Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / media / platform / vsp1 / vsp1_wpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_wpf.c  --  R-Car VSP1 Write Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define WPF_GEN2_MAX_WIDTH                      2048U
21 #define WPF_GEN2_MAX_HEIGHT                     2048U
22 #define WPF_GEN3_MAX_WIDTH                      8190U
23 #define WPF_GEN3_MAX_HEIGHT                     8190U
24
25 /* -----------------------------------------------------------------------------
26  * Device Access
27  */
28
29 static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
30                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
31 {
32         vsp1_dl_body_write(dlb, reg + wpf->entity.index * VI6_WPF_OFFSET, data);
33 }
34
35 /* -----------------------------------------------------------------------------
36  * Controls
37  */
38
39 enum wpf_flip_ctrl {
40         WPF_CTRL_VFLIP = 0,
41         WPF_CTRL_HFLIP = 1,
42 };
43
44 static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
45 {
46         struct vsp1_video *video = wpf->video;
47         struct v4l2_mbus_framefmt *sink_format;
48         struct v4l2_mbus_framefmt *source_format;
49         bool rotate;
50         int ret = 0;
51
52         /*
53          * Only consider the 0°/180° from/to 90°/270° modifications, the rest
54          * is taken care of by the flipping configuration.
55          */
56         rotate = rotation == 90 || rotation == 270;
57         if (rotate == wpf->flip.rotate)
58                 return 0;
59
60         /* Changing rotation isn't allowed when buffers are allocated. */
61         mutex_lock(&video->lock);
62
63         if (vb2_is_busy(&video->queue)) {
64                 ret = -EBUSY;
65                 goto done;
66         }
67
68         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
69                                                  wpf->entity.config,
70                                                  RWPF_PAD_SINK);
71         source_format = vsp1_entity_get_pad_format(&wpf->entity,
72                                                    wpf->entity.config,
73                                                    RWPF_PAD_SOURCE);
74
75         mutex_lock(&wpf->entity.lock);
76
77         if (rotate) {
78                 source_format->width = sink_format->height;
79                 source_format->height = sink_format->width;
80         } else {
81                 source_format->width = sink_format->width;
82                 source_format->height = sink_format->height;
83         }
84
85         wpf->flip.rotate = rotate;
86
87         mutex_unlock(&wpf->entity.lock);
88
89 done:
90         mutex_unlock(&video->lock);
91         return ret;
92 }
93
94 static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
95 {
96         struct vsp1_rwpf *wpf =
97                 container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
98         unsigned int rotation;
99         u32 flip = 0;
100         int ret;
101
102         /* Update the rotation. */
103         rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
104         ret = vsp1_wpf_set_rotation(wpf, rotation);
105         if (ret < 0)
106                 return ret;
107
108         /*
109          * Compute the flip value resulting from all three controls, with
110          * rotation by 180° flipping the image in both directions. Store the
111          * result in the pending flip field for the next frame that will be
112          * processed.
113          */
114         if (wpf->flip.ctrls.vflip->val)
115                 flip |= BIT(WPF_CTRL_VFLIP);
116
117         if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
118                 flip |= BIT(WPF_CTRL_HFLIP);
119
120         if (rotation == 180 || rotation == 270)
121                 flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
122
123         spin_lock_irq(&wpf->flip.lock);
124         wpf->flip.pending = flip;
125         spin_unlock_irq(&wpf->flip.lock);
126
127         return 0;
128 }
129
130 static const struct v4l2_ctrl_ops vsp1_wpf_ctrl_ops = {
131         .s_ctrl = vsp1_wpf_s_ctrl,
132 };
133
134 static int wpf_init_controls(struct vsp1_rwpf *wpf)
135 {
136         struct vsp1_device *vsp1 = wpf->entity.vsp1;
137         unsigned int num_flip_ctrls;
138
139         spin_lock_init(&wpf->flip.lock);
140
141         if (wpf->entity.index != 0) {
142                 /* Only WPF0 supports flipping. */
143                 num_flip_ctrls = 0;
144         } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP)) {
145                 /*
146                  * When horizontal flip is supported the WPF implements three
147                  * controls (horizontal flip, vertical flip and rotation).
148                  */
149                 num_flip_ctrls = 3;
150         } else if (vsp1_feature(vsp1, VSP1_HAS_WPF_VFLIP)) {
151                 /*
152                  * When only vertical flip is supported the WPF implements a
153                  * single control (vertical flip).
