Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j * 2]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                                 if (!test_bit(Faulty, &rdev->flags))
469                                         /* This is the only remaining device,
470                                          * We need to retry the write without
471                                          * FailFast
472                                          */
473                                         set_bit(R10BIO_WriteError, &r10_bio->state);
474                                 else {
475                                         r10_bio->devs[slot].bio = NULL;
476                                         to_put = bio;
477                                         dec_rdev = 1;
478                                 }
479                         } else
480                                 set_bit(R10BIO_WriteError, &r10_bio->state);
481                 }
482         } else {
483                 /*
484                  * Set R10BIO_Uptodate in our master bio, so that
485                  * we will return a good error code for to the higher
486                  * levels even if IO on some other mirrored buffer fails.
487                  *
488                  * The 'master' represents the composite IO operation to
489                  * user-side. So if something waits for IO, then it will
490                  * wait for the 'master' bio.
491                  */
492                 sector_t first_bad;
493                 int bad_sectors;
494
495                 /*
496                  * Do not set R10BIO_Uptodate if the current device is
497                  * rebuilding or Faulty. This is because we cannot use
498                  * such device for properly reading the data back (we could
499                  * potentially use it, if the current write would have felt
500                  * before rdev->recovery_offset, but for simplicity we don't
501                  * check this here.
502                  */
503                 if (test_bit(In_sync, &rdev->flags) &&
504                     !test_bit(Faulty, &rdev->flags))
505                         set_bit(R10BIO_Uptodate, &r10_bio->state);
506
507                 /* Maybe we can clear some bad blocks. */
508                 if (is_badblock(rdev,
509                                 r10_bio->devs[slot].addr,
510                                 r10_bio->sectors,
511                                 &first_bad, &bad_sectors) && !discard_error) {
512                         bio_put(bio);
513                         if (repl)
514                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
515                         else
516                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
517                         dec_rdev = 0;
518                         set_bit(R10BIO_MadeGood, &r10_bio->state);
519                 }
520         }
521
522         /*
523          *
524          * Let's see if all mirrored write operations have finished
525          * already.
526          */
527         one_write_done(r10_bio);
528         if (dec_rdev)
529                 rdev_dec_pending(rdev, conf->mddev);
530         if (to_put)
531                 bio_put(to_put);
532 }
533
534 /*
535  * RAID10 layout manager
536  * As well as the chunksize and raid_disks count, there are two
537  * parameters: near_copies and far_copies.
538  * near_copies * far_copies must be <= raid_disks.
539  * Normally one of these will be 1.
540  * If both are 1, we get raid0.
541  * If near_copies == raid_disks, we get raid1.
542  *
543  * Chunks are laid out in raid0 style with near_copies copies of the
544  * first chunk, followed by near_copies copies of the next chunk and
545  * so on.
546  * If far_copies > 1, then after 1/far_copies of the array has been assigned
547  * as described above, we start again with a device offset of near_copies.
548  * So we effectively have another copy of the whole array further down all
549  * the drives, but with blocks on different drives.
550  * With this layout, and block is never stored twice on the one device.
551  *
552  * raid10_find_phys finds the sector offset of a given virtual sector
553  * on each device that it is on.
554  *
555  * raid10_find_virt does the reverse mapping, from a device and a
556  * sector offset to a virtual address
557  */
558
559 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
560 {
561         int n,f;
562         sector_t sector;
563         sector_t chunk;
564         sector_t stripe;
565         int dev;
566         int slot = 0;
567         int last_far_set_start, last_far_set_size;
568
569         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
570         last_far_set_start *= geo->far_set_size;
571
572         last_far_set_size = geo->far_set_size;
573         last_far_set_size += (geo->raid_disks % geo->far_set_size);
574
575         /* now calculate first sector/dev */
576         chunk = r10bio->sector >> geo->chunk_shift;
577         sector = r10bio->sector & geo->chunk_mask;
578
579         chunk *= geo->near_copies;
580         stripe = chunk;
581         dev = sector_div(stripe, geo->raid_disks);
582         if (geo->far_offset)
583                 stripe *= geo->far_copies;
584
585         sector += stripe << geo->chunk_shift;
586
587         /* and calculate all the others */
588         for (n = 0; n < geo->near_copies; n++) {
589                 int d = dev;
590                 int set;
591                 sector_t s = sector;
592                 r10bio->devs[slot].devnum = d;
593                 r10bio->devs[slot].addr = s;
594                 slot++;
595
596                 for (f = 1; f < geo->far_copies; f++) {
597                         set = d / geo->far_set_size;
598                         d += geo->near_copies;
599
600                         if ((geo->raid_disks % geo->far_set_size) &&
601                             (d > last_far_set_start)) {
602                                 d -= last_far_set_start;
603                                 d %= last_far_set_size;
604                                 d += last_far_set_start;
605                         } else {
606                                 d %= geo->far_set_size;
607                                 d += geo->far_set_size * set;
608                         }
609                         s += geo->stride;
610                         r10bio->devs[slot].devnum = d;
611                         r10bio->devs[slot].addr = s;
612                         slot++;
613                 }
614                 dev++;
615                 if (dev >= geo->raid_disks) {
616                         dev = 0;
617                         sector += (geo->chunk_mask + 1);
618                 }
619         }
620 }
621
622 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
623 {
624         struct geom *geo = &conf->geo;
625
626         if (conf->reshape_progress != MaxSector &&
627             ((r10bio->sector >= conf->reshape_progress) !=
628              conf->mddev->reshape_backwards)) {
629                 set_bit(R10BIO_Previous, &r10bio->state);
630                 geo = &conf->prev;
631         } else
632                 clear_bit(R10BIO_Previous, &r10bio->state);
633
634         __raid10_find_phys(geo, r10bio);
635 }
636
637 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
638 {
639         sector_t offset, chunk, vchunk;
640         /* Never use conf->prev as this is only called during resync
641          * or recovery, so reshape isn't happening
642          */
643         struct geom *geo = &conf->geo;
644         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
645         int far_set_size = geo->far_set_size;
646         int last_far_set_start;
647
648         if (geo->raid_disks % geo->far_set_size) {
649                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
650                 last_far_set_start *= geo->far_set_size;
651
652                 if (dev >= last_far_set_start) {
653                         far_set_size = geo->far_set_size;
654                         far_set_size += (geo->raid_disks % geo->far_set_size);
655                         far_set_start = last_far_set_start;
656                 }
657         }
658
659         offset = sector & geo->chunk_mask;
660         if (geo->far_offset) {
661                 int fc;
662                 chunk = sector >> geo->chunk_shift;
663                 fc = sector_div(chunk, geo->far_copies);
664                 dev -= fc * geo->near_copies;
665                 if (dev < far_set_start)
666                         dev += far_set_size;
667         } else {
668                 while (sector >= geo->stride) {
669                         sector -= geo->stride;
670                         if (dev < (geo->near_copies + far_set_start))
671                                 dev += far_set_size - geo->near_copies;
672                         else
673                                 dev -= geo->near_copies;
674                 }
675                 chunk = sector >> geo->chunk_shift;
676         }
677         vchunk = chunk * geo->raid_disks + dev;
678         sector_div(vchunk, geo->near_copies);
679         return (vchunk << geo->chunk_shift) + offset;
680 }
681
682 /*
683  * This routine returns the disk from which the requested read should
684  * be done. There is a per-array 'next expected sequential IO' sector
685  * number - if this matches on the next IO then we use the last disk.
686  * There is also a per-disk 'last know head position' sector that is
687  * maintained from IRQ contexts, both the normal and the resync IO
688  * completion handlers update this position correctly. If there is no
689  * perfect sequential match then we pick the disk whose head is closest.
690  *
691  * If there are 2 mirrors in the same 2 devices, performance degrades
692  * because position is mirror, not device based.
693  *
694  * The rdev for the device selected will have nr_pending incremented.
695  */
696
697 /*
698  * FIXME: possibly should rethink readbalancing and do it differently
699  * depending on near_copies / far_copies geometry.
700  */
701 static struct md_rdev *read_balance(struct r10conf *conf,
702                                     struct r10bio *r10_bio,
703                                     int *max_sectors)
704 {
705         const sector_t this_sector = r10_bio->sector;
706         int disk, slot;
707         int sectors = r10_bio->sectors;
708         int best_good_sectors;
709         sector_t new_distance, best_dist;
710         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
711         int do_balance;
712         int best_dist_slot, best_pending_slot;
713         bool has_nonrot_disk = false;
714         unsigned int min_pending;
715         struct geom *geo = &conf->geo;
716
717         raid10_find_phys(conf, r10_bio);
718         rcu_read_lock();
719         best_dist_slot = -1;
720         min_pending = UINT_MAX;
721         best_dist_rdev = NULL;
722         best_pending_rdev = NULL;
723         best_dist = MaxSector;
724         best_good_sectors = 0;
725         do_balance = 1;
726         clear_bit(R10BIO_FailFast, &r10_bio->state);
727         /*
728          * Check if we can balance. We can balance on the whole
729          * device if no resync is going on (recovery is ok), or below
730          * the resync window. We take the first readable disk when
731          * above the resync window.
