc(&host->regs->config1);
242                 if (spare_only)
243                         config1 |= NFC_CONFIG1_SP_EN;
244                 else
245                         config1 &= ~NFC_CONFIG1_SP_EN;
246                 writenfc(config1, &host->regs->config1);
247         }
248
249         writenfc(NFC_OUTPUT, &host->regs->operation);
250
251         /* Wait for operation to complete */
252         wait_op_done(host, TROP_US_DELAY, spare_only);
253
254         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
255                 int i;
256
257                 /*
258                  *  The controller copies the 64 bytes of spare data to
259                  *  the first 16 bytes of each of the 4 spare buffers.
260                  *  Make the data contiguous starting in spare_area[0].
261                  */
262                 for (i = 1; i < 4; i++) {
263                         void __iomem *src = &host->regs->spare_area[i][0];
264                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
265
266                         mxc_nand_memcpy32(dst, src, 16);
267                 }
268         }
269 }
270
271 /* Request the NANDFC to perform a read of the NAND device ID. */
272 static void send_read_id(struct mxc_nand_host *host)
273 {
274         uint32_t tmp;
275
276 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
277         /* NANDFC buffer 0 is used for device ID output */
278         writenfc(0x0, &host->regs->buf_addr);
279 #elif defined(MXC_NFC_V3_2)
280         tmp = readnfc(&host->regs->config1);
281         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
282         writenfc(tmp, &host->regs->config1);
283 #endif
284
285         /* Read ID into main buffer */
286         tmp = readnfc(&host->regs->config1);
287         tmp &= ~NFC_CONFIG1_SP_EN;
288         writenfc(tmp, &host->regs->config1);
289
290         writenfc(NFC_ID, &host->regs->operation);
291
292         /* Wait for operation to complete */
293         wait_op_done(host, TROP_US_DELAY, 0);
294 }
295
296 /*
297  * This function requests the NANDFC to perform a read of the
298  * NAND device status and returns the current status.
299  */
300 static uint16_t get_dev_status(struct mxc_nand_host *host)
301 {
302 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
303         void __iomem *main_buf = host->regs->main_area[1];
304         uint32_t store;
305 #endif
306         uint32_t ret, tmp;
307         /* Issue status request to NAND device */
308
309 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
310         /* store the main area1 first word, later do recovery */
311         store = readl(main_buf);
312         /* NANDFC buffer 1 is used for device status */
313         writenfc(1, &host->regs->buf_addr);
314 #endif
315
316         /* Read status into main buffer */
317         tmp = readnfc(&host->regs->config1);
318         tmp &= ~NFC_CONFIG1_SP_EN;
319         writenfc(tmp, &host->regs->config1);
320
321         writenfc(NFC_STATUS, &host->regs->operation);
322
323         /* Wait for operation to complete */
324         wait_op_done(host, TROP_US_DELAY, 0);
325
326 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
327         /*
328          *  Status is placed in first word of main buffer
329          * get status, then recovery area 1 data
330          */
331         ret = readw(main_buf);
332         writel(store, main_buf);
333 #elif defined(MXC_NFC_V3_2)
334         ret = readnfc(&host->regs->config1) >> 16;
335 #endif
336
337         return ret;
338 }
339
340 /* This function is used by upper layer to checks if device is ready */
341 static int mxc_nand_dev_ready(struct mtd_info *mtd)
342 {
343         /*
344          * NFC handles R/B internally. Therefore, this function
345          * always returns status as ready.
346          */
347         return 1;
348 }
349
350 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
351 {
352         struct nand_chip *nand_chip = mtd_to_nand(mtd);
353         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
354 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
355         uint16_t tmp = readnfc(&host->regs->config1);
356
357         if (on)
358                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
359         else
360                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
361         writenfc(tmp, &host->regs->config1);
362 #elif defined(MXC_NFC_V3_2)
363         uint32_t tmp = readnfc(&host->ip_regs->config2);
364
365         if (on)
366                 tmp |= NFC_V3_CONFIG2_ECC_EN;
367         else
368                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
369         writenfc(tmp, &host->ip_regs->config2);
370 #endif
371 }
372
373 #ifdef CONFIG_MXC_NAND_HWECC
374 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
375 {
376         /*
377          * If HW ECC is enabled, we turn it on during init. There is
378          * no need to enable again here.
