Linux-libre 3.14.42-gnu
[librecmc/linux-libre.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 /*
2  * drivers/media/i2c/smiapp/smiapp-core.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2010--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8  *
9  * Based on smiapp driver by Vimarsh Zutshi
10  * Based on jt8ev1.c by Vimarsh Zutshi
11  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2 as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25  * 02110-1301 USA
26  *
27  */
28
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/v4l2-mediabus.h>
37 #include <media/v4l2-device.h>
38
39 #include "smiapp.h"
40
41 #define SMIAPP_ALIGN_DIM(dim, flags)    \
42         ((flags) & V4L2_SEL_FLAG_GE     \
43          ? ALIGN((dim), 2)              \
44          : (dim) & ~1)
45
46 /*
47  * smiapp_module_idents - supported camera modules
48  */
49 static const struct smiapp_module_ident smiapp_module_idents[] = {
50         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
51         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
52         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
53         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
54         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
55         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
56         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
57         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
58         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
59         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
60         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
61 };
62
63 /*
64  *
65  * Dynamic Capability Identification
66  *
67  */
68
69 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
70 {
71         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
72         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
73         unsigned int i;
74         int rval;
75         int line_count = 0;
76         int embedded_start = -1, embedded_end = -1;
77         int image_start = 0;
78
79         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
80                            &fmt_model_type);
81         if (rval)
82                 return rval;
83
84         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
85                            &fmt_model_subtype);
86         if (rval)
87                 return rval;
88
89         ncol_desc = (fmt_model_subtype
90                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
91                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
92         nrow_desc = fmt_model_subtype
93                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
94
95         dev_dbg(&client->dev, "format_model_type %s\n",
96                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
97                 ? "2 byte" :
98                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
99                 ? "4 byte" : "is simply bad");
100
101         for (i = 0; i < ncol_desc + nrow_desc; i++) {
102                 u32 desc;
103                 u32 pixelcode;
104                 u32 pixels;
105                 char *which;
106                 char *what;
107
108                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
109                         rval = smiapp_read(
110                                 sensor,
111                                 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
112                                 &desc);
113                         if (rval)
114                                 return rval;
115
116                         pixelcode =
117                                 (desc
118                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
119                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
120                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
121                 } else if (fmt_model_type
122                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
123                         rval = smiapp_read(
124                                 sensor,
125                                 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
126                                 &desc);
127                         if (rval)
128                                 return rval;
129
130                         pixelcode =
131                                 (desc
132                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
133                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
134                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
135                 } else {
136                         dev_dbg(&client->dev,
137                                 "invalid frame format model type %d\n",
138                                 fmt_model_type);
139                         return -EINVAL;
140                 }
141
142                 if (i < ncol_desc)
143                         which = "columns";
144                 else
145                         which = "rows";
146
147                 switch (pixelcode) {
148                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
149                         what = "embedded";
150                         break;
151                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
152                         what = "dummy";
153                         break;
154                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
155                         what = "black";
156                         break;
157                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
158                         what = "dark";
159                         break;
160                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
161                         what = "visible";
162                         break;
163                 default:
164                         what = "invalid";
165                         dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
166                         break;
167                 }
168
169                 dev_dbg(&client->dev, "%s pixels: %d %s\n",
170                         what, pixels, which);
171
172                 if (i < ncol_desc)
173                         continue;
174
175                 /* Handle row descriptors */
176                 if (pixelcode
177                     == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
178                         embedded_start = line_count;
179                 } else {
180                         if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
181                             || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
182                                 image_start = line_count;
183                         if (embedded_start != -1 && embedded_end == -1)
184                                 embedded_end = line_count;
185                 }
186                 line_count += pixels;
187         }
188
189         if (embedded_start == -1 || embedded_end == -1) {
190                 embedded_start = 0;
191                 embedded_end = 0;
192         }
193
194         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
195                 embedded_start, embedded_end);
196         dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
197
198         return 0;
199 }
200
201 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
202 {
203         struct smiapp_pll *pll = &sensor->pll;
204         int rval;
205
206         rval = smiapp_write(
207                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
208         if (rval < 0)
209                 return rval;
210
211         rval = smiapp_write(
212                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
213         if (rval < 0)
214                 return rval;
215
216         rval = smiapp_write(
217                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
218         if (rval < 0)
219                 return rval;
220
221         rval = smiapp_write(
222                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
223         if (rval < 0)
224                 return rval;
225
226         /* Lane op clock ratio does not apply here. */
227         rval = smiapp_write(
228                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
229                 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
230         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
231                 return rval;
232
233         rval = smiapp_write(
234                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
235         if (rval < 0)
236                 return rval;
237
238         return smiapp_write(
239                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
240 }
241
242 static int smiapp_pll_update(struct smiapp_sensor *sensor)
243 {
244         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
245         struct smiapp_pll_limits lim = {
246                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
247                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
248                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
249                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
250                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
251                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
252                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
253                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
254
255                 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
256                 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
257                 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
258                 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
259                 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
260                 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
261                 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
262                 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
263
264                 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
265                 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
266                 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
267                 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
268                 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
269                 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
270                 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
271                 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
272
273                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
274                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
275         };
276         struct smiapp_pll *pll = &sensor->pll;
277         int rval;
278
279         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
280                 /*
281                  * Fill in operational clock divisors limits from the
282                  * video timing ones. On profile 0 sensors the
283                  * requirements regarding them are essentially the
284                  * same as on VT ones.
285                  */
286                 lim.op = lim.vt;
287         }
288
289         pll->binning_horizontal = sensor->binning_horizontal;
290         pll->binning_vertical = sensor->binning_vertical;
291         pll->link_freq =
292                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
293         pll->scale_m = sensor->scale_m;
294         pll->bits_per_pixel = sensor->csi_format->compressed;
295
296         rval = smiapp_pll_calculate(&client->dev, &lim, pll);
297         if (rval < 0)
298                 return rval;
299
300         sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
301         sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
302
303         return 0;
304 }
305
306
307 /*
308  *
309  * V4L2 Controls handling
310  *
311  */
312
313 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
314 {
315         struct v4l2_ctrl *ctrl = sensor->exposure;
316         int max;
317
318         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
319                 + sensor->vblank->val
320                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
321
322         ctrl->maximum = max;
323         if (ctrl->default_value > max)
324                 ctrl->default_value = max;
325         if (ctrl->val > max)
326                 ctrl->val = max;
327         if (ctrl->cur.val > max)
328                 ctrl->cur.val = max;
329 }
330
331 /*
332  * Order matters.
333  *
334  * 1. Bits-per-pixel, descending.
335  * 2. Bits-per-pixel compressed, descending.
336  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
337  *    orders must be defined.