154                  */
155                 num_flip_ctrls = 1;
156         } else {
157                 /* Otherwise flipping is not supported. */
158                 num_flip_ctrls = 0;
159         }
160
161         vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
162
163         if (num_flip_ctrls >= 1) {
164                 wpf->flip.ctrls.vflip =
165                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
166                                           V4L2_CID_VFLIP, 0, 1, 1, 0);
167         }
168
169         if (num_flip_ctrls == 3) {
170                 wpf->flip.ctrls.hflip =
171                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
172                                           V4L2_CID_HFLIP, 0, 1, 1, 0);
173                 wpf->flip.ctrls.rotate =
174                         v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
175                                           V4L2_CID_ROTATE, 0, 270, 90, 0);
176                 v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
177         }
178
179         if (wpf->ctrls.error) {
180                 dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
181                         wpf->entity.index);
182                 return wpf->ctrls.error;
183         }
184
185         return 0;
186 }
187
188 /* -----------------------------------------------------------------------------
189  * V4L2 Subdevice Core Operations
190  */
191
192 static int wpf_s_stream(struct v4l2_subdev *subdev, int enable)
193 {
194         struct vsp1_rwpf *wpf = to_rwpf(subdev);
195         struct vsp1_device *vsp1 = wpf->entity.vsp1;
196
197         if (enable)
198                 return 0;
199
200         /*
201          * Write to registers directly when stopping the stream as there will be
202          * no pipeline run to apply the display list.
203          */
204         vsp1_write(vsp1, VI6_WPF_IRQ_ENB(wpf->entity.index), 0);
205         vsp1_write(vsp1, wpf->entity.index * VI6_WPF_OFFSET +
206                    VI6_WPF_SRCRPF, 0);
207
208         return 0;
209 }
210
211 /* -----------------------------------------------------------------------------
212  * V4L2 Subdevice Operations
213  */
214
215 static const struct v4l2_subdev_video_ops wpf_video_ops = {
216         .s_stream = wpf_s_stream,
217 };
218
219 static const struct v4l2_subdev_ops wpf_ops = {
220         .video  = &wpf_video_ops,
221         .pad    = &vsp1_rwpf_pad_ops,
222 };
223
224 /* -----------------------------------------------------------------------------
225  * VSP1 Entity Operations
226  */
227
228 static void vsp1_wpf_destroy(struct vsp1_entity *entity)
229 {
230         struct vsp1_rwpf *wpf = entity_to_rwpf(entity);
231
232         vsp1_dlm_destroy(wpf->dlm);
233 }
234
235 static int wpf_configure_writeback_chain(struct vsp1_rwpf *wpf,
236                                          struct vsp1_dl_list *dl)
237 {
238         unsigned int index = wpf->entity.index;
239         struct vsp1_dl_list *dl_next;
240         struct vsp1_dl_body *dlb;
241
242         dl_next = vsp1_dl_list_get(wpf->dlm);
243         if (!dl_next) {
244                 dev_err(wpf->entity.vsp1->dev,
245                         "Failed to obtain a dl list, disabling writeback\n");
246                 return -ENOMEM;
247         }
248
249         dlb = vsp1_dl_list_get_body0(dl_next);
250         vsp1_dl_body_write(dlb, VI6_WPF_WRBCK_CTRL(index), 0);
251         vsp1_dl_list_add_chain(dl, dl_next);
252
253         return 0;
254 }
255
256 static void wpf_configure_stream(struct vsp1_entity *entity,
257                                  struct vsp1_pipeline *pipe,
258                                  struct vsp1_dl_list *dl,
259                                  struct vsp1_dl_body *dlb)
260 {
261         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
262         struct vsp1_device *vsp1 = wpf->entity.vsp1;
263         const struct v4l2_mbus_framefmt *source_format;
264         const struct v4l2_mbus_framefmt *sink_format;
265         unsigned int index = wpf->entity.index;