379          */
380 }
381
382 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
383 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
384                                       struct nand_chip *chip,
385                                       int page)
386 {
387         struct mxc_nand_host *host = nand_get_controller_data(chip);
388         uint8_t *buf = chip->oob_poi;
389         int length = mtd->oobsize;
390         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
391         uint8_t *bufpoi = buf;
392         int i, toread;
393
394         pr_debug("%s: Reading OOB area of page %u to oob %p\n",
395                          __func__, page, buf);
396
397         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
398         for (i = 0; i < chip->ecc.steps; i++) {
399                 toread = min_t(int, length, chip->ecc.prepad);
400                 if (toread) {
401                         chip->read_buf(mtd, bufpoi, toread);
402                         bufpoi += toread;
403                         length -= toread;
404                 }
405                 bufpoi += chip->ecc.bytes;
406                 host->col_addr += chip->ecc.bytes;
407                 length -= chip->ecc.bytes;
408
409                 toread = min_t(int, length, chip->ecc.postpad);
410                 if (toread) {
411                         chip->read_buf(mtd, bufpoi, toread);
412                         bufpoi += toread;
413                         length -= toread;
414                 }
415         }
416         if (length > 0)
417                 chip->read_buf(mtd, bufpoi, length);
418
419         _mxc_nand_enable_hwecc(mtd, 0);
420         chip->cmdfunc(mtd, NAND_CMD_READOOB,
421                         mtd->writesize + chip->ecc.prepad, page);
422         bufpoi = buf + chip->ecc.prepad;
423         length = mtd->oobsize - chip->ecc.prepad;
424         for (i = 0; i < chip->ecc.steps; i++) {
425                 toread = min_t(int, length, chip->ecc.bytes);
426                 chip->read_buf(mtd, bufpoi, toread);
427                 bufpoi += eccpitch;
428                 length -= eccpitch;
429                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
430         }
431         _mxc_nand_enable_hwecc(mtd, 1);
432         return 1;
433 }
434
435 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
436                                            struct nand_chip *chip,
437                                            uint8_t *buf,
438                                            int oob_required,
439                                            int page)
440 {
441         struct mxc_nand_host *host = nand_get_controller_data(chip);
442         int eccsize = chip->ecc.size;
443         int eccbytes = chip->ecc.bytes;
444         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
445         uint8_t *oob = chip->oob_poi;
446         int steps, size;
447         int n;
448
449         _mxc_nand_enable_hwecc(mtd, 0);
450         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
451
452         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
453                 host->col_addr = n * eccsize;
454                 chip->read_buf(mtd, buf, eccsize);
455                 buf += eccsize;
456
457                 host->col_addr = mtd->writesize + n * eccpitch;
458                 if (chip->ecc.prepad) {
459                         chip->read_buf(mtd, oob, chip->ecc.prepad);
460                         oob += chip->ecc.prepad;
461                 }
462
463                 chip->read_buf(mtd, oob, eccbytes);
464                 oob += eccbytes;
465
466                 if (chip->ecc.postpad) {
467                         chip->read_buf(mtd, oob, chip->ecc.postpad);
468                         oob += chip->ecc.postpad;
469                 }
470         }
471
472         size = mtd->oobsize - (oob - chip->oob_poi);
473         if (size)
474                 chip->read_buf(mtd, oob, size);
475         _mxc_nand_enable_hwecc(mtd, 1);
476
477         return 0;
478 }
479
480 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
481                                        struct nand_chip *chip,
482                                        uint8_t *buf,
483                                        int oob_required,
484                                        int page)
485 {
486         struct mxc_nand_host *host = nand_get_controller_data(chip);
487         int n, eccsize = chip->ecc.size;
488         int eccbytes = chip->ecc.bytes;
489         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
490         int eccsteps = chip->ecc.steps;
491         uint8_t *p = buf;
492         uint8_t *oob = chip->oob_poi;
493
494         pr_debug("Reading page %u to buf %p oob %p\n",
495                  page, buf, oob);
496
497         /* first read the data area and the available portion of OOB */
498         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
499                 int stat;
500
501                 host->col_addr = n * eccsize;
502
503                 chip->read_buf(mtd, p, eccsize);
504
505                 host->col_addr = mtd->writesize + n * eccpitch;
506
507                 if (chip->ecc.prepad) {
508                         chip->read_buf(mtd, oob, chip->ecc.prepad);
