1 // SPDX-License-Identifier: GPL-2.0+
3 * Chromium OS cros_ec driver
5 * Copyright (c) 2012 The Chromium OS Authors.
9 * This is the interface to the Chrome OS EC. It provides keyboard functions,
10 * power control and battery management. Quite a few other functions are
11 * provided to enable the EC software to be updated, talk to the EC's I2C bus
12 * and store a small amount of data in a memory which persists while the EC
24 #include <linux/errno.h>
26 #include <asm-generic/gpio.h>
27 #include <dm/device-internal.h>
28 #include <dm/of_extra.h>
29 #include <dm/uclass-internal.h>
32 #define debug_trace(fmt, b...) debug(fmt, #b)
34 #define debug_trace(fmt, b...)
38 /* Timeout waiting for a flash erase command to complete */
39 CROS_EC_CMD_TIMEOUT_MS = 5000,
40 /* Timeout waiting for a synchronous hash to be recomputed */
41 CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
44 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
51 printf("cmd=%#x: ", cmd);
52 for (i = 0; i < len; i++)
53 printf("%02x ", data[i]);
59 * Calculate a simple 8-bit checksum of a data block
61 * @param data Data block to checksum
62 * @param size Size of data block in bytes
63 * @return checksum value (0 to 255)
65 int cros_ec_calc_checksum(const uint8_t *data, int size)
69 for (i = csum = 0; i < size; i++)
75 * Create a request packet for protocol version 3.
77 * The packet is stored in the device's internal output buffer.
79 * @param dev CROS-EC device
80 * @param cmd Command to send (EC_CMD_...)
81 * @param cmd_version Version of command to send (EC_VER_...)
82 * @param dout Output data (may be NULL If dout_len=0)
83 * @param dout_len Size of output data in bytes
84 * @return packet size in bytes, or <0 if error.
86 static int create_proto3_request(struct cros_ec_dev *dev,
87 int cmd, int cmd_version,
88 const void *dout, int dout_len)
90 struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
91 int out_bytes = dout_len + sizeof(*rq);
93 /* Fail if output size is too big */
94 if (out_bytes > (int)sizeof(dev->dout)) {
95 debug("%s: Cannot send %d bytes\n", __func__, dout_len);
96 return -EC_RES_REQUEST_TRUNCATED;
99 /* Fill in request packet */
100 rq->struct_version = EC_HOST_REQUEST_VERSION;
103 rq->command_version = cmd_version;
105 rq->data_len = dout_len;
107 /* Copy data after header */
108 memcpy(rq + 1, dout, dout_len);
110 /* Write checksum field so the entire packet sums to 0 */
111 rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
113 cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
115 /* Return size of request packet */
120 * Prepare the device to receive a protocol version 3 response.
122 * @param dev CROS-EC device
123 * @param din_len Maximum size of response in bytes
124 * @return maximum expected number of bytes in response, or <0 if error.
126 static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
128 int in_bytes = din_len + sizeof(struct ec_host_response);
130 /* Fail if input size is too big */
131 if (in_bytes > (int)sizeof(dev->din)) {
132 debug("%s: Cannot receive %d bytes\n", __func__, din_len);
133 return -EC_RES_RESPONSE_TOO_BIG;
136 /* Return expected size of response packet */
141 * Handle a protocol version 3 response packet.
143 * The packet must already be stored in the device's internal input buffer.