338  */
339 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
340         { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
341         { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
342         { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
343         { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
344         { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
345         { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
346         { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
347         { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
348         { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349         { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350         { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351         { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352         { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
353         { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
354         { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
355         { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
356 };
357
358 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
359
360 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
361                                  - (unsigned long)smiapp_csi_data_formats) \
362                                 / sizeof(*smiapp_csi_data_formats))
363
364 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
365 {
366         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
367         int flip = 0;
368
369         if (sensor->hflip) {
370                 if (sensor->hflip->val)
371                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
372
373                 if (sensor->vflip->val)
374                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
375         }
376
377         flip ^= sensor->hvflip_inv_mask;
378
379         dev_dbg(&client->dev, "flip %d\n", flip);
380         return sensor->default_pixel_order ^ flip;
381 }
382
383 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
384 {
385         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
386         unsigned int csi_format_idx =
387                 to_csi_format_idx(sensor->csi_format) & ~3;
388         unsigned int internal_csi_format_idx =
389                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
390         unsigned int pixel_order = smiapp_pixel_order(sensor);
391
392         sensor->mbus_frame_fmts =
393                 sensor->default_mbus_frame_fmts << pixel_order;
394         sensor->csi_format =
395                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
396         sensor->internal_csi_format =
397                 &smiapp_csi_data_formats[internal_csi_format_idx
398                                          + pixel_order];
399
400         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
401                >= ARRAY_SIZE(smiapp_csi_data_formats));
402
403         dev_dbg(&client->dev, "new pixel order %s\n",
404                 pixel_order_str[pixel_order]);
405 }
406
407 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
408 {
409         struct smiapp_sensor *sensor =
410                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
411                         ->sensor;
412         u32 orient = 0;
413         int exposure;
414         int rval;
415
416         switch (ctrl->id) {
417         case V4L2_CID_ANALOGUE_GAIN:
418                 return smiapp_write(
419                         sensor,
420                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
421
422         case V4L2_CID_EXPOSURE:
423                 return smiapp_write(
424                         sensor,
425                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
426
427         case V4L2_CID_HFLIP:
428         case V4L2_CID_VFLIP:
429                 if (sensor->streaming)
430                         return -EBUSY;
431
432                 if (sensor->hflip->val)
433                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
434
435                 if (sensor->vflip->val)
436                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
437
438                 orient ^= sensor->hvflip_inv_mask;
439                 rval = smiapp_write(sensor,
440                                     SMIAPP_REG_U8_IMAGE_ORIENTATION,
441                                     orient);
442                 if (rval < 0)
443                         return rval;
444
445                 smiapp_update_mbus_formats(sensor);
446
447                 return 0;
448
449         case V4L2_CID_VBLANK:
450                 exposure = sensor->exposure->val;
451
452                 __smiapp_update_exposure_limits(sensor);
453
454                 if (exposure > sensor->exposure->maximum) {
455                         sensor->exposure->val =
456                                 sensor->exposure->maximum;
457                         rval = smiapp_set_ctrl(
458                                 sensor->exposure);
459                         if (rval < 0)
460                                 return rval;
461                 }
462
463                 return smiapp_write(
464                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
465                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
466                         + ctrl->val);
467
468         case V4L2_CID_HBLANK:
469                 return smiapp_write(
470                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
471                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
472                         + ctrl->val);
473
474         case V4L2_CID_LINK_FREQ:
475                 if (sensor->streaming)
476                         return -EBUSY;
477
478                 return smiapp_pll_update(sensor);
479
480         default:
481                 return -EINVAL;
482         }
483 }
484
485 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
486         .s_ctrl = smiapp_set_ctrl,
487 };
488
489 static int smiapp_init_controls(struct smiapp_sensor *sensor)
490 {
491         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
492         unsigned int max;
493         int rval;
494
495         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
496         if (rval)
497                 return rval;
498         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
499
500         sensor->analog_gain = v4l2_ctrl_new_std(
501                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
502                 V4L2_CID_ANALOGUE_GAIN,
503                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
504                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
505                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
506                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
507
508         /* Exposure limits will be updated soon, use just something here. */
509         sensor->exposure = v4l2_ctrl_new_std(
510                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
511                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
512
513         sensor->hflip = v4l2_ctrl_new_std(
514                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
515                 V4L2_CID_HFLIP, 0, 1, 1, 0);
516         sensor->vflip = v4l2_ctrl_new_std(
517                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
518                 V4L2_CID_VFLIP, 0, 1, 1, 0);
519
520         sensor->vblank = v4l2_ctrl_new_std(
521                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
522                 V4L2_CID_VBLANK, 0, 1, 1, 0);
523
524         if (sensor->vblank)
525                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
526
527         sensor->hblank = v4l2_ctrl_new_std(
528                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
529                 V4L2_CID_HBLANK, 0, 1, 1, 0);
530
531         if (sensor->hblank)
532                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
533
534         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
535                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
536                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
537
538         if (sensor->pixel_array->ctrl_handler.error) {
539                 dev_err(&client->dev,
540                         "pixel array controls initialization failed (%d)\n",
541                         sensor->pixel_array->ctrl_handler.error);
542                 rval = sensor->pixel_array->ctrl_handler.error;
543                 goto error;
544         }
545
546         sensor->pixel_array->sd.ctrl_handler =
547                 &sensor->pixel_array->ctrl_handler;
548
549         v4l2_ctrl_cluster(2, &sensor->hflip);
550
551         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
552         if (rval)
553                 goto error;
554         sensor->src->ctrl_handler.lock = &sensor->mutex;
555
556         for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
557
558         sensor->link_freq = v4l2_ctrl_new_int_menu(
559                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
560                 V4L2_CID_LINK_FREQ, max, 0,
561                 sensor->platform_data->op_sys_clock);
562
563         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
564                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
565                 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
566
567         if (sensor->src->ctrl_handler.error) {
568                 dev_err(&client->dev,
569                         "src controls initialization failed (%d)\n",
570                         sensor->src->ctrl_handler.error);
571                 rval = sensor->src->ctrl_handler.error;
572                 goto error;
573         }
574
575         sensor->src->sd.ctrl_handler =
576                 &sensor->src->ctrl_handler;
577
578         return 0;
579
580 error:
581         v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
582         v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
583
584         return rval;
585 }
586
587 static void smiapp_free_controls(struct smiapp_sensor *sensor)
588 {
589         unsigned int i;
590
591         for (i = 0; i < sensor->ssds_used; i++)
592                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
593 }
594
595 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
596                              unsigned int n)
597 {
598         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
599         unsigned int i;
600         u32 val;
601         int rval;
602
603         for (i = 0; i < n; i++) {
604                 rval = smiapp_read(
605                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
606                 if (rval)
607                         return rval;
608                 sensor->limits[limit[i]] = val;
609                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
610                         smiapp_reg_limits[limit[i]].addr,
611                         smiapp_reg_limits[limit[i]].what, val, val);
612         }
613
614         return 0;
615 }
616
617 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
618 {
619         unsigned int i;
620         int rval;
621
622         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
623                 rval = smiapp_get_limits(sensor, &i, 1);
624                 if (rval < 0)
625                         return rval;
626         }
627
628         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
629                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
630
631         return 0;
632 }
633
634 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
635 {
636         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
637         static u32 const limits[] = {
638                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
639                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
640                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
641                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
642                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
643                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
644                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
645         };
646         static u32 const limits_replace[] = {
647                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
648                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
649                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
650                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
651                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
652                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
653                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
654         };
655         unsigned int i;
656         int rval;
657
658         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
659             SMIAPP_BINNING_CAPABILITY_NO) {
660                 for (i = 0; i < ARRAY_SIZE(limits); i++)
661                         sensor->limits[limits[i]] =
662                                 sensor->limits[limits_replace[i]];
663
664                 return 0;
665         }
666
667         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
668         if (rval < 0)
669                 return rval;
670
671         /*
672          * Sanity check whether the binning limits are valid. If not,
673          * use the non-binning ones.
674          */
675         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
676             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
677             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
678                 return 0;
679
680         for (i = 0; i < ARRAY_SIZE(limits); i++) {
681                 dev_dbg(&client->dev,
682                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
683                         smiapp_reg_limits[limits[i]].addr,
684                         smiapp_reg_limits[limits[i]].what,
685                         sensor->limits[limits_replace[i]],
686                         sensor->limits[limits_replace[i]]);
687                 sensor->limits[limits[i]] =
688                         sensor->limits[limits_replace[i]];
689         }
690
691         return 0;
692 }
693
694 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
695 {
696         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
697         unsigned int type, n;
698         unsigned int i, pixel_order;
699         int rval;
700
701         rval = smiapp_read(
702                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
703         if (rval)
704                 return rval;
705
706         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
707
708         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
709                            &pixel_order);
710         if (rval)
711                 return rval;
712
713         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
714                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
715                 return -EINVAL;
716         }
717
718         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
719                 pixel_order_str[pixel_order]);
720
721         switch (type) {
722         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
723                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
724                 break;
725         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
726                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
727                 break;
728         default:
729                 return -EINVAL;
730         }
731
732         sensor->default_pixel_order = pixel_order;
733         sensor->mbus_frame_fmts = 0;
734
735         for (i = 0; i < n; i++) {
736                 unsigned int fmt, j;
737
738                 rval = smiapp_read(
739                         sensor,
740                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
741                 if (rval)
742                         return rval;
743
744                 dev_dbg(&client->dev, "bpp %d, compressed %d\n",
745                         fmt >> 8, (u8)fmt);
746
747                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
748                         const struct smiapp_csi_data_format *f =
749                                 &smiapp_csi_data_formats[j];
750
751                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
752                                 continue;
753
754                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
755                                 continue;
756
757                         dev_dbg(&client->dev, "jolly good! %d\n", j);
758
759                         sensor->default_mbus_frame_fmts |= 1 << j;
760                         if (!sensor->csi_format
761                             || f->width > sensor->csi_format->width
762                             || (f->width == sensor->csi_format->width
763                                 && f->compressed
764                                 > sensor->csi_format->compressed)) {
765                                 sensor->csi_format = f;
766                                 sensor->internal_csi_format = f;
767                         }
768                 }
769         }
770
771         if (!sensor->csi_format) {
772                 dev_err(&client->dev, "no supported mbus code found\n");
773                 return -EINVAL;
774         }
775
776         smiapp_update_mbus_formats(sensor);
777
778         return 0;
779 }
780
781 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
782 {
783         struct v4l2_ctrl *vblank = sensor->vblank;
784         struct v4l2_ctrl *hblank = sensor->hblank;
785
786         vblank->minimum =
787                 max_t(int,
788                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