509                         oob += chip->ecc.prepad;
510                 }
511
512                 stat = chip->ecc.correct(mtd, p, oob, NULL);
513
514                 if (stat < 0)
515                         mtd->ecc_stats.failed++;
516                 else
517                         mtd->ecc_stats.corrected += stat;
518                 oob += eccbytes;
519
520                 if (chip->ecc.postpad) {
521                         chip->read_buf(mtd, oob, chip->ecc.postpad);
522                         oob += chip->ecc.postpad;
523                 }
524         }
525
526         /* Calculate remaining oob bytes */
527         n = mtd->oobsize - (oob - chip->oob_poi);
528         if (n)
529                 chip->read_buf(mtd, oob, n);
530
531         /* Then switch ECC off and read the OOB area to get the ECC code */
532         _mxc_nand_enable_hwecc(mtd, 0);
533         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
534         eccsteps = chip->ecc.steps;
535         oob = chip->oob_poi + chip->ecc.prepad;
536         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
537                 host->col_addr = mtd->writesize +
538                                  n * eccpitch +
539                                  chip->ecc.prepad;
540                 chip->read_buf(mtd, oob, eccbytes);
541                 oob += eccbytes + chip->ecc.postpad;
542         }
543         _mxc_nand_enable_hwecc(mtd, 1);
544         return 0;
545 }
546
547 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
548                                        struct nand_chip *chip, int page)
549 {
550         struct mxc_nand_host *host = nand_get_controller_data(chip);
551         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
552         int length = mtd->oobsize;
553         int i, len, status, steps = chip->ecc.steps;
554         const uint8_t *bufpoi = chip->oob_poi;
555
556         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
557         for (i = 0; i < steps; i++) {
558                 len = min_t(int, length, eccpitch);
559
560                 chip->write_buf(mtd, bufpoi, len);
561                 bufpoi += len;
562                 length -= len;
563                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
564         }
565         if (length > 0)
566                 chip->write_buf(mtd, bufpoi, length);
567
568         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
569         status = chip->waitfunc(mtd, chip);
570         return status & NAND_STATUS_FAIL ? -EIO : 0;
571 }
572
573 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
574                                              struct nand_chip *chip,
575                                              const uint8_t *buf,
576                                              int oob_required, int page)
577 {
578         struct mxc_nand_host *host = nand_get_controller_data(chip);
579         int eccsize = chip->ecc.size;
580         int eccbytes = chip->ecc.bytes;
581         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
582         uint8_t *oob = chip->oob_poi;
583         int steps, size;
584         int n;
585
586         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
587                 host->col_addr = n * eccsize;
588                 chip->write_buf(mtd, buf, eccsize);
589                 buf += eccsize;
590
591                 host->col_addr = mtd->writesize + n * eccpitch;
592
593                 if (chip->ecc.prepad) {
594                         chip->write_buf(mtd, oob, chip->ecc.prepad);
595                         oob += chip->ecc.prepad;
596                 }
597
598                 host->col_addr += eccbytes;
599                 oob += eccbytes;
600
601                 if (chip->ecc.postpad) {
602                         chip->write_buf(mtd, oob, chip->ecc.postpad);
603                         oob += chip->ecc.postpad;
604                 }
605         }
606
607         size = mtd->oobsize - (oob - chip->oob_poi);
608         if (size)
609                 chip->write_buf(mtd, oob, size);
610         return 0;
611 }
612
613 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
614                                          struct nand_chip *chip,
615                                          const uint8_t *buf,
616                                          int oob_required, int page)
617 {
618         struct mxc_nand_host *host = nand_get_controller_data(chip);
619         int i, n, eccsize = chip->ecc.size;
620         int eccbytes = chip->ecc.bytes;
621         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
622         int eccsteps = chip->ecc.steps;
623         const uint8_t *p = buf;
624         uint8_t *oob = chip->oob_poi;
625
626         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
627
628         for (i = n = 0;
629              eccsteps;
630              n++, eccsteps--, i += eccbytes, p += eccsize) {
631                 host->col_addr = n * eccsize;
632
633                 chip->write_buf(mtd, p, eccsize);
634
635                 host->col_addr = mtd->writesize + n * eccpitch;
636
637                 if (chip->ecc.prepad) {
638                         chip->write_buf(mtd, oob, chip->ecc.prepad);
639                         oob += chip->ecc.prepad;