145 * @param dev CROS-EC device
146 * @param dinp Returns pointer to response data
147 * @param din_len Maximum size of response in bytes
148 * @return number of bytes of response data, or <0 if error. Note that error
149 * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
152 static int handle_proto3_response(struct cros_ec_dev *dev,
153 uint8_t **dinp, int din_len)
155 struct ec_host_response *rs = (struct ec_host_response *)dev->din;
159 cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
161 /* Check input data */
162 if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
163 debug("%s: EC response version mismatch\n", __func__);
164 return -EC_RES_INVALID_RESPONSE;
168 debug("%s: EC response reserved != 0\n", __func__);
169 return -EC_RES_INVALID_RESPONSE;
172 if (rs->data_len > din_len) {
173 debug("%s: EC returned too much data\n", __func__);
174 return -EC_RES_RESPONSE_TOO_BIG;
177 cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
179 /* Update in_bytes to actual data size */
180 in_bytes = sizeof(*rs) + rs->data_len;
182 /* Verify checksum */
183 csum = cros_ec_calc_checksum(dev->din, in_bytes);
185 debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
187 return -EC_RES_INVALID_CHECKSUM;
190 /* Return error result, if any */
192 return -(int)rs->result;
194 /* If we're still here, set response data pointer and return length */
195 *dinp = (uint8_t *)(rs + 1);
200 static int send_command_proto3(struct cros_ec_dev *dev,
201 int cmd, int cmd_version,
202 const void *dout, int dout_len,
203 uint8_t **dinp, int din_len)
205 struct dm_cros_ec_ops *ops;
206 int out_bytes, in_bytes;
209 /* Create request packet */
210 out_bytes = create_proto3_request(dev, cmd, cmd_version,
215 /* Prepare response buffer */
216 in_bytes = prepare_proto3_response_buffer(dev, din_len);
220 ops = dm_cros_ec_get_ops(dev->dev);
221 rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS;
225 /* Process the response */
226 return handle_proto3_response(dev, dinp, din_len);
229 static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
230 const void *dout, int dout_len,
231 uint8_t **dinp, int din_len)
233 struct dm_cros_ec_ops *ops;
236 /* Handle protocol version 3 support */
237 if (dev->protocol_version == 3) {
238 return send_command_proto3(dev, cmd, cmd_version,
239 dout, dout_len, dinp, din_len);
242 ops = dm_cros_ec_get_ops(dev->dev);
243 ret = ops->command(dev->dev, cmd, cmd_version,
244 (const uint8_t *)dout, dout_len, dinp, din_len);
250 * Send a command to the CROS-EC device and return the reply.
252 * The device's internal input/output buffers are used.
254 * @param dev CROS-EC device
255 * @param cmd Command to send (EC_CMD_...)
256 * @param cmd_version Version of command to send (EC_VER_...)
257 * @param dout Output data (may be NULL If dout_len=0)
258 * @param dout_len Size of output data in bytes
259 * @param dinp Response data (may be NULL If din_len=0).
260 * If not NULL, it will be updated to point to the data
261 * and will always be double word aligned (64-bits)
262 * @param din_len Maximum size of response in bytes
263 * @return number of bytes in response, or -ve on error
265 static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
266 int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
272 len = send_command(dev, cmd, cmd_version, dout, dout_len,
275 /* If the command doesn't complete, wait a while */
276 if (len == -EC_RES_IN_PROGRESS) {
277 struct ec_response_get_comms_status *resp = NULL;
280 /* Wait for command to complete */
281 start = get_timer(0);
285 mdelay(50); /* Insert some reasonable delay */
286 ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
288 (uint8_t **)&resp, sizeof(*resp));
292 if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
293 debug("%s: Command %#02x timeout\n",
295 return -EC_RES_TIMEOUT;
297 } while (resp->flags & EC_COMMS_STATUS_PROCESSING);
299 /* OK it completed, so read the status response */
300 /* not sure why it was 0 for the last argument */
301 len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
302 NULL, 0, &din, din_len);
305 debug("%s: len=%d, din=%p\n", __func__, len, din);
307 /* If we have any data to return, it must be 64bit-aligned */
308 assert(len <= 0 || !((uintptr_t)din & 7));
316 * Send a command to the CROS-EC device and return the reply.
318 * The device's internal input/output buffers are used.
320 * @param dev CROS-EC device
321 * @param cmd Command to send (EC_CMD_...)
322 * @param cmd_version Version of command to send (EC_VER_...)
323 * @param dout Output data (may be NULL If dout_len=0)
324 * @param dout_len Size of output data in bytes
325 * @param din Response data (may be NULL If din_len=0).