789                       sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
790                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
791         vblank->maximum =
792                 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
793                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
794
795         vblank->val = clamp_t(int, vblank->val,
796                               vblank->minimum, vblank->maximum);
797         vblank->default_value = vblank->minimum;
798         vblank->val = vblank->val;
799         vblank->cur.val = vblank->val;
800
801         hblank->minimum =
802                 max_t(int,
803                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
804                       sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
805                       sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
806         hblank->maximum =
807                 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
808                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
809
810         hblank->val = clamp_t(int, hblank->val,
811                               hblank->minimum, hblank->maximum);
812         hblank->default_value = hblank->minimum;
813         hblank->val = hblank->val;
814         hblank->cur.val = hblank->val;
815
816         __smiapp_update_exposure_limits(sensor);
817 }
818
819 static int smiapp_update_mode(struct smiapp_sensor *sensor)
820 {
821         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
822         unsigned int binning_mode;
823         int rval;
824
825         dev_dbg(&client->dev, "frame size: %dx%d\n",
826                 sensor->src->crop[SMIAPP_PAD_SRC].width,
827                 sensor->src->crop[SMIAPP_PAD_SRC].height);
828         dev_dbg(&client->dev, "csi format width: %d\n",
829                 sensor->csi_format->width);
830
831         /* Binning has to be set up here; it affects limits */
832         if (sensor->binning_horizontal == 1 &&
833             sensor->binning_vertical == 1) {
834                 binning_mode = 0;
835         } else {
836                 u8 binning_type =
837                         (sensor->binning_horizontal << 4)
838                         | sensor->binning_vertical;
839
840                 rval = smiapp_write(
841                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
842                 if (rval < 0)
843                         return rval;
844
845                 binning_mode = 1;
846         }
847         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
848         if (rval < 0)
849                 return rval;
850
851         /* Get updated limits due to binning */
852         rval = smiapp_get_limits_binning(sensor);
853         if (rval < 0)
854                 return rval;
855
856         rval = smiapp_pll_update(sensor);
857         if (rval < 0)
858                 return rval;
859
860         /* Output from pixel array, including blanking */
861         smiapp_update_blanking(sensor);
862
863         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
864         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
865
866         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
867                 sensor->pll.vt_pix_clk_freq_hz /
868                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
869                   + sensor->hblank->val) *
870                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
871                   + sensor->vblank->val) / 100));
872
873         return 0;
874 }
875
876 /*
877  *
878  * SMIA++ NVM handling
879  *
880  */
881 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
882                            unsigned char *nvm)
883 {
884         u32 i, s, p, np, v;
885         int rval = 0, rval2;
886
887         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
888         for (p = 0; p < np; p++) {
889                 rval = smiapp_write(
890                         sensor,
891                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
892                 if (rval)
893                         goto out;
894
895                 rval = smiapp_write(sensor,
896                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
897                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
898                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
899                 if (rval)
900                         goto out;
901
902                 for (i = 0; i < 1000; i++) {
903                         rval = smiapp_read(
904                                 sensor,
905                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
906
907                         if (rval)
908                                 goto out;
909
910                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
911                                 break;
912
913                         if (--i == 0) {
914                                 rval = -ETIMEDOUT;
915                                 goto out;
916                         }
917
918                 }
919
920                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
921                         rval = smiapp_read(
922                                 sensor,
923                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
924                                 &v);
925                         if (rval)
926                                 goto out;
927
928                         *nvm++ = v;
929                 }
930         }
931
932 out:
933         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
934         if (rval < 0)
935                 return rval;
936         else
937                 return rval2;
938 }
939
940 /*
941  *
942  * SMIA++ CCI address control
943  *
944  */
945 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
946 {
947         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
948         int rval;
949         u32 val;
950
951         client->addr = sensor->platform_data->i2c_addr_dfl;
952
953         rval = smiapp_write(sensor,
954                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
955                             sensor->platform_data->i2c_addr_alt << 1);
956         if (rval)
957                 return rval;
958
959         client->addr = sensor->platform_data->i2c_addr_alt;
960
961         /* verify addr change went ok */
962         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
963         if (rval)
964                 return rval;
965
966         if (val != sensor->platform_data->i2c_addr_alt << 1)
967                 return -ENODEV;
968
969         return 0;
970 }
971
972 /*
973  *
974  * SMIA++ Mode Control
975  *
976  */
977 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
978 {
979         struct smiapp_flash_strobe_parms *strobe_setup;
980         unsigned int ext_freq = sensor->platform_data->ext_clk;
981         u32 tmp;
982         u32 strobe_adjustment;
983         u32 strobe_width_high_rs;
984         int rval;
985
986         strobe_setup = sensor->platform_data->strobe_setup;
987
988         /*
989          * How to calculate registers related to strobe length. Please
990          * do not change, or if you do at least know what you're
991          * doing. :-)
992          *
993          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
994          *
995          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
996          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
997          *
998          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
999          * flash_strobe_adjustment E N, [1 - 0xff]
1000          *
1001          * The formula above is written as below to keep it on one
1002          * line:
1003          *
1004          * l / 10^6 = w / e * a
1005          *
1006          * Let's mark w * a by x:
1007          *
1008          * x = w * a
1009          *
1010          * Thus, we get:
1011          *
1012          * x = l * e / 10^6
1013          *
1014          * The strobe width must be at least as long as requested,
1015          * thus rounding upwards is needed.
1016          *
1017          * x = (l * e + 10^6 - 1) / 10^6
1018          * -----------------------------
1019          *
1020          * Maximum possible accuracy is wanted at all times. Thus keep
1021          * a as small as possible.
1022          *
1023          * Calculate a, assuming maximum w, with rounding upwards:
1024          *
1025          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1026          * -------------------------------------
1027          *
1028          * Thus, we also get w, with that a, with rounding upwards:
1029          *
1030          * w = (x + a - 1) / a
1031          * -------------------
1032          *
1033          * To get limits:
1034          *
1035          * x E [1, (2^16 - 1) * (2^8 - 1)]
1036          *
1037          * Substituting maximum x to the original formula (with rounding),
1038          * the maximum l is thus
1039          *
1040          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1041          *
1042          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1043          * --------------------------------------------------
1044          *
1045          * flash_strobe_length must be clamped between 1 and
1046          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1047          *
1048          * Then,
1049          *
1050          * flash_strobe_adjustment = ((flash_strobe_length *
1051          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1052          *
1053          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1054          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1055          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1056          */
1057         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1058                       1000000 + 1, ext_freq);
1059         strobe_setup->strobe_width_high_us =
1060                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1061
1062         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1063                         1000000 - 1), 1000000ULL);
1064         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1065         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1066                                 strobe_adjustment;
1067
1068         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1069                             strobe_setup->mode);
1070         if (rval < 0)
1071                 goto out;
1072
1073         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1074                             strobe_adjustment);
1075         if (rval < 0)
1076                 goto out;
1077
1078         rval = smiapp_write(
1079                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1080                 strobe_width_high_rs);
1081         if (rval < 0)
1082                 goto out;
1083
1084         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1085                             strobe_setup->strobe_delay);
1086         if (rval < 0)
1087                 goto out;
1088
1089         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1090                             strobe_setup->stobe_start_point);
1091         if (rval < 0)
1092                 goto out;
1093
1094         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1095                             strobe_setup->trigger);
1096
1097 out:
1098         sensor->platform_data->strobe_setup->trigger = 0;
1099
1100         return rval;
1101 }
1102
1103 /* -----------------------------------------------------------------------------
1104  * Power management
1105  */
1106
1107 static int smiapp_power_on(struct smiapp_sensor *sensor)
1108 {
1109         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1110         unsigned int sleep;
1111         int rval;
1112
1113         rval = regulator_enable(sensor->vana);
1114         if (rval) {
1115                 dev_err(&client->dev, "failed to enable vana regulator\n");
1116                 return rval;
1117         }
1118         usleep_range(1000, 1000);
1119
1120         if (sensor->platform_data->set_xclk)
1121                 rval = sensor->platform_data->set_xclk(
1122                         &sensor->src->sd, sensor->platform_data->ext_clk);
1123         else
1124                 rval = clk_prepare_enable(sensor->ext_clk);
1125         if (rval < 0) {
1126                 dev_dbg(&client->dev, "failed to enable xclk\n");
1127                 goto out_xclk_fail;
1128         }
1129         usleep_range(1000, 1000);
1130
1131         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1132                 gpio_set_value(sensor->platform_data->xshutdown, 1);
1133
1134         sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1135         usleep_range(sleep, sleep);
1136
1137         /*
1138          * Failures to respond to the address change command have been noticed.
1139          * Those failures seem to be caused by the sensor requiring a longer
1140          * boot time than advertised. An additional 10ms delay seems to work
1141          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1142          * unnecessary. The failures need to be investigated to find a proper
1143          * fix, and a delay will likely need to be added here if the I2C write
1144          * retry hack is reverted before the root cause of the boot time issue
1145          * is found.
1146          */
1147
1148         if (sensor->platform_data->i2c_addr_alt) {
1149                 rval = smiapp_change_cci_addr(sensor);
1150                 if (rval) {
1151                         dev_err(&client->dev, "cci address change error\n");
1152                         goto out_cci_addr_fail;
1153                 }
1154         }
1155
1156         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1157                             SMIAPP_SOFTWARE_RESET);
1158         if (rval < 0) {
1159                 dev_err(&client->dev, "software reset failed\n");
1160                 goto out_cci_addr_fail;
1161         }
1162
1163         if (sensor->platform_data->i2c_addr_alt) {
1164                 rval = smiapp_change_cci_addr(sensor);
1165                 if (rval) {
1166                         dev_err(&client->dev, "cci address change error\n");
1167                         goto out_cci_addr_fail;
1168                 }
1169         }
1170
1171         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1172                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1173         if (rval) {
1174                 dev_err(&client->dev, "compression mode set failed\n");
1175                 goto out_cci_addr_fail;
1176         }
1177
1178         rval = smiapp_write(
1179                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1180                 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1181         if (rval) {
1182                 dev_err(&client->dev, "extclk frequency set failed\n");
1183                 goto out_cci_addr_fail;
1184         }
1185
1186         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1187                             sensor->platform_data->lanes - 1);
1188         if (rval) {
1189                 dev_err(&client->dev, "csi lane mode set failed\n");
1190                 goto out_cci_addr_fail;
1191         }
1192
1193         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1194                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1195         if (rval) {
1196                 dev_err(&client->dev, "fast standby set failed\n");
1197                 goto out_cci_addr_fail;
1198         }
1199
1200         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1201                             sensor->platform_data->csi_signalling_mode);
1202         if (rval) {
1203                 dev_err(&client->dev, "csi signalling mode set failed\n");
1204                 goto out_cci_addr_fail;
1205         }
1206
1207         /* DPHY control done by sensor based on requested link rate */
1208         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1209                             SMIAPP_DPHY_CTRL_UI);
1210         if (rval < 0)
1211                 return rval;
1212
1213         rval = smiapp_call_quirk(sensor, post_poweron);
1214         if (rval) {
1215                 dev_err(&client->dev, "post_poweron quirks failed\n");
1216                 goto out_cci_addr_fail;
1217         }
1218
1219         /* Are we still initialising...? If yes, return here. */
1220         if (!sensor->pixel_array)
1221                 return 0;
1222
1223         rval = v4l2_ctrl_handler_setup(
1224                 &sensor->pixel_array->ctrl_handler);
1225         if (rval)
1226                 goto out_cci_addr_fail;
1227
1228         rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1229         if (rval)
1230                 goto out_cci_addr_fail;
1231
1232         mutex_lock(&sensor->mutex);
1233         rval = smiapp_update_mode(sensor);
1234         mutex_unlock(&sensor->mutex);
1235         if (rval < 0)
1236                 goto out_cci_addr_fail;
1237
1238         return 0;
1239
1240 out_cci_addr_fail:
1241         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1242                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1243         if (sensor->platform_data->set_xclk)
1244                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1245         else
1246                 clk_disable_unprepare(sensor->ext_clk);
1247
1248 out_xclk_fail:
1249         regulator_disable(sensor->vana);
1250         return rval;
1251 }
1252
1253 static void smiapp_power_off(struct smiapp_sensor *sensor)
1254 {
1255         /*
1256          * Currently power/clock to lens are enable/disabled separately
1257          * but they are essentially the same signals. So if the sensor is
1258          * powered off while the lens is powered on the sensor does not
1259          * really see a power off and next time the cci address change
1260          * will fail. So do a soft reset explicitly here.