640                 }
641
642                 chip->write_buf(mtd, oob, eccbytes);
643                 oob += eccbytes;
644
645                 if (chip->ecc.postpad) {
646                         chip->write_buf(mtd, oob, chip->ecc.postpad);
647                         oob += chip->ecc.postpad;
648                 }
649         }
650
651         /* Calculate remaining oob bytes */
652         i = mtd->oobsize - (oob - chip->oob_poi);
653         if (i)
654                 chip->write_buf(mtd, oob, i);
655         return 0;
656 }
657
658 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
659                                  u_char *read_ecc, u_char *calc_ecc)
660 {
661         struct nand_chip *nand_chip = mtd_to_nand(mtd);
662         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
663         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
664         int subpages = mtd->writesize / nand_chip->subpagesize;
665         int pg2blk_shift = nand_chip->phys_erase_shift -
666                            nand_chip->page_shift;
667
668         do {
669                 if ((ecc_status & 0xf) > 4) {
670                         static int last_bad = -1;
671
672                         if (last_bad != host->page_addr >> pg2blk_shift) {
673                                 last_bad = host->page_addr >> pg2blk_shift;
674                                 printk(KERN_DEBUG
675                                        "MXC_NAND: HWECC uncorrectable ECC error"
676                                        " in block %u page %u subpage %d\n",
677                                        last_bad, host->page_addr,
678                                        mtd->writesize / nand_chip->subpagesize
679                                             - subpages);
680                         }
681                         return -EBADMSG;
682                 }
683                 ecc_status >>= 4;
684                 subpages--;
685         } while (subpages > 0);
686
687         return 0;
688 }
689 #else
690 #define mxc_nand_read_page_syndrome NULL
691 #define mxc_nand_read_page_raw_syndrome NULL
692 #define mxc_nand_read_oob_syndrome NULL
693 #define mxc_nand_write_page_syndrome NULL
694 #define mxc_nand_write_page_raw_syndrome NULL
695 #define mxc_nand_write_oob_syndrome NULL
696
697 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
698                                  u_char *read_ecc, u_char *calc_ecc)
699 {
700         struct nand_chip *nand_chip = mtd_to_nand(mtd);
701         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
702
703         /*
704          * 1-Bit errors are automatically corrected in HW.  No need for
705          * additional correction.  2-Bit errors cannot be corrected by
706          * HW ECC, so we need to return failure
707          */
708         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
709
710         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
711                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
712                 return -EBADMSG;
713         }
714
715         return 0;
716 }
717 #endif
718
719 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
720                                   u_char *ecc_code)
721 {
722         return 0;
723 }
724 #endif
725
726 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
727 {
728         struct nand_chip *nand_chip = mtd_to_nand(mtd);
729         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
730         uint8_t ret = 0;
731         uint16_t col;
732         uint16_t __iomem *main_buf =
733                 (uint16_t __iomem *)host->regs->main_area[0];
734         uint16_t __iomem *spare_buf =
735                 (uint16_t __iomem *)host->regs->spare_area[0];
736         union {
737                 uint16_t word;
738                 uint8_t bytes[2];
739         } nfc_word;
740
741         /* Check for status request */
742         if (host->status_request)
743                 return get_dev_status(host) & 0xFF;
744
745         /* Get column for 16-bit access */
746         col = host->col_addr >> 1;
747
748         /* If we are accessing the spare region */
749         if (host->spare_only)
750                 nfc_word.word = readw(&spare_buf[col]);
751         else
752                 nfc_word.word = readw(&main_buf[col]);
753
754         /* Pick upper/lower byte of word from RAM buffer */
755         ret = nfc_word.bytes[host->col_addr & 0x1];
756
757         /* Update saved column address */
758         if (nand_chip->options & NAND_BUSWIDTH_16)
759                 host->col_addr += 2;
760         else
761                 host->col_addr++;
762
763         return ret;
764 }
765
766 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
767 {
768         struct nand_chip *nand_chip = mtd_to_nand(mtd);
769         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
770         uint16_t col, ret;
771         uint16_t __iomem *p;
772
773         pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
774
775         col = host->col_addr;
776         /* Adjust saved column address */
777         if (col < mtd->writesize && host->spare_only)
778                 col += mtd->writesize;
779
780         if (col < mtd->writesize) {
