Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / media / platform / vsp1 / vsp1_rpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define RPF_MAX_WIDTH                           8190
21 #define RPF_MAX_HEIGHT                          8190
22
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25         u32 top_y0;
26         u32 bottom_y0;
27         u32 top_c0;
28         u32 bottom_c0;
29         u32 top_c1;
30         u32 bottom_c1;
31         u32 reserved0;
32         u32 reserved1;
33 } __packed;
34
35 /* -----------------------------------------------------------------------------
36  * Device Access
37  */
38
39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
41 {
42         vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43                                data);
44 }
45
46 /* -----------------------------------------------------------------------------
47  * V4L2 Subdevice Operations
48  */
49
50 static const struct v4l2_subdev_ops rpf_ops = {
51         .pad    = &vsp1_rwpf_pad_ops,
52 };
53
54 /* -----------------------------------------------------------------------------
55  * VSP1 Entity Operations
56  */
57
58 static void rpf_configure_stream(struct vsp1_entity *entity,
59                                  struct vsp1_pipeline *pipe,
60                                  struct vsp1_dl_list *dl,
61                                  struct vsp1_dl_body *dlb)
62 {
63         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
64         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
65         const struct v4l2_pix_format_mplane *format = &rpf->format;
66         const struct v4l2_mbus_framefmt *source_format;
67         const struct v4l2_mbus_framefmt *sink_format;
68         unsigned int left = 0;
69         unsigned int top = 0;
70         u32 pstride;
71         u32 infmt;
72
73         /* Stride */
74         pstride = format->plane_fmt[0].bytesperline
75                 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
76         if (format->num_planes > 1)
77                 pstride |= format->plane_fmt[1].bytesperline
78                         << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
79
80         /*
81          * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
82          * of pstride by 2 is conveniently OK here as we are multiplying both
83          * values.
84          */
85         if (pipe->interlaced)
86                 pstride *= 2;
87
88         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
89
90         /* Format */
91         sink_format = vsp1_entity_get_pad_format(&rpf->entity,
92                                                  rpf->entity.config,
93                                                  RWPF_PAD_SINK);
94         source_format = vsp1_entity_get_pad_format(&rpf->entity,
95                                                    rpf->entity.config,
96                                                    RWPF_PAD_SOURCE);
97
98         infmt = VI6_RPF_INFMT_CIPM
99               | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
100
101         if (fmtinfo->swap_yc)
102                 infmt |= VI6_RPF_INFMT_SPYCS;
103         if (fmtinfo->swap_uv)
104                 infmt |= VI6_RPF_INFMT_SPUVS;
105
106         if (sink_format->code != source_format->code)
107                 infmt |= VI6_RPF_INFMT_CSC;
108
109         vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
110         vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
111
112         /* Output location. */
113         if (pipe->brx) {
114                 const struct v4l2_rect *compose;
115
116                 compose = vsp1_entity_get_pad_selection(pipe->brx,
117                                                         pipe->brx->config,
118                                                         rpf->brx_input,
119                                                         V4L2_SEL_TGT_COMPOSE);
120                 left = compose->left;
121                 top = compose->top;
122         }
123
124         if (pipe->interlaced)
125                 top /= 2;
126
127         vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
128                        (left << VI6_RPF_LOC_HCOORD_SHIFT) |
129                        (top << VI6_RPF_LOC_VCOORD_SHIFT));
130
131         /*
132          * On Gen2 use the alpha channel (extended to 8 bits) when available or
133          * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
134          * otherwise.
135          *
136          * The Gen3 RPF has extended alpha capability and can both multiply the
137          * alpha channel by a fixed global alpha value, and multiply the pixel
138          * components to convert the input to premultiplied alpha.
139          *
140          * As alpha premultiplication is available in the BRx for both Gen2 and
141          * Gen3 we handle it there and use the Gen3 alpha multiplier for global
142          * alpha multiplication only. This however prevents conversion to
143          * premultiplied alpha if no BRx is present in the pipeline. If that use
144          * case turns out to be useful we will revisit the implementation (for
145          * Gen3 only).
146          *
147          * We enable alpha multiplication on Gen3 using the fixed alpha value
148          * set through the V4L2_CID_ALPHA_COMPONENT control when the input
149          * contains an alpha channel. On Gen2 the global alpha is ignored in
150          * that case.
151          *
152          * In all cases, disable color keying.
153          */
154         vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
155                        (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
156                                        : VI6_RPF_ALPH_SEL_ASEL_FIXED));
157
158         if (entity->vsp1->info->gen == 3) {
159                 u32 mult;
160
161                 if (fmtinfo->alpha) {
162                         /*
163                          * When the input contains an alpha channel enable the
164                          * alpha multiplier. If the input is premultiplied we
165                          * need to multiply both the alpha channel and the pixel
166                          * components by the global alpha value to keep them
167                          * premultiplied. Otherwise multiply the alpha channel
168                          * only.
169                          */
170                         bool premultiplied = format->flags
171                                            & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
172
173                         mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
174                              | (premultiplied ?
175                                 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
176                                 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
177                 } else {
178                         /*
179                          * When the input doesn't contain an alpha channel the
180                          * global alpha value is applied in the unpacking unit,
181                          * the alpha multiplier isn't needed and must be
182                          * disabled.