1261          */
1262         if (sensor->platform_data->i2c_addr_alt)
1263                 smiapp_write(sensor,
1264                              SMIAPP_REG_U8_SOFTWARE_RESET,
1265                              SMIAPP_SOFTWARE_RESET);
1266
1267         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1268                 gpio_set_value(sensor->platform_data->xshutdown, 0);
1269         if (sensor->platform_data->set_xclk)
1270                 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1271         else
1272                 clk_disable_unprepare(sensor->ext_clk);
1273         usleep_range(5000, 5000);
1274         regulator_disable(sensor->vana);
1275         sensor->streaming = 0;
1276 }
1277
1278 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1279 {
1280         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1281         int ret = 0;
1282
1283         mutex_lock(&sensor->power_mutex);
1284
1285         /*
1286          * If the power count is modified from 0 to != 0 or from != 0
1287          * to 0, update the power state.
1288          */
1289         if (!sensor->power_count == !on)
1290                 goto out;
1291
1292         if (on) {
1293                 /* Power on and perform initialisation. */
1294                 ret = smiapp_power_on(sensor);
1295                 if (ret < 0)
1296                         goto out;
1297         } else {
1298                 smiapp_power_off(sensor);
1299         }
1300
1301         /* Update the power count. */
1302         sensor->power_count += on ? 1 : -1;
1303         WARN_ON(sensor->power_count < 0);
1304
1305 out:
1306         mutex_unlock(&sensor->power_mutex);
1307         return ret;
1308 }
1309
1310 /* -----------------------------------------------------------------------------
1311  * Video stream management
1312  */
1313
1314 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1315 {
1316         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1317         int rval;
1318
1319         mutex_lock(&sensor->mutex);
1320
1321         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1322                             (sensor->csi_format->width << 8) |
1323                             sensor->csi_format->compressed);
1324         if (rval)
1325                 goto out;
1326
1327         rval = smiapp_pll_configure(sensor);
1328         if (rval)
1329                 goto out;
1330
1331         /* Analog crop start coordinates */
1332         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1333                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1334         if (rval < 0)
1335                 goto out;
1336
1337         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1338                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1339         if (rval < 0)
1340                 goto out;
1341
1342         /* Analog crop end coordinates */
1343         rval = smiapp_write(
1344                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1345                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1346                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1347         if (rval < 0)
1348                 goto out;
1349
1350         rval = smiapp_write(
1351                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1352                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1353                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1354         if (rval < 0)
1355                 goto out;
1356
1357         /*
1358          * Output from pixel array, including blanking, is set using
1359          * controls below. No need to set here.
1360          */
1361
1362         /* Digital crop */
1363         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1364             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1365                 rval = smiapp_write(
1366                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1367                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1368                 if (rval < 0)
1369                         goto out;
1370
1371                 rval = smiapp_write(
1372                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1373                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1374                 if (rval < 0)
1375                         goto out;
1376
1377                 rval = smiapp_write(
1378                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1379                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1380                 if (rval < 0)
1381                         goto out;
1382
1383                 rval = smiapp_write(
1384                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1385                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1386                 if (rval < 0)
1387                         goto out;
1388         }
1389
1390         /* Scaling */
1391         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1392             != SMIAPP_SCALING_CAPABILITY_NONE) {
1393                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1394                                     sensor->scaling_mode);
1395                 if (rval < 0)
1396                         goto out;
1397
1398                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1399                                     sensor->scale_m);
1400                 if (rval < 0)
1401                         goto out;
1402         }
1403
1404         /* Output size from sensor */
1405         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1406                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1407         if (rval < 0)
1408                 goto out;
1409         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1410                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1411         if (rval < 0)
1412                 goto out;
1413
1414         if ((sensor->flash_capability &
1415              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1416               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1417             sensor->platform_data->strobe_setup != NULL &&
1418             sensor->platform_data->strobe_setup->trigger != 0) {
1419                 rval = smiapp_setup_flash_strobe(sensor);
1420                 if (rval)
1421                         goto out;
1422         }
1423
1424         rval = smiapp_call_quirk(sensor, pre_streamon);
1425         if (rval) {
1426                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1427                 goto out;
1428         }
1429
1430         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1431                             SMIAPP_MODE_SELECT_STREAMING);
1432
1433 out:
1434         mutex_unlock(&sensor->mutex);
1435
1436         return rval;
1437 }
1438
1439 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1440 {
1441         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1442         int rval;
1443
1444         mutex_lock(&sensor->mutex);
1445         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1446                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1447         if (rval)
1448                 goto out;
1449
1450         rval = smiapp_call_quirk(sensor, post_streamoff);
1451         if (rval)
1452                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1453
1454 out:
1455         mutex_unlock(&sensor->mutex);
1456         return rval;
1457 }
1458
1459 /* -----------------------------------------------------------------------------
1460  * V4L2 subdev video operations
1461  */
1462
1463 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1464 {
1465         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1466         int rval;
1467
1468         if (sensor->streaming == enable)
1469                 return 0;
1470
1471         if (enable) {
1472                 sensor->streaming = 1;
1473                 rval = smiapp_start_streaming(sensor);
1474                 if (rval < 0)
1475                         sensor->streaming = 0;
1476         } else {
1477                 rval = smiapp_stop_streaming(sensor);
1478                 sensor->streaming = 0;
1479         }
1480
1481         return rval;
1482 }
1483
1484 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1485                                  struct v4l2_subdev_fh *fh,
1486                                  struct v4l2_subdev_mbus_code_enum *code)
1487 {
1488         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1489         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1490         unsigned int i;
1491         int idx = -1;
1492         int rval = -EINVAL;
1493
1494         mutex_lock(&sensor->mutex);
1495
1496         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1497                 subdev->name, code->pad, code->index);
1498
1499         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1500                 if (code->index)
1501                         goto out;
1502
1503                 code->code = sensor->internal_csi_format->code;
1504                 rval = 0;
1505                 goto out;
1506         }
1507
1508         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1509                 if (sensor->mbus_frame_fmts & (1 << i))
1510                         idx++;
1511
1512                 if (idx == code->index) {
1513                         code->code = smiapp_csi_data_formats[i].code;
1514                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1515                                 code->index, i, code->code);
1516                         rval = 0;
1517                         break;
1518                 }
1519         }
1520
1521 out:
1522         mutex_unlock(&sensor->mutex);
1523
1524         return rval;
1525 }
1526
1527 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1528                                   unsigned int pad)
1529 {
1530         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1531
1532         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1533                 return sensor->csi_format->code;
1534         else
1535                 return sensor->internal_csi_format->code;
1536 }
1537
1538 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1539                                struct v4l2_subdev_fh *fh,
1540                                struct v4l2_subdev_format *fmt)
1541 {
1542         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1543
1544         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1545                 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1546         } else {
1547                 struct v4l2_rect *r;
1548
1549                 if (fmt->pad == ssd->source_pad)
1550                         r = &ssd->crop[ssd->source_pad];
1551                 else
1552                         r = &ssd->sink_fmt;
1553
1554                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1555                 fmt->format.width = r->width;
1556                 fmt->format.height = r->height;
1557         }
1558
1559         return 0;
1560 }
1561
1562 static int smiapp_get_format(struct v4l2_subdev *subdev,
1563                              struct v4l2_subdev_fh *fh,
1564                              struct v4l2_subdev_format *fmt)
1565 {
1566         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1567         int rval;
1568
1569         mutex_lock(&sensor->mutex);
1570         rval = __smiapp_get_format(subdev, fh, fmt);
1571         mutex_unlock(&sensor->mutex);
1572
1573         return rval;
1574 }
1575
1576 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1577                                     struct v4l2_subdev_fh *fh,
1578                                     struct v4l2_rect **crops,
1579                                     struct v4l2_rect **comps, int which)
1580 {
1581         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1582         unsigned int i;
1583
1584         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1585                 if (crops)
1586                         for (i = 0; i < subdev->entity.num_pads; i++)
1587                                 crops[i] = &ssd->crop[i];
1588                 if (comps)
1589                         *comps = &ssd->compose;
1590         } else {
1591                 if (crops) {
1592                         for (i = 0; i < subdev->entity.num_pads; i++) {
1593                                 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1594                                 BUG_ON(!crops[i]);
1595                         }
1596                 }
1597                 if (comps) {
1598                         *comps = v4l2_subdev_get_try_compose(fh,
1599                                                              SMIAPP_PAD_SINK);
1600                         BUG_ON(!*comps);
1601                 }
1602         }
1603 }
1604
1605 /* Changes require propagation only on sink pad. */
1606 static void smiapp_propagate(struct v4l2_subdev *subdev,
1607                              struct v4l2_subdev_fh *fh, int which,
1608                              int target)
1609 {
1610         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1611         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1612         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1613
1614         smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1615
1616         switch (target) {
1617         case V4L2_SEL_TGT_CROP:
1618                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1619                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1620                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1621                         if (ssd == sensor->scaler) {
1622                                 sensor->scale_m =
1623                                         sensor->limits[
1624                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1625                                 sensor->scaling_mode =
1626                                         SMIAPP_SCALING_MODE_NONE;
1627                         } else if (ssd == sensor->binner) {
1628                                 sensor->binning_horizontal = 1;
1629                                 sensor->binning_vertical = 1;
1630                         }
1631                 }
1632                 /* Fall through */
1633         case V4L2_SEL_TGT_COMPOSE:
1634                 *crops[SMIAPP_PAD_SRC] = *comp;
1635                 break;
1636         default:
1637                 BUG();
1638         }
1639 }
1640
1641 static const struct smiapp_csi_data_format
1642 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1643 {
1644         const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1645         unsigned int i;
1646
1647         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1648                 if (sensor->mbus_frame_fmts & (1 << i)
1649                     && smiapp_csi_data_formats[i].code == code)
1650                         return &smiapp_csi_data_formats[i];
1651         }
1652
1653         return csi_format;
1654 }
1655
1656 static int smiapp_set_format(struct v4l2_subdev *subdev,
1657                              struct v4l2_subdev_fh *fh,
1658                              struct v4l2_subdev_format *fmt)
1659 {
1660         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1661         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1662         struct v4l2_rect *crops[SMIAPP_PADS];
1663
1664         mutex_lock(&sensor->mutex);
1665
1666         /*
1667          * Media bus code is changeable on src subdev's source pad. On
1668          * other source pads we just get format here.
