Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / media / i2c / smiapp / smiapp-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/smiapp/smiapp-core.c
4  *
5  * Generic driver for SMIA/SMIA++ compliant camera modules
6  *
7  * Copyright (C) 2010--2012 Nokia Corporation
8  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9  *
10  * Based on smiapp driver by Vimarsh Zutshi
11  * Based on jt8ev1.c by Vimarsh Zutshi
12  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13  */
14
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/gpio.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/slab.h>
25 #include <linux/smiapp.h>
26 #include <linux/v4l2-mediabus.h>
27 #include <media/v4l2-fwnode.h>
28 #include <media/v4l2-device.h>
29
30 #include "smiapp.h"
31
32 #define SMIAPP_ALIGN_DIM(dim, flags)    \
33         ((flags) & V4L2_SEL_FLAG_GE     \
34          ? ALIGN((dim), 2)              \
35          : (dim) & ~1)
36
37 /*
38  * smiapp_module_idents - supported camera modules
39  */
40 static const struct smiapp_module_ident smiapp_module_idents[] = {
41         SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
42         SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
43         SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
44         SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
45         SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
46         SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
47         SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
48         SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
49         SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
50         SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
51         SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
52 };
53
54 /*
55  *
56  * Dynamic Capability Identification
57  *
58  */
59
60 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
61 {
62         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
63         u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
64         unsigned int i;
65         int pixel_count = 0;
66         int line_count = 0;
67         int rval;
68
69         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
70                            &fmt_model_type);
71         if (rval)
72                 return rval;
73
74         rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
75                            &fmt_model_subtype);
76         if (rval)
77                 return rval;
78
79         ncol_desc = (fmt_model_subtype
80                      & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
81                 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
82         nrow_desc = fmt_model_subtype
83                 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
84
85         dev_dbg(&client->dev, "format_model_type %s\n",
86                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
87                 ? "2 byte" :
88                 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
89                 ? "4 byte" : "is simply bad");
90
91         for (i = 0; i < ncol_desc + nrow_desc; i++) {
92                 u32 desc;
93                 u32 pixelcode;
94                 u32 pixels;
95                 char *which;
96                 char *what;
97                 u32 reg;
98
99                 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
100                         reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
101                         rval = smiapp_read(sensor, reg, &desc);
102                         if (rval)
103                                 return rval;
104
105                         pixelcode =
106                                 (desc
107                                  & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
108                                 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
109                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
110                 } else if (fmt_model_type
111                            == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
112                         reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
113                         rval = smiapp_read(sensor, reg, &desc);
114                         if (rval)
115                                 return rval;
116
117                         pixelcode =
118                                 (desc
119                                  & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
120                                 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
121                         pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
122                 } else {
123                         dev_dbg(&client->dev,
124                                 "invalid frame format model type %d\n",
125                                 fmt_model_type);
126                         return -EINVAL;
127                 }
128
129                 if (i < ncol_desc)
130                         which = "columns";
131                 else
132                         which = "rows";
133
134                 switch (pixelcode) {
135                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
136                         what = "embedded";
137                         break;
138                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
139                         what = "dummy";
140                         break;
141                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
142                         what = "black";
143                         break;
144                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
145                         what = "dark";
146                         break;
147                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
148                         what = "visible";
149                         break;
150                 default:
151                         what = "invalid";
152                         break;
153                 }
154
155                 dev_dbg(&client->dev,
156                         "0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
157                         what, pixels, which, pixelcode);
158
159                 if (i < ncol_desc) {
160                         if (pixelcode ==
161                             SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
162                                 sensor->visible_pixel_start = pixel_count;
163                         pixel_count += pixels;
164                         continue;
165                 }
166
167                 /* Handle row descriptors */
168                 switch (pixelcode) {
169                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
170                         if (sensor->embedded_end)
171                                 break;
172                         sensor->embedded_start = line_count;
173                         sensor->embedded_end = line_count + pixels;
174                         break;
175                 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
176                         sensor->image_start = line_count;
177                         break;
178                 }
179                 line_count += pixels;
180         }
181
182         if (sensor->embedded_end > sensor->image_start) {
183                 dev_dbg(&client->dev,
184                         "adjusting image start line to %u (was %u)\n",
185                         sensor->embedded_end, sensor->image_start);
186                 sensor->image_start = sensor->embedded_end;
187         }
188
189         dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
190                 sensor->embedded_start, sensor->embedded_end);
191         dev_dbg(&client->dev, "image data starts at line %d\n",
192                 sensor->image_start);
193
194         return 0;
195 }
196
197 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
198 {
199         struct smiapp_pll *pll = &sensor->pll;
200         int rval;
201
202         rval = smiapp_write(
203                 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
204         if (rval < 0)
205                 return rval;
206
207         rval = smiapp_write(
208                 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
209         if (rval < 0)
210                 return rval;
211
212         rval = smiapp_write(
213                 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
214         if (rval < 0)
215                 return rval;
216
217         rval = smiapp_write(
218                 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
219         if (rval < 0)
220                 return rval;
221
222         /* Lane op clock ratio does not apply here. */
223         rval = smiapp_write(
224                 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
225                 DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
226         if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
227                 return rval;
228
229         rval = smiapp_write(
230                 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
231         if (rval < 0)
232                 return rval;
233
234         return smiapp_write(
235                 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
236 }
237
238 static int smiapp_pll_try(struct smiapp_sensor *sensor,
239                           struct smiapp_pll *pll)
240 {
241         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
242         struct smiapp_pll_limits lim = {
243                 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
244                 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
245                 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
246                 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
247                 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
248                 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
249                 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
250                 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
251
252                 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
253                 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
254                 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
255                 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
256                 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
257                 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
258                 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
259                 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
260
261                 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
262                 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
263                 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
264                 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
265                 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
266                 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
267                 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
268                 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
269
270                 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
271                 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
272         };
273
274         return smiapp_pll_calculate(&client->dev, &lim, pll);
275 }
276
277 static int smiapp_pll_update(struct smiapp_sensor *sensor)
278 {
279         struct smiapp_pll *pll = &sensor->pll;
280         int rval;
281
282         pll->binning_horizontal = sensor->binning_horizontal;
283         pll->binning_vertical = sensor->binning_vertical;
284         pll->link_freq =
285                 sensor->link_freq->qmenu_int[sensor->link_freq->val];
286         pll->scale_m = sensor->scale_m;
287         pll->bits_per_pixel = sensor->csi_format->compressed;
288
289         rval = smiapp_pll_try(sensor, pll);
290         if (rval < 0)
291                 return rval;
292
293         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
294                                  pll->pixel_rate_pixel_array);
295         __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
296
297         return 0;
298 }
299
300
301 /*
302  *
303  * V4L2 Controls handling
304  *
305  */
306
307 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
308 {
309         struct v4l2_ctrl *ctrl = sensor->exposure;
310         int max;
311
312         max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
313                 + sensor->vblank->val
314                 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
315
316         __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
317 }
318
319 /*
320  * Order matters.
321  *
322  * 1. Bits-per-pixel, descending.
323  * 2. Bits-per-pixel compressed, descending.
324  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
325  *    orders must be defined.
326  */
327 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
328         { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
329         { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
330         { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
331         { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
332         { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
333         { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
334         { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
335         { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
336         { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
337         { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
338         { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
339         { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
340         { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
341         { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
342         { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
343         { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
344         { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
345         { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
346         { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
347         { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
348         { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349         { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350         { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351         { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352 };
353
354 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
355
356 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)                   \
357                                  - (unsigned long)smiapp_csi_data_formats) \
358                                 / sizeof(*smiapp_csi_data_formats))
359
360 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
361 {
362         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
363         int flip = 0;
364
365         if (sensor->hflip) {
366                 if (sensor->hflip->val)
367                         flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
368
369                 if (sensor->vflip->val)
370                         flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
371         }
372
373         flip ^= sensor->hvflip_inv_mask;
374
375         dev_dbg(&client->dev, "flip %d\n", flip);
376         return sensor->default_pixel_order ^ flip;
377 }
378
379 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
380 {
381         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
382         unsigned int csi_format_idx =
383                 to_csi_format_idx(sensor->csi_format) & ~3;
384         unsigned int internal_csi_format_idx =
385                 to_csi_format_idx(sensor->internal_csi_format) & ~3;
386         unsigned int pixel_order = smiapp_pixel_order(sensor);
387
388         sensor->mbus_frame_fmts =
389                 sensor->default_mbus_frame_fmts << pixel_order;
390         sensor->csi_format =
391                 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
392         sensor->internal_csi_format =
393                 &smiapp_csi_data_formats[internal_csi_format_idx
394                                          + pixel_order];
395
396         BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
397                >= ARRAY_SIZE(smiapp_csi_data_formats));
398
399         dev_dbg(&client->dev, "new pixel order %s\n",
400                 pixel_order_str[pixel_order]);
401 }
402
403 static const char * const smiapp_test_patterns[] = {
404         "Disabled",
405         "Solid Colour",
406         "Eight Vertical Colour Bars",
407         "Colour Bars With Fade to Grey",
408         "Pseudorandom Sequence (PN9)",
409 };
410
411 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
412 {
413         struct smiapp_sensor *sensor =
414                 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
415                         ->sensor;
416         u32 orient = 0;
417         int exposure;
418         int rval;
419
420         switch (ctrl->id) {
421         case V4L2_CID_ANALOGUE_GAIN:
422                 return smiapp_write(
423                         sensor,
424                         SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
425
426         case V4L2_CID_EXPOSURE:
427                 return smiapp_write(
428                         sensor,
429                         SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
430
431         case V4L2_CID_HFLIP:
432         case V4L2_CID_VFLIP:
433                 if (sensor->streaming)
434                         return -EBUSY;
435
436                 if (sensor->hflip->val)
437                         orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
438
439                 if (sensor->vflip->val)
440                         orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