732          */
733         if ((conf->mddev->recovery_cp < MaxSector
734              && (this_sector + sectors >= conf->next_resync)) ||
735             (mddev_is_clustered(conf->mddev) &&
736              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
737                                             this_sector + sectors)))
738                 do_balance = 0;
739
740         for (slot = 0; slot < conf->copies ; slot++) {
741                 sector_t first_bad;
742                 int bad_sectors;
743                 sector_t dev_sector;
744                 unsigned int pending;
745                 bool nonrot;
746
747                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
748                         continue;
749                 disk = r10_bio->devs[slot].devnum;
750                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
751                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
752                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
753                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
754                 if (rdev == NULL ||
755                     test_bit(Faulty, &rdev->flags))
756                         continue;
757                 if (!test_bit(In_sync, &rdev->flags) &&
758                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
759                         continue;
760
761                 dev_sector = r10_bio->devs[slot].addr;
762                 if (is_badblock(rdev, dev_sector, sectors,
763                                 &first_bad, &bad_sectors)) {
764                         if (best_dist < MaxSector)
765                                 /* Already have a better slot */
766                                 continue;
767                         if (first_bad <= dev_sector) {
768                                 /* Cannot read here.  If this is the
769                                  * 'primary' device, then we must not read
770                                  * beyond 'bad_sectors' from another device.
771                                  */
772                                 bad_sectors -= (dev_sector - first_bad);
773                                 if (!do_balance && sectors > bad_sectors)
774                                         sectors = bad_sectors;
775                                 if (best_good_sectors > sectors)
776                                         best_good_sectors = sectors;
777                         } else {
778                                 sector_t good_sectors =
779                                         first_bad - dev_sector;
780                                 if (good_sectors > best_good_sectors) {
781                                         best_good_sectors = good_sectors;
782                                         best_dist_slot = slot;
783                                         best_dist_rdev = rdev;
784                                 }
785                                 if (!do_balance)
786                                         /* Must read from here */
787                                         break;
788                         }
789                         continue;
790                 } else
791                         best_good_sectors = sectors;
792
793                 if (!do_balance)
794                         break;
795
796                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
797                 has_nonrot_disk |= nonrot;
798                 pending = atomic_read(&rdev->nr_pending);
799                 if (min_pending > pending && nonrot) {
800                         min_pending = pending;
801                         best_pending_slot = slot;
802                         best_pending_rdev = rdev;
803                 }
804
805                 if (best_dist_slot >= 0)
806                         /* At least 2 disks to choose from so failfast is OK */
807                         set_bit(R10BIO_FailFast, &r10_bio->state);
808                 /* This optimisation is debatable, and completely destroys
809                  * sequential read speed for 'far copies' arrays.  So only
810                  * keep it for 'near' arrays, and review those later.
811                  */
812                 if (geo->near_copies > 1 && !pending)
813                         new_distance = 0;
814
815                 /* for far > 1 always use the lowest address */
816                 else if (geo->far_copies > 1)
817                         new_distance = r10_bio->devs[slot].addr;
818                 else
819                         new_distance = abs(r10_bio->devs[slot].addr -
820                                            conf->mirrors[disk].head_position);
821
822                 if (new_distance < best_dist) {
823                         best_dist = new_distance;
824                         best_dist_slot = slot;
825                         best_dist_rdev = rdev;
826                 }
827         }
828         if (slot >= conf->copies) {
829                 if (has_nonrot_disk) {
830                         slot = best_pending_slot;
831                         rdev = best_pending_rdev;
832                 } else {
833                         slot = best_dist_slot;
834                         rdev = best_dist_rdev;
835                 }
836         }
837
838         if (slot >= 0) {
839                 atomic_inc(&rdev->nr_pending);
840                 r10_bio->read_slot = slot;
841         } else
842                 rdev = NULL;
843         rcu_read_unlock();
844         *max_sectors = best_good_sectors;
845
846         return rdev;
847 }
848
849 static int raid10_congested(struct mddev *mddev, int bits)
850 {
851         struct r10conf *conf = mddev->private;
852         int i, ret = 0;
853
854         if ((bits & (1 << WB_async_congested)) &&
855             conf->pending_count >= max_queued_requests)
856                 return 1;
857
858         rcu_read_lock();
859         for (i = 0;
860              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
861                      && ret == 0;
862              i++) {
863                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
864                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
865                         struct request_queue *q = bdev_get_queue(rdev->bdev);
866
867                         ret |= bdi_congested(q->backing_dev_info, bits);
868                 }
869         }
870         rcu_read_unlock();
871         return ret;
872 }
873
874 static void flush_pending_writes(struct r10conf *conf)
875 {
876         /* Any writes that have been queued but are awaiting
877          * bitmap updates get flushed here.
878          */
879         spin_lock_irq(&conf->device_lock);
880
881         if (conf->pending_bio_list.head) {
882                 struct blk_plug plug;
883                 struct bio *bio;
884
885                 bio = bio_list_get(&conf->pending_bio_list);
886                 conf->pending_count = 0;
887                 spin_unlock_irq(&conf->device_lock);
888
889                 /*
890                  * As this is called in a wait_event() loop (see freeze_array),
891                  * current->state might be TASK_UNINTERRUPTIBLE which will
892                  * cause a warning when we prepare to wait again.  As it is
893                  * rare that this path is taken, it is perfectly safe to force
894                  * us to go around the wait_event() loop again, so the warning
895                  * is a false-positive. Silence the warning by resetting
896                  * thread state
897                  */
898                 __set_current_state(TASK_RUNNING);
899
900                 blk_start_plug(&plug);
901                 /* flush any pending bitmap writes to disk
902                  * before proceeding w/ I/O */
903                 md_bitmap_unplug(conf->mddev->bitmap);
904                 wake_up(&conf->wait_barrier);
905
906                 while (bio) { /* submit pending writes */
907                         struct bio *next = bio->bi_next;
908                         struct md_rdev *rdev = (void*)bio->bi_disk;
909                         bio->bi_next = NULL;
910                         bio_set_dev(bio, rdev->bdev);
911                         if (test_bit(Faulty, &rdev->flags)) {
912                                 bio_io_error(bio);
913                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
914                                             !blk_queue_discard(bio->bi_disk->queue)))
915                                 /* Just ignore it */
916                                 bio_endio(bio);
917                         else
918                                 generic_make_request(bio);
919                         bio = next;
920                 }
921                 blk_finish_plug(&plug);
922         } else
923                 spin_unlock_irq(&conf->device_lock);
924 }
925
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950         BUG_ON(force && !conf->barrier);
951         spin_lock_irq(&conf->resync_lock);
952
953         /* Wait until no block IO is waiting (unless 'force') */
954         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955                             conf->resync_lock);
956
957         /* block any new IO from starting */
958         conf->barrier++;
959
960         /* Now wait for all pending IO to complete */
961         wait_event_lock_irq(conf->wait_barrier,
962                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
963                             conf->resync_lock);
964
965         spin_unlock_irq(&conf->resync_lock);
966 }
967
968 static void lower_barrier(struct r10conf *conf)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&conf->resync_lock, flags);
972         conf->barrier--;
973         spin_unlock_irqrestore(&conf->resync_lock, flags);
974         wake_up(&conf->wait_barrier);
975 }
976
977 static void wait_barrier(struct r10conf *conf)
978 {
979         spin_lock_irq(&conf->resync_lock);
980         if (conf->barrier) {
981                 conf->nr_waiting++;
982                 /* Wait for the barrier to drop.
983                  * However if there are already pending
984                  * requests (preventing the barrier from
985                  * rising completely), and the
986                  * pre-process bio queue isn't empty,
987                  * then don't wait, as we need to empty
988                  * that queue to get the nr_pending
989                  * count down.
990                  */
991                 raid10_log(conf->mddev, "wait barrier");
992                 wait_event_lock_irq(conf->wait_barrier,
993                                     !conf->barrier ||
994                                     (atomic_read(&conf->nr_pending) &&
995                                      current->bio_list &&
996                                      (!bio_list_empty(&current->bio_list[0]) ||
997                                       !bio_list_empty(&current->bio_list[1]))),
998                                     conf->resync_lock);
999                 conf->nr_waiting--;
1000                 if (!conf->nr_waiting)
1001                         wake_up(&conf->wait_barrier);
1002         }
1003         atomic_inc(&conf->nr_pending);
1004         spin_unlock_irq(&conf->resync_lock);
1005 }
1006
1007 static void allow_barrier(struct r10conf *conf)
1008 {
1009         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1010                         (conf->array_freeze_pending))
1011                 wake_up(&conf->wait_barrier);
1012 }
1013
1014 static void freeze_array(struct r10conf *conf, int extra)
1015 {
1016         /* stop syncio and normal IO and wait for everything to
1017          * go quiet.