326 * It not NULL, it is a place for ec_command() to copy the
328 * @param din_len Maximum size of response in bytes
329 * @return number of bytes in response, or -ve on error
331 static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
332 const void *dout, int dout_len,
333 void *din, int din_len)
338 assert((din_len == 0) || din);
339 len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
340 &in_buffer, din_len);
343 * If we were asked to put it somewhere, do so, otherwise just
344 * disregard the result.
346 if (din && in_buffer) {
347 assert(len <= din_len);
348 memmove(din, in_buffer, len);
354 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
356 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
358 if (ec_command(cdev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
359 sizeof(scan->data)) != sizeof(scan->data))
365 int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
367 struct ec_response_get_version *r;
369 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
370 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
373 if (maxlen > (int)sizeof(r->version_string_ro))
374 maxlen = sizeof(r->version_string_ro);
376 switch (r->current_image) {
378 memcpy(id, r->version_string_ro, maxlen);
381 memcpy(id, r->version_string_rw, maxlen);
387 id[maxlen - 1] = '\0';
391 int cros_ec_read_version(struct cros_ec_dev *dev,
392 struct ec_response_get_version **versionp)
394 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
395 (uint8_t **)versionp, sizeof(**versionp))
396 != sizeof(**versionp))
402 int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
404 if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
405 (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
411 int cros_ec_read_current_image(struct cros_ec_dev *dev,
412 enum ec_current_image *image)
414 struct ec_response_get_version *r;
416 if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
417 (uint8_t **)&r, sizeof(*r)) != sizeof(*r))
420 *image = r->current_image;
424 static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
425 struct ec_response_vboot_hash *hash)
427 struct ec_params_vboot_hash p;
430 start = get_timer(0);
431 while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
432 mdelay(50); /* Insert some reasonable delay */
434 p.cmd = EC_VBOOT_HASH_GET;
435 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
436 hash, sizeof(*hash)) < 0)
439 if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
440 debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
441 return -EC_RES_TIMEOUT;
448 int cros_ec_read_hash(struct cros_ec_dev *dev,
449 struct ec_response_vboot_hash *hash)
451 struct ec_params_vboot_hash p;
454 p.cmd = EC_VBOOT_HASH_GET;
455 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
456 hash, sizeof(*hash)) < 0)
459 /* If the EC is busy calculating the hash, fidget until it's done. */
460 rv = cros_ec_wait_on_hash_done(dev, hash);
464 /* If the hash is valid, we're done. Otherwise, we have to kick it off
465 * again and wait for it to complete. Note that we explicitly assume
466 * that hashing zero bytes is always wrong, even though that would
467 * produce a valid hash value. */
468 if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
471 debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
472 __func__, hash->status, hash->size);
474 p.cmd = EC_VBOOT_HASH_START;
475 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
477 p.offset = EC_VBOOT_HASH_OFFSET_RW;
479 if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
480 hash, sizeof(*hash)) < 0)
483 rv = cros_ec_wait_on_hash_done(dev, hash);
487 debug("%s: hash done\n", __func__);
492 static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
494 struct ec_params_vboot_hash p;
495 struct ec_response_vboot_hash *hash;
497 /* We don't have an explict command for the EC to discard its current
498 * hash value, so we'll just tell it to calculate one that we know is
499 * wrong (we claim that hashing zero bytes is always invalid).
501 p.cmd = EC_VBOOT_HASH_RECALC;
502 p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
507 debug("%s:\n", __func__);
509 if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
510 (uint8_t **)&hash, sizeof(*hash)) < 0)
513 /* No need to wait for it to finish */
517 int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
520 struct ec_params_reboot_ec p;
525 if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
529 if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
531 * EC reboot will take place immediately so delay to allow it
532 * to complete. Note that some reboot types (EC_REBOOT_COLD)
533 * will reboot the AP as well, in which case we won't actually
537 * TODO(rspangler@chromium.org): Would be nice if we had a
538 * better way to determine when the reboot is complete. Could
539 * we poll a memory-mapped LPC value?