781                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
782                                 (col >> 1));
783         } else {
784                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
785                                 ((col - mtd->writesize) >> 1));
786         }
787
788         if (col & 1) {
789                 union {
790                         uint16_t word;
791                         uint8_t bytes[2];
792                 } nfc_word[3];
793
794                 nfc_word[0].word = readw(p);
795                 nfc_word[1].word = readw(p + 1);
796
797                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
798                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
799
800                 ret = nfc_word[2].word;
801         } else {
802                 ret = readw(p);
803         }
804
805         /* Update saved column address */
806         host->col_addr = col + 2;
807
808         return ret;
809 }
810
811 /*
812  * Write data of length len to buffer buf. The data to be
813  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
814  * Operation by the NFC, the data is written to NAND Flash
815  */
816 static void mxc_nand_write_buf(struct mtd_info *mtd,
817                                 const u_char *buf, int len)
818 {
819         struct nand_chip *nand_chip = mtd_to_nand(mtd);
820         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
821         int n, col, i = 0;
822
823         pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
824                  len);
825
826         col = host->col_addr;
827
828         /* Adjust saved column address */
829         if (col < mtd->writesize && host->spare_only)
830                 col += mtd->writesize;
831
832         n = mtd->writesize + mtd->oobsize - col;
833         n = min(len, n);
834
835         pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
836
837         while (n > 0) {
838                 void __iomem *p;
839
840                 if (col < mtd->writesize) {
841                         p = host->regs->main_area[0] + (col & ~3);
842                 } else {
843                         p = host->regs->spare_area[0] -
844                                                 mtd->writesize + (col & ~3);
845                 }
846
847                 pr_debug("%s:%d: p = %p\n", __func__,
848                          __LINE__, p);
849
850                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
851                         union {
852                                 uint32_t word;
853                                 uint8_t bytes[4];
854                         } nfc_word;
855
856                         nfc_word.word = readl(p);
857                         nfc_word.bytes[col & 3] = buf[i++];
858                         n--;
859                         col++;
860
861                         writel(nfc_word.word, p);
862                 } else {
863                         int m = mtd->writesize - col;
864
865                         if (col >= mtd->writesize)
866                                 m += mtd->oobsize;
867
868                         m = min(n, m) & ~3;
869
870                         pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
871                                  __func__,  __LINE__, n, m, i, col);
872
873                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
874                         col += m;
875                         i += m;
876                         n -= m;
877                 }
878         }
879         /* Update saved column address */
880         host->col_addr = col;
881 }
882
883 /*
884  * Read the data buffer from the NAND Flash. To read the data from NAND
885  * Flash first the data output cycle is initiated by the NFC, which copies
886  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
887  */
888 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
889 {
890         struct nand_chip *nand_chip = mtd_to_nand(mtd);
891         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
892         int n, col, i = 0;
893
894         pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
895                  len);
896
897         col = host->col_addr;
898
899         /* Adjust saved column address */
900         if (col < mtd->writesize && host->spare_only)
901                 col += mtd->writesize;
902
903         n = mtd->writesize + mtd->oobsize - col;
904         n = min(len, n);
905
906         while (n > 0) {
907                 void __iomem *p;
908
909                 if (col < mtd->writesize) {
910                         p = host->regs->main_area[0] + (col & ~3);
911                 } else {
912                         p = host->regs->spare_area[0] -
913                                         mtd->writesize + (col & ~3);
914                 }
915
916                 if (((col | (int)&buf[i]) & 3) || n < 4) {
917                         union {
918                                 uint32_t word;
919                                 uint8_t bytes[4];
920                         } nfc_word;
921
922                         nfc_word.word = readl(p);
923                         buf[i++] = nfc_word.bytes[col & 3];
924                         n--;
925                         col++;
926                 } else {