1669          */
1670         if (fmt->pad == ssd->source_pad) {
1671                 u32 code = fmt->format.code;
1672                 int rval = __smiapp_get_format(subdev, fh, fmt);
1673
1674                 if (!rval && subdev == &sensor->src->sd) {
1675                         const struct smiapp_csi_data_format *csi_format =
1676                                 smiapp_validate_csi_data_format(sensor, code);
1677                         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1678                                 sensor->csi_format = csi_format;
1679                         fmt->format.code = csi_format->code;
1680                 }
1681
1682                 mutex_unlock(&sensor->mutex);
1683                 return rval;
1684         }
1685
1686         /* Sink pad. Width and height are changeable here. */
1687         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1688         fmt->format.width &= ~1;
1689         fmt->format.height &= ~1;
1690
1691         fmt->format.width =
1692                 clamp(fmt->format.width,
1693                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1694                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1695         fmt->format.height =
1696                 clamp(fmt->format.height,
1697                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1698                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1699
1700         smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1701
1702         crops[ssd->sink_pad]->left = 0;
1703         crops[ssd->sink_pad]->top = 0;
1704         crops[ssd->sink_pad]->width = fmt->format.width;
1705         crops[ssd->sink_pad]->height = fmt->format.height;
1706         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1707                 ssd->sink_fmt = *crops[ssd->sink_pad];
1708         smiapp_propagate(subdev, fh, fmt->which,
1709                          V4L2_SEL_TGT_CROP);
1710
1711         mutex_unlock(&sensor->mutex);
1712
1713         return 0;
1714 }
1715
1716 /*
1717  * Calculate goodness of scaled image size compared to expected image
1718  * size and flags provided.
1719  */
1720 #define SCALING_GOODNESS                100000
1721 #define SCALING_GOODNESS_EXTREME        100000000
1722 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1723                             int h, int ask_h, u32 flags)
1724 {
1725         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1726         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1727         int val = 0;
1728
1729         w &= ~1;
1730         ask_w &= ~1;
1731         h &= ~1;
1732         ask_h &= ~1;
1733
1734         if (flags & V4L2_SEL_FLAG_GE) {
1735                 if (w < ask_w)
1736                         val -= SCALING_GOODNESS;
1737                 if (h < ask_h)
1738                         val -= SCALING_GOODNESS;
1739         }
1740
1741         if (flags & V4L2_SEL_FLAG_LE) {
1742                 if (w > ask_w)
1743                         val -= SCALING_GOODNESS;
1744                 if (h > ask_h)
1745                         val -= SCALING_GOODNESS;
1746         }
1747
1748         val -= abs(w - ask_w);
1749         val -= abs(h - ask_h);
1750
1751         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1752                 val -= SCALING_GOODNESS_EXTREME;
1753
1754         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1755                 w, ask_h, h, ask_h, val);
1756
1757         return val;
1758 }
1759
1760 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1761                                       struct v4l2_subdev_fh *fh,
1762                                       struct v4l2_subdev_selection *sel,
1763                                       struct v4l2_rect **crops,
1764                                       struct v4l2_rect *comp)
1765 {
1766         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1767         unsigned int i;
1768         unsigned int binh = 1, binv = 1;
1769         unsigned int best = scaling_goodness(
1770                 subdev,
1771                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1772                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1773
1774         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1775                 int this = scaling_goodness(
1776                         subdev,
1777                         crops[SMIAPP_PAD_SINK]->width
1778                         / sensor->binning_subtypes[i].horizontal,
1779                         sel->r.width,
1780                         crops[SMIAPP_PAD_SINK]->height
1781                         / sensor->binning_subtypes[i].vertical,
1782                         sel->r.height, sel->flags);
1783
1784                 if (this > best) {
1785                         binh = sensor->binning_subtypes[i].horizontal;
1786                         binv = sensor->binning_subtypes[i].vertical;
1787                         best = this;
1788                 }
1789         }
1790         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1791                 sensor->binning_vertical = binv;
1792                 sensor->binning_horizontal = binh;
1793         }
1794
1795         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1796         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1797 }
1798
1799 /*
1800  * Calculate best scaling ratio and mode for given output resolution.
1801  *
1802  * Try all of these: horizontal ratio, vertical ratio and smallest
1803  * size possible (horizontally).
1804  *
1805  * Also try whether horizontal scaler or full scaler gives a better
1806  * result.