547 int cros_ec_interrupt_pending(struct udevice *dev)
549 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
551 /* no interrupt support : always poll */
552 if (!dm_gpio_is_valid(&cdev->ec_int))
555 return dm_gpio_get_value(&cdev->ec_int);
558 int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
560 if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
561 sizeof(*info)) != sizeof(*info))
567 int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
569 struct ec_response_host_event_mask *resp;
572 * Use the B copy of the event flags, because the main copy is already
575 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
576 (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
579 if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
582 *events_ptr = resp->mask;
586 int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
588 struct ec_params_host_event_mask params;
590 params.mask = events;
593 * Use the B copy of the event flags, so it affects the data returned
594 * by cros_ec_get_host_events().
596 if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
597 ¶ms, sizeof(params), NULL, 0) < 0)
603 int cros_ec_flash_protect(struct cros_ec_dev *dev,
604 uint32_t set_mask, uint32_t set_flags,
605 struct ec_response_flash_protect *resp)
607 struct ec_params_flash_protect params;
609 params.mask = set_mask;
610 params.flags = set_flags;
612 if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
613 ¶ms, sizeof(params),
614 resp, sizeof(*resp)) != sizeof(*resp))
620 static int cros_ec_check_version(struct cros_ec_dev *dev)
622 struct ec_params_hello req;
623 struct ec_response_hello *resp;
625 struct dm_cros_ec_ops *ops;
628 ops = dm_cros_ec_get_ops(dev->dev);
629 if (ops->check_version) {
630 ret = ops->check_version(dev->dev);
636 * TODO(sjg@chromium.org).
637 * There is a strange oddity here with the EC. We could just ignore
638 * the response, i.e. pass the last two parameters as NULL and 0.
639 * In this case we won't read back very many bytes from the EC.
640 * On the I2C bus the EC gets upset about this and will try to send
641 * the bytes anyway. This means that we will have to wait for that
642 * to complete before continuing with a new EC command.
644 * This problem is probably unique to the I2C bus.
646 * So for now, just read all the data anyway.
649 /* Try sending a version 3 packet */
650 dev->protocol_version = 3;
652 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
653 (uint8_t **)&resp, sizeof(*resp)) > 0) {
657 /* Try sending a version 2 packet */
658 dev->protocol_version = 2;
659 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
660 (uint8_t **)&resp, sizeof(*resp)) > 0) {
665 * Fail if we're still here, since the EC doesn't understand any
666 * protcol version we speak. Version 1 interface without command
667 * version is no longer supported, and we don't know about any new
670 dev->protocol_version = 0;
671 printf("%s: ERROR: old EC interface not supported\n", __func__);
675 int cros_ec_test(struct cros_ec_dev *dev)
677 struct ec_params_hello req;
678 struct ec_response_hello *resp;
680 req.in_data = 0x12345678;
681 if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
682 (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
683 printf("ec_command_inptr() returned error\n");
686 if (resp->out_data != req.in_data + 0x01020304) {
687 printf("Received invalid handshake %x\n", resp->out_data);
694 int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
695 uint32_t *offset, uint32_t *size)
697 struct ec_params_flash_region_info p;
698 struct ec_response_flash_region_info *r;
702 ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
703 EC_VER_FLASH_REGION_INFO,
704 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
705 if (ret != sizeof(*r))
716 int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
718 struct ec_params_flash_erase p;
722 return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
727 * Write a single block to the flash
729 * Write a block of data to the EC flash. The size must not exceed the flash
730 * write block size which you can obtain from cros_ec_flash_write_burst_size().
732 * The offset starts at 0. You can obtain the region information from
733 * cros_ec_flash_offset() to find out where to write for a particular region.
735 * Attempting to write to the region where the EC is currently running from
736 * will result in an error.
738 * @param dev CROS-EC device
739 * @param data Pointer to data buffer to write
740 * @param offset Offset within flash to write to.