927                         int m = mtd->writesize - col;
928
929                         if (col >= mtd->writesize)
930                                 m += mtd->oobsize;
931
932                         m = min(n, m) & ~3;
933                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
934
935                         col += m;
936                         i += m;
937                         n -= m;
938                 }
939         }
940         /* Update saved column address */
941         host->col_addr = col;
942 }
943
944 /*
945  * This function is used by upper layer for select and
946  * deselect of the NAND chip
947  */
948 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
949 {
950         struct nand_chip *nand_chip = mtd_to_nand(mtd);
951         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
952
953         switch (chip) {
954         case -1:
955                 /* TODO: Disable the NFC clock */
956                 if (host->clk_act)
957                         host->clk_act = 0;
958                 break;
959         case 0:
960                 /* TODO: Enable the NFC clock */
961                 if (!host->clk_act)
962                         host->clk_act = 1;
963                 break;
964
965         default:
966                 break;
967         }
968 }
969
970 /*
971  * Used by the upper layer to write command to NAND Flash for
972  * different operations to be carried out on NAND Flash
973  */
974 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
975                                 int column, int page_addr)
976 {
977         struct nand_chip *nand_chip = mtd_to_nand(mtd);
978         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
979
980         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
981                  command, column, page_addr);
982
983         /* Reset command state information */
984         host->status_request = false;
985
986         /* Command pre-processing step */
987         switch (command) {
988
989         case NAND_CMD_STATUS:
990                 host->col_addr = 0;
991                 host->status_request = true;
992                 break;
993
994         case NAND_CMD_READ0:
995                 host->page_addr = page_addr;
996                 host->col_addr = column;
997                 host->spare_only = false;
998                 break;
999
1000         case NAND_CMD_READOOB:
1001                 host->col_addr = column;
1002                 host->spare_only = true;
1003                 if (host->pagesize_2k)
1004                         command = NAND_CMD_READ0; /* only READ0 is valid */
1005                 break;
1006
1007         case NAND_CMD_SEQIN:
1008                 if (column >= mtd->writesize) {
1009                         /*
1010                          * before sending SEQIN command for partial write,
1011                          * we need read one page out. FSL NFC does not support
1012                          * partial write. It always sends out 512+ecc+512+ecc
1013                          * for large page nand flash. But for small page nand
1014                          * flash, it does support SPARE ONLY operation.
1015                          */
1016                         if (host->pagesize_2k) {
1017                                 /* call ourself to read a page */
1018                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1019                                                 page_addr);
1020                         }
1021
1022                         host->col_addr = column - mtd->writesize;
1023                         host->spare_only = true;
1024
1025                         /* Set program pointer to spare region */
1026                         if (!host->pagesize_2k)
1027                                 send_cmd(host, NAND_CMD_READOOB);
1028                 } else {
1029                         host->spare_only = false;
1030                         host->col_addr = column;
1031
1032                         /* Set program pointer to page start */
1033                         if (!host->pagesize_2k)
1034                                 send_cmd(host, NAND_CMD_READ0);
1035                 }
1036                 break;
1037
1038         case NAND_CMD_PAGEPROG:
1039                 send_prog_page(host, 0, host->spare_only);
1040
1041                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1042                         /* data in 4 areas */
1043                         send_prog_page(host, 1, host->spare_only);
1044                         send_prog_page(host, 2, host->spare_only);
1045                         send_prog_page(host, 3, host->spare_only);
1046                 }
1047
1048                 break;
1049         }
1050
1051         /* Write out the command to the device. */
1052         send_cmd(host, command);
1053
1054         /* Write out column address, if necessary */
1055         if (column != -1) {
1056                 /*
1057                  * MXC NANDFC can only perform full page+spare or
1058                  * spare-only read/write. When the upper layers perform
1059                  * a read/write buffer operation, we will use the saved
1060                  * column address to index into the full page.