1807  */
1808 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1809                                       struct v4l2_subdev_fh *fh,
1810                                       struct v4l2_subdev_selection *sel,
1811                                       struct v4l2_rect **crops,
1812                                       struct v4l2_rect *comp)
1813 {
1814         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1815         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1816         u32 min, max, a, b, max_m;
1817         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1818         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1819         u32 try[4];
1820         u32 ntry = 0;
1821         unsigned int i;
1822         int best = INT_MIN;
1823
1824         sel->r.width = min_t(unsigned int, sel->r.width,
1825                              crops[SMIAPP_PAD_SINK]->width);
1826         sel->r.height = min_t(unsigned int, sel->r.height,
1827                               crops[SMIAPP_PAD_SINK]->height);
1828
1829         a = crops[SMIAPP_PAD_SINK]->width
1830                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1831         b = crops[SMIAPP_PAD_SINK]->height
1832                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1833         max_m = crops[SMIAPP_PAD_SINK]->width
1834                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1835                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1836
1837         a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1838                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1839         b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1840                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1841         max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1842                       sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1843
1844         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1845
1846         min = min(max_m, min(a, b));
1847         max = min(max_m, max(a, b));
1848
1849         try[ntry] = min;
1850         ntry++;
1851         if (min != max) {
1852                 try[ntry] = max;
1853                 ntry++;
1854         }
1855         if (max != max_m) {
1856                 try[ntry] = min + 1;
1857                 ntry++;
1858                 if (min != max) {
1859                         try[ntry] = max + 1;
1860                         ntry++;
1861                 }
1862         }
1863
1864         for (i = 0; i < ntry; i++) {
1865                 int this = scaling_goodness(
1866                         subdev,
1867                         crops[SMIAPP_PAD_SINK]->width
1868                         / try[i]
1869                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1870                         sel->r.width,
1871                         crops[SMIAPP_PAD_SINK]->height,
1872                         sel->r.height,
1873                         sel->flags);
1874
1875                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1876
1877                 if (this > best) {
1878                         scale_m = try[i];
1879                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1880                         best = this;
1881                 }
1882
1883                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1884                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1885                         continue;
1886
1887                 this = scaling_goodness(
1888                         subdev, crops[SMIAPP_PAD_SINK]->width
1889                         / try[i]
1890                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1891                         sel->r.width,
1892                         crops[SMIAPP_PAD_SINK]->height
1893                         / try[i]
1894                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1895                         sel->r.height,
1896                         sel->flags);
1897
1898                 if (this > best) {
1899                         scale_m = try[i];
1900                         mode = SMIAPP_SCALING_MODE_BOTH;
1901                         best = this;
1902                 }
1903         }
1904
1905         sel->r.width =
1906                 (crops[SMIAPP_PAD_SINK]->width
1907                  / scale_m
1908                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1909         if (mode == SMIAPP_SCALING_MODE_BOTH)
1910                 sel->r.height =
1911                         (crops[SMIAPP_PAD_SINK]->height
1912                          / scale_m
1913                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1914                         & ~1;
1915         else
1916                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1917
1918         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1919                 sensor->scale_m = scale_m;
1920                 sensor->scaling_mode = mode;
1921         }
1922 }
1923 /* We're only called on source pads. This function sets scaling. */
1924 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1925                               struct v4l2_subdev_fh *fh,
1926                               struct v4l2_subdev_selection *sel)
1927 {
1928         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1929         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1930         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1931
1932         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1933
1934         sel->r.top = 0;
1935         sel->r.left = 0;
1936
1937         if (ssd == sensor->binner)
1938                 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1939         else
1940                 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1941
1942         *comp = sel->r;
1943         smiapp_propagate(subdev, fh, sel->which,
1944                          V4L2_SEL_TGT_COMPOSE);
1945
1946         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1947                 return smiapp_update_mode(sensor);
1948
1949         return 0;
1950 }
1951
1952 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1953                                   struct v4l2_subdev_selection *sel)
1954 {
1955         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1956         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1957
1958         /* We only implement crop in three places. */
1959         switch (sel->target) {
1960         case V4L2_SEL_TGT_CROP:
1961         case V4L2_SEL_TGT_CROP_BOUNDS:
1962                 if (ssd == sensor->pixel_array
1963                     && sel->pad == SMIAPP_PA_PAD_SRC)
1964                         return 0;
1965                 if (ssd == sensor->src
1966                     && sel->pad == SMIAPP_PAD_SRC)
1967                         return 0;
1968                 if (ssd == sensor->scaler
1969                     && sel->pad == SMIAPP_PAD_SINK
1970                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1971                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1972                         return 0;
1973                 return -EINVAL;
1974         case V4L2_SEL_TGT_COMPOSE:
1975         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1976                 if (sel->pad == ssd->source_pad)
1977                         return -EINVAL;
1978                 if (ssd == sensor->binner)
1979                         return 0;
1980                 if (ssd == sensor->scaler
1981                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1982                     != SMIAPP_SCALING_CAPABILITY_NONE)
1983                         return 0;
1984                 /* Fall through */
1985         default:
1986                 return -EINVAL;
1987         }
1988 }
1989
1990 static int smiapp_set_crop(struct v4l2_subdev *subdev,
1991                            struct v4l2_subdev_fh *fh,
1992                            struct v4l2_subdev_selection *sel)
1993 {
1994         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1995         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1996         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
1997         struct v4l2_rect _r;
1998
1999         smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2000
2001         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2002                 if (sel->pad == ssd->sink_pad)
2003                         src_size = &ssd->sink_fmt;
2004                 else
2005                         src_size = &ssd->compose;
2006         } else {
2007                 if (sel->pad == ssd->sink_pad) {
2008                         _r.left = 0;
2009                         _r.top = 0;
2010                         _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2011                                 ->width;
2012                         _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2013                                 ->height;
2014                         src_size = &_r;
2015                 } else {
2016                         src_size =
2017                                 v4l2_subdev_get_try_compose(
2018                                         fh, ssd->sink_pad);
2019                 }
2020         }
2021
2022         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2023                 sel->r.left = 0;
2024                 sel->r.top = 0;
2025         }
2026
2027         sel->r.width = min(sel->r.width, src_size->width);
2028         sel->r.height = min(sel->r.height, src_size->height);
2029
2030         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2031         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2032
2033         *crops[sel->pad] = sel->r;
2034
2035         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2036                 smiapp_propagate(subdev, fh, sel->which,
2037                                  V4L2_SEL_TGT_CROP);
2038
2039         return 0;
2040 }
2041
2042 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2043                                   struct v4l2_subdev_fh *fh,
2044                                   struct v4l2_subdev_selection *sel)
2045 {
2046         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2047         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2048         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2049         struct v4l2_rect sink_fmt;
2050         int ret;
2051
2052         ret = __smiapp_sel_supported(subdev, sel);
2053         if (ret)
2054                 return ret;
2055
2056         smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2057
2058         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2059                 sink_fmt = ssd->sink_fmt;
2060         } else {
2061                 struct v4l2_mbus_framefmt *fmt =
2062                         v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2063
2064                 sink_fmt.left = 0;
2065                 sink_fmt.top = 0;
2066                 sink_fmt.width = fmt->width;
2067                 sink_fmt.height = fmt->height;
2068         }
2069
2070         switch (sel->target) {
2071         case V4L2_SEL_TGT_CROP_BOUNDS:
2072                 if (ssd == sensor->pixel_array) {
2073                         sel->r.width =
2074                                 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2075                         sel->r.height =
2076                                 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2077                 } else if (sel->pad == ssd->sink_pad) {
2078                         sel->r = sink_fmt;
2079                 } else {
2080                         sel->r = *comp;
2081                 }
2082                 break;
2083         case V4L2_SEL_TGT_CROP:
2084         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2085                 sel->r = *crops[sel->pad];
2086                 break;
2087         case V4L2_SEL_TGT_COMPOSE:
2088                 sel->r = *comp;
2089                 break;
2090         }
2091
2092         return 0;
2093 }
2094
2095 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2096                                 struct v4l2_subdev_fh *fh,
2097                                 struct v4l2_subdev_selection *sel)
2098 {
2099         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2100         int rval;
2101
2102         mutex_lock(&sensor->mutex);
2103         rval = __smiapp_get_selection(subdev, fh, sel);
2104         mutex_unlock(&sensor->mutex);
2105
2106         return rval;
2107 }
2108 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2109                                 struct v4l2_subdev_fh *fh,
2110                                 struct v4l2_subdev_selection *sel)
2111 {
2112         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2113         int ret;
2114
2115         ret = __smiapp_sel_supported(subdev, sel);
2116         if (ret)
2117                 return ret;
2118
2119         mutex_lock(&sensor->mutex);
2120
2121         sel->r.left = max(0, sel->r.left & ~1);
2122         sel->r.top = max(0, sel->r.top & ~1);
2123         sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2124         sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2125
2126         sel->r.width = max_t(unsigned int,
2127                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2128                              sel->r.width);
2129         sel->r.height = max_t(unsigned int,
2130                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2131                               sel->r.height);
2132
2133         switch (sel->target) {
2134         case V4L2_SEL_TGT_CROP:
2135                 ret = smiapp_set_crop(subdev, fh, sel);
2136                 break;
2137         case V4L2_SEL_TGT_COMPOSE:
2138                 ret = smiapp_set_compose(subdev, fh, sel);
2139                 break;
2140         default:
2141                 ret = -EINVAL;
2142         }
2143
2144         mutex_unlock(&sensor->mutex);
2145         return ret;
2146 }
2147
2148 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2149 {
2150         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2151
2152         *frames = sensor->frame_skip;
2153         return 0;
2154 }
2155
2156 /* -----------------------------------------------------------------------------
2157  * sysfs attributes
2158  */
2159
2160 static ssize_t
2161 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2162                       char *buf)
2163 {
2164         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2165         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2166         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2167         unsigned int nbytes;
2168
2169         if (!sensor->dev_init_done)
2170                 return -EBUSY;
2171
2172         if (!sensor->nvm_size) {
2173                 /* NVM not read yet - read it now */
2174                 sensor->nvm_size = sensor->platform_data->nvm_size;
2175                 if (smiapp_set_power(subdev, 1) < 0)
2176                         return -ENODEV;
2177                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2178                         dev_err(&client->dev, "nvm read failed\n");
2179                         return -ENODEV;
2180                 }
2181                 smiapp_set_power(subdev, 0);
2182         }
2183         /*
2184          * NVM is still way below a PAGE_SIZE, so we can safely
2185          * assume this for now.
2186          */
2187         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2188         memcpy(buf, sensor->nvm, nbytes);
2189
2190         return nbytes;
2191 }
2192 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2193
2194 static ssize_t
2195 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2196                         char *buf)
2197 {
2198         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2199         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2200         struct smiapp_module_info *minfo = &sensor->minfo;
2201
2202         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2203                         minfo->manufacturer_id, minfo->model_id,
2204                         minfo->revision_number_major) + 1;
2205 }
2206
2207 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2208
2209 /* -----------------------------------------------------------------------------
2210  * V4L2 subdev core operations
2211  */
2212
2213 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2214 {
2215         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2216         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2217         struct smiapp_module_info *minfo = &sensor->minfo;
2218         unsigned int i;
2219         int rval = 0;
2220
2221         minfo->name = SMIAPP_NAME;
2222
2223         /* Module info */
2224         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2225                                  &minfo->manufacturer_id);
2226         if (!rval)
2227                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2228                                          &minfo->model_id);
2229         if (!rval)
2230                 rval = smiapp_read_8only(sensor,
2231                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2232                                          &minfo->revision_number_major);
2233         if (!rval)
2234                 rval = smiapp_read_8only(sensor,
2235                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2236                                          &minfo->revision_number_minor);
2237         if (!rval)
2238                 rval = smiapp_read_8only(sensor,
2239                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2240                                          &minfo->module_year);
2241         if (!rval)
2242                 rval = smiapp_read_8only(sensor,
2243                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2244                                          &minfo->module_month);
2245         if (!rval)
2246                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2247                                          &minfo->module_day);
2248
2249         /* Sensor info */
2250         if (!rval)
2251                 rval = smiapp_read_8only(sensor,
2252                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2253                                          &minfo->sensor_manufacturer_id);
2254         if (!rval)
2255                 rval = smiapp_read_8only(sensor,
2256                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2257                                          &minfo->sensor_model_id);
2258         if (!rval)
2259                 rval = smiapp_read_8only(sensor,
2260                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2261                                          &minfo->sensor_revision_number);
2262         if (!rval)
2263                 rval = smiapp_read_8only(sensor,
2264                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2265                                          &minfo->sensor_firmware_version);
2266
2267         /* SMIA */
2268         if (!rval)
2269                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2270                                          &minfo->smia_version);
2271         if (!rval)
2272                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2273                                          &minfo->smiapp_version);
2274
2275         if (rval) {
2276                 dev_err(&client->dev, "sensor detection failed\n");
2277                 return -ENODEV;
2278         }
2279
2280         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2281                 minfo->manufacturer_id, minfo->model_id);
2282
2283         dev_dbg(&client->dev,
2284                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2285                 minfo->revision_number_major, minfo->revision_number_minor,
2286                 minfo->module_year, minfo->module_month, minfo->module_day);
2287
2288         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2289                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2290
2291         dev_dbg(&client->dev,
2292                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2293                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2294
2295         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2296                 minfo->smia_version, minfo->smiapp_version);
2297
2298         /*
2299          * Some modules have bad data in the lvalues below. Hope the
2300          * rvalues have better stuff. The lvalues are module
2301          * parameters whereas the rvalues are sensor parameters.