266         unsigned int i;
267         u32 outfmt = 0;
268         u32 srcrpf = 0;
269         int ret;
270
271         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
272                                                  wpf->entity.config,
273                                                  RWPF_PAD_SINK);
274         source_format = vsp1_entity_get_pad_format(&wpf->entity,
275                                                    wpf->entity.config,
276                                                    RWPF_PAD_SOURCE);
277
278         /* Format */
279         if (!pipe->lif || wpf->writeback) {
280                 const struct v4l2_pix_format_mplane *format = &wpf->format;
281                 const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
282
283                 outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
284
285                 if (wpf->flip.rotate)
286                         outfmt |= VI6_WPF_OUTFMT_ROT;
287
288                 if (fmtinfo->alpha)
289                         outfmt |= VI6_WPF_OUTFMT_PXA;
290                 if (fmtinfo->swap_yc)
291                         outfmt |= VI6_WPF_OUTFMT_SPYCS;
292                 if (fmtinfo->swap_uv)
293                         outfmt |= VI6_WPF_OUTFMT_SPUVS;
294
295                 /* Destination stride and byte swapping. */
296                 vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_Y,
297                                format->plane_fmt[0].bytesperline);
298                 if (format->num_planes > 1)
299                         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_STRIDE_C,
300                                        format->plane_fmt[1].bytesperline);
301
302                 vsp1_wpf_write(wpf, dlb, VI6_WPF_DSWAP, fmtinfo->swap);
303
304                 if (vsp1_feature(vsp1, VSP1_HAS_WPF_HFLIP) && index == 0)
305                         vsp1_wpf_write(wpf, dlb, VI6_WPF_ROT_CTRL,
306                                        VI6_WPF_ROT_CTRL_LN16 |
307                                        (256 << VI6_WPF_ROT_CTRL_LMEM_WD_SHIFT));
308         }
309
310         if (sink_format->code != source_format->code)
311                 outfmt |= VI6_WPF_OUTFMT_CSC;
312
313         wpf->outfmt = outfmt;
314
315         vsp1_dl_body_write(dlb, VI6_DPR_WPF_FPORCH(index),
316                            VI6_DPR_WPF_FPORCH_FP_WPFN);
317
318         /*
319          * Sources. If the pipeline has a single input and BRx is not used,
320          * configure it as the master layer. Otherwise configure all
321          * inputs as sub-layers and select the virtual RPF as the master
322          * layer.
323          */
324         for (i = 0; i < vsp1->info->rpf_count; ++i) {
325                 struct vsp1_rwpf *input = pipe->inputs[i];
326
327                 if (!input)
328                         continue;
329
330                 srcrpf |= (!pipe->brx && pipe->num_inputs == 1)
331                         ? VI6_WPF_SRCRPF_RPF_ACT_MST(input->entity.index)
332                         : VI6_WPF_SRCRPF_RPF_ACT_SUB(input->entity.index);
333         }
334
335         if (pipe->brx)
336                 srcrpf |= pipe->brx->type == VSP1_ENTITY_BRU
337                         ? VI6_WPF_SRCRPF_VIRACT_MST
338                         : VI6_WPF_SRCRPF_VIRACT2_MST;
339
340         vsp1_wpf_write(wpf, dlb, VI6_WPF_SRCRPF, srcrpf);
341
342         /* Enable interrupts. */
343         vsp1_dl_body_write(dlb, VI6_WPF_IRQ_STA(index), 0);
344         vsp1_dl_body_write(dlb, VI6_WPF_IRQ_ENB(index),
345                            VI6_WFP_IRQ_ENB_DFEE);
346
347         /*
348          * Configure writeback for display pipelines (the wpf writeback flag is
349          * never set for memory-to-memory pipelines). Start by adding a chained
350          * display list to disable writeback after a single frame, and process
351          * to enable writeback. If the display list allocation fails don't
352          * enable writeback as we wouldn't be able to safely disable it,
353          * resulting in possible memory corruption.