741 * @param size Number of bytes to write
742 * @return 0 if ok, -1 on error
744 static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
745 const uint8_t *data, uint32_t offset, uint32_t size)
747 struct ec_params_flash_write *p;
750 p = malloc(sizeof(*p) + size);
756 assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
757 memcpy(p + 1, data, p->size);
759 ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
760 p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
768 * Return optimal flash write burst size
770 static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
772 return EC_FLASH_WRITE_VER0_SIZE;
776 * Check if a block of data is erased (all 0xff)
778 * This function is useful when dealing with flash, for checking whether a
779 * data block is erased and thus does not need to be programmed.
781 * @param data Pointer to data to check (must be word-aligned)
782 * @param size Number of bytes to check (must be word-aligned)
783 * @return 0 if erased, non-zero if any word is not erased
785 static int cros_ec_data_is_erased(const uint32_t *data, int size)
788 size /= sizeof(uint32_t);
789 for (; size > 0; size -= 4, data++)
797 * Read back flash parameters
799 * This function reads back parameters of the flash as reported by the EC
801 * @param dev Pointer to device
802 * @param info Pointer to output flash info struct
804 int cros_ec_read_flashinfo(struct cros_ec_dev *dev,
805 struct ec_response_flash_info *info)
809 ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
810 NULL, 0, info, sizeof(*info));
814 return ret < sizeof(*info) ? -1 : 0;
817 int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
818 uint32_t offset, uint32_t size)
820 uint32_t burst = cros_ec_flash_write_burst_size(dev);
825 * TODO: round up to the nearest multiple of write size. Can get away
826 * without that on link right now because its write size is 4 bytes.
829 for (off = offset; off < end; off += burst, data += burst) {
832 /* If the data is empty, there is no point in programming it */
833 todo = min(end - off, burst);
834 if (dev->optimise_flash_write &&
835 cros_ec_data_is_erased((uint32_t *)data, todo))
838 ret = cros_ec_flash_write_block(dev, data, off, todo);
847 * Read a single block from the flash
849 * Read a block of data from the EC flash. The size must not exceed the flash
850 * write block size which you can obtain from cros_ec_flash_write_burst_size().
852 * The offset starts at 0. You can obtain the region information from
853 * cros_ec_flash_offset() to find out where to read for a particular region.
855 * @param dev CROS-EC device
856 * @param data Pointer to data buffer to read into
857 * @param offset Offset within flash to read from
858 * @param size Number of bytes to read
859 * @return 0 if ok, -1 on error
861 static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
862 uint32_t offset, uint32_t size)
864 struct ec_params_flash_read p;
869 return ec_command(dev, EC_CMD_FLASH_READ, 0,
870 &p, sizeof(p), data, size) >= 0 ? 0 : -1;
873 int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
876 uint32_t burst = cros_ec_flash_write_burst_size(dev);
881 for (off = offset; off < end; off += burst, data += burst) {
882 ret = cros_ec_flash_read_block(dev, data, off,
883 min(end - off, burst));
891 int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
892 const uint8_t *image, int image_size)
894 uint32_t rw_offset, rw_size;
897 if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
899 if (image_size > (int)rw_size)
902 /* Invalidate the existing hash, just in case the AP reboots
903 * unexpectedly during the update. If that happened, the EC RW firmware
904 * would be invalid, but the EC would still have the original hash.
906 ret = cros_ec_invalidate_hash(dev);
911 * Erase the entire RW section, so that the EC doesn't see any garbage
912 * past the new image if it's smaller than the current image.
914 * TODO: could optimize this to erase just the current image, since
915 * presumably everything past that is 0xff's. But would still need to
916 * round up to the nearest multiple of erase size.