1018          * We increment barrier and nr_waiting, and then
1019          * wait until nr_pending match nr_queued+extra
1020          * This is called in the context of one normal IO request
1021          * that has failed. Thus any sync request that might be pending
1022          * will be blocked by nr_pending, and we need to wait for
1023          * pending IO requests to complete or be queued for re-try.
1024          * Thus the number queued (nr_queued) plus this request (extra)
1025          * must match the number of pending IOs (nr_pending) before
1026          * we continue.
1027          */
1028         spin_lock_irq(&conf->resync_lock);
1029         conf->array_freeze_pending++;
1030         conf->barrier++;
1031         conf->nr_waiting++;
1032         wait_event_lock_irq_cmd(conf->wait_barrier,
1033                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1034                                 conf->resync_lock,
1035                                 flush_pending_writes(conf));
1036
1037         conf->array_freeze_pending--;
1038         spin_unlock_irq(&conf->resync_lock);
1039 }
1040
1041 static void unfreeze_array(struct r10conf *conf)
1042 {
1043         /* reverse the effect of the freeze */
1044         spin_lock_irq(&conf->resync_lock);
1045         conf->barrier--;
1046         conf->nr_waiting--;
1047         wake_up(&conf->wait_barrier);
1048         spin_unlock_irq(&conf->resync_lock);
1049 }
1050
1051 static sector_t choose_data_offset(struct r10bio *r10_bio,
1052                                    struct md_rdev *rdev)
1053 {
1054         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1055             test_bit(R10BIO_Previous, &r10_bio->state))
1056                 return rdev->data_offset;
1057         else
1058                 return rdev->new_data_offset;
1059 }
1060
1061 struct raid10_plug_cb {
1062         struct blk_plug_cb      cb;
1063         struct bio_list         pending;
1064         int                     pending_cnt;
1065 };
1066
1067 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1068 {
1069         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1070                                                    cb);
1071         struct mddev *mddev = plug->cb.data;
1072         struct r10conf *conf = mddev->private;
1073         struct bio *bio;
1074
1075         if (from_schedule || current->bio_list) {
1076                 spin_lock_irq(&conf->device_lock);
1077                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1078                 conf->pending_count += plug->pending_cnt;
1079                 spin_unlock_irq(&conf->device_lock);
1080                 wake_up(&conf->wait_barrier);
1081                 md_wakeup_thread(mddev->thread);
1082                 kfree(plug);
1083                 return;
1084         }
1085
1086         /* we aren't scheduling, so we can do the write-out directly. */
1087         bio = bio_list_get(&plug->pending);
1088         md_bitmap_unplug(mddev->bitmap);
1089         wake_up(&conf->wait_barrier);
1090
1091         while (bio) { /* submit pending writes */
1092                 struct bio *next = bio->bi_next;
1093                 struct md_rdev *rdev = (void*)bio->bi_disk;
1094                 bio->bi_next = NULL;
1095                 bio_set_dev(bio, rdev->bdev);
1096                 if (test_bit(Faulty, &rdev->flags)) {
1097                         bio_io_error(bio);
1098                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1099                                     !blk_queue_discard(bio->bi_disk->queue)))
1100                         /* Just ignore it */
1101                         bio_endio(bio);
1102                 else
1103                         generic_make_request(bio);
1104                 bio = next;
1105         }
1106         kfree(plug);
1107 }
1108
1109 /*
1110  * 1. Register the new request and wait if the reconstruction thread has put
1111  * up a bar for new requests. Continue immediately if no resync is active
1112  * currently.
1113  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1114  */
1115 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1116                                  struct bio *bio, sector_t sectors)
1117 {
1118         wait_barrier(conf);
1119         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1120             bio->bi_iter.bi_sector < conf->reshape_progress &&
1121             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1122                 raid10_log(conf->mddev, "wait reshape");
1123                 allow_barrier(conf);
1124                 wait_event(conf->wait_barrier,
1125                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1126                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1127                            sectors);
1128                 wait_barrier(conf);
1129         }
1130 }
1131
1132 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1133                                 struct r10bio *r10_bio)
1134 {
1135         struct r10conf *conf = mddev->private;
1136         struct bio *read_bio;
1137         const int op = bio_op(bio);
1138         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1139         int max_sectors;
1140         struct md_rdev *rdev;
1141         char b[BDEVNAME_SIZE];
1142         int slot = r10_bio->read_slot;
1143         struct md_rdev *err_rdev = NULL;
1144         gfp_t gfp = GFP_NOIO;
1145
1146         if (r10_bio->devs[slot].rdev) {
1147                 /*
1148                  * This is an error retry, but we cannot
1149                  * safely dereference the rdev in the r10_bio,
1150                  * we must use the one in conf.
1151                  * If it has already been disconnected (unlikely)
1152                  * we lose the device name in error messages.
1153                  */
1154                 int disk;
1155                 /*
1156                  * As we are blocking raid10, it is a little safer to
1157                  * use __GFP_HIGH.
1158                  */
1159                 gfp = GFP_NOIO | __GFP_HIGH;
1160
1161                 rcu_read_lock();
1162                 disk = r10_bio->devs[slot].devnum;
1163                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1164                 if (err_rdev)
1165                         bdevname(err_rdev->bdev, b);
1166                 else {
1167                         strcpy(b, "???");
1168                         /* This never gets dereferenced */
1169                         err_rdev = r10_bio->devs[slot].rdev;
1170                 }
1171                 rcu_read_unlock();
1172         }
1173
1174         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1175         rdev = read_balance(conf, r10_bio, &max_sectors);
1176         if (!rdev) {
1177                 if (err_rdev) {
1178                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1179                                             mdname(mddev), b,
1180                                             (unsigned long long)r10_bio->sector);
1181                 }
1182                 raid_end_bio_io(r10_bio);
1183                 return;
1184         }
1185         if (err_rdev)
1186                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1187                                    mdname(mddev),
1188                                    bdevname(rdev->bdev, b),
1189                                    (unsigned long long)r10_bio->sector);
1190         if (max_sectors < bio_sectors(bio)) {
1191                 struct bio *split = bio_split(bio, max_sectors,
1192                                               gfp, &conf->bio_split);
1193                 bio_chain(split, bio);
1194                 allow_barrier(conf);
1195                 generic_make_request(bio);
1196                 wait_barrier(conf);
1197                 bio = split;
1198                 r10_bio->master_bio = bio;
1199                 r10_bio->sectors = max_sectors;
1200         }
1201         slot = r10_bio->read_slot;
1202
1203         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1204
1205         r10_bio->devs[slot].bio = read_bio;
1206         r10_bio->devs[slot].rdev = rdev;
1207
1208         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1209                 choose_data_offset(r10_bio, rdev);
1210         bio_set_dev(read_bio, rdev->bdev);
1211         read_bio->bi_end_io = raid10_end_read_request;
1212         bio_set_op_attrs(read_bio, op, do_sync);
1213         if (test_bit(FailFast, &rdev->flags) &&
1214             test_bit(R10BIO_FailFast, &r10_bio->state))
1215                 read_bio->bi_opf |= MD_FAILFAST;
1216         read_bio->bi_private = r10_bio;
1217
1218         if (mddev->gendisk)
1219                 trace_block_bio_remap(read_bio->bi_disk->queue,
1220                                       read_bio, disk_devt(mddev->gendisk),
1221                                       r10_bio->sector);
1222         generic_make_request(read_bio);
1223         return;
1224 }
1225
1226 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1227                                   struct bio *bio, bool replacement,
1228                                   int n_copy)
1229 {
1230         const int op = bio_op(bio);
1231         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1232         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1233         unsigned long flags;
1234         struct blk_plug_cb *cb;
1235         struct raid10_plug_cb *plug = NULL;
1236         struct r10conf *conf = mddev->private;
1237         struct md_rdev *rdev;
1238         int devnum = r10_bio->devs[n_copy].devnum;
1239         struct bio *mbio;
1240
1241         if (replacement) {
1242                 rdev = conf->mirrors[devnum].replacement;
1243                 if (rdev == NULL) {
1244                         /* Replacement just got moved to main 'rdev' */
1245                         smp_mb();
1246                         rdev = conf->mirrors[devnum].rdev;
1247                 }
1248         } else
1249                 rdev = conf->mirrors[devnum].rdev;
1250
1251         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1252         if (replacement)
1253                 r10_bio->devs[n_copy].repl_bio = mbio;
1254         else
1255                 r10_bio->devs[n_copy].bio = mbio;
1256
1257         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1258                                    choose_data_offset(r10_bio, rdev));
1259         bio_set_dev(mbio, rdev->bdev);
1260         mbio->bi_end_io = raid10_end_write_request;
1261         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1262         if (!replacement && test_bit(FailFast,
1263                                      &conf->mirrors[devnum].rdev->flags)
1264                          && enough(conf, devnum))
1265                 mbio->bi_opf |= MD_FAILFAST;
1266         mbio->bi_private = r10_bio;
1267
1268         if (conf->mddev->gendisk)
1269                 trace_block_bio_remap(mbio->bi_disk->queue,
1270                                       mbio, disk_devt(conf->mddev->gendisk),
1271                                       r10_bio->sector);
1272         /* flush_pending_writes() needs access to the rdev so...*/
1273         mbio->bi_disk = (void *)rdev;
1274
1275         atomic_inc(&r10_bio->remaining);
1276
1277         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1278         if (cb)
1279                 plug = container_of(cb, struct raid10_plug_cb, cb);
1280         else
1281                 plug = NULL;
1282         if (plug) {
1283                 bio_list_add(&plug->pending, mbio);
1284                 plug->pending_cnt++;
1285         } else {