441
442                 orient ^= sensor->hvflip_inv_mask;
443                 rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
444                                     orient);
445                 if (rval < 0)
446                         return rval;
447
448                 smiapp_update_mbus_formats(sensor);
449
450                 return 0;
451
452         case V4L2_CID_VBLANK:
453                 exposure = sensor->exposure->val;
454
455                 __smiapp_update_exposure_limits(sensor);
456
457                 if (exposure > sensor->exposure->maximum) {
458                         sensor->exposure->val = sensor->exposure->maximum;
459                         rval = smiapp_set_ctrl(sensor->exposure);
460                         if (rval < 0)
461                                 return rval;
462                 }
463
464                 return smiapp_write(
465                         sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
466                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
467                         + ctrl->val);
468
469         case V4L2_CID_HBLANK:
470                 return smiapp_write(
471                         sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
472                         sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
473                         + ctrl->val);
474
475         case V4L2_CID_LINK_FREQ:
476                 if (sensor->streaming)
477                         return -EBUSY;
478
479                 return smiapp_pll_update(sensor);
480
481         case V4L2_CID_TEST_PATTERN: {
482                 unsigned int i;
483
484                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
485                         v4l2_ctrl_activate(
486                                 sensor->test_data[i],
487                                 ctrl->val ==
488                                 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
489
490                 return smiapp_write(
491                         sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
492         }
493
494         case V4L2_CID_TEST_PATTERN_RED:
495                 return smiapp_write(
496                         sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
497
498         case V4L2_CID_TEST_PATTERN_GREENR:
499                 return smiapp_write(
500                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
501
502         case V4L2_CID_TEST_PATTERN_BLUE:
503                 return smiapp_write(
504                         sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
505
506         case V4L2_CID_TEST_PATTERN_GREENB:
507                 return smiapp_write(
508                         sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
509
510         case V4L2_CID_PIXEL_RATE:
511                 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
512                 return 0;
513
514         default:
515                 return -EINVAL;
516         }
517 }
518
519 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
520         .s_ctrl = smiapp_set_ctrl,
521 };
522
523 static int smiapp_init_controls(struct smiapp_sensor *sensor)
524 {
525         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
526         int rval;
527
528         rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
529         if (rval)
530                 return rval;
531
532         sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
533
534         sensor->analog_gain = v4l2_ctrl_new_std(
535                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
536                 V4L2_CID_ANALOGUE_GAIN,
537                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
538                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
539                 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
540                 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
541
542         /* Exposure limits will be updated soon, use just something here. */
543         sensor->exposure = v4l2_ctrl_new_std(
544                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
545                 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
546
547         sensor->hflip = v4l2_ctrl_new_std(
548                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
549                 V4L2_CID_HFLIP, 0, 1, 1, 0);
550         sensor->vflip = v4l2_ctrl_new_std(
551                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
552                 V4L2_CID_VFLIP, 0, 1, 1, 0);
553
554         sensor->vblank = v4l2_ctrl_new_std(
555                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
556                 V4L2_CID_VBLANK, 0, 1, 1, 0);
557
558         if (sensor->vblank)
559                 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
560
561         sensor->hblank = v4l2_ctrl_new_std(
562                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
563                 V4L2_CID_HBLANK, 0, 1, 1, 0);
564
565         if (sensor->hblank)
566                 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
567
568         sensor->pixel_rate_parray = v4l2_ctrl_new_std(
569                 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
570                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
571
572         v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
573                                      &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
574                                      ARRAY_SIZE(smiapp_test_patterns) - 1,
575                                      0, 0, smiapp_test_patterns);
576
577         if (sensor->pixel_array->ctrl_handler.error) {
578                 dev_err(&client->dev,
579                         "pixel array controls initialization failed (%d)\n",
580                         sensor->pixel_array->ctrl_handler.error);
581                 return sensor->pixel_array->ctrl_handler.error;
582         }
583
584         sensor->pixel_array->sd.ctrl_handler =
585                 &sensor->pixel_array->ctrl_handler;
586
587         v4l2_ctrl_cluster(2, &sensor->hflip);
588
589         rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
590         if (rval)
591                 return rval;
592
593         sensor->src->ctrl_handler.lock = &sensor->mutex;
594
595         sensor->pixel_rate_csi = v4l2_ctrl_new_std(
596                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
597                 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
598
599         if (sensor->src->ctrl_handler.error) {
600                 dev_err(&client->dev,
601                         "src controls initialization failed (%d)\n",
602                         sensor->src->ctrl_handler.error);
603                 return sensor->src->ctrl_handler.error;
604         }
605
606         sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
607
608         return 0;
609 }
610
611 /*
612  * For controls that require information on available media bus codes
613  * and linke frequencies.
614  */
615 static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
616 {
617         unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
618                 sensor->csi_format->compressed - sensor->compressed_min_bpp];
619         unsigned int i;
620
621         for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
622                 int max_value = (1 << sensor->csi_format->width) - 1;
623
624                 sensor->test_data[i] = v4l2_ctrl_new_std(
625                                 &sensor->pixel_array->ctrl_handler,
626                                 &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
627                                 0, max_value, 1, max_value);
628         }
629
630         sensor->link_freq = v4l2_ctrl_new_int_menu(
631                 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
632                 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
633                 __ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
634
635         return sensor->src->ctrl_handler.error;
636 }
637
638 static void smiapp_free_controls(struct smiapp_sensor *sensor)
639 {
640         unsigned int i;
641
642         for (i = 0; i < sensor->ssds_used; i++)
643                 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
644 }
645
646 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
647                              unsigned int n)
648 {
649         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
650         unsigned int i;
651         u32 val;
652         int rval;
653
654         for (i = 0; i < n; i++) {
655                 rval = smiapp_read(
656                         sensor, smiapp_reg_limits[limit[i]].addr, &val);
657                 if (rval)
658                         return rval;
659                 sensor->limits[limit[i]] = val;
660                 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
661                         smiapp_reg_limits[limit[i]].addr,
662                         smiapp_reg_limits[limit[i]].what, val, val);
663         }
664
665         return 0;
666 }
667
668 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
669 {
670         unsigned int i;
671         int rval;
672
673         for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
674                 rval = smiapp_get_limits(sensor, &i, 1);
675                 if (rval < 0)
676                         return rval;
677         }
678
679         if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
680                 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
681
682         return 0;
683 }
684
685 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
686 {
687         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
688         static u32 const limits[] = {
689                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
690                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
691                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
692                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
693                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
694                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
695                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
696         };
697         static u32 const limits_replace[] = {
698                 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
699                 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
700                 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
701                 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
702                 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
703                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
704                 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
705         };
706         unsigned int i;
707         int rval;
708
709         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
710             SMIAPP_BINNING_CAPABILITY_NO) {
711                 for (i = 0; i < ARRAY_SIZE(limits); i++)
712                         sensor->limits[limits[i]] =
713                                 sensor->limits[limits_replace[i]];
714
715                 return 0;
716         }
717
718         rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
719         if (rval < 0)
720                 return rval;
721
722         /*
723          * Sanity check whether the binning limits are valid. If not,
724          * use the non-binning ones.
725          */
726         if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
727             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
728             && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
729                 return 0;
730
731         for (i = 0; i < ARRAY_SIZE(limits); i++) {
732                 dev_dbg(&client->dev,
733                         "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
734                         smiapp_reg_limits[limits[i]].addr,
735                         smiapp_reg_limits[limits[i]].what,
736                         sensor->limits[limits_replace[i]],
737                         sensor->limits[limits_replace[i]]);
738                 sensor->limits[limits[i]] =
739                         sensor->limits[limits_replace[i]];
740         }
741
742         return 0;
743 }
744
745 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
746 {
747         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
748         struct smiapp_pll *pll = &sensor->pll;
749         u8 compressed_max_bpp = 0;
750         unsigned int type, n;
751         unsigned int i, pixel_order;
752         int rval;
753
754         rval = smiapp_read(
755                 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
756         if (rval)
757                 return rval;
758
759         dev_dbg(&client->dev, "data_format_model_type %d\n", type);
760
761         rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
762                            &pixel_order);
763         if (rval)
764                 return rval;
765
766         if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
767                 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
768                 return -EINVAL;
769         }
770
771         dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
772                 pixel_order_str[pixel_order]);
773
774         switch (type) {
775         case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
776                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
777                 break;
778         case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
779                 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
780                 break;
781         default:
782                 return -EINVAL;
783         }
784
785         sensor->default_pixel_order = pixel_order;
786         sensor->mbus_frame_fmts = 0;
787
788         for (i = 0; i < n; i++) {
789                 unsigned int fmt, j;
790
791                 rval = smiapp_read(
792                         sensor,
793                         SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
794                 if (rval)
795                         return rval;
796
797                 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
798                         i, fmt >> 8, (u8)fmt);
799
800                 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
801                         const struct smiapp_csi_data_format *f =
802                                 &smiapp_csi_data_formats[j];
803
804                         if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
805                                 continue;
806
807                         if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
808                                 continue;
809
810                         dev_dbg(&client->dev, "jolly good! %d\n", j);
811
812                         sensor->default_mbus_frame_fmts |= 1 << j;
813                 }
814         }
815
816         /* Figure out which BPP values can be used with which formats. */
817         pll->binning_horizontal = 1;
818         pll->binning_vertical = 1;
819         pll->scale_m = sensor->scale_m;
820
821         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
822                 sensor->compressed_min_bpp =
823                         min(smiapp_csi_data_formats[i].compressed,
824                             sensor->compressed_min_bpp);
825                 compressed_max_bpp =
826                         max(smiapp_csi_data_formats[i].compressed,
827                             compressed_max_bpp);
828         }
829
830         sensor->valid_link_freqs = devm_kcalloc(
831                 &client->dev,
832                 compressed_max_bpp - sensor->compressed_min_bpp + 1,
833                 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
834         if (!sensor->valid_link_freqs)
835                 return -ENOMEM;
836
837         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
838                 const struct smiapp_csi_data_format *f =
839                         &smiapp_csi_data_formats[i];
840                 unsigned long *valid_link_freqs =
841                         &sensor->valid_link_freqs[
842                                 f->compressed - sensor->compressed_min_bpp];
843                 unsigned int j;
844
845                 if (!(sensor->default_mbus_frame_fmts & 1 << i))
846                         continue;
847
848                 pll->bits_per_pixel = f->compressed;
849
850                 for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
851                         pll->link_freq = sensor->hwcfg->op_sys_clock[j];
852
853                         rval = smiapp_pll_try(sensor, pll);
854                         dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
855                                 pll->link_freq, pll->bits_per_pixel,
856                                 rval ? "not ok" : "ok");
857                         if (rval)
858                                 continue;
859
860                         set_bit(j, valid_link_freqs);
861                 }
862
863                 if (!*valid_link_freqs) {
864                         dev_info(&client->dev,
865                                  "no valid link frequencies for %u bpp\n",
866                                  f->compressed);
867                         sensor->default_mbus_frame_fmts &= ~BIT(i);
868                         continue;
869                 }
870
871                 if (!sensor->csi_format
872                     || f->width > sensor->csi_format->width
873                     || (f->width == sensor->csi_format->width
874                         && f->compressed > sensor->csi_format->compressed)) {
875                         sensor->csi_format = f;
876                         sensor->internal_csi_format = f;
877                 }
878         }
879
880         if (!sensor->csi_format) {
881                 dev_err(&client->dev, "no supported mbus code found\n");
882                 return -EINVAL;
883         }
884