2302          */
2303         if (!minfo->manufacturer_id && !minfo->model_id) {
2304                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2305                 minfo->model_id = minfo->sensor_model_id;
2306                 minfo->revision_number_major = minfo->sensor_revision_number;
2307         }
2308
2309         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2310                 if (smiapp_module_idents[i].manufacturer_id
2311                     != minfo->manufacturer_id)
2312                         continue;
2313                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2314                         continue;
2315                 if (smiapp_module_idents[i].flags
2316                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2317                         if (smiapp_module_idents[i].revision_number_major
2318                             < minfo->revision_number_major)
2319                                 continue;
2320                 } else {
2321                         if (smiapp_module_idents[i].revision_number_major
2322                             != minfo->revision_number_major)
2323                                 continue;
2324                 }
2325
2326                 minfo->name = smiapp_module_idents[i].name;
2327                 minfo->quirk = smiapp_module_idents[i].quirk;
2328                 break;
2329         }
2330
2331         if (i >= ARRAY_SIZE(smiapp_module_idents))
2332                 dev_warn(&client->dev,
2333                          "no quirks for this module; let's hope it's fully compliant\n");
2334
2335         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2336                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2337                 minfo->revision_number_major);
2338
2339         strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2340
2341         return 0;
2342 }
2343
2344 static const struct v4l2_subdev_ops smiapp_ops;
2345 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2346 static const struct media_entity_operations smiapp_entity_ops;
2347
2348 static int smiapp_registered(struct v4l2_subdev *subdev)
2349 {
2350         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2351         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2352         struct smiapp_pll *pll = &sensor->pll;
2353         struct smiapp_subdev *last = NULL;
2354         u32 tmp;
2355         unsigned int i;
2356         int rval;
2357
2358         sensor->vana = devm_regulator_get(&client->dev, "VANA");
2359         if (IS_ERR(sensor->vana)) {
2360                 dev_err(&client->dev, "could not get regulator for vana\n");
2361                 return -ENODEV;
2362         }
2363
2364         if (!sensor->platform_data->set_xclk) {
2365                 sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
2366                 if (IS_ERR(sensor->ext_clk)) {
2367                         dev_err(&client->dev, "could not get clock\n");
2368                         return -ENODEV;
2369                 }
2370
2371                 rval = clk_set_rate(sensor->ext_clk,
2372                                     sensor->platform_data->ext_clk);
2373                 if (rval < 0) {
2374                         dev_err(&client->dev,
2375                                 "unable to set clock freq to %u\n",
2376                                 sensor->platform_data->ext_clk);
2377                         return -ENODEV;
2378                 }
2379         }
2380
2381         if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2382                 if (devm_gpio_request_one(&client->dev,
2383                                           sensor->platform_data->xshutdown, 0,
2384                                           "SMIA++ xshutdown") != 0) {
2385                         dev_err(&client->dev,
2386                                 "unable to acquire reset gpio %d\n",
2387                                 sensor->platform_data->xshutdown);
2388                         return -ENODEV;
2389                 }
2390         }
2391
2392         rval = smiapp_power_on(sensor);
2393         if (rval)
2394                 return -ENODEV;
2395
2396         rval = smiapp_identify_module(subdev);
2397         if (rval) {
2398                 rval = -ENODEV;
2399                 goto out_power_off;
2400         }
2401
2402         rval = smiapp_get_all_limits(sensor);
2403         if (rval) {
2404                 rval = -ENODEV;
2405                 goto out_power_off;
2406         }
2407
2408         /*
2409          * Handle Sensor Module orientation on the board.
2410          *
2411          * The application of H-FLIP and V-FLIP on the sensor is modified by
2412          * the sensor orientation on the board.
2413          *
2414          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2415          * both H-FLIP and V-FLIP for normal operation which also implies
2416          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2417          * controls will need to be internally inverted.
2418          *
2419          * Rotation also changes the bayer pattern.
2420          */
2421         if (sensor->platform_data->module_board_orient ==
2422             SMIAPP_MODULE_BOARD_ORIENT_180)
2423                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2424                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2425
2426         rval = smiapp_get_mbus_formats(sensor);
2427         if (rval) {
2428                 rval = -ENODEV;
2429                 goto out_power_off;
2430         }
2431
2432         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2433                 u32 val;
2434
2435                 rval = smiapp_read(sensor,
2436                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2437                 if (rval < 0) {
2438                         rval = -ENODEV;
2439                         goto out_power_off;
2440                 }
2441                 sensor->nbinning_subtypes = min_t(u8, val,
2442                                                   SMIAPP_BINNING_SUBTYPES);
2443
2444                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2445                         rval = smiapp_read(
2446                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2447                         if (rval < 0) {
2448                                 rval = -ENODEV;
2449                                 goto out_power_off;
2450                         }
2451                         sensor->binning_subtypes[i] =
2452                                 *(struct smiapp_binning_subtype *)&val;
2453
2454                         dev_dbg(&client->dev, "binning %xx%x\n",
2455                                 sensor->binning_subtypes[i].horizontal,
2456                                 sensor->binning_subtypes[i].vertical);
2457                 }
2458         }
2459         sensor->binning_horizontal = 1;
2460         sensor->binning_vertical = 1;
2461
2462         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2463                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2464                 rval = -ENOENT;
2465                 goto out_power_off;
2466         }
2467         /* SMIA++ NVM initialization - it will be read from the sensor
2468          * when it is first requested by userspace.