918 ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
922 /* Write the image */
923 ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
930 int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
932 struct ec_params_vbnvcontext p;
935 p.op = EC_VBNV_CONTEXT_OP_READ;
937 len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
938 &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
939 if (len < EC_VBNV_BLOCK_SIZE)
945 int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
947 struct ec_params_vbnvcontext p;
950 p.op = EC_VBNV_CONTEXT_OP_WRITE;
951 memcpy(p.block, block, sizeof(p.block));
953 len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
954 &p, sizeof(p), NULL, 0);
961 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
963 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
964 struct ec_params_ldo_set params;
966 params.index = index;
967 params.state = state;
969 if (ec_command_inptr(cdev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params),
976 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
978 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
979 struct ec_params_ldo_get params;
980 struct ec_response_ldo_get *resp;
982 params.index = index;
984 if (ec_command_inptr(cdev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params),
985 (uint8_t **)&resp, sizeof(*resp)) !=
989 *state = resp->state;
994 int cros_ec_register(struct udevice *dev)
996 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1000 gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1002 cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1004 if (cros_ec_check_version(cdev)) {
1005 debug("%s: Could not detect CROS-EC version\n", __func__);
1006 return -CROS_EC_ERR_CHECK_VERSION;
1009 if (cros_ec_read_id(cdev, id, sizeof(id))) {
1010 debug("%s: Could not read KBC ID\n", __func__);
1011 return -CROS_EC_ERR_READ_ID;
1014 /* Remember this device for use by the cros_ec command */
1015 debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1016 cdev->protocol_version, id);
1021 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1023 ofnode flash_node, node;
1025 flash_node = dev_read_subnode(dev, "flash");
1026 if (!ofnode_valid(flash_node)) {
1027 debug("Failed to find flash node\n");
1031 if (ofnode_read_fmap_entry(flash_node, &config->flash)) {
1032 debug("Failed to decode flash node in chrome-ec\n");
1036 config->flash_erase_value = ofnode_read_s32_default(flash_node,
1038 ofnode_for_each_subnode(node, flash_node) {
1039 const char *name = ofnode_get_name(node);
1040 enum ec_flash_region region;
1042 if (0 == strcmp(name, "ro")) {
1043 region = EC_FLASH_REGION_RO;
1044 } else if (0 == strcmp(name, "rw")) {
1045 region = EC_FLASH_REGION_RW;
1046 } else if (0 == strcmp(name, "wp-ro")) {
1047 region = EC_FLASH_REGION_WP_RO;
1049 debug("Unknown EC flash region name '%s'\n", name);
1053 if (ofnode_read_fmap_entry(node, &config->region[region])) {
1054 debug("Failed to decode flash region in chrome-ec'\n");
1062 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1065 struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1067 struct ec_params_i2c_passthru p;
1068 uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1071 struct ec_response_i2c_passthru r;
1072 uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1074 struct ec_params_i2c_passthru *p = ¶ms.p;
1075 struct ec_response_i2c_passthru *r = &response.r;
1076 struct ec_params_i2c_passthru_msg *msg;
1077 uint8_t *pdata, *read_ptr = NULL;
1085 p->num_msgs = nmsgs;
1086 size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1088 /* Create a message to write the register address and optional data */
1089 pdata = (uint8_t *)p + size;
1092 for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1093 bool is_read = in->flags & I2C_M_RD;
1095 msg->addr_flags = in->addr;
1098 msg->addr_flags |= EC_I2C_FLAG_READ;
1099 read_len += in->len;
1101 if (sizeof(*r) + read_len > sizeof(response)) {
1102 puts("Read length too big for buffer\n");
1106 if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1107 puts("Params too large for buffer\n");
1110 memcpy(pdata, in->buf, in->len);
1115 rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1116 r, sizeof(*r) + read_len);
1120 /* Parse response */
1121 if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1122 printf("Transfer failed with status=0x%x\n", r->i2c_status);
1126 if (rv < sizeof(*r) + read_len) {
1127 puts("Truncated read response\n");
1131 /* We only support a single read message for each transfer */
1133 memcpy(read_ptr, r->data, read_len);
1138 UCLASS_DRIVER(cros_ec) = {
1139 .id = UCLASS_CROS_EC,
1141 .per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
1142 .post_bind = dm_scan_fdt_dev,