885         smiapp_update_mbus_formats(sensor);
886
887         return 0;
888 }
889
890 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
891 {
892         struct v4l2_ctrl *vblank = sensor->vblank;
893         struct v4l2_ctrl *hblank = sensor->hblank;
894         int min, max;
895
896         min = max_t(int,
897                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
898                     sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
899                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
900         max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
901                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
902
903         __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
904
905         min = max_t(int,
906                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
907                     sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
908                     sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
909         max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
910                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
911
912         __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
913
914         __smiapp_update_exposure_limits(sensor);
915 }
916
917 static int smiapp_update_mode(struct smiapp_sensor *sensor)
918 {
919         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
920         unsigned int binning_mode;
921         int rval;
922
923         /* Binning has to be set up here; it affects limits */
924         if (sensor->binning_horizontal == 1 &&
925             sensor->binning_vertical == 1) {
926                 binning_mode = 0;
927         } else {
928                 u8 binning_type =
929                         (sensor->binning_horizontal << 4)
930                         | sensor->binning_vertical;
931
932                 rval = smiapp_write(
933                         sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
934                 if (rval < 0)
935                         return rval;
936
937                 binning_mode = 1;
938         }
939         rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
940         if (rval < 0)
941                 return rval;
942
943         /* Get updated limits due to binning */
944         rval = smiapp_get_limits_binning(sensor);
945         if (rval < 0)
946                 return rval;
947
948         rval = smiapp_pll_update(sensor);
949         if (rval < 0)
950                 return rval;
951
952         /* Output from pixel array, including blanking */
953         smiapp_update_blanking(sensor);
954
955         dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
956         dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
957
958         dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
959                 sensor->pll.pixel_rate_pixel_array /
960                 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
961                   + sensor->hblank->val) *
962                  (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
963                   + sensor->vblank->val) / 100));
964
965         return 0;
966 }
967
968 /*
969  *
970  * SMIA++ NVM handling
971  *
972  */
973 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
974                            unsigned char *nvm)
975 {
976         u32 i, s, p, np, v;
977         int rval = 0, rval2;
978
979         np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
980         for (p = 0; p < np; p++) {
981                 rval = smiapp_write(
982                         sensor,
983                         SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
984                 if (rval)
985                         goto out;
986
987                 rval = smiapp_write(sensor,
988                                     SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
989                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
990                                     SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
991                 if (rval)
992                         goto out;
993
994                 for (i = 1000; i > 0; i--) {
995                         rval = smiapp_read(
996                                 sensor,
997                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
998
999                         if (rval)
1000                                 goto out;
1001
1002                         if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
1003                                 break;
1004
1005                 }
1006                 if (!i) {
1007                         rval = -ETIMEDOUT;
1008                         goto out;
1009                 }
1010
1011                 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
1012                         rval = smiapp_read(
1013                                 sensor,
1014                                 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
1015                                 &v);
1016                         if (rval)
1017                                 goto out;
1018
1019                         *nvm++ = v;
1020                 }
1021         }
1022
1023 out:
1024         rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
1025         if (rval < 0)
1026                 return rval;
1027         else
1028                 return rval2;
1029 }
1030
1031 /*
1032  *
1033  * SMIA++ CCI address control
1034  *
1035  */
1036 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
1037 {
1038         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1039         int rval;
1040         u32 val;
1041
1042         client->addr = sensor->hwcfg->i2c_addr_dfl;
1043
1044         rval = smiapp_write(sensor,
1045                             SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
1046                             sensor->hwcfg->i2c_addr_alt << 1);
1047         if (rval)
1048                 return rval;
1049
1050         client->addr = sensor->hwcfg->i2c_addr_alt;
1051
1052         /* verify addr change went ok */
1053         rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
1054         if (rval)
1055                 return rval;
1056
1057         if (val != sensor->hwcfg->i2c_addr_alt << 1)
1058                 return -ENODEV;
1059
1060         return 0;
1061 }
1062
1063 /*
1064  *
1065  * SMIA++ Mode Control
1066  *
1067  */
1068 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
1069 {
1070         struct smiapp_flash_strobe_parms *strobe_setup;
1071         unsigned int ext_freq = sensor->hwcfg->ext_clk;
1072         u32 tmp;
1073         u32 strobe_adjustment;
1074         u32 strobe_width_high_rs;
1075         int rval;
1076
1077         strobe_setup = sensor->hwcfg->strobe_setup;
1078
1079         /*
1080          * How to calculate registers related to strobe length. Please
1081          * do not change, or if you do at least know what you're
1082          * doing. :-)
1083          *
1084          * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
1085          *
1086          * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1087          *      / EXTCLK freq [Hz]) * flash_strobe_adjustment
1088          *
1089          * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1090          * flash_strobe_adjustment E N, [1 - 0xff]
1091          *
1092          * The formula above is written as below to keep it on one
1093          * line:
1094          *
1095          * l / 10^6 = w / e * a
1096          *
1097          * Let's mark w * a by x:
1098          *
1099          * x = w * a
1100          *
1101          * Thus, we get:
1102          *
1103          * x = l * e / 10^6
1104          *
1105          * The strobe width must be at least as long as requested,
1106          * thus rounding upwards is needed.
1107          *
1108          * x = (l * e + 10^6 - 1) / 10^6
1109          * -----------------------------
1110          *
1111          * Maximum possible accuracy is wanted at all times. Thus keep
1112          * a as small as possible.
1113          *
1114          * Calculate a, assuming maximum w, with rounding upwards:
1115          *
1116          * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1117          * -------------------------------------
1118          *
1119          * Thus, we also get w, with that a, with rounding upwards:
1120          *
1121          * w = (x + a - 1) / a
1122          * -------------------
1123          *
1124          * To get limits:
1125          *
1126          * x E [1, (2^16 - 1) * (2^8 - 1)]
1127          *
1128          * Substituting maximum x to the original formula (with rounding),
1129          * the maximum l is thus
1130          *
1131          * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1132          *
1133          * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1134          * --------------------------------------------------
1135          *
1136          * flash_strobe_length must be clamped between 1 and
1137          * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1138          *
1139          * Then,
1140          *
1141          * flash_strobe_adjustment = ((flash_strobe_length *
1142          *      EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1143          *
1144          * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1145          *      EXTCLK freq + 10^6 - 1) / 10^6 +
1146          *      flash_strobe_adjustment - 1) / flash_strobe_adjustment
1147          */
1148         tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1149                       1000000 + 1, ext_freq);
1150         strobe_setup->strobe_width_high_us =
1151                 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1152
1153         tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1154                         1000000 - 1), 1000000ULL);
1155         strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1156         strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1157                                 strobe_adjustment;
1158
1159         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1160                             strobe_setup->mode);
1161         if (rval < 0)
1162                 goto out;
1163
1164         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1165                             strobe_adjustment);
1166         if (rval < 0)
1167                 goto out;
1168
1169         rval = smiapp_write(
1170                 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1171                 strobe_width_high_rs);
1172         if (rval < 0)
1173                 goto out;
1174
1175         rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1176                             strobe_setup->strobe_delay);
1177         if (rval < 0)
1178                 goto out;
1179
1180         rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1181                             strobe_setup->stobe_start_point);
1182         if (rval < 0)
1183                 goto out;
1184
1185         rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1186                             strobe_setup->trigger);
1187
1188 out:
1189         sensor->hwcfg->strobe_setup->trigger = 0;
1190
1191         return rval;
1192 }
1193
1194 /* -----------------------------------------------------------------------------
1195  * Power management
1196  */
1197
1198 static int smiapp_power_on(struct device *dev)
1199 {
1200         struct i2c_client *client = to_i2c_client(dev);
1201         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1202         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1203         /*
1204          * The sub-device related to the I2C device is always the
1205          * source one, i.e. ssds[0].
1206          */
1207         struct smiapp_sensor *sensor =
1208                 container_of(ssd, struct smiapp_sensor, ssds[0]);
1209         unsigned int sleep;
1210         int rval;
1211
1212         rval = regulator_enable(sensor->vana);
1213         if (rval) {
1214                 dev_err(&client->dev, "failed to enable vana regulator\n");
1215                 return rval;
1216         }
1217         usleep_range(1000, 1000);
1218
1219         rval = clk_prepare_enable(sensor->ext_clk);
1220         if (rval < 0) {
1221                 dev_dbg(&client->dev, "failed to enable xclk\n");
1222                 goto out_xclk_fail;
1223         }
1224         usleep_range(1000, 1000);
1225
1226         gpiod_set_value(sensor->xshutdown, 1);
1227
1228         sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
1229         usleep_range(sleep, sleep);
1230
1231         mutex_lock(&sensor->mutex);
1232
1233         sensor->active = true;
1234
1235         /*
1236          * Failures to respond to the address change command have been noticed.
1237          * Those failures seem to be caused by the sensor requiring a longer
1238          * boot time than advertised. An additional 10ms delay seems to work
1239          * around the issue, but the SMIA++ I2C write retry hack makes the delay
1240          * unnecessary. The failures need to be investigated to find a proper
1241          * fix, and a delay will likely need to be added here if the I2C write
1242          * retry hack is reverted before the root cause of the boot time issue
1243          * is found.
1244          */
1245
1246         if (sensor->hwcfg->i2c_addr_alt) {
1247                 rval = smiapp_change_cci_addr(sensor);
1248                 if (rval) {
1249                         dev_err(&client->dev, "cci address change error\n");
1250                         goto out_cci_addr_fail;
1251                 }
1252         }
1253
1254         rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1255                             SMIAPP_SOFTWARE_RESET);
1256         if (rval < 0) {
1257                 dev_err(&client->dev, "software reset failed\n");
1258                 goto out_cci_addr_fail;
1259         }
1260
1261         if (sensor->hwcfg->i2c_addr_alt) {
1262                 rval = smiapp_change_cci_addr(sensor);
1263                 if (rval) {
1264                         dev_err(&client->dev, "cci address change error\n");
1265                         goto out_cci_addr_fail;
1266                 }
1267         }
1268
1269         rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1270                             SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1271         if (rval) {
1272                 dev_err(&client->dev, "compression mode set failed\n");
1273                 goto out_cci_addr_fail;
1274         }
1275
1276         rval = smiapp_write(
1277                 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1278                 sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
1279         if (rval) {
1280                 dev_err(&client->dev, "extclk frequency set failed\n");
1281                 goto out_cci_addr_fail;
1282         }
1283
1284         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1285                             sensor->hwcfg->lanes - 1);
1286         if (rval) {
1287                 dev_err(&client->dev, "csi lane mode set failed\n");
1288                 goto out_cci_addr_fail;
1289         }
1290
1291         rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1292                             SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1293         if (rval) {
1294                 dev_err(&client->dev, "fast standby set failed\n");
1295                 goto out_cci_addr_fail;
1296         }
1297
1298         rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1299                             sensor->hwcfg->csi_signalling_mode);
1300         if (rval) {
1301                 dev_err(&client->dev, "csi signalling mode set failed\n");
1302                 goto out_cci_addr_fail;
1303         }
1304
1305         /* DPHY control done by sensor based on requested link rate */
1306         rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1307                             SMIAPP_DPHY_CTRL_UI);
1308         if (rval < 0)
1309                 goto out_cci_addr_fail;
1310
1311         rval = smiapp_call_quirk(sensor, post_poweron);
1312         if (rval) {
1313                 dev_err(&client->dev, "post_poweron quirks failed\n");
1314                 goto out_cci_addr_fail;
1315         }
1316
1317         /* Are we still initialising...? If not, proceed with control setup. */
1318         if (sensor->pixel_array) {
1319                 rval = __v4l2_ctrl_handler_setup(
1320                         &sensor->pixel_array->ctrl_handler);
1321                 if (rval)
1322                         goto out_cci_addr_fail;
1323
1324                 rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1325                 if (rval)
1326                         goto out_cci_addr_fail;
1327
1328                 rval = smiapp_update_mode(sensor);
1329                 if (rval < 0)
1330                         goto out_cci_addr_fail;
1331         }
1332
1333         mutex_unlock(&sensor->mutex);
1334
1335         return 0;
1336
1337 out_cci_addr_fail:
1338         mutex_unlock(&sensor->mutex);
1339         gpiod_set_value(sensor->xshutdown, 0);
1340         clk_disable_unprepare(sensor->ext_clk);
1341
1342 out_xclk_fail:
1343         regulator_disable(sensor->vana);
1344
1345         return rval;
1346 }
1347
1348 static int smiapp_power_off(struct device *dev)
1349 {
1350         struct i2c_client *client = to_i2c_client(dev);
1351         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
1352         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1353         struct smiapp_sensor *sensor =
1354                 container_of(ssd, struct smiapp_sensor, ssds[0]);
1355
1356         mutex_lock(&sensor->mutex);
1357
1358         /*
1359          * Currently power/clock to lens are enable/disabled separately
1360          * but they are essentially the same signals. So if the sensor is
1361          * powered off while the lens is powered on the sensor does not
1362          * really see a power off and next time the cci address change
1363          * will fail. So do a soft reset explicitly here.