1286                 spin_lock_irqsave(&conf->device_lock, flags);
1287                 bio_list_add(&conf->pending_bio_list, mbio);
1288                 conf->pending_count++;
1289                 spin_unlock_irqrestore(&conf->device_lock, flags);
1290                 md_wakeup_thread(mddev->thread);
1291         }
1292 }
1293
1294 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1295                                  struct r10bio *r10_bio)
1296 {
1297         struct r10conf *conf = mddev->private;
1298         int i;
1299         struct md_rdev *blocked_rdev;
1300         sector_t sectors;
1301         int max_sectors;
1302
1303         if ((mddev_is_clustered(mddev) &&
1304              md_cluster_ops->area_resyncing(mddev, WRITE,
1305                                             bio->bi_iter.bi_sector,
1306                                             bio_end_sector(bio)))) {
1307                 DEFINE_WAIT(w);
1308                 for (;;) {
1309                         prepare_to_wait(&conf->wait_barrier,
1310                                         &w, TASK_IDLE);
1311                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1312                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1313                                 break;
1314                         schedule();
1315                 }
1316                 finish_wait(&conf->wait_barrier, &w);
1317         }
1318
1319         sectors = r10_bio->sectors;
1320         regular_request_wait(mddev, conf, bio, sectors);
1321         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1322             (mddev->reshape_backwards
1323              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1324                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1325              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1326                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1327                 /* Need to update reshape_position in metadata */
1328                 mddev->reshape_position = conf->reshape_progress;
1329                 set_mask_bits(&mddev->sb_flags, 0,
1330                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1331                 md_wakeup_thread(mddev->thread);
1332                 raid10_log(conf->mddev, "wait reshape metadata");
1333                 wait_event(mddev->sb_wait,
1334                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1335
1336                 conf->reshape_safe = mddev->reshape_position;
1337         }
1338
1339         if (conf->pending_count >= max_queued_requests) {
1340                 md_wakeup_thread(mddev->thread);
1341                 raid10_log(mddev, "wait queued");
1342                 wait_event(conf->wait_barrier,
1343                            conf->pending_count < max_queued_requests);
1344         }
1345         /* first select target devices under rcu_lock and
1346          * inc refcount on their rdev.  Record them by setting
1347          * bios[x] to bio
1348          * If there are known/acknowledged bad blocks on any device
1349          * on which we have seen a write error, we want to avoid
1350          * writing to those blocks.  This potentially requires several
1351          * writes to write around the bad blocks.  Each set of writes
1352          * gets its own r10_bio with a set of bios attached.
1353          */
1354
1355         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1356         raid10_find_phys(conf, r10_bio);
1357 retry_write:
1358         blocked_rdev = NULL;
1359         rcu_read_lock();
1360         max_sectors = r10_bio->sectors;
1361
1362         for (i = 0;  i < conf->copies; i++) {
1363                 int d = r10_bio->devs[i].devnum;
1364                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1365                 struct md_rdev *rrdev = rcu_dereference(
1366                         conf->mirrors[d].replacement);
1367                 if (rdev == rrdev)
1368                         rrdev = NULL;
1369                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370                         atomic_inc(&rdev->nr_pending);
1371                         blocked_rdev = rdev;
1372                         break;
1373                 }
1374                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1375                         atomic_inc(&rrdev->nr_pending);
1376                         blocked_rdev = rrdev;
1377                         break;
1378                 }
1379                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1380                         rdev = NULL;
1381                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1382                         rrdev = NULL;
1383
1384                 r10_bio->devs[i].bio = NULL;
1385                 r10_bio->devs[i].repl_bio = NULL;
1386
1387                 if (!rdev && !rrdev) {
1388                         set_bit(R10BIO_Degraded, &r10_bio->state);
1389                         continue;
1390                 }
1391                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1392                         sector_t first_bad;
1393                         sector_t dev_sector = r10_bio->devs[i].addr;
1394                         int bad_sectors;
1395                         int is_bad;
1396
1397                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1398                                              &first_bad, &bad_sectors);
1399                         if (is_bad < 0) {
1400                                 /* Mustn't write here until the bad block
1401                                  * is acknowledged
1402                                  */
1403                                 atomic_inc(&rdev->nr_pending);
1404                                 set_bit(BlockedBadBlocks, &rdev->flags);
1405                                 blocked_rdev = rdev;
1406                                 break;
1407                         }
1408                         if (is_bad && first_bad <= dev_sector) {
1409                                 /* Cannot write here at all */
1410                                 bad_sectors -= (dev_sector - first_bad);
1411                                 if (bad_sectors < max_sectors)
1412                                         /* Mustn't write more than bad_sectors
1413                                          * to other devices yet
1414                                          */
1415                                         max_sectors = bad_sectors;
1416                                 /* We don't set R10BIO_Degraded as that
1417                                  * only applies if the disk is missing,
1418                                  * so it might be re-added, and we want to
1419                                  * know to recover this chunk.
1420                                  * In this case the device is here, and the
1421                                  * fact that this chunk is not in-sync is
1422                                  * recorded in the bad block log.
1423                                  */
1424                                 continue;
1425                         }
1426                         if (is_bad) {
1427                                 int good_sectors = first_bad - dev_sector;
1428                                 if (good_sectors < max_sectors)
1429                                         max_sectors = good_sectors;
1430                         }
1431                 }
1432                 if (rdev) {
1433                         r10_bio->devs[i].bio = bio;
1434                         atomic_inc(&rdev->nr_pending);
1435                 }
1436                 if (rrdev) {
1437                         r10_bio->devs[i].repl_bio = bio;
1438                         atomic_inc(&rrdev->nr_pending);
1439                 }
1440         }
1441         rcu_read_unlock();
1442
1443         if (unlikely(blocked_rdev)) {
1444                 /* Have to wait for this device to get unblocked, then retry */
1445                 int j;
1446                 int d;
1447
1448                 for (j = 0; j < i; j++) {
1449                         if (r10_bio->devs[j].bio) {
1450                                 d = r10_bio->devs[j].devnum;
1451                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1452                         }
1453                         if (r10_bio->devs[j].repl_bio) {
1454                                 struct md_rdev *rdev;
1455                                 d = r10_bio->devs[j].devnum;
1456                                 rdev = conf->mirrors[d].replacement;
1457                                 if (!rdev) {
1458                                         /* Race with remove_disk */
1459                                         smp_mb();
1460                                         rdev = conf->mirrors[d].rdev;
1461                                 }
1462                                 rdev_dec_pending(rdev, mddev);
1463                         }
1464                 }
1465                 allow_barrier(conf);
1466                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1467                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1468                 wait_barrier(conf);
1469                 goto retry_write;
1470         }
1471
1472         if (max_sectors < r10_bio->sectors)
1473                 r10_bio->sectors = max_sectors;
1474
1475         if (r10_bio->sectors < bio_sectors(bio)) {
1476                 struct bio *split = bio_split(bio, r10_bio->sectors,
1477                                               GFP_NOIO, &conf->bio_split);
1478                 bio_chain(split, bio);
1479                 allow_barrier(conf);
1480                 generic_make_request(bio);
1481                 wait_barrier(conf);
1482                 bio = split;
1483                 r10_bio->master_bio = bio;
1484         }
1485
1486         atomic_set(&r10_bio->remaining, 1);
1487         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1488
1489         for (i = 0; i < conf->copies; i++) {
1490                 if (r10_bio->devs[i].bio)
1491                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1492                 if (r10_bio->devs[i].repl_bio)
1493                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1494         }
1495         one_write_done(r10_bio);
1496 }
1497
1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1499 {
1500         struct r10conf *conf = mddev->private;
1501         struct r10bio *r10_bio;
1502
1503         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1504
1505         r10_bio->master_bio = bio;
1506         r10_bio->sectors = sectors;
1507
1508         r10_bio->mddev = mddev;
1509         r10_bio->sector = bio->bi_iter.bi_sector;
1510         r10_bio->state = 0;
1511         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1512
1513         if (bio_data_dir(bio) == READ)
1514                 raid10_read_request(mddev, bio, r10_bio);
1515         else
1516                 raid10_write_request(mddev, bio, r10_bio);
1517 }
1518
1519 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1520 {
1521         struct r10conf *conf = mddev->private;
1522         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1523         int chunk_sects = chunk_mask + 1;
1524         int sectors = bio_sectors(bio);
1525
1526         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1527                 md_flush_request(mddev, bio);
1528                 return true;
1529         }
1530
1531         if (!md_write_start(mddev, bio))
1532                 return false;
1533
1534         /*
1535          * If this request crosses a chunk boundary, we need to split
1536          * it.