1061                  */
1062                 send_addr(host, 0);
1063                 if (host->pagesize_2k)
1064                         /* another col addr cycle for 2k page */
1065                         send_addr(host, 0);
1066         }
1067
1068         /* Write out page address, if necessary */
1069         if (page_addr != -1) {
1070                 u32 page_mask = nand_chip->pagemask;
1071                 do {
1072                         send_addr(host, page_addr & 0xFF);
1073                         page_addr >>= 8;
1074                         page_mask >>= 8;
1075                 } while (page_mask);
1076         }
1077
1078         /* Command post-processing step */
1079         switch (command) {
1080
1081         case NAND_CMD_RESET:
1082                 break;
1083
1084         case NAND_CMD_READOOB:
1085         case NAND_CMD_READ0:
1086                 if (host->pagesize_2k) {
1087                         /* send read confirm command */
1088                         send_cmd(host, NAND_CMD_READSTART);
1089                         /* read for each AREA */
1090                         send_read_page(host, 0, host->spare_only);
1091                         if (is_mxc_nfc_1()) {
1092                                 send_read_page(host, 1, host->spare_only);
1093                                 send_read_page(host, 2, host->spare_only);
1094                                 send_read_page(host, 3, host->spare_only);
1095                         }
1096                 } else {
1097                         send_read_page(host, 0, host->spare_only);
1098                 }
1099                 break;
1100
1101         case NAND_CMD_READID:
1102                 host->col_addr = 0;
1103                 send_read_id(host);
1104                 break;
1105
1106         case NAND_CMD_PAGEPROG:
1107                 break;
1108
1109         case NAND_CMD_STATUS:
1110                 break;
1111
1112         case NAND_CMD_ERASE2:
1113                 break;
1114         }
1115 }
1116
1117 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1118
1119 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1120 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1121
1122 static struct nand_bbt_descr bbt_main_descr = {
1123         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1124                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1125         .offs = 0,
1126         .len = 4,
1127         .veroffs = 4,
1128         .maxblocks = 4,
1129         .pattern = bbt_pattern,
1130 };
1131
1132 static struct nand_bbt_descr bbt_mirror_descr = {
1133         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1134                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1135         .offs = 0,
1136         .len = 4,
1137         .veroffs = 4,
1138         .maxblocks = 4,
1139         .pattern = mirror_pattern,
1140 };
1141
1142 #endif
1143
1144 int board_nand_init(struct nand_chip *this)
1145 {
1146         struct mtd_info *mtd;
1147 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1148         uint32_t tmp;
1149 #endif
1150
1151 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1152         this->bbt_options |= NAND_BBT_USE_FLASH;
1153         this->bbt_td = &bbt_main_descr;
1154         this->bbt_md = &bbt_mirror_descr;
1155 #endif
1156
1157         /* structures must be linked */
1158         mtd = &this->mtd;
1159         host->nand = this;
1160
1161         /* 5 us command delay time */
1162         this->chip_delay = 5;
1163
1164         nand_set_controller_data(this, host);
1165         this->dev_ready = mxc_nand_dev_ready;
1166         this->cmdfunc = mxc_nand_command;
1167         this->select_chip = mxc_nand_select_chip;
1168         this->read_byte = mxc_nand_read_byte;
1169         this->read_word = mxc_nand_read_word;
1170         this->write_buf = mxc_nand_write_buf;
1171         this->read_buf = mxc_nand_read_buf;
1172
1173         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1174 #ifdef MXC_NFC_V3_2
1175         host->ip_regs =
1176                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1177 #endif
1178         host->clk_act = 1;
1179
1180 #ifdef CONFIG_MXC_NAND_HWECC
1181         this->ecc.calculate = mxc_nand_calculate_ecc;
1182         this->ecc.hwctl = mxc_nand_enable_hwecc;
1183         this->ecc.correct = mxc_nand_correct_data;
1184         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1185                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1186                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1187                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1188                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1189                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1190                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1191                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1192                 this->ecc.bytes = 9;