354          */
355         if (wpf->writeback) {
356                 ret = wpf_configure_writeback_chain(wpf, dl);
357                 if (ret < 0)
358                         wpf->writeback = false;
359         }
360
361         vsp1_dl_body_write(dlb, VI6_WPF_WRBCK_CTRL(index),
362                            wpf->writeback ? VI6_WPF_WRBCK_CTRL_WBMD : 0);
363 }
364
365 static void wpf_configure_frame(struct vsp1_entity *entity,
366                                 struct vsp1_pipeline *pipe,
367                                 struct vsp1_dl_list *dl,
368                                 struct vsp1_dl_body *dlb)
369 {
370         const unsigned int mask = BIT(WPF_CTRL_VFLIP)
371                                 | BIT(WPF_CTRL_HFLIP);
372         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
373         unsigned long flags;
374         u32 outfmt;
375
376         spin_lock_irqsave(&wpf->flip.lock, flags);
377         wpf->flip.active = (wpf->flip.active & ~mask)
378                          | (wpf->flip.pending & mask);
379         spin_unlock_irqrestore(&wpf->flip.lock, flags);
380
381         outfmt = (wpf->alpha << VI6_WPF_OUTFMT_PDV_SHIFT) | wpf->outfmt;
382
383         if (wpf->flip.active & BIT(WPF_CTRL_VFLIP))
384                 outfmt |= VI6_WPF_OUTFMT_FLP;
385         if (wpf->flip.active & BIT(WPF_CTRL_HFLIP))
386                 outfmt |= VI6_WPF_OUTFMT_HFLP;
387
388         vsp1_wpf_write(wpf, dlb, VI6_WPF_OUTFMT, outfmt);
389 }
390
391 static void wpf_configure_partition(struct vsp1_entity *entity,
392                                     struct vsp1_pipeline *pipe,
393                                     struct vsp1_dl_list *dl,
394                                     struct vsp1_dl_body *dlb)
395 {
396         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
397         struct vsp1_device *vsp1 = wpf->entity.vsp1;
398         struct vsp1_rwpf_memory mem = wpf->mem;
399         const struct v4l2_mbus_framefmt *sink_format;
400         const struct v4l2_pix_format_mplane *format = &wpf->format;
401         const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
402         unsigned int width;
403         unsigned int height;
404         unsigned int left;
405         unsigned int offset;
406         unsigned int flip;
407         unsigned int i;
408
409         sink_format = vsp1_entity_get_pad_format(&wpf->entity,
410                                                  wpf->entity.config,
411                                                  RWPF_PAD_SINK);
412         width = sink_format->width;
413         height = sink_format->height;
414         left = 0;
415
416         /*
417          * Cropping. The partition algorithm can split the image into
418          * multiple slices.
419          */
420         if (pipe->partitions > 1) {
421                 width = pipe->partition->wpf.width;
422                 left = pipe->partition->wpf.left;
423         }
424
425         vsp1_wpf_write(wpf, dlb, VI6_WPF_HSZCLIP, VI6_WPF_SZCLIP_EN |
426                        (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
427                        (width << VI6_WPF_SZCLIP_SIZE_SHIFT));
428         vsp1_wpf_write(wpf, dlb, VI6_WPF_VSZCLIP, VI6_WPF_SZCLIP_EN |
429                        (0 << VI6_WPF_SZCLIP_OFST_SHIFT) |
430                        (height << VI6_WPF_SZCLIP_SIZE_SHIFT));
431
432         /*
433          * For display pipelines without writeback enabled there's no memory
434          * address to configure, return now.
435          */
436         if (pipe->lif && !wpf->writeback)
437                 return;
438
439         /*
440          * Update the memory offsets based on flipping configuration.
441          * The destination addresses point to the locations where the
442          * VSP starts writing to memory, which can be any corner of the
443          * image depending on the combination of flipping and rotation.
444          */
445
446         /*
447          * First take the partition left coordinate into account.
448          * Compute the offset to order the partitions correctly on the
449          * output based on whether flipping is enabled. Consider
450          * horizontal flipping when rotation is disabled but vertical
451          * flipping when rotation is enabled, as rotating the image
452          * switches the horizontal and vertical directions. The offset
453          * is applied horizontally or vertically accordingly.
454          */
455         flip = wpf->flip.active;
456
457         if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
458                 offset = format->width - left - width;
459         else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
460                 offset = format->height - left - width;
461         else
462                 offset = left;
463
464         for (i = 0; i < format->num_planes; ++i) {
465                 unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
466                 unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
467
468                 if (wpf->flip.rotate)
469                         mem.addr[i] += offset / vsub
470                                      * format->plane_fmt[i].bytesperline;
471                 else
472                         mem.addr[i] += offset / hsub
473                                      * fmtinfo->bpp[i] / 8;
474         }
475
476         if (flip & BIT(WPF_CTRL_VFLIP)) {
477                 /*
478                  * When rotating the output (after rotation) image
479                  * height is equal to the partition width (before
480                  * rotation). Otherwise it is equal to the output
481                  * image height.