1537          */
1538         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1539                      sectors > chunk_sects
1540                      && (conf->geo.near_copies < conf->geo.raid_disks
1541                          || conf->prev.near_copies <
1542                          conf->prev.raid_disks)))
1543                 sectors = chunk_sects -
1544                         (bio->bi_iter.bi_sector &
1545                          (chunk_sects - 1));
1546         __make_request(mddev, bio, sectors);
1547
1548         /* In case raid10d snuck in to freeze_array */
1549         wake_up(&conf->wait_barrier);
1550         return true;
1551 }
1552
1553 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1554 {
1555         struct r10conf *conf = mddev->private;
1556         int i;
1557
1558         if (conf->geo.near_copies < conf->geo.raid_disks)
1559                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1560         if (conf->geo.near_copies > 1)
1561                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1562         if (conf->geo.far_copies > 1) {
1563                 if (conf->geo.far_offset)
1564                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1565                 else
1566                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1567                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1568                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1569         }
1570         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1571                                         conf->geo.raid_disks - mddev->degraded);
1572         rcu_read_lock();
1573         for (i = 0; i < conf->geo.raid_disks; i++) {
1574                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1576         }
1577         rcu_read_unlock();
1578         seq_printf(seq, "]");
1579 }
1580
1581 /* check if there are enough drives for
1582  * every block to appear on atleast one.
1583  * Don't consider the device numbered 'ignore'
1584  * as we might be about to remove it.
1585  */
1586 static int _enough(struct r10conf *conf, int previous, int ignore)
1587 {
1588         int first = 0;
1589         int has_enough = 0;
1590         int disks, ncopies;
1591         if (previous) {
1592                 disks = conf->prev.raid_disks;
1593                 ncopies = conf->prev.near_copies;
1594         } else {
1595                 disks = conf->geo.raid_disks;
1596                 ncopies = conf->geo.near_copies;
1597         }
1598
1599         rcu_read_lock();
1600         do {
1601                 int n = conf->copies;
1602                 int cnt = 0;
1603                 int this = first;
1604                 while (n--) {
1605                         struct md_rdev *rdev;
1606                         if (this != ignore &&
1607                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1608                             test_bit(In_sync, &rdev->flags))
1609                                 cnt++;
1610                         this = (this+1) % disks;
1611                 }
1612                 if (cnt == 0)
1613                         goto out;
1614                 first = (first + ncopies) % disks;
1615         } while (first != 0);
1616         has_enough = 1;
1617 out:
1618         rcu_read_unlock();
1619         return has_enough;
1620 }
1621
1622 static int enough(struct r10conf *conf, int ignore)
1623 {
1624         /* when calling 'enough', both 'prev' and 'geo' must
1625          * be stable.
1626          * This is ensured if ->reconfig_mutex or ->device_lock
1627          * is held.
1628          */
1629         return _enough(conf, 0, ignore) &&
1630                 _enough(conf, 1, ignore);
1631 }
1632
1633 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1634 {
1635         char b[BDEVNAME_SIZE];
1636         struct r10conf *conf = mddev->private;
1637         unsigned long flags;
1638
1639         /*
1640          * If it is not operational, then we have already marked it as dead
1641          * else if it is the last working disks, ignore the error, let the
1642          * next level up know.
1643          * else mark the drive as failed
1644          */
1645         spin_lock_irqsave(&conf->device_lock, flags);
1646         if (test_bit(In_sync, &rdev->flags)
1647             && !enough(conf, rdev->raid_disk)) {
1648                 /*
1649                  * Don't fail the drive, just return an IO error.
1650                  */
1651                 spin_unlock_irqrestore(&conf->device_lock, flags);
1652                 return;
1653         }
1654         if (test_and_clear_bit(In_sync, &rdev->flags))
1655                 mddev->degraded++;
1656         /*
1657          * If recovery is running, make sure it aborts.
1658          */
1659         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1660         set_bit(Blocked, &rdev->flags);
1661         set_bit(Faulty, &rdev->flags);
1662         set_mask_bits(&mddev->sb_flags, 0,
1663                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1664         spin_unlock_irqrestore(&conf->device_lock, flags);
1665         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1666                 "md/raid10:%s: Operation continuing on %d devices.\n",
1667                 mdname(mddev), bdevname(rdev->bdev, b),
1668                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1669 }
1670
1671 static void print_conf(struct r10conf *conf)
1672 {
1673         int i;
1674         struct md_rdev *rdev;
1675
1676         pr_debug("RAID10 conf printout:\n");
1677         if (!conf) {
1678                 pr_debug("(!conf)\n");
1679                 return;
1680         }
1681         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1682                  conf->geo.raid_disks);
1683
1684         /* This is only called with ->reconfix_mutex held, so
1685          * rcu protection of rdev is not needed */
1686         for (i = 0; i < conf->geo.raid_disks; i++) {
1687                 char b[BDEVNAME_SIZE];
1688                 rdev = conf->mirrors[i].rdev;
1689                 if (rdev)
1690                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1691                                  i, !test_bit(In_sync, &rdev->flags),
1692                                  !test_bit(Faulty, &rdev->flags),
1693                                  bdevname(rdev->bdev,b));
1694         }
1695 }
1696
1697 static void close_sync(struct r10conf *conf)
1698 {
1699         wait_barrier(conf);
1700         allow_barrier(conf);
1701
1702         mempool_exit(&conf->r10buf_pool);
1703 }
1704
1705 static int raid10_spare_active(struct mddev *mddev)
1706 {
1707         int i;
1708         struct r10conf *conf = mddev->private;
1709         struct raid10_info *tmp;
1710         int count = 0;
1711         unsigned long flags;
1712
1713         /*
1714          * Find all non-in_sync disks within the RAID10 configuration
1715          * and mark them in_sync
1716          */
1717         for (i = 0; i < conf->geo.raid_disks; i++) {
1718                 tmp = conf->mirrors + i;
1719                 if (tmp->replacement
1720                     && tmp->replacement->recovery_offset == MaxSector
1721                     && !test_bit(Faulty, &tmp->replacement->flags)
1722                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1723                         /* Replacement has just become active */
1724                         if (!tmp->rdev
1725                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1726                                 count++;
1727                         if (tmp->rdev) {
1728                                 /* Replaced device not technically faulty,
1729                                  * but we need to be sure it gets removed
1730                                  * and never re-added.
1731                                  */
1732                                 set_bit(Faulty, &tmp->rdev->flags);
1733                                 sysfs_notify_dirent_safe(
1734                                         tmp->rdev->sysfs_state);
1735                         }
1736                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1737                 } else if (tmp->rdev
1738                            && tmp->rdev->recovery_offset == MaxSector
1739                            && !test_bit(Faulty, &tmp->rdev->flags)
1740                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1741                         count++;
1742                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1743                 }
1744         }
1745         spin_lock_irqsave(&conf->device_lock, flags);
1746         mddev->degraded -= count;
1747         spin_unlock_irqrestore(&conf->device_lock, flags);
1748
1749         print_conf(conf);
1750         return count;
1751 }
1752
1753 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1754 {
1755         struct r10conf *conf = mddev->private;
1756         int err = -EEXIST;
1757         int mirror;
1758         int first = 0;
1759         int last = conf->geo.raid_disks - 1;
1760
1761         if (mddev->recovery_cp < MaxSector)
1762                 /* only hot-add to in-sync arrays, as recovery is
1763                  * very different from resync
1764                  */
1765                 return -EBUSY;
1766         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1767                 return -EINVAL;
1768
1769         if (md_integrity_add_rdev(rdev, mddev))
1770                 return -ENXIO;
1771
1772         if (rdev->raid_disk >= 0)
1773                 first = last = rdev->raid_disk;
1774
1775         if (rdev->saved_raid_disk >= first &&
1776             rdev->saved_raid_disk < conf->geo.raid_disks &&
1777             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1778                 mirror = rdev->saved_raid_disk;
1779         else
1780                 mirror = first;
1781         for ( ; mirror <= last ; mirror++) {
1782                 struct raid10_info *p = &conf->mirrors[mirror];
1783                 if (p->recovery_disabled == mddev->recovery_disabled)
1784                         continue;
1785                 if (p->rdev) {
1786                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1787                             p->replacement != NULL)
1788                                 continue;
1789                         clear_bit(In_sync, &rdev->flags);
1790                         set_bit(Replacement, &rdev->flags);
1791                         rdev->raid_disk = mirror;
1792                         err = 0;
1793                         if (mddev->gendisk)
1794                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1795                                                   rdev->data_offset << 9);
1796                         conf->fullsync = 1;
1797                         rcu_assign_pointer(p->replacement, rdev);
1798                         break;
1799                 }
1800
1801                 if (mddev->gendisk)
1802                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1803                                           rdev->data_offset << 9);
1804
1805                 p->head_position = 0;
1806                 p->recovery_disabled = mddev->recovery_disabled - 1;
1807                 rdev->raid_disk = mirror;
1808                 err = 0;
1809                 if (rdev->saved_raid_disk != mirror)
1810                         conf->fullsync = 1;
1811                 rcu_assign_pointer(p->rdev, rdev);
1812                 break;
1813         }
1814         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1815                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1816
1817         print_conf(conf);
1818         return err;
1819 }
1820
1821 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1822 {
1823         struct r10conf *conf = mddev->private;
1824         int err = 0;
1825         int number = rdev->raid_disk;
1826         struct md_rdev **rdevp;
1827         struct raid10_info *p = conf->mirrors + number;
1828
1829         print_conf(conf);
1830         if (rdev == p->rdev)
1831                 rdevp = &p->rdev;
1832         else if (rdev == p->replacement)
1833                 rdevp = &p->replacement;
1834         else
1835                 return 0;
1836
1837         if (test_bit(In_sync, &rdev->flags) ||
1838             atomic_read(&rdev->nr_pending)) {
1839                 err = -EBUSY;
1840                 goto abort;
1841         }
1842         /* Only remove non-faulty devices if recovery
1843          * is not possible.