183                          */
184                         mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
185                              | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
186                 }
187
188                 rpf->mult_alpha = mult;
189         }
190
191         vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
192         vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
193
194 }
195
196 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
197                                        struct vsp1_dl_list *dl)
198 {
199         const struct v4l2_pix_format_mplane *format = &rpf->format;
200         struct vsp1_dl_ext_cmd *cmd;
201         struct vsp1_extcmd_auto_fld_body *auto_fld;
202         u32 offset_y, offset_c;
203
204         cmd = vsp1_dl_get_pre_cmd(dl);
205         if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
206                 return;
207
208         /* Re-index our auto_fld to match the current RPF. */
209         auto_fld = cmd->data;
210         auto_fld = &auto_fld[rpf->entity.index];
211
212         auto_fld->top_y0 = rpf->mem.addr[0];
213         auto_fld->top_c0 = rpf->mem.addr[1];
214         auto_fld->top_c1 = rpf->mem.addr[2];
215
216         offset_y = format->plane_fmt[0].bytesperline;
217         offset_c = format->plane_fmt[1].bytesperline;
218
219         auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
220         auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
221         auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
222
223         cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
224 }
225
226 static void rpf_configure_frame(struct vsp1_entity *entity,
227                                 struct vsp1_pipeline *pipe,
228                                 struct vsp1_dl_list *dl,
229                                 struct vsp1_dl_body *dlb)
230 {
231         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
232
233         vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
234                        rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
235         vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
236                        (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
237
238         vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
239 }
240
241 static void rpf_configure_partition(struct vsp1_entity *entity,
242                                     struct vsp1_pipeline *pipe,
243                                     struct vsp1_dl_list *dl,
244                                     struct vsp1_dl_body *dlb)
245 {
246         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
247         struct vsp1_rwpf_memory mem = rpf->mem;
248         struct vsp1_device *vsp1 = rpf->entity.vsp1;
249         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
250         const struct v4l2_pix_format_mplane *format = &rpf->format;
251         struct v4l2_rect crop;
252
253         /*
254          * Source size and crop offsets.
255          *
256          * The crop offsets correspond to the location of the crop
257          * rectangle top left corner in the plane buffer. Only two
258          * offsets are needed, as planes 2 and 3 always have identical
259          * strides.
260          */
261         crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
262
263         /*
264          * Partition Algorithm Control
265          *
266          * The partition algorithm can split this frame into multiple
267          * slices. We must scale our partition window based on the pipe
268          * configuration to match the destination partition window.
269          * To achieve this, we adjust our crop to provide a 'sub-crop'
270          * matching the expected partition window. Only 'left' and
271          * 'width' need to be adjusted.
272          */
273         if (pipe->partitions > 1) {
274                 crop.width = pipe->partition->rpf.width;
275                 crop.left += pipe->partition->rpf.left;
276         }
277
278         if (pipe->interlaced) {
279                 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
280                 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
281         }
282
283         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
284                        (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
285                        (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
286         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
287                        (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
288                        (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
289
290         mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
291                      + crop.left * fmtinfo->bpp[0] / 8;
292
293         if (format->num_planes > 1) {
294                 unsigned int offset;
295
296                 offset = crop.top * format->plane_fmt[1].bytesperline
297                        + crop.left / fmtinfo->hsub
298                        * fmtinfo->bpp[1] / 8;
299                 mem.addr[1] += offset;
300                 mem.addr[2] += offset;
301         }
302
303         /*
304          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
305          * formats. Swap the U and V planes manually in that case.
306          */
307         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
308             fmtinfo->swap_uv)
309                 swap(mem.addr[1], mem.addr[2]);
310
311         /*
312          * Interlaced pipelines will use the extended pre-cmd to process
313          * SRCM_ADDR_{Y,C0,C1}.
314          */
315         if (pipe->interlaced) {
316                 vsp1_rpf_configure_autofld(rpf, dl);
317         } else {
318                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
319                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
320                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
321         }
322 }
323
324 static void rpf_partition(struct vsp1_entity *entity,
325                           struct vsp1_pipeline *pipe,
326                           struct vsp1_partition *partition,
327                           unsigned int partition_idx,
328                           struct vsp1_partition_window *window)
329 {
330         partition->rpf = *window;
331 }
332
333 static const struct vsp1_entity_operations rpf_entity_ops = {
334         .configure_stream = rpf_configure_stream,
335         .configure_frame = rpf_configure_frame,
336         .configure_partition = rpf_configure_partition,
337         .partition = rpf_partition,
338 };
339
340 /* -----------------------------------------------------------------------------
341  * Initialization and Cleanup
342  */
343
344 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
345 {
346         struct vsp1_rwpf *rpf;
347         char name[6];
348         int ret;
349
350         rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
351         if (rpf == NULL)
352                 return ERR_PTR(-ENOMEM);
353
354         rpf->max_width = RPF_MAX_WIDTH;
355         rpf->max_height = RPF_MAX_HEIGHT;
356
357         rpf->entity.ops = &rpf_entity_ops;
358         rpf->entity.type = VSP1_ENTITY_RPF;
359         rpf->entity.index = index;
360
361         sprintf(name, "rpf.%u", index);
362         ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
363                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
364         if (ret < 0)
365                 return ERR_PTR(ret);
366
367         /* Initialize the control handler. */
368         ret = vsp1_rwpf_init_ctrls(rpf, 0);
369         if (ret < 0) {
370                 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
371                         index);
372                 goto error;
373         }
374
375         v4l2_ctrl_handler_setup(&rpf->ctrls);
376
377         return rpf;
378
379 error:
380         vsp1_entity_destroy(&rpf->entity);
381         return ERR_PTR(ret);
382 }