1364          */
1365         if (sensor->hwcfg->i2c_addr_alt)
1366                 smiapp_write(sensor,
1367                              SMIAPP_REG_U8_SOFTWARE_RESET,
1368                              SMIAPP_SOFTWARE_RESET);
1369
1370         sensor->active = false;
1371
1372         mutex_unlock(&sensor->mutex);
1373
1374         gpiod_set_value(sensor->xshutdown, 0);
1375         clk_disable_unprepare(sensor->ext_clk);
1376         usleep_range(5000, 5000);
1377         regulator_disable(sensor->vana);
1378         sensor->streaming = false;
1379
1380         return 0;
1381 }
1382
1383 /* -----------------------------------------------------------------------------
1384  * Video stream management
1385  */
1386
1387 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1388 {
1389         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1390         int rval;
1391
1392         mutex_lock(&sensor->mutex);
1393
1394         rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1395                             (sensor->csi_format->width << 8) |
1396                             sensor->csi_format->compressed);
1397         if (rval)
1398                 goto out;
1399
1400         rval = smiapp_pll_configure(sensor);
1401         if (rval)
1402                 goto out;
1403
1404         /* Analog crop start coordinates */
1405         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1406                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1407         if (rval < 0)
1408                 goto out;
1409
1410         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1411                             sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1412         if (rval < 0)
1413                 goto out;
1414
1415         /* Analog crop end coordinates */
1416         rval = smiapp_write(
1417                 sensor, SMIAPP_REG_U16_X_ADDR_END,
1418                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1419                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1420         if (rval < 0)
1421                 goto out;
1422
1423         rval = smiapp_write(
1424                 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1425                 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1426                 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1427         if (rval < 0)
1428                 goto out;
1429
1430         /*
1431          * Output from pixel array, including blanking, is set using
1432          * controls below. No need to set here.
1433          */
1434
1435         /* Digital crop */
1436         if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1437             == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1438                 rval = smiapp_write(
1439                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1440                         sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1441                 if (rval < 0)
1442                         goto out;
1443
1444                 rval = smiapp_write(
1445                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1446                         sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1447                 if (rval < 0)
1448                         goto out;
1449
1450                 rval = smiapp_write(
1451                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1452                         sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1453                 if (rval < 0)
1454                         goto out;
1455
1456                 rval = smiapp_write(
1457                         sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1458                         sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1459                 if (rval < 0)
1460                         goto out;
1461         }
1462
1463         /* Scaling */
1464         if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1465             != SMIAPP_SCALING_CAPABILITY_NONE) {
1466                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1467                                     sensor->scaling_mode);
1468                 if (rval < 0)
1469                         goto out;
1470
1471                 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1472                                     sensor->scale_m);
1473                 if (rval < 0)
1474                         goto out;
1475         }
1476
1477         /* Output size from sensor */
1478         rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1479                             sensor->src->crop[SMIAPP_PAD_SRC].width);
1480         if (rval < 0)
1481                 goto out;
1482         rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1483                             sensor->src->crop[SMIAPP_PAD_SRC].height);
1484         if (rval < 0)
1485                 goto out;
1486
1487         if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
1488              (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1489               SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1490             sensor->hwcfg->strobe_setup != NULL &&
1491             sensor->hwcfg->strobe_setup->trigger != 0) {
1492                 rval = smiapp_setup_flash_strobe(sensor);
1493                 if (rval)
1494                         goto out;
1495         }
1496
1497         rval = smiapp_call_quirk(sensor, pre_streamon);
1498         if (rval) {
1499                 dev_err(&client->dev, "pre_streamon quirks failed\n");
1500                 goto out;
1501         }
1502
1503         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1504                             SMIAPP_MODE_SELECT_STREAMING);
1505
1506 out:
1507         mutex_unlock(&sensor->mutex);
1508
1509         return rval;
1510 }
1511
1512 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1513 {
1514         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1515         int rval;
1516
1517         mutex_lock(&sensor->mutex);
1518         rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1519                             SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1520         if (rval)
1521                 goto out;
1522
1523         rval = smiapp_call_quirk(sensor, post_streamoff);
1524         if (rval)
1525                 dev_err(&client->dev, "post_streamoff quirks failed\n");
1526
1527 out:
1528         mutex_unlock(&sensor->mutex);
1529         return rval;
1530 }
1531
1532 /* -----------------------------------------------------------------------------
1533  * V4L2 subdev video operations
1534  */
1535
1536 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1537 {
1538         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1539         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1540         int rval;
1541
1542         if (sensor->streaming == enable)
1543                 return 0;
1544
1545         if (enable) {
1546                 rval = pm_runtime_get_sync(&client->dev);
1547                 if (rval < 0) {
1548                         if (rval != -EBUSY && rval != -EAGAIN)
1549                                 pm_runtime_set_active(&client->dev);
1550                         pm_runtime_put(&client->dev);
1551                         return rval;
1552                 }
1553
1554                 sensor->streaming = true;
1555
1556                 rval = smiapp_start_streaming(sensor);
1557                 if (rval < 0)
1558                         sensor->streaming = false;
1559         } else {
1560                 rval = smiapp_stop_streaming(sensor);
1561                 sensor->streaming = false;
1562                 pm_runtime_mark_last_busy(&client->dev);
1563                 pm_runtime_put_autosuspend(&client->dev);
1564         }
1565
1566         return rval;
1567 }
1568
1569 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1570                                  struct v4l2_subdev_pad_config *cfg,
1571                                  struct v4l2_subdev_mbus_code_enum *code)
1572 {
1573         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1574         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1575         unsigned int i;
1576         int idx = -1;
1577         int rval = -EINVAL;
1578
1579         mutex_lock(&sensor->mutex);
1580
1581         dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1582                 subdev->name, code->pad, code->index);
1583
1584         if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1585                 if (code->index)
1586                         goto out;
1587
1588                 code->code = sensor->internal_csi_format->code;
1589                 rval = 0;
1590                 goto out;
1591         }
1592
1593         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1594                 if (sensor->mbus_frame_fmts & (1 << i))
1595                         idx++;
1596
1597                 if (idx == code->index) {
1598                         code->code = smiapp_csi_data_formats[i].code;
1599                         dev_err(&client->dev, "found index %d, i %d, code %x\n",
1600                                 code->index, i, code->code);
1601                         rval = 0;
1602                         break;
1603                 }
1604         }
1605
1606 out:
1607         mutex_unlock(&sensor->mutex);
1608
1609         return rval;
1610 }
1611
1612 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1613                                   unsigned int pad)
1614 {
1615         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1616
1617         if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1618                 return sensor->csi_format->code;
1619         else
1620                 return sensor->internal_csi_format->code;
1621 }
1622
1623 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1624                                struct v4l2_subdev_pad_config *cfg,
1625                                struct v4l2_subdev_format *fmt)
1626 {
1627         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1628
1629         if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1630                 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1631                                                           fmt->pad);
1632         } else {
1633                 struct v4l2_rect *r;
1634
1635                 if (fmt->pad == ssd->source_pad)
1636                         r = &ssd->crop[ssd->source_pad];
1637                 else
1638                         r = &ssd->sink_fmt;
1639
1640                 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1641                 fmt->format.width = r->width;
1642                 fmt->format.height = r->height;
1643                 fmt->format.field = V4L2_FIELD_NONE;
1644         }
1645
1646         return 0;
1647 }
1648
1649 static int smiapp_get_format(struct v4l2_subdev *subdev,
1650                              struct v4l2_subdev_pad_config *cfg,
1651                              struct v4l2_subdev_format *fmt)
1652 {
1653         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1654         int rval;
1655
1656         mutex_lock(&sensor->mutex);
1657         rval = __smiapp_get_format(subdev, cfg, fmt);
1658         mutex_unlock(&sensor->mutex);
1659
1660         return rval;
1661 }
1662
1663 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1664                                     struct v4l2_subdev_pad_config *cfg,
1665                                     struct v4l2_rect **crops,
1666                                     struct v4l2_rect **comps, int which)
1667 {
1668         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1669         unsigned int i;
1670
1671         if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1672                 if (crops)
1673                         for (i = 0; i < subdev->entity.num_pads; i++)
1674                                 crops[i] = &ssd->crop[i];
1675                 if (comps)
1676                         *comps = &ssd->compose;
1677         } else {
1678                 if (crops) {
1679                         for (i = 0; i < subdev->entity.num_pads; i++) {
1680                                 crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
1681                                 BUG_ON(!crops[i]);
1682                         }
1683                 }
1684                 if (comps) {
1685                         *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1686                                                              SMIAPP_PAD_SINK);
1687                         BUG_ON(!*comps);
1688                 }
1689         }
1690 }
1691
1692 /* Changes require propagation only on sink pad. */
1693 static void smiapp_propagate(struct v4l2_subdev *subdev,
1694                              struct v4l2_subdev_pad_config *cfg, int which,
1695                              int target)
1696 {
1697         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1698         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1699         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1700
1701         smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
1702
1703         switch (target) {
1704         case V4L2_SEL_TGT_CROP:
1705                 comp->width = crops[SMIAPP_PAD_SINK]->width;
1706                 comp->height = crops[SMIAPP_PAD_SINK]->height;
1707                 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1708                         if (ssd == sensor->scaler) {
1709                                 sensor->scale_m =
1710                                         sensor->limits[
1711                                                 SMIAPP_LIMIT_SCALER_N_MIN];
1712                                 sensor->scaling_mode =
1713                                         SMIAPP_SCALING_MODE_NONE;
1714                         } else if (ssd == sensor->binner) {
1715                                 sensor->binning_horizontal = 1;
1716                                 sensor->binning_vertical = 1;
1717                         }
1718                 }
1719                 /* Fall through */
1720         case V4L2_SEL_TGT_COMPOSE:
1721                 *crops[SMIAPP_PAD_SRC] = *comp;
1722                 break;
1723         default:
1724                 BUG();
1725         }
1726 }
1727
1728 static const struct smiapp_csi_data_format
1729 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1730 {
1731         unsigned int i;
1732
1733         for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1734                 if (sensor->mbus_frame_fmts & (1 << i)
1735                     && smiapp_csi_data_formats[i].code == code)
1736                         return &smiapp_csi_data_formats[i];
1737         }
1738
1739         return sensor->csi_format;
1740 }
1741
1742 static int smiapp_set_format_source(struct v4l2_subdev *subdev,
1743                                     struct v4l2_subdev_pad_config *cfg,
1744                                     struct v4l2_subdev_format *fmt)
1745 {
1746         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1747         const struct smiapp_csi_data_format *csi_format,
1748                 *old_csi_format = sensor->csi_format;
1749         unsigned long *valid_link_freqs;
1750         u32 code = fmt->format.code;
1751         unsigned int i;
1752         int rval;
1753
1754         rval = __smiapp_get_format(subdev, cfg, fmt);
1755         if (rval)
1756                 return rval;
1757
1758         /*
1759          * Media bus code is changeable on src subdev's source pad. On
1760          * other source pads we just get format here.