1844          */
1845         if (!test_bit(Faulty, &rdev->flags) &&
1846             mddev->recovery_disabled != p->recovery_disabled &&
1847             (!p->replacement || p->replacement == rdev) &&
1848             number < conf->geo.raid_disks &&
1849             enough(conf, -1)) {
1850                 err = -EBUSY;
1851                 goto abort;
1852         }
1853         *rdevp = NULL;
1854         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1855                 synchronize_rcu();
1856                 if (atomic_read(&rdev->nr_pending)) {
1857                         /* lost the race, try later */
1858                         err = -EBUSY;
1859                         *rdevp = rdev;
1860                         goto abort;
1861                 }
1862         }
1863         if (p->replacement) {
1864                 /* We must have just cleared 'rdev' */
1865                 p->rdev = p->replacement;
1866                 clear_bit(Replacement, &p->replacement->flags);
1867                 smp_mb(); /* Make sure other CPUs may see both as identical
1868                            * but will never see neither -- if they are careful.
1869                            */
1870                 p->replacement = NULL;
1871         }
1872
1873         clear_bit(WantReplacement, &rdev->flags);
1874         err = md_integrity_register(mddev);
1875
1876 abort:
1877
1878         print_conf(conf);
1879         return err;
1880 }
1881
1882 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1883 {
1884         struct r10conf *conf = r10_bio->mddev->private;
1885
1886         if (!bio->bi_status)
1887                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1888         else
1889                 /* The write handler will notice the lack of
1890                  * R10BIO_Uptodate and record any errors etc
1891                  */
1892                 atomic_add(r10_bio->sectors,
1893                            &conf->mirrors[d].rdev->corrected_errors);
1894
1895         /* for reconstruct, we always reschedule after a read.
1896          * for resync, only after all reads
1897          */
1898         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1899         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1900             atomic_dec_and_test(&r10_bio->remaining)) {
1901                 /* we have read all the blocks,
1902                  * do the comparison in process context in raid10d
1903                  */
1904                 reschedule_retry(r10_bio);
1905         }
1906 }
1907
1908 static void end_sync_read(struct bio *bio)
1909 {
1910         struct r10bio *r10_bio = get_resync_r10bio(bio);
1911         struct r10conf *conf = r10_bio->mddev->private;
1912         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1913
1914         __end_sync_read(r10_bio, bio, d);
1915 }
1916
1917 static void end_reshape_read(struct bio *bio)
1918 {
1919         /* reshape read bio isn't allocated from r10buf_pool */
1920         struct r10bio *r10_bio = bio->bi_private;
1921
1922         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1923 }
1924
1925 static void end_sync_request(struct r10bio *r10_bio)
1926 {
1927         struct mddev *mddev = r10_bio->mddev;
1928
1929         while (atomic_dec_and_test(&r10_bio->remaining)) {
1930                 if (r10_bio->master_bio == NULL) {
1931                         /* the primary of several recovery bios */
1932                         sector_t s = r10_bio->sectors;
1933                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1934                             test_bit(R10BIO_WriteError, &r10_bio->state))
1935                                 reschedule_retry(r10_bio);
1936                         else
1937                                 put_buf(r10_bio);
1938                         md_done_sync(mddev, s, 1);
1939                         break;
1940                 } else {
1941                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1942                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1943                             test_bit(R10BIO_WriteError, &r10_bio->state))
1944                                 reschedule_retry(r10_bio);
1945                         else
1946                                 put_buf(r10_bio);
1947                         r10_bio = r10_bio2;
1948                 }
1949         }
1950 }
1951
1952 static void end_sync_write(struct bio *bio)
1953 {
1954         struct r10bio *r10_bio = get_resync_r10bio(bio);
1955         struct mddev *mddev = r10_bio->mddev;
1956         struct r10conf *conf = mddev->private;
1957         int d;
1958         sector_t first_bad;
1959         int bad_sectors;
1960         int slot;
1961         int repl;
1962         struct md_rdev *rdev = NULL;
1963
1964         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1965         if (repl)
1966                 rdev = conf->mirrors[d].replacement;
1967         else
1968                 rdev = conf->mirrors[d].rdev;
1969
1970         if (bio->bi_status) {
1971                 if (repl)
1972                         md_error(mddev, rdev);
1973                 else {
1974                         set_bit(WriteErrorSeen, &rdev->flags);
1975                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1976                                 set_bit(MD_RECOVERY_NEEDED,
1977                                         &rdev->mddev->recovery);
1978                         set_bit(R10BIO_WriteError, &r10_bio->state);
1979                 }
1980         } else if (is_badblock(rdev,
1981                              r10_bio->devs[slot].addr,
1982                              r10_bio->sectors,
1983                              &first_bad, &bad_sectors))
1984                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1985
1986         rdev_dec_pending(rdev, mddev);
1987
1988         end_sync_request(r10_bio);
1989 }
1990
1991 /*
1992  * Note: sync and recover and handled very differently for raid10
1993  * This code is for resync.
1994  * For resync, we read through virtual addresses and read all blocks.
1995  * If there is any error, we schedule a write.  The lowest numbered
1996  * drive is authoritative.
1997  * However requests come for physical address, so we need to map.
1998  * For every physical address there are raid_disks/copies virtual addresses,
1999  * which is always are least one, but is not necessarly an integer.
2000  * This means that a physical address can span multiple chunks, so we may
2001  * have to submit multiple io requests for a single sync request.
2002  */
2003 /*
2004  * We check if all blocks are in-sync and only write to blocks that
2005  * aren't in sync
2006  */
2007 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2008 {
2009         struct r10conf *conf = mddev->private;
2010         int i, first;
2011         struct bio *tbio, *fbio;
2012         int vcnt;
2013         struct page **tpages, **fpages;
2014
2015         atomic_set(&r10_bio->remaining, 1);
2016
2017         /* find the first device with a block */
2018         for (i=0; i<conf->copies; i++)
2019                 if (!r10_bio->devs[i].bio->bi_status)
2020                         break;
2021
2022         if (i == conf->copies)
2023                 goto done;
2024
2025         first = i;
2026         fbio = r10_bio->devs[i].bio;
2027         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2028         fbio->bi_iter.bi_idx = 0;
2029         fpages = get_resync_pages(fbio)->pages;
2030
2031         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2032         /* now find blocks with errors */
2033         for (i=0 ; i < conf->copies ; i++) {
2034                 int  j, d;
2035                 struct md_rdev *rdev;
2036                 struct resync_pages *rp;
2037
2038                 tbio = r10_bio->devs[i].bio;
2039
2040                 if (tbio->bi_end_io != end_sync_read)
2041                         continue;
2042                 if (i == first)
2043                         continue;
2044
2045                 tpages = get_resync_pages(tbio)->pages;
2046                 d = r10_bio->devs[i].devnum;
2047                 rdev = conf->mirrors[d].rdev;
2048                 if (!r10_bio->devs[i].bio->bi_status) {
2049                         /* We know that the bi_io_vec layout is the same for
2050                          * both 'first' and 'i', so we just compare them.
2051                          * All vec entries are PAGE_SIZE;
2052                          */
2053                         int sectors = r10_bio->sectors;
2054                         for (j = 0; j < vcnt; j++) {
2055                                 int len = PAGE_SIZE;
2056                                 if (sectors < (len / 512))
2057                                         len = sectors * 512;
2058                                 if (memcmp(page_address(fpages[j]),
2059                                            page_address(tpages[j]),
2060                                            len))
2061                                         break;
2062                                 sectors -= len/512;
2063                         }
2064                         if (j == vcnt)
2065                                 continue;
2066                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2067                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2068                                 /* Don't fix anything. */
2069                                 continue;
2070                 } else if (test_bit(FailFast, &rdev->flags)) {
2071                         /* Just give up on this device */
2072                         md_error(rdev->mddev, rdev);
2073                         continue;
2074                 }
2075                 /* Ok, we need to write this bio, either to correct an
2076                  * inconsistency or to correct an unreadable block.