482                  */
483                 if (wpf->flip.rotate)
484                         height = width;
485                 else
486                         height = format->height;
487
488                 mem.addr[0] += (height - 1)
489                              * format->plane_fmt[0].bytesperline;
490
491                 if (format->num_planes > 1) {
492                         offset = (height / fmtinfo->vsub - 1)
493                                * format->plane_fmt[1].bytesperline;
494                         mem.addr[1] += offset;
495                         mem.addr[2] += offset;
496                 }
497         }
498
499         if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
500                 unsigned int hoffset = max(0, (int)format->width - 16);
501
502                 /*
503                  * Compute the output coordinate. The partition
504                  * horizontal (left) offset becomes a vertical offset.
505                  */
506                 for (i = 0; i < format->num_planes; ++i) {
507                         unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
508
509                         mem.addr[i] += hoffset / hsub
510                                      * fmtinfo->bpp[i] / 8;
511                 }
512         }
513
514         /*
515          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
516          * formats. Swap the U and V planes manually in that case.
517          */
518         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
519             fmtinfo->swap_uv)
520                 swap(mem.addr[1], mem.addr[2]);
521
522         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_Y, mem.addr[0]);
523         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C0, mem.addr[1]);
524         vsp1_wpf_write(wpf, dlb, VI6_WPF_DSTM_ADDR_C1, mem.addr[2]);
525
526         /*
527          * Writeback operates in single-shot mode and lasts for a single frame,
528          * reset the writeback flag to false for the next frame.
529          */
530         wpf->writeback = false;
531 }
532
533 static unsigned int wpf_max_width(struct vsp1_entity *entity,
534                                   struct vsp1_pipeline *pipe)
535 {
536         struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
537
538         return wpf->flip.rotate ? 256 : wpf->max_width;
539 }
540
541 static void wpf_partition(struct vsp1_entity *entity,
542                           struct vsp1_pipeline *pipe,
543                           struct vsp1_partition *partition,
544                           unsigned int partition_idx,
545                           struct vsp1_partition_window *window)
546 {
547         partition->wpf = *window;
548 }
549
550 static const struct vsp1_entity_operations wpf_entity_ops = {
551         .destroy = vsp1_wpf_destroy,
552         .configure_stream = wpf_configure_stream,
553         .configure_frame = wpf_configure_frame,
554         .configure_partition = wpf_configure_partition,
555         .max_width = wpf_max_width,
556         .partition = wpf_partition,
557 };
558
559 /* -----------------------------------------------------------------------------
560  * Initialization and Cleanup
561  */
562
563 struct vsp1_rwpf *vsp1_wpf_create(struct vsp1_device *vsp1, unsigned int index)
564 {
565         struct vsp1_rwpf *wpf;
566         char name[6];
567         int ret;
568
569         wpf = devm_kzalloc(vsp1->dev, sizeof(*wpf), GFP_KERNEL);
570         if (wpf == NULL)
571                 return ERR_PTR(-ENOMEM);
572
573         if (vsp1->info->gen == 2) {
574                 wpf->max_width = WPF_GEN2_MAX_WIDTH;
575                 wpf->max_height = WPF_GEN2_MAX_HEIGHT;
576         } else {
577                 wpf->max_width = WPF_GEN3_MAX_WIDTH;
578                 wpf->max_height = WPF_GEN3_MAX_HEIGHT;
579         }
580
581         wpf->entity.ops = &wpf_entity_ops;
582         wpf->entity.type = VSP1_ENTITY_WPF;
583         wpf->entity.index = index;
584
585         sprintf(name, "wpf.%u", index);
586         ret = vsp1_entity_init(vsp1, &wpf->entity, name, 2, &wpf_ops,
587                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
588         if (ret < 0)
589                 return ERR_PTR(ret);
590
591         /* Initialize the display list manager. */
592         wpf->dlm = vsp1_dlm_create(vsp1, index, 64);
593         if (!wpf->dlm) {
594                 ret = -ENOMEM;
595                 goto error;
596         }
597
598         /* Initialize the control handler. */
599         ret = wpf_init_controls(wpf);
600         if (ret < 0) {
601                 dev_err(vsp1->dev, "wpf%u: failed to initialize controls\n",
602                         index);
603                 goto error;
604         }
605
606         v4l2_ctrl_handler_setup(&wpf->ctrls);
607
608         return wpf;
609
610 error:
611         vsp1_entity_destroy(&wpf->entity);
612         return ERR_PTR(ret);
613 }