1761          */
1762         if (subdev != &sensor->src->sd)
1763                 return 0;
1764
1765         csi_format = smiapp_validate_csi_data_format(sensor, code);
1766
1767         fmt->format.code = csi_format->code;
1768
1769         if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1770                 return 0;
1771
1772         sensor->csi_format = csi_format;
1773
1774         if (csi_format->width != old_csi_format->width)
1775                 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1776                         __v4l2_ctrl_modify_range(
1777                                 sensor->test_data[i], 0,
1778                                 (1 << csi_format->width) - 1, 1, 0);
1779
1780         if (csi_format->compressed == old_csi_format->compressed)
1781                 return 0;
1782
1783         valid_link_freqs =
1784                 &sensor->valid_link_freqs[sensor->csi_format->compressed
1785                                           - sensor->compressed_min_bpp];
1786
1787         __v4l2_ctrl_modify_range(
1788                 sensor->link_freq, 0,
1789                 __fls(*valid_link_freqs), ~*valid_link_freqs,
1790                 __ffs(*valid_link_freqs));
1791
1792         return smiapp_pll_update(sensor);
1793 }
1794
1795 static int smiapp_set_format(struct v4l2_subdev *subdev,
1796                              struct v4l2_subdev_pad_config *cfg,
1797                              struct v4l2_subdev_format *fmt)
1798 {
1799         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1800         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1801         struct v4l2_rect *crops[SMIAPP_PADS];
1802
1803         mutex_lock(&sensor->mutex);
1804
1805         if (fmt->pad == ssd->source_pad) {
1806                 int rval;
1807
1808                 rval = smiapp_set_format_source(subdev, cfg, fmt);
1809
1810                 mutex_unlock(&sensor->mutex);
1811
1812                 return rval;
1813         }
1814
1815         /* Sink pad. Width and height are changeable here. */
1816         fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1817         fmt->format.width &= ~1;
1818         fmt->format.height &= ~1;
1819         fmt->format.field = V4L2_FIELD_NONE;
1820
1821         fmt->format.width =
1822                 clamp(fmt->format.width,
1823                       sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1824                       sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1825         fmt->format.height =
1826                 clamp(fmt->format.height,
1827                       sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1828                       sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1829
1830         smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1831
1832         crops[ssd->sink_pad]->left = 0;
1833         crops[ssd->sink_pad]->top = 0;
1834         crops[ssd->sink_pad]->width = fmt->format.width;
1835         crops[ssd->sink_pad]->height = fmt->format.height;
1836         if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1837                 ssd->sink_fmt = *crops[ssd->sink_pad];
1838         smiapp_propagate(subdev, cfg, fmt->which,
1839                          V4L2_SEL_TGT_CROP);
1840
1841         mutex_unlock(&sensor->mutex);
1842
1843         return 0;
1844 }
1845
1846 /*
1847  * Calculate goodness of scaled image size compared to expected image
1848  * size and flags provided.
1849  */
1850 #define SCALING_GOODNESS                100000
1851 #define SCALING_GOODNESS_EXTREME        100000000
1852 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1853                             int h, int ask_h, u32 flags)
1854 {
1855         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1856         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1857         int val = 0;
1858
1859         w &= ~1;
1860         ask_w &= ~1;
1861         h &= ~1;
1862         ask_h &= ~1;
1863
1864         if (flags & V4L2_SEL_FLAG_GE) {
1865                 if (w < ask_w)
1866                         val -= SCALING_GOODNESS;
1867                 if (h < ask_h)
1868                         val -= SCALING_GOODNESS;
1869         }
1870
1871         if (flags & V4L2_SEL_FLAG_LE) {
1872                 if (w > ask_w)
1873                         val -= SCALING_GOODNESS;
1874                 if (h > ask_h)
1875                         val -= SCALING_GOODNESS;
1876         }
1877
1878         val -= abs(w - ask_w);
1879         val -= abs(h - ask_h);
1880
1881         if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1882                 val -= SCALING_GOODNESS_EXTREME;
1883
1884         dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1885                 w, ask_w, h, ask_h, val);
1886
1887         return val;
1888 }
1889
1890 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1891                                       struct v4l2_subdev_pad_config *cfg,
1892                                       struct v4l2_subdev_selection *sel,
1893                                       struct v4l2_rect **crops,
1894                                       struct v4l2_rect *comp)
1895 {
1896         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1897         unsigned int i;
1898         unsigned int binh = 1, binv = 1;
1899         int best = scaling_goodness(
1900                 subdev,
1901                 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1902                 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1903
1904         for (i = 0; i < sensor->nbinning_subtypes; i++) {
1905                 int this = scaling_goodness(
1906                         subdev,
1907                         crops[SMIAPP_PAD_SINK]->width
1908                         / sensor->binning_subtypes[i].horizontal,
1909                         sel->r.width,
1910                         crops[SMIAPP_PAD_SINK]->height
1911                         / sensor->binning_subtypes[i].vertical,
1912                         sel->r.height, sel->flags);
1913
1914                 if (this > best) {
1915                         binh = sensor->binning_subtypes[i].horizontal;
1916                         binv = sensor->binning_subtypes[i].vertical;
1917                         best = this;
1918                 }
1919         }
1920         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1921                 sensor->binning_vertical = binv;
1922                 sensor->binning_horizontal = binh;
1923         }
1924
1925         sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1926         sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1927 }
1928
1929 /*
1930  * Calculate best scaling ratio and mode for given output resolution.
1931  *
1932  * Try all of these: horizontal ratio, vertical ratio and smallest
1933  * size possible (horizontally).
1934  *
1935  * Also try whether horizontal scaler or full scaler gives a better
1936  * result.
1937  */
1938 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1939                                       struct v4l2_subdev_pad_config *cfg,
1940                                       struct v4l2_subdev_selection *sel,
1941                                       struct v4l2_rect **crops,
1942                                       struct v4l2_rect *comp)
1943 {
1944         struct i2c_client *client = v4l2_get_subdevdata(subdev);
1945         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1946         u32 min, max, a, b, max_m;
1947         u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1948         int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1949         u32 try[4];
1950         u32 ntry = 0;
1951         unsigned int i;
1952         int best = INT_MIN;
1953
1954         sel->r.width = min_t(unsigned int, sel->r.width,
1955                              crops[SMIAPP_PAD_SINK]->width);
1956         sel->r.height = min_t(unsigned int, sel->r.height,
1957                               crops[SMIAPP_PAD_SINK]->height);
1958
1959         a = crops[SMIAPP_PAD_SINK]->width
1960                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1961         b = crops[SMIAPP_PAD_SINK]->height
1962                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1963         max_m = crops[SMIAPP_PAD_SINK]->width
1964                 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1965                 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1966
1967         a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1968                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1969         b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1970                   sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1971         max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1972                       sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1973
1974         dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1975
1976         min = min(max_m, min(a, b));
1977         max = min(max_m, max(a, b));
1978
1979         try[ntry] = min;
1980         ntry++;
1981         if (min != max) {
1982                 try[ntry] = max;
1983                 ntry++;
1984         }
1985         if (max != max_m) {
1986                 try[ntry] = min + 1;
1987                 ntry++;
1988                 if (min != max) {
1989                         try[ntry] = max + 1;
1990                         ntry++;
1991                 }
1992         }
1993
1994         for (i = 0; i < ntry; i++) {
1995                 int this = scaling_goodness(
1996                         subdev,
1997                         crops[SMIAPP_PAD_SINK]->width
1998                         / try[i]
1999                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2000                         sel->r.width,
2001                         crops[SMIAPP_PAD_SINK]->height,
2002                         sel->r.height,
2003                         sel->flags);
2004
2005                 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2006
2007                 if (this > best) {
2008                         scale_m = try[i];
2009                         mode = SMIAPP_SCALING_MODE_HORIZONTAL;
2010                         best = this;
2011                 }
2012
2013                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2014                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2015                         continue;
2016
2017                 this = scaling_goodness(
2018                         subdev, crops[SMIAPP_PAD_SINK]->width
2019                         / try[i]
2020                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2021                         sel->r.width,
2022                         crops[SMIAPP_PAD_SINK]->height
2023                         / try[i]
2024                         * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
2025                         sel->r.height,
2026                         sel->flags);
2027
2028                 if (this > best) {
2029                         scale_m = try[i];
2030                         mode = SMIAPP_SCALING_MODE_BOTH;
2031                         best = this;
2032                 }
2033         }
2034
2035         sel->r.width =
2036                 (crops[SMIAPP_PAD_SINK]->width
2037                  / scale_m
2038                  * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
2039         if (mode == SMIAPP_SCALING_MODE_BOTH)
2040                 sel->r.height =
2041                         (crops[SMIAPP_PAD_SINK]->height
2042                          / scale_m
2043                          * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
2044                         & ~1;
2045         else
2046                 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
2047
2048         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2049                 sensor->scale_m = scale_m;
2050                 sensor->scaling_mode = mode;
2051         }
2052 }
2053 /* We're only called on source pads. This function sets scaling. */
2054 static int smiapp_set_compose(struct v4l2_subdev *subdev,
2055                               struct v4l2_subdev_pad_config *cfg,
2056                               struct v4l2_subdev_selection *sel)
2057 {
2058         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2059         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2060         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2061
2062         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2063
2064         sel->r.top = 0;
2065         sel->r.left = 0;
2066
2067         if (ssd == sensor->binner)
2068                 smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
2069         else
2070                 smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
2071
2072         *comp = sel->r;
2073         smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2074
2075         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2076                 return smiapp_update_mode(sensor);
2077
2078         return 0;
2079 }
2080
2081 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
2082                                   struct v4l2_subdev_selection *sel)
2083 {
2084         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2085         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2086
2087         /* We only implement crop in three places. */
2088         switch (sel->target) {
2089         case V4L2_SEL_TGT_CROP:
2090         case V4L2_SEL_TGT_CROP_BOUNDS:
2091                 if (ssd == sensor->pixel_array
2092                     && sel->pad == SMIAPP_PA_PAD_SRC)
2093                         return 0;
2094                 if (ssd == sensor->src
2095                     && sel->pad == SMIAPP_PAD_SRC)
2096                         return 0;
2097                 if (ssd == sensor->scaler
2098                     && sel->pad == SMIAPP_PAD_SINK
2099                     && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2100                     == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2101                         return 0;
2102                 return -EINVAL;
2103         case V4L2_SEL_TGT_NATIVE_SIZE:
2104                 if (ssd == sensor->pixel_array
2105                     && sel->pad == SMIAPP_PA_PAD_SRC)
2106                         return 0;
2107                 return -EINVAL;
2108         case V4L2_SEL_TGT_COMPOSE:
2109         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2110                 if (sel->pad == ssd->source_pad)
2111                         return -EINVAL;
2112                 if (ssd == sensor->binner)
2113                         return 0;
2114                 if (ssd == sensor->scaler
2115                     && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2116                     != SMIAPP_SCALING_CAPABILITY_NONE)
2117                         return 0;
2118                 /* Fall through */
2119         default:
2120                 return -EINVAL;
2121         }
2122 }
2123
2124 static int smiapp_set_crop(struct v4l2_subdev *subdev,
2125                            struct v4l2_subdev_pad_config *cfg,
2126                            struct v4l2_subdev_selection *sel)
2127 {
2128         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2129         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2130         struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2131         struct v4l2_rect _r;
2132
2133         smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2134
2135         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2136                 if (sel->pad == ssd->sink_pad)
2137                         src_size = &ssd->sink_fmt;
2138                 else
2139                         src_size = &ssd->compose;
2140         } else {
2141                 if (sel->pad == ssd->sink_pad) {
2142                         _r.left = 0;
2143                         _r.top = 0;
2144                         _r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2145                                 ->width;
2146                         _r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
2147                                 ->height;
2148                         src_size = &_r;
2149                 } else {
2150                         src_size = v4l2_subdev_get_try_compose(
2151                                 subdev, cfg, ssd->sink_pad);
2152                 }
2153         }
2154
2155         if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2156                 sel->r.left = 0;
2157                 sel->r.top = 0;
2158         }
2159
2160         sel->r.width = min(sel->r.width, src_size->width);
2161         sel->r.height = min(sel->r.height, src_size->height);
2162
2163         sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2164         sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2165
2166         *crops[sel->pad] = sel->r;
2167
2168         if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2169                 smiapp_propagate(subdev, cfg, sel->which,
2170                                  V4L2_SEL_TGT_CROP);
2171
2172         return 0;
2173 }
2174
2175 static void smiapp_get_native_size(struct smiapp_subdev *ssd,
2176                                     struct v4l2_rect *r)
2177 {
2178         r->top = 0;
2179         r->left = 0;
2180         r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2181         r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2182 }
2183
2184 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2185                                   struct v4l2_subdev_pad_config *cfg,
2186                                   struct v4l2_subdev_selection *sel)
2187 {
2188         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2189         struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2190         struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2191         struct v4l2_rect sink_fmt;
2192         int ret;
2193
2194         ret = __smiapp_sel_supported(subdev, sel);
2195         if (ret)
2196                 return ret;
2197
2198         smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2199
2200         if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2201                 sink_fmt = ssd->sink_fmt;
2202         } else {
2203                 struct v4l2_mbus_framefmt *fmt =
2204                         v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2205
2206                 sink_fmt.left = 0;
2207                 sink_fmt.top = 0;
2208                 sink_fmt.width = fmt->width;
2209                 sink_fmt.height = fmt->height;
2210         }
2211
2212         switch (sel->target) {
2213         case V4L2_SEL_TGT_CROP_BOUNDS:
2214         case V4L2_SEL_TGT_NATIVE_SIZE:
2215                 if (ssd == sensor->pixel_array)
2216                         smiapp_get_native_size(ssd, &sel->r);
2217                 else if (sel->pad == ssd->sink_pad)
2218                         sel->r = sink_fmt;
2219                 else
2220                         sel->r = *comp;
2221                 break;
2222         case V4L2_SEL_TGT_CROP:
2223         case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2224                 sel->r = *crops[sel->pad];
2225                 break;
2226         case V4L2_SEL_TGT_COMPOSE:
2227                 sel->r = *comp;
2228                 break;
2229         }
2230
2231         return 0;
2232 }
2233
2234 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2235                                 struct v4l2_subdev_pad_config *cfg,
2236                                 struct v4l2_subdev_selection *sel)
2237 {
2238         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2239         int rval;
2240
2241         mutex_lock(&sensor->mutex);
2242         rval = __smiapp_get_selection(subdev, cfg, sel);
2243         mutex_unlock(&sensor->mutex);
2244
2245         return rval;
2246 }
2247 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2248                                 struct v4l2_subdev_pad_config *cfg,
2249                                 struct v4l2_subdev_selection *sel)
2250 {
2251         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2252         int ret;
2253
2254         ret = __smiapp_sel_supported(subdev, sel);
2255         if (ret)
2256                 return ret;
2257
2258         mutex_lock(&sensor->mutex);
2259
2260         sel->r.left = max(0, sel->r.left & ~1);
2261         sel->r.top = max(0, sel->r.top & ~1);
2262         sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2263         sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2264
2265         sel->r.width = max_t(unsigned int,
2266                              sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2267                              sel->r.width);
2268         sel->r.height = max_t(unsigned int,
2269                               sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2270                               sel->r.height);
2271
2272         switch (sel->target) {
2273         case V4L2_SEL_TGT_CROP:
2274                 ret = smiapp_set_crop(subdev, cfg, sel);
2275                 break;
2276         case V4L2_SEL_TGT_COMPOSE:
2277                 ret = smiapp_set_compose(subdev, cfg, sel);
2278                 break;
2279         default:
2280                 ret = -EINVAL;
2281         }
2282
2283         mutex_unlock(&sensor->mutex);
2284         return ret;
2285 }
2286
2287 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2288 {
2289         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2290
2291         *frames = sensor->frame_skip;
2292         return 0;
2293 }
2294
2295 static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2296 {
2297         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2298
2299         *lines = sensor->image_start;
2300
2301         return 0;
2302 }
2303
2304 /* -----------------------------------------------------------------------------
2305  * sysfs attributes
2306  */
2307
2308 static ssize_t
2309 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2310                       char *buf)
2311 {
2312         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2313         struct i2c_client *client = v4l2_get_subdevdata(subdev);
2314         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2315         unsigned int nbytes;
2316
2317         if (!sensor->dev_init_done)
2318                 return -EBUSY;
2319
2320         if (!sensor->nvm_size) {
2321                 int rval;
2322
2323                 /* NVM not read yet - read it now */
2324                 sensor->nvm_size = sensor->hwcfg->nvm_size;
2325
2326                 rval = pm_runtime_get_sync(&client->dev);
2327                 if (rval < 0) {
2328                         if (rval != -EBUSY && rval != -EAGAIN)
2329                                 pm_runtime_set_active(&client->dev);
2330                         pm_runtime_put(&client->dev);
2331                         return -ENODEV;
2332                 }
2333
2334                 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2335                         dev_err(&client->dev, "nvm read failed\n");
2336                         return -ENODEV;
2337                 }
2338
2339                 pm_runtime_mark_last_busy(&client->dev);
2340                 pm_runtime_put_autosuspend(&client->dev);
2341         }
2342         /*
2343          * NVM is still way below a PAGE_SIZE, so we can safely
2344          * assume this for now.
2345          */
2346         nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2347         memcpy(buf, sensor->nvm, nbytes);
2348
2349         return nbytes;
2350 }
2351 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2352
2353 static ssize_t
2354 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2355                         char *buf)
2356 {
2357         struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2358         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2359         struct smiapp_module_info *minfo = &sensor->minfo;
2360
2361         return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2362                         minfo->manufacturer_id, minfo->model_id,
2363                         minfo->revision_number_major) + 1;
2364 }
2365
2366 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2367
2368 /* -----------------------------------------------------------------------------
2369  * V4L2 subdev core operations
2370  */
2371
2372 static int smiapp_identify_module(struct smiapp_sensor *sensor)
2373 {
2374         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2375         struct smiapp_module_info *minfo = &sensor->minfo;
2376         unsigned int i;
2377         int rval = 0;
2378
2379         minfo->name = SMIAPP_NAME;
2380
2381         /* Module info */
2382         rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2383                                  &minfo->manufacturer_id);
2384         if (!rval)
2385                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2386                                          &minfo->model_id);
2387         if (!rval)
2388                 rval = smiapp_read_8only(sensor,
2389                                          SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2390                                          &minfo->revision_number_major);
2391         if (!rval)
2392                 rval = smiapp_read_8only(sensor,
2393                                          SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2394                                          &minfo->revision_number_minor);
2395         if (!rval)
2396                 rval = smiapp_read_8only(sensor,
2397                                          SMIAPP_REG_U8_MODULE_DATE_YEAR,
2398                                          &minfo->module_year);
2399         if (!rval)
2400                 rval = smiapp_read_8only(sensor,
2401                                          SMIAPP_REG_U8_MODULE_DATE_MONTH,
2402                                          &minfo->module_month);
2403         if (!rval)
2404                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2405                                          &minfo->module_day);
2406
2407         /* Sensor info */
2408         if (!rval)
2409                 rval = smiapp_read_8only(sensor,
2410                                          SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2411                                          &minfo->sensor_manufacturer_id);
2412         if (!rval)
2413                 rval = smiapp_read_8only(sensor,
2414                                          SMIAPP_REG_U16_SENSOR_MODEL_ID,
2415                                          &minfo->sensor_model_id);
2416         if (!rval)
2417                 rval = smiapp_read_8only(sensor,
2418                                          SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2419                                          &minfo->sensor_revision_number);
2420         if (!rval)
2421                 rval = smiapp_read_8only(sensor,
2422                                          SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2423                                          &minfo->sensor_firmware_version);
2424
2425         /* SMIA */
2426         if (!rval)
2427                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2428                                          &minfo->smia_version);
2429         if (!rval)
2430                 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2431                                          &minfo->smiapp_version);
2432
2433         if (rval) {
2434                 dev_err(&client->dev, "sensor detection failed\n");
2435                 return -ENODEV;
2436         }
2437
2438         dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2439                 minfo->manufacturer_id, minfo->model_id);
2440
2441         dev_dbg(&client->dev,
2442                 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2443                 minfo->revision_number_major, minfo->revision_number_minor,
2444                 minfo->module_year, minfo->module_month, minfo->module_day);
2445
2446         dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2447                 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2448
2449         dev_dbg(&client->dev,
2450                 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2451                 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2452
2453         dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2454                 minfo->smia_version, minfo->smiapp_version);
2455
2456         /*
2457          * Some modules have bad data in the lvalues below. Hope the
2458          * rvalues have better stuff. The lvalues are module
2459          * parameters whereas the rvalues are sensor parameters.