2077                  * First we need to fixup bv_offset, bv_len and
2078                  * bi_vecs, as the read request might have corrupted these
2079                  */
2080                 rp = get_resync_pages(tbio);
2081                 bio_reset(tbio);
2082
2083                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2084
2085                 rp->raid_bio = r10_bio;
2086                 tbio->bi_private = rp;
2087                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2088                 tbio->bi_end_io = end_sync_write;
2089                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2090
2091                 bio_copy_data(tbio, fbio);
2092
2093                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2094                 atomic_inc(&r10_bio->remaining);
2095                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2096
2097                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2098                         tbio->bi_opf |= MD_FAILFAST;
2099                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2100                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2101                 generic_make_request(tbio);
2102         }
2103
2104         /* Now write out to any replacement devices
2105          * that are active
2106          */
2107         for (i = 0; i < conf->copies; i++) {
2108                 int d;
2109
2110                 tbio = r10_bio->devs[i].repl_bio;
2111                 if (!tbio || !tbio->bi_end_io)
2112                         continue;
2113                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2114                     && r10_bio->devs[i].bio != fbio)
2115                         bio_copy_data(tbio, fbio);
2116                 d = r10_bio->devs[i].devnum;
2117                 atomic_inc(&r10_bio->remaining);
2118                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2119                              bio_sectors(tbio));
2120                 generic_make_request(tbio);
2121         }
2122
2123 done:
2124         if (atomic_dec_and_test(&r10_bio->remaining)) {
2125                 md_done_sync(mddev, r10_bio->sectors, 1);
2126                 put_buf(r10_bio);
2127         }
2128 }
2129
2130 /*
2131  * Now for the recovery code.
2132  * Recovery happens across physical sectors.
2133  * We recover all non-is_sync drives by finding the virtual address of
2134  * each, and then choose a working drive that also has that virt address.
2135  * There is a separate r10_bio for each non-in_sync drive.
2136  * Only the first two slots are in use. The first for reading,
2137  * The second for writing.
2138  *
2139  */
2140 static void fix_recovery_read_error(struct r10bio *r10_bio)
2141 {
2142         /* We got a read error during recovery.
2143          * We repeat the read in smaller page-sized sections.
2144          * If a read succeeds, write it to the new device or record
2145          * a bad block if we cannot.
2146          * If a read fails, record a bad block on both old and
2147          * new devices.
2148          */
2149         struct mddev *mddev = r10_bio->mddev;
2150         struct r10conf *conf = mddev->private;
2151         struct bio *bio = r10_bio->devs[0].bio;
2152         sector_t sect = 0;
2153         int sectors = r10_bio->sectors;
2154         int idx = 0;
2155         int dr = r10_bio->devs[0].devnum;
2156         int dw = r10_bio->devs[1].devnum;
2157         struct page **pages = get_resync_pages(bio)->pages;
2158
2159         while (sectors) {
2160                 int s = sectors;
2161                 struct md_rdev *rdev;
2162                 sector_t addr;
2163                 int ok;
2164
2165                 if (s > (PAGE_SIZE>>9))
2166                         s = PAGE_SIZE >> 9;
2167
2168                 rdev = conf->mirrors[dr].rdev;
2169                 addr = r10_bio->devs[0].addr + sect,
2170                 ok = sync_page_io(rdev,
2171                                   addr,
2172                                   s << 9,
2173                                   pages[idx],
2174                                   REQ_OP_READ, 0, false);
2175                 if (ok) {
2176                         rdev = conf->mirrors[dw].rdev;
2177                         addr = r10_bio->devs[1].addr + sect;
2178                         ok = sync_page_io(rdev,
2179                                           addr,
2180                                           s << 9,
2181                                           pages[idx],
2182                                           REQ_OP_WRITE, 0, false);
2183                         if (!ok) {
2184                                 set_bit(WriteErrorSeen, &rdev->flags);
2185                                 if (!test_and_set_bit(WantReplacement,
2186                                                       &rdev->flags))
2187                                         set_bit(MD_RECOVERY_NEEDED,
2188                                                 &rdev->mddev->recovery);
2189                         }
2190                 }
2191                 if (!ok) {
2192                         /* We don't worry if we cannot set a bad block -
2193                          * it really is bad so there is no loss in not
2194                          * recording it yet
2195                          */
2196                         rdev_set_badblocks(rdev, addr, s, 0);
2197
2198                         if (rdev != conf->mirrors[dw].rdev) {
2199                                 /* need bad block on destination too */
2200                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2201                                 addr = r10_bio->devs[1].addr + sect;
2202                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2203                                 if (!ok) {
2204                                         /* just abort the recovery */
2205                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2206                                                   mdname(mddev));
2207
2208                                         conf->mirrors[dw].recovery_disabled
2209                                                 = mddev->recovery_disabled;
2210                                         set_bit(MD_RECOVERY_INTR,
2211                                                 &mddev->recovery);
2212                                         break;
2213                                 }
2214                         }
2215                 }
2216
2217                 sectors -= s;
2218                 sect += s;
2219                 idx++;
2220         }
2221 }
2222
2223 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2224 {
2225         struct r10conf *conf = mddev->private;
2226         int d;
2227         struct bio *wbio, *wbio2;
2228
2229         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2230                 fix_recovery_read_error(r10_bio);
2231                 end_sync_request(r10_bio);
2232                 return;
2233         }
2234
2235         /*
2236          * share the pages with the first bio
2237          * and submit the write request
2238          */
2239         d = r10_bio->devs[1].devnum;
2240         wbio = r10_bio->devs[1].bio;
2241         wbio2 = r10_bio->devs[1].repl_bio;
2242         /* Need to test wbio2->bi_end_io before we call
2243          * generic_make_request as if the former is NULL,
2244          * the latter is free to free wbio2.
2245          */
2246         if (wbio2 && !wbio2->bi_end_io)
2247                 wbio2 = NULL;
2248         if (wbio->bi_end_io) {
2249                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2250                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2251                 generic_make_request(wbio);
2252         }
2253         if (wbio2) {
2254                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2255                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2256                              bio_sectors(wbio2));
2257                 generic_make_request(wbio2);
2258         }
2259 }
2260
2261 /*
2262  * Used by fix_read_error() to decay the per rdev read_errors.
2263  * We halve the read error count for every hour that has elapsed
2264  * since the last recorded read error.
2265  *
2266  */
2267 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2268 {
2269         long cur_time_mon;
2270         unsigned long hours_since_last;
2271         unsigned int read_errors = atomic_read(&rdev->read_errors);
2272
2273         cur_time_mon = ktime_get_seconds();
2274
2275         if (rdev->last_read_error == 0) {
2276                 /* first time we've seen a read error */
2277                 rdev->last_read_error = cur_time_mon;
2278                 return;
2279         }
2280
2281         hours_since_last = (long)(cur_time_mon -
2282                             rdev->last_read_error) / 3600;
2283
2284         rdev->last_read_error = cur_time_mon;
2285
2286         /*
2287          * if hours_since_last is > the number of bits in read_errors
2288          * just set read errors to 0. We do this to avoid
2289          * overflowing the shift of read_errors by hours_since_last.
2290          */
2291         if (hours_since_last >= 8 * sizeof(read_errors))
2292                 atomic_set(&rdev->read_errors, 0);
2293         else
2294                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2295 }
2296
2297 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2298                             int sectors, struct page *page, int rw)
2299 {
2300         sector_t first_bad;
2301         int bad_sectors;
2302
2303         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2304             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2305                 return -1;
2306         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2307                 /* success */
2308                 return 1;
2309         if (rw == WRITE) {
2310                 set_bit(WriteErrorSeen, &rdev->flags);
2311                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2312                         set_bit(MD_RECOVERY_NEEDED,
2313                                 &rdev->mddev->recovery);
2314         }
2315         /* need to record an error - either for the block or the device */
2316         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2317                 md_error(rdev->mddev, rdev);
2318         return 0;
2319 }
2320
2321 /*
2322  * This is a kernel thread which:
2323  *
2324  *      1.      Retries failed read operations on working mirrors.
2325  *      2.      Updates the raid superblock when problems encounter.
2326  *      3.      Performs writes following reads for array synchronising.
2327  */
2328
2329 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2330 {
2331         int sect = 0; /* Offset from r10_bio->sector */
2332         int sectors = r10_bio->sectors;
2333         struct md_rdev *rdev;
2334         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2335         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2336
2337         /* still own a reference to this rdev, so it cannot
2338          * have been cleared recently.