1193                 this->ecc.prepad = 7;
1194         } else {
1195                 this->ecc.mode = NAND_ECC_HW;
1196         }
1197
1198         if (is_mxc_nfc_1())
1199                 this->ecc.strength = 1;
1200         else
1201                 this->ecc.strength = 4;
1202
1203         host->pagesize_2k = 0;
1204
1205         this->ecc.size = 512;
1206         _mxc_nand_enable_hwecc(mtd, 1);
1207 #else
1208         this->ecc.layout = &nand_soft_eccoob;
1209         this->ecc.mode = NAND_ECC_SOFT;
1210         _mxc_nand_enable_hwecc(mtd, 0);
1211 #endif
1212         /* Reset NAND */
1213         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1214
1215         /* NAND bus width determines access functions used by upper layer */
1216         if (is_16bit_nand())
1217                 this->options |= NAND_BUSWIDTH_16;
1218
1219 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1220         host->pagesize_2k = 1;
1221         this->ecc.layout = &nand_hw_eccoob2k;
1222 #else
1223         host->pagesize_2k = 0;
1224         this->ecc.layout = &nand_hw_eccoob;
1225 #endif
1226
1227 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1228 #ifdef MXC_NFC_V2_1
1229         tmp = readnfc(&host->regs->config1);
1230         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1231         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1232         writenfc(tmp, &host->regs->config1);
1233         if (host->pagesize_2k)
1234                 writenfc(64/2, &host->regs->spare_area_size);
1235         else
1236                 writenfc(16/2, &host->regs->spare_area_size);
1237 #endif
1238
1239         /*
1240          * preset operation
1241          * Unlock the internal RAM Buffer
1242          */
1243         writenfc(0x2, &host->regs->config);
1244
1245         /* Blocks to be unlocked */
1246         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1247         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1248          * unlockend_blkaddr, but the magic 0x4000 does not always work
1249          * when writing more than some 32 megabytes (on 2k page nands)
1250          * However 0xFFFF doesn't seem to have this kind
1251          * of limitation (tried it back and forth several times).
1252          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1253          * only, but probably this was not tested there for v1.
1254          * The very same limitation seems to apply to this kernel driver.
1255          * This might be NAND chip specific and the i.MX31 datasheet is
1256          * extremely vague about the semantics of this register.
1257          */
1258         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1259
1260         /* Unlock Block Command for given address range */
1261         writenfc(0x4, &host->regs->wrprot);
1262 #elif defined(MXC_NFC_V3_2)
1263         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1264         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1265
1266         /* Unlock the internal RAM Buffer */
1267         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1268                         &host->ip_regs->wrprot);
1269
1270         /* Blocks to be unlocked */
1271         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1272                 writenfc(0x0 | 0xFFFF << 16,
1273                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1274
1275         writenfc(0, &host->ip_regs->ipc);
1276
1277         tmp = readnfc(&host->ip_regs->config2);
1278         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1279                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1280         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1281
1282         if (host->pagesize_2k) {
1283                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1284                 tmp |= NFC_V3_CONFIG2_PS_2048;
1285         } else {
1286                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1287                 tmp |= NFC_V3_CONFIG2_PS_512;
1288         }
1289
1290         writenfc(tmp, &host->ip_regs->config2);
1291
1292         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1293                         NFC_V3_CONFIG3_NO_SDMA |
1294                         NFC_V3_CONFIG3_RBB_MODE |
1295                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1296                         NFC_V3_CONFIG3_ADD_OP(0);
1297
1298         if (!(this->options & NAND_BUSWIDTH_16))
1299                 tmp |= NFC_V3_CONFIG3_FW8;
1300
1301         writenfc(tmp, &host->ip_regs->config3);
1302
1303         writenfc(0, &host->ip_regs->delay_line);
1304 #endif
1305
1306         return 0;
1307 }