2460          */
2461         if (!minfo->manufacturer_id && !minfo->model_id) {
2462                 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2463                 minfo->model_id = minfo->sensor_model_id;
2464                 minfo->revision_number_major = minfo->sensor_revision_number;
2465         }
2466
2467         for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2468                 if (smiapp_module_idents[i].manufacturer_id
2469                     != minfo->manufacturer_id)
2470                         continue;
2471                 if (smiapp_module_idents[i].model_id != minfo->model_id)
2472                         continue;
2473                 if (smiapp_module_idents[i].flags
2474                     & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2475                         if (smiapp_module_idents[i].revision_number_major
2476                             < minfo->revision_number_major)
2477                                 continue;
2478                 } else {
2479                         if (smiapp_module_idents[i].revision_number_major
2480                             != minfo->revision_number_major)
2481                                 continue;
2482                 }
2483
2484                 minfo->name = smiapp_module_idents[i].name;
2485                 minfo->quirk = smiapp_module_idents[i].quirk;
2486                 break;
2487         }
2488
2489         if (i >= ARRAY_SIZE(smiapp_module_idents))
2490                 dev_warn(&client->dev,
2491                          "no quirks for this module; let's hope it's fully compliant\n");
2492
2493         dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2494                 minfo->name, minfo->manufacturer_id, minfo->model_id,
2495                 minfo->revision_number_major);
2496
2497         return 0;
2498 }
2499
2500 static const struct v4l2_subdev_ops smiapp_ops;
2501 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2502 static const struct media_entity_operations smiapp_entity_ops;
2503
2504 static int smiapp_register_subdev(struct smiapp_sensor *sensor,
2505                                   struct smiapp_subdev *ssd,
2506                                   struct smiapp_subdev *sink_ssd,
2507                                   u16 source_pad, u16 sink_pad, u32 link_flags)
2508 {
2509         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2510         int rval;
2511
2512         if (!sink_ssd)
2513                 return 0;
2514
2515         rval = media_entity_pads_init(&ssd->sd.entity,
2516                                       ssd->npads, ssd->pads);
2517         if (rval) {
2518                 dev_err(&client->dev,
2519                         "media_entity_pads_init failed\n");
2520                 return rval;
2521         }
2522
2523         rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2524                                            &ssd->sd);
2525         if (rval) {
2526                 dev_err(&client->dev,
2527                         "v4l2_device_register_subdev failed\n");
2528                 return rval;
2529         }
2530
2531         rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2532                                      &sink_ssd->sd.entity, sink_pad,
2533                                      link_flags);
2534         if (rval) {
2535                 dev_err(&client->dev,
2536                         "media_create_pad_link failed\n");
2537                 v4l2_device_unregister_subdev(&ssd->sd);
2538                 return rval;
2539         }
2540
2541         return 0;
2542 }
2543
2544 static void smiapp_unregistered(struct v4l2_subdev *subdev)
2545 {
2546         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2547         unsigned int i;
2548
2549         for (i = 1; i < sensor->ssds_used; i++)
2550                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2551 }
2552
2553 static int smiapp_registered(struct v4l2_subdev *subdev)
2554 {
2555         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2556         int rval;
2557
2558         if (sensor->scaler) {
2559                 rval = smiapp_register_subdev(
2560                         sensor, sensor->binner, sensor->scaler,
2561                         SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
2562                         MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2563                 if (rval < 0)
2564                         return rval;
2565         }
2566
2567         rval = smiapp_register_subdev(
2568                 sensor, sensor->pixel_array, sensor->binner,
2569                 SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
2570                 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2571         if (rval)
2572                 goto out_err;
2573
2574         return 0;
2575
2576 out_err:
2577         smiapp_unregistered(subdev);
2578
2579         return rval;
2580 }
2581
2582 static void smiapp_cleanup(struct smiapp_sensor *sensor)
2583 {
2584         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2585
2586         device_remove_file(&client->dev, &dev_attr_nvm);
2587         device_remove_file(&client->dev, &dev_attr_ident);
2588
2589         smiapp_free_controls(sensor);
2590 }
2591
2592 static void smiapp_create_subdev(struct smiapp_sensor *sensor,
2593                                  struct smiapp_subdev *ssd, const char *name,
2594                                  unsigned short num_pads)
2595 {
2596         struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2597
2598         if (!ssd)
2599                 return;
2600
2601         if (ssd != sensor->src)
2602                 v4l2_subdev_init(&ssd->sd, &smiapp_ops);
2603
2604         ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2605         ssd->sensor = sensor;
2606
2607         ssd->npads = num_pads;
2608         ssd->source_pad = num_pads - 1;
2609
2610         v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2611
2612         smiapp_get_native_size(ssd, &ssd->sink_fmt);
2613
2614         ssd->compose.width = ssd->sink_fmt.width;
2615         ssd->compose.height = ssd->sink_fmt.height;
2616         ssd->crop[ssd->source_pad] = ssd->compose;
2617         ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2618         if (ssd != sensor->pixel_array) {
2619                 ssd->crop[ssd->sink_pad] = ssd->compose;
2620                 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2621         }
2622
2623         ssd->sd.entity.ops = &smiapp_entity_ops;
2624
2625         if (ssd == sensor->src)
2626                 return;
2627
2628         ssd->sd.internal_ops = &smiapp_internal_ops;
2629         ssd->sd.owner = THIS_MODULE;
2630         ssd->sd.dev = &client->dev;
2631         v4l2_set_subdevdata(&ssd->sd, client);
2632 }
2633
2634 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2635 {
2636         struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2637         struct smiapp_sensor *sensor = ssd->sensor;
2638         unsigned int i;
2639
2640         mutex_lock(&sensor->mutex);
2641
2642         for (i = 0; i < ssd->npads; i++) {
2643                 struct v4l2_mbus_framefmt *try_fmt =
2644                         v4l2_subdev_get_try_format(sd, fh->pad, i);
2645                 struct v4l2_rect *try_crop =
2646                         v4l2_subdev_get_try_crop(sd, fh->pad, i);
2647                 struct v4l2_rect *try_comp;
2648
2649                 smiapp_get_native_size(ssd, try_crop);
2650
2651                 try_fmt->width = try_crop->width;
2652                 try_fmt->height = try_crop->height;
2653                 try_fmt->code = sensor->internal_csi_format->code;
2654                 try_fmt->field = V4L2_FIELD_NONE;
2655
2656                 if (ssd != sensor->pixel_array)
2657                         continue;
2658
2659                 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2660                 *try_comp = *try_crop;
2661         }
2662
2663         mutex_unlock(&sensor->mutex);
2664
2665         return 0;
2666 }
2667
2668 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2669         .s_stream = smiapp_set_stream,
2670 };
2671
2672 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2673         .enum_mbus_code = smiapp_enum_mbus_code,
2674         .get_fmt = smiapp_get_format,
2675         .set_fmt = smiapp_set_format,
2676         .get_selection = smiapp_get_selection,
2677         .set_selection = smiapp_set_selection,
2678 };
2679
2680 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2681         .g_skip_frames = smiapp_get_skip_frames,
2682         .g_skip_top_lines = smiapp_get_skip_top_lines,
2683 };
2684
2685 static const struct v4l2_subdev_ops smiapp_ops = {
2686         .video = &smiapp_video_ops,
2687         .pad = &smiapp_pad_ops,
2688         .sensor = &smiapp_sensor_ops,
2689 };
2690
2691 static const struct media_entity_operations smiapp_entity_ops = {
2692         .link_validate = v4l2_subdev_link_validate,
2693 };
2694
2695 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2696         .registered = smiapp_registered,
2697         .unregistered = smiapp_unregistered,
2698         .open = smiapp_open,
2699 };
2700
2701 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2702         .open = smiapp_open,
2703 };
2704
2705 /* -----------------------------------------------------------------------------
2706  * I2C Driver
2707  */
2708
2709 static int __maybe_unused smiapp_suspend(struct device *dev)
2710 {
2711         struct i2c_client *client = to_i2c_client(dev);
2712         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2713         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2714         bool streaming = sensor->streaming;
2715         int rval;
2716
2717         rval = pm_runtime_get_sync(dev);
2718         if (rval < 0) {
2719                 if (rval != -EBUSY && rval != -EAGAIN)
2720                         pm_runtime_set_active(&client->dev);
2721                 pm_runtime_put(dev);
2722                 return -EAGAIN;
2723         }
2724
2725         if (sensor->streaming)
2726                 smiapp_stop_streaming(sensor);
2727
2728         /* save state for resume */
2729         sensor->streaming = streaming;
2730
2731         return 0;
2732 }
2733
2734 static int __maybe_unused smiapp_resume(struct device *dev)
2735 {
2736         struct i2c_client *client = to_i2c_client(dev);
2737         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2738         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2739         int rval = 0;
2740
2741         pm_runtime_put(dev);
2742
2743         if (sensor->streaming)
2744                 rval = smiapp_start_streaming(sensor);
2745
2746         return rval;
2747 }
2748
2749 static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
2750 {
2751         struct smiapp_hwconfig *hwcfg;
2752         struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
2753         struct fwnode_handle *ep;
2754         struct fwnode_handle *fwnode = dev_fwnode(dev);
2755         u32 rotation;
2756         int i;
2757         int rval;
2758
2759         if (!fwnode)
2760                 return dev->platform_data;
2761
2762         ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2763         if (!ep)
2764                 return NULL;
2765
2766         bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
2767         rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2768         if (rval == -ENXIO) {
2769                 bus_cfg = (struct v4l2_fwnode_endpoint)
2770                         { .bus_type = V4L2_MBUS_CCP2 };
2771                 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2772         }
2773         if (rval)
2774                 goto out_err;
2775
2776         hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
2777         if (!hwcfg)
2778                 goto out_err;
2779
2780         switch (bus_cfg.bus_type) {
2781         case V4L2_MBUS_CSI2_DPHY:
2782                 hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
2783                 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2784                 break;
2785         case V4L2_MBUS_CCP2:
2786                 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
2787                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2788                 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2789                 hwcfg->lanes = 1;
2790                 break;
2791         default:
2792                 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
2793                 goto out_err;
2794         }
2795
2796         dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2797
2798         rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
2799         if (!rval) {
2800                 switch (rotation) {
2801                 case 180:
2802                         hwcfg->module_board_orient =
2803                                 SMIAPP_MODULE_BOARD_ORIENT_180;
2804                         /* Fall through */
2805                 case 0:
2806                         break;
2807                 default:
2808                         dev_err(dev, "invalid rotation %u\n", rotation);
2809                         goto out_err;
2810                 }
2811         }
2812
2813         /* NVM size is not mandatory */
2814         fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size);
2815
2816         rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2817                                         &hwcfg->ext_clk);
2818         if (rval)
2819                 dev_info(dev, "can't get clock-frequency\n");
2820
2821         dev_dbg(dev, "nvm %d, clk %d, mode %d\n",
2822                 hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode);
2823
2824         if (!bus_cfg.nr_of_link_frequencies) {
2825                 dev_warn(dev, "no link frequencies defined\n");
2826                 goto out_err;
2827         }
2828
2829         hwcfg->op_sys_clock = devm_kcalloc(
2830                 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
2831                 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2832         if (!hwcfg->op_sys_clock)
2833                 goto out_err;
2834
2835         for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
2836                 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