2469          */
2470         if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2471                 sensor->nvm = devm_kzalloc(&client->dev,
2472                                 sensor->platform_data->nvm_size, GFP_KERNEL);
2473                 if (sensor->nvm == NULL) {
2474                         dev_err(&client->dev, "nvm buf allocation failed\n");
2475                         rval = -ENOMEM;
2476                         goto out_ident_release;
2477                 }
2478
2479                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2480                         dev_err(&client->dev, "sysfs nvm entry failed\n");
2481                         rval = -EBUSY;
2482                         goto out_ident_release;
2483                 }
2484         }
2485
2486         rval = smiapp_call_quirk(sensor, limits);
2487         if (rval) {
2488                 dev_err(&client->dev, "limits quirks failed\n");
2489                 goto out_nvm_release;
2490         }
2491
2492         /* We consider this as profile 0 sensor if any of these are zero. */
2493         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2494             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2495             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2496             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2497                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2498         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2499                    != SMIAPP_SCALING_CAPABILITY_NONE) {
2500                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2501                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2502                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2503                 else
2504                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2505                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2506                 sensor->ssds_used++;
2507         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2508                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2509                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2510                 sensor->ssds_used++;
2511         }
2512         sensor->binner = &sensor->ssds[sensor->ssds_used];
2513         sensor->ssds_used++;
2514         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2515         sensor->ssds_used++;
2516
2517         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2518
2519         for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2520                 struct {
2521                         struct smiapp_subdev *ssd;
2522                         char *name;
2523                 } const __this[] = {
2524                         { sensor->scaler, "scaler", },
2525                         { sensor->binner, "binner", },
2526                         { sensor->pixel_array, "pixel array", },
2527                 }, *_this = &__this[i];
2528                 struct smiapp_subdev *this = _this->ssd;
2529
2530                 if (!this)
2531                         continue;
2532
2533                 if (this != sensor->src)
2534                         v4l2_subdev_init(&this->sd, &smiapp_ops);
2535
2536                 this->sensor = sensor;
2537
2538                 if (this == sensor->pixel_array) {
2539                         this->npads = 1;
2540                 } else {
2541                         this->npads = 2;
2542                         this->source_pad = 1;
2543                 }
2544
2545                 snprintf(this->sd.name,
2546                          sizeof(this->sd.name), "%s %s",
2547                          sensor->minfo.name, _this->name);
2548
2549                 this->sink_fmt.width =
2550                         sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2551                 this->sink_fmt.height =
2552                         sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2553                 this->compose.width = this->sink_fmt.width;
2554                 this->compose.height = this->sink_fmt.height;
2555                 this->crop[this->source_pad] = this->compose;
2556                 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2557                 if (this != sensor->pixel_array) {
2558                         this->crop[this->sink_pad] = this->compose;
2559                         this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2560                 }
2561
2562                 this->sd.entity.ops = &smiapp_entity_ops;
2563
2564                 if (last == NULL) {
2565                         last = this;
2566                         continue;
2567                 }
2568
2569                 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2570                 this->sd.internal_ops = &smiapp_internal_ops;
2571                 this->sd.owner = NULL;
2572                 v4l2_set_subdevdata(&this->sd, client);
2573
2574                 rval = media_entity_init(&this->sd.entity,
2575                                          this->npads, this->pads, 0);
2576                 if (rval) {
2577                         dev_err(&client->dev,
2578                                 "media_entity_init failed\n");
2579                         goto out_nvm_release;
2580                 }
2581
2582                 rval = media_entity_create_link(&this->sd.entity,
2583                                                 this->source_pad,
2584                                                 &last->sd.entity,
2585                                                 last->sink_pad,
2586                                                 MEDIA_LNK_FL_ENABLED |
2587                                                 MEDIA_LNK_FL_IMMUTABLE);
2588                 if (rval) {
2589                         dev_err(&client->dev,
2590                                 "media_entity_create_link failed\n");
2591                         goto out_nvm_release;
2592                 }
2593
2594                 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2595                                                    &this->sd);
2596                 if (rval) {
2597                         dev_err(&client->dev,
2598                                 "v4l2_device_register_subdev failed\n");
2599                         goto out_nvm_release;
2600                 }
2601
2602                 last = this;
2603         }
2604
2605         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2606
2607         sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2608
2609         /* final steps */
2610         smiapp_read_frame_fmt(sensor);
2611         rval = smiapp_init_controls(sensor);
2612         if (rval < 0)
2613                 goto out_nvm_release;
2614
2615         /* prepare PLL configuration input values */
2616         pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2617         pll->csi2.lanes = sensor->platform_data->lanes;
2618         pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2619         /* Profile 0 sensors have no separate OP clock branch. */
2620         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2621                 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2622         if (smiapp_needs_quirk(sensor,
2623                                SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
2624                 pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
2625         pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2626
2627         mutex_lock(&sensor->mutex);
2628         rval = smiapp_update_mode(sensor);
2629         mutex_unlock(&sensor->mutex);
2630         if (rval) {
2631                 dev_err(&client->dev, "update mode failed\n");
2632                 goto out_nvm_release;
2633         }
2634
2635         sensor->streaming = false;
2636         sensor->dev_init_done = true;
2637
2638         /* check flash capability */
2639         rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2640         sensor->flash_capability = tmp;
2641         if (rval)
2642                 goto out_nvm_release;
2643
2644         smiapp_power_off(sensor);
2645
2646         return 0;
2647
2648 out_nvm_release:
2649         device_remove_file(&client->dev, &dev_attr_nvm);
2650
2651 out_ident_release:
2652         device_remove_file(&client->dev, &dev_attr_ident);
2653
2654 out_power_off:
2655         smiapp_power_off(sensor);
2656         return rval;
2657 }
2658
2659 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2660 {
2661         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2662         struct smiapp_sensor *sensor = ssd->sensor;
2663         u32 mbus_code =
2664                 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2665         unsigned int i;
2666
2667         mutex_lock(&sensor->mutex);
2668
2669         for (i = 0; i < ssd->npads; i++) {
2670                 struct v4l2_mbus_framefmt *try_fmt =
2671                         v4l2_subdev_get_try_format(fh, i);
2672                 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2673                 struct v4l2_rect *try_comp;
2674
2675                 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2676                 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2677                 try_fmt->code = mbus_code;
2678
2679                 try_crop->top = 0;
2680                 try_crop->left = 0;
2681                 try_crop->width = try_fmt->width;
2682                 try_crop->height = try_fmt->height;
2683
2684                 if (ssd != sensor->pixel_array)
2685                         continue;
2686
2687                 try_comp = v4l2_subdev_get_try_compose(fh, i);
2688                 *try_comp = *try_crop;
2689         }
2690
2691         mutex_unlock(&sensor->mutex);
2692
2693         return smiapp_set_power(sd, 1);
2694 }
2695
2696 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2697 {
2698         return smiapp_set_power(sd, 0);
2699 }
2700
2701 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2702         .s_stream = smiapp_set_stream,
2703 };
2704
2705 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2706         .s_power = smiapp_set_power,
2707 };
2708
2709 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2710         .enum_mbus_code = smiapp_enum_mbus_code,
2711         .get_fmt = smiapp_get_format,
2712         .set_fmt = smiapp_set_format,
2713         .get_selection = smiapp_get_selection,
2714         .set_selection = smiapp_set_selection,
2715 };
2716
2717 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2718         .g_skip_frames = smiapp_get_skip_frames,
2719 };
2720
2721 static const struct v4l2_subdev_ops smiapp_ops = {
2722         .core = &smiapp_core_ops,
2723         .video = &smiapp_video_ops,
2724         .pad = &smiapp_pad_ops,
2725         .sensor = &smiapp_sensor_ops,
2726 };
2727
2728 static const struct media_entity_operations smiapp_entity_ops = {
2729         .link_validate = v4l2_subdev_link_validate,
2730 };
2731
2732 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2733         .registered = smiapp_registered,
2734         .open = smiapp_open,
2735         .close = smiapp_close,
2736 };
2737
2738 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2739         .open = smiapp_open,
2740         .close = smiapp_close,
2741 };
2742
2743 /* -----------------------------------------------------------------------------
2744  * I2C Driver
2745  */
2746
2747 #ifdef CONFIG_PM
2748
2749 static int smiapp_suspend(struct device *dev)
2750 {
2751         struct i2c_client *client = to_i2c_client(dev);
2752         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2753         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2754         bool streaming;
2755
2756         BUG_ON(mutex_is_locked(&sensor->mutex));
2757
2758         if (sensor->power_count == 0)
2759                 return 0;
2760
2761         if (sensor->streaming)
2762                 smiapp_stop_streaming(sensor);
2763
2764         streaming = sensor->streaming;
2765
2766         smiapp_power_off(sensor);
2767
2768         /* save state for resume */
2769         sensor->streaming = streaming;
2770
2771         return 0;
2772 }
2773
2774 static int smiapp_resume(struct device *dev)
2775 {
2776         struct i2c_client *client = to_i2c_client(dev);
2777         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2778         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2779         int rval;
2780
2781         if (sensor->power_count == 0)
2782                 return 0;
2783
2784         rval = smiapp_power_on(sensor);
2785         if (rval)
2786                 return rval;
2787
2788         if (sensor->streaming)
2789                 rval = smiapp_start_streaming(sensor);
2790
2791         return rval;
2792 }
2793
2794 #else
2795
2796 #define smiapp_suspend  NULL
2797 #define smiapp_resume   NULL
2798
2799 #endif /* CONFIG_PM */
2800
2801 static int smiapp_probe(struct i2c_client *client,
2802                         const struct i2c_device_id *devid)
2803 {
2804         struct smiapp_sensor *sensor;
2805
2806         if (client->dev.platform_data == NULL)
2807                 return -ENODEV;
2808
2809         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2810         if (sensor == NULL)
2811                 return -ENOMEM;
2812
2813         sensor->platform_data = client->dev.platform_data;
2814         mutex_init(&sensor->mutex);
2815         mutex_init(&sensor->power_mutex);
2816         sensor->src = &sensor->ssds[sensor->ssds_used];
2817
2818         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2819         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2820         sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2821         sensor->src->sensor = sensor;
2822
2823         sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2824         return media_entity_init(&sensor->src->sd.entity, 2,
2825                                  sensor->src->pads, 0);
2826 }
2827
2828 static int smiapp_remove(struct i2c_client *client)
2829 {
2830         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2831         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2832         unsigned int i;
2833
2834         if (sensor->power_count) {
2835                 if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2836                         gpio_set_value(sensor->platform_data->xshutdown, 0);
2837                 if (sensor->platform_data->set_xclk)
2838                         sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2839                 else
2840                         clk_disable_unprepare(sensor->ext_clk);
2841                 sensor->power_count = 0;
2842         }
2843
2844         device_remove_file(&client->dev, &dev_attr_ident);
2845         if (sensor->nvm)
2846                 device_remove_file(&client->dev, &dev_attr_nvm);
2847
2848         for (i = 0; i < sensor->ssds_used; i++) {
2849                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2850                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2851         }
2852         smiapp_free_controls(sensor);
2853
2854         return 0;
2855 }
2856
2857 static const struct i2c_device_id smiapp_id_table[] = {
2858         { SMIAPP_NAME, 0 },
2859         { },
2860 };
2861 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2862
2863 static const struct dev_pm_ops smiapp_pm_ops = {
2864         .suspend        = smiapp_suspend,
2865         .resume         = smiapp_resume,
2866 };
2867
2868 static struct i2c_driver smiapp_i2c_driver = {
2869         .driver = {
2870                 .name = SMIAPP_NAME,
2871                 .pm = &smiapp_pm_ops,
2872         },
2873         .probe  = smiapp_probe,
2874         .remove = smiapp_remove,
2875         .id_table = smiapp_id_table,
2876 };
2877
2878 module_i2c_driver(smiapp_i2c_driver);
2879
2880 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2881 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2882 MODULE_LICENSE("GPL");