2837                 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2838         }
2839
2840         v4l2_fwnode_endpoint_free(&bus_cfg);
2841         fwnode_handle_put(ep);
2842         return hwcfg;
2843
2844 out_err:
2845         v4l2_fwnode_endpoint_free(&bus_cfg);
2846         fwnode_handle_put(ep);
2847         return NULL;
2848 }
2849
2850 static int smiapp_probe(struct i2c_client *client,
2851                         const struct i2c_device_id *devid)
2852 {
2853         struct smiapp_sensor *sensor;
2854         struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
2855         unsigned int i;
2856         int rval;
2857
2858         if (hwcfg == NULL)
2859                 return -ENODEV;
2860
2861         sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2862         if (sensor == NULL)
2863                 return -ENOMEM;
2864
2865         sensor->hwcfg = hwcfg;
2866         mutex_init(&sensor->mutex);
2867         sensor->src = &sensor->ssds[sensor->ssds_used];
2868
2869         v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2870         sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2871
2872         sensor->vana = devm_regulator_get(&client->dev, "vana");
2873         if (IS_ERR(sensor->vana)) {
2874                 dev_err(&client->dev, "could not get regulator for vana\n");
2875                 return PTR_ERR(sensor->vana);
2876         }
2877
2878         sensor->ext_clk = devm_clk_get(&client->dev, NULL);
2879         if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
2880                 dev_info(&client->dev, "no clock defined, continuing...\n");
2881                 sensor->ext_clk = NULL;
2882         } else if (IS_ERR(sensor->ext_clk)) {
2883                 dev_err(&client->dev, "could not get clock (%ld)\n",
2884                         PTR_ERR(sensor->ext_clk));
2885                 return -EPROBE_DEFER;
2886         }
2887
2888         if (sensor->ext_clk) {
2889                 if (sensor->hwcfg->ext_clk) {
2890                         unsigned long rate;
2891
2892                         rval = clk_set_rate(sensor->ext_clk,
2893                                             sensor->hwcfg->ext_clk);
2894                         if (rval < 0) {
2895                                 dev_err(&client->dev,
2896                                         "unable to set clock freq to %u\n",
2897                                         sensor->hwcfg->ext_clk);
2898                                 return rval;
2899                         }
2900
2901                         rate = clk_get_rate(sensor->ext_clk);
2902                         if (rate != sensor->hwcfg->ext_clk) {
2903                                 dev_err(&client->dev,
2904                                         "can't set clock freq, asked for %u but got %lu\n",
2905                                         sensor->hwcfg->ext_clk, rate);
2906                                 return rval;
2907                         }
2908                 } else {
2909                         sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
2910                         dev_dbg(&client->dev, "obtained clock freq %u\n",
2911                                 sensor->hwcfg->ext_clk);
2912                 }
2913         } else if (sensor->hwcfg->ext_clk) {
2914                 dev_dbg(&client->dev, "assuming clock freq %u\n",
2915                         sensor->hwcfg->ext_clk);
2916         } else {
2917                 dev_err(&client->dev, "unable to obtain clock freq\n");
2918                 return -EINVAL;
2919         }
2920
2921         sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
2922                                                     GPIOD_OUT_LOW);
2923         if (IS_ERR(sensor->xshutdown))
2924                 return PTR_ERR(sensor->xshutdown);
2925
2926         rval = smiapp_power_on(&client->dev);
2927         if (rval < 0)
2928                 return rval;
2929
2930         rval = smiapp_identify_module(sensor);
2931         if (rval) {
2932                 rval = -ENODEV;
2933                 goto out_power_off;
2934         }
2935
2936         rval = smiapp_get_all_limits(sensor);
2937         if (rval) {
2938                 rval = -ENODEV;
2939                 goto out_power_off;
2940         }
2941
2942         rval = smiapp_read_frame_fmt(sensor);
2943         if (rval) {
2944                 rval = -ENODEV;
2945                 goto out_power_off;
2946         }
2947
2948         /*
2949          * Handle Sensor Module orientation on the board.
2950          *
2951          * The application of H-FLIP and V-FLIP on the sensor is modified by
2952          * the sensor orientation on the board.
2953          *
2954          * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2955          * both H-FLIP and V-FLIP for normal operation which also implies
2956          * that a set/unset operation for user space HFLIP and VFLIP v4l2
2957          * controls will need to be internally inverted.
2958          *
2959          * Rotation also changes the bayer pattern.
2960          */
2961         if (sensor->hwcfg->module_board_orient ==
2962             SMIAPP_MODULE_BOARD_ORIENT_180)
2963                 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2964                                           SMIAPP_IMAGE_ORIENTATION_VFLIP;
2965
2966         rval = smiapp_call_quirk(sensor, limits);
2967         if (rval) {
2968                 dev_err(&client->dev, "limits quirks failed\n");
2969                 goto out_power_off;
2970         }
2971
2972         if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2973                 u32 val;
2974
2975                 rval = smiapp_read(sensor,
2976                                    SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2977                 if (rval < 0) {
2978                         rval = -ENODEV;
2979                         goto out_power_off;
2980                 }
2981                 sensor->nbinning_subtypes = min_t(u8, val,
2982                                                   SMIAPP_BINNING_SUBTYPES);
2983
2984                 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2985                         rval = smiapp_read(
2986                                 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2987                         if (rval < 0) {
2988                                 rval = -ENODEV;
2989                                 goto out_power_off;
2990                         }
2991                         sensor->binning_subtypes[i] =
2992                                 *(struct smiapp_binning_subtype *)&val;
2993
2994                         dev_dbg(&client->dev, "binning %xx%x\n",
2995                                 sensor->binning_subtypes[i].horizontal,
2996                                 sensor->binning_subtypes[i].vertical);
2997                 }
2998         }
2999         sensor->binning_horizontal = 1;
3000         sensor->binning_vertical = 1;
3001
3002         if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3003                 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3004                 rval = -ENOENT;
3005                 goto out_power_off;
3006         }
3007         /* SMIA++ NVM initialization - it will be read from the sensor
3008          * when it is first requested by userspace.
3009          */
3010         if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
3011                 sensor->nvm = devm_kzalloc(&client->dev,
3012                                 sensor->hwcfg->nvm_size, GFP_KERNEL);
3013                 if (sensor->nvm == NULL) {
3014                         rval = -ENOMEM;
3015                         goto out_cleanup;
3016                 }
3017
3018                 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3019                         dev_err(&client->dev, "sysfs nvm entry failed\n");
3020                         rval = -EBUSY;
3021                         goto out_cleanup;
3022                 }
3023         }
3024
3025         /* We consider this as profile 0 sensor if any of these are zero. */
3026         if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
3027             !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
3028             !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
3029             !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
3030                 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
3031         } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3032                    != SMIAPP_SCALING_CAPABILITY_NONE) {
3033                 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
3034                     == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
3035                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
3036                 else
3037                         sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
3038                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3039                 sensor->ssds_used++;
3040         } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
3041                    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3042                 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3043                 sensor->ssds_used++;
3044         }
3045         sensor->binner = &sensor->ssds[sensor->ssds_used];
3046         sensor->ssds_used++;
3047         sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3048         sensor->ssds_used++;
3049
3050         sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3051
3052         /* prepare PLL configuration input values */
3053         sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
3054         sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
3055         sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
3056         sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
3057         /* Profile 0 sensors have no separate OP clock branch. */
3058         if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
3059                 sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
3060
3061         smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
3062         smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
3063         smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
3064
3065         dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
3066
3067         sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
3068
3069         rval = smiapp_init_controls(sensor);
3070         if (rval < 0)
3071                 goto out_cleanup;
3072
3073         rval = smiapp_call_quirk(sensor, init);
3074         if (rval)
3075                 goto out_cleanup;
3076
3077         rval = smiapp_get_mbus_formats(sensor);
3078         if (rval) {
3079                 rval = -ENODEV;
3080                 goto out_cleanup;
3081         }
3082
3083         rval = smiapp_init_late_controls(sensor);
3084         if (rval) {
3085                 rval = -ENODEV;
3086                 goto out_cleanup;
3087         }
3088
3089         mutex_lock(&sensor->mutex);
3090         rval = smiapp_update_mode(sensor);
3091         mutex_unlock(&sensor->mutex);
3092         if (rval) {
3093                 dev_err(&client->dev, "update mode failed\n");
3094                 goto out_cleanup;
3095         }
3096
3097         sensor->streaming = false;
3098         sensor->dev_init_done = true;
3099
3100         rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3101                                  sensor->src->pads);
3102         if (rval < 0)
3103                 goto out_media_entity_cleanup;
3104
3105         rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3106         if (rval < 0)
3107                 goto out_media_entity_cleanup;
3108
3109         pm_runtime_set_active(&client->dev);
3110         pm_runtime_get_noresume(&client->dev);
3111         pm_runtime_enable(&client->dev);
3112         pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3113         pm_runtime_use_autosuspend(&client->dev);
3114         pm_runtime_put_autosuspend(&client->dev);
3115
3116         return 0;
3117
3118 out_media_entity_cleanup:
3119         media_entity_cleanup(&sensor->src->sd.entity);
3120
3121 out_cleanup:
3122         smiapp_cleanup(sensor);
3123
3124 out_power_off:
3125         smiapp_power_off(&client->dev);
3126
3127         return rval;
3128 }
3129
3130 static int smiapp_remove(struct i2c_client *client)
3131 {
3132         struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3133         struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
3134         unsigned int i;
3135
3136         v4l2_async_unregister_subdev(subdev);
3137
3138         pm_runtime_disable(&client->dev);
3139         if (!pm_runtime_status_suspended(&client->dev))
3140                 smiapp_power_off(&client->dev);
3141         pm_runtime_set_suspended(&client->dev);
3142
3143         for (i = 0; i < sensor->ssds_used; i++) {
3144                 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3145                 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3146         }
3147         smiapp_cleanup(sensor);
3148
3149         return 0;
3150 }
3151
3152 static const struct of_device_id smiapp_of_table[] = {
3153         { .compatible = "nokia,smia" },
3154         { },
3155 };
3156 MODULE_DEVICE_TABLE(of, smiapp_of_table);
3157
3158 static const struct i2c_device_id smiapp_id_table[] = {
3159         { SMIAPP_NAME, 0 },
3160         { },
3161 };
3162 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
3163
3164 static const struct dev_pm_ops smiapp_pm_ops = {
3165         SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
3166         SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
3167 };
3168
3169 static struct i2c_driver smiapp_i2c_driver = {
3170         .driver = {
3171                 .of_match_table = smiapp_of_table,
3172                 .name = SMIAPP_NAME,
3173                 .pm = &smiapp_pm_ops,
3174         },
3175         .probe  = smiapp_probe,
3176         .remove = smiapp_remove,
3177         .id_table = smiapp_id_table,
3178 };
3179
3180 module_i2c_driver(smiapp_i2c_driver);
3181
3182 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
3183 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
3184 MODULE_LICENSE("GPL v2");