2339          */
2340         rdev = conf->mirrors[d].rdev;
2341
2342         if (test_bit(Faulty, &rdev->flags))
2343                 /* drive has already been failed, just ignore any
2344                    more fix_read_error() attempts */
2345                 return;
2346
2347         check_decay_read_errors(mddev, rdev);
2348         atomic_inc(&rdev->read_errors);
2349         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2350                 char b[BDEVNAME_SIZE];
2351                 bdevname(rdev->bdev, b);
2352
2353                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2354                           mdname(mddev), b,
2355                           atomic_read(&rdev->read_errors), max_read_errors);
2356                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2357                           mdname(mddev), b);
2358                 md_error(mddev, rdev);
2359                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2360                 return;
2361         }
2362
2363         while(sectors) {
2364                 int s = sectors;
2365                 int sl = r10_bio->read_slot;
2366                 int success = 0;
2367                 int start;
2368
2369                 if (s > (PAGE_SIZE>>9))
2370                         s = PAGE_SIZE >> 9;
2371
2372                 rcu_read_lock();
2373                 do {
2374                         sector_t first_bad;
2375                         int bad_sectors;
2376
2377                         d = r10_bio->devs[sl].devnum;
2378                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2379                         if (rdev &&
2380                             test_bit(In_sync, &rdev->flags) &&
2381                             !test_bit(Faulty, &rdev->flags) &&
2382                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2383                                         &first_bad, &bad_sectors) == 0) {
2384                                 atomic_inc(&rdev->nr_pending);
2385                                 rcu_read_unlock();
2386                                 success = sync_page_io(rdev,
2387                                                        r10_bio->devs[sl].addr +
2388                                                        sect,
2389                                                        s<<9,
2390                                                        conf->tmppage,
2391                                                        REQ_OP_READ, 0, false);
2392                                 rdev_dec_pending(rdev, mddev);
2393                                 rcu_read_lock();
2394                                 if (success)
2395                                         break;
2396                         }
2397                         sl++;
2398                         if (sl == conf->copies)
2399                                 sl = 0;
2400                 } while (!success && sl != r10_bio->read_slot);
2401                 rcu_read_unlock();
2402
2403                 if (!success) {
2404                         /* Cannot read from anywhere, just mark the block
2405                          * as bad on the first device to discourage future
2406                          * reads.
2407                          */
2408                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2409                         rdev = conf->mirrors[dn].rdev;
2410
2411                         if (!rdev_set_badblocks(
2412                                     rdev,
2413                                     r10_bio->devs[r10_bio->read_slot].addr
2414                                     + sect,
2415                                     s, 0)) {
2416                                 md_error(mddev, rdev);
2417                                 r10_bio->devs[r10_bio->read_slot].bio
2418                                         = IO_BLOCKED;
2419                         }
2420                         break;
2421                 }
2422
2423                 start = sl;
2424                 /* write it back and re-read */
2425                 rcu_read_lock();
2426                 while (sl != r10_bio->read_slot) {
2427                         char b[BDEVNAME_SIZE];
2428
2429                         if (sl==0)
2430                                 sl = conf->copies;
2431                         sl--;
2432                         d = r10_bio->devs[sl].devnum;
2433                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2434                         if (!rdev ||
2435                             test_bit(Faulty, &rdev->flags) ||
2436                             !test_bit(In_sync, &rdev->flags))
2437                                 continue;
2438
2439                         atomic_inc(&rdev->nr_pending);
2440                         rcu_read_unlock();
2441                         if (r10_sync_page_io(rdev,
2442                                              r10_bio->devs[sl].addr +
2443                                              sect,
2444                                              s, conf->tmppage, WRITE)
2445                             == 0) {
2446                                 /* Well, this device is dead */
2447                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2448                                           mdname(mddev), s,
2449                                           (unsigned long long)(
2450                                                   sect +
2451                                                   choose_data_offset(r10_bio,
2452                                                                      rdev)),
2453                                           bdevname(rdev->bdev, b));
2454                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2455                                           mdname(mddev),
2456                                           bdevname(rdev->bdev, b));
2457                         }
2458                         rdev_dec_pending(rdev, mddev);
2459                         rcu_read_lock();
2460                 }
2461                 sl = start;
2462                 while (sl != r10_bio->read_slot) {
2463                         char b[BDEVNAME_SIZE];
2464
2465                         if (sl==0)
2466                                 sl = conf->copies;
2467                         sl--;
2468                         d = r10_bio->devs[sl].devnum;
2469                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2470                         if (!rdev ||
2471                             test_bit(Faulty, &rdev->flags) ||
2472                             !test_bit(In_sync, &rdev->flags))
2473                                 continue;
2474
2475                         atomic_inc(&rdev->nr_pending);
2476                         rcu_read_unlock();
2477                         switch (r10_sync_page_io(rdev,
2478                                              r10_bio->devs[sl].addr +
2479                                              sect,
2480                                              s, conf->tmppage,
2481                                                  READ)) {
2482                         case 0:
2483                                 /* Well, this device is dead */
2484                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2485                                        mdname(mddev), s,
2486                                        (unsigned long long)(
2487                                                sect +
2488                                                choose_data_offset(r10_bio, rdev)),
2489                                        bdevname(rdev->bdev, b));
2490                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2491                                        mdname(mddev),
2492                                        bdevname(rdev->bdev, b));
2493                                 break;
2494                         case 1:
2495                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2496                                        mdname(mddev), s,
2497                                        (unsigned long long)(
2498                                                sect +
2499                                                choose_data_offset(r10_bio, rdev)),
2500                                        bdevname(rdev->bdev, b));
2501                                 atomic_add(s, &rdev->corrected_errors);
2502                         }
2503
2504                         rdev_dec_pending(rdev, mddev);
2505                         rcu_read_lock();
2506                 }
2507                 rcu_read_unlock();
2508
2509                 sectors -= s;
2510                 sect += s;
2511         }
2512 }
2513
2514 static int narrow_write_error(struct r10bio *r10_bio, int i)
2515 {
2516         struct bio *bio = r10_bio->master_bio;
2517         struct mddev *mddev = r10_bio->mddev;
2518         struct r10conf *conf = mddev->private;
2519         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2520         /* bio has the data to be written to slot 'i' where
2521          * we just recently had a write error.
2522          * We repeatedly clone the bio and trim down to one block,
2523          * then try the write.  Where the write fails we record
2524          * a bad block.
2525          * It is conceivable that the bio doesn't exactly align with
2526          * blocks.  We must handle this.
2527          *
2528          * We currently own a reference to the rdev.
2529          */
2530
2531         int block_sectors;
2532         sector_t sector;
2533         int sectors;
2534         int sect_to_write = r10_bio->sectors;
2535         int ok = 1;
2536
2537         if (rdev->badblocks.shift < 0)
2538                 return 0;
2539
2540         block_sectors = roundup(1 << rdev->badblocks.shift,
2541                                 bdev_logical_block_size(rdev->bdev) >> 9);
2542         sector = r10_bio->sector;
2543         sectors = ((r10_bio->sector + block_sectors)
2544                    & ~(sector_t)(block_sectors - 1))
2545                 - sector;
2546
2547         while (sect_to_write) {
2548                 struct bio *wbio;
2549                 sector_t wsector;
2550                 if (sectors > sect_to_write)
2551                         sectors = sect_to_write;
2552                 /* Write at 'sector' for 'sectors' */
2553                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2554                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2555                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2556                 wbio->bi_iter.bi_sector = wsector +
2557                                    choose_data_offset(r10_bio, rdev);
2558                 bio_set_dev(wbio, rdev->bdev);
2559                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2560
2561                 if (submit_bio_wait(wbio) < 0)
2562                         /* Failure! */
2563                         ok = rdev_set_badblocks(rdev, wsector,
2564                                                 sectors, 0)
2565                                 && ok;
2566
2567                 bio_put(wbio);
2568                 sect_to_write -= sectors;
2569                 sector += sectors;
2570                 sectors = block_sectors;
2571         }
2572         return ok;
2573 }
2574
2575 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2576 {
2577         int slot = r10_bio->read_slot;
2578         struct bio *bio;
2579         struct r10conf *conf = mddev->private;
2580         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2581
2582         /* we got a read error. Maybe the drive is bad.  Maybe just
2583          * the block and we can fix it.
2584          * We freeze all other IO, and try reading the block from
2585          * other devices.  When we find one, we re-write
2586          * and check it that fixes the read error.
2587          * This is all done synchronously while the array is
2588          * frozen.
2589          */
2590         bio = r10_bio->devs[slot].bio;
2591         bio_put(bio);
2592         r10_bio->devs[slot].bio = NULL;
2593
2594         if (mddev->ro)
2595                 r10_bio->devs[slot].bio = IO_BLOCKED;
2596         else if (!test_bit(FailFast, &rdev->flags)) {
2597                 freeze_array(conf, 1);
2598                 fix_read_error(conf, mddev, r10_bio);
2599                 unfreeze_array(conf);
2600         } else
2601                 md_error(mddev, rdev);
2602
2603         rdev_dec_pending(rdev, mddev);
2604         allow_barrier(conf);
2605         r10_bio->state = 0;
2606         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2607 }
2608
2609 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2610 {
2611         /* Some sort of write request has finished and it
2612          * succeeded in writing where we thought there was a
2613          * bad block.  So forget the bad block.
2614          * Or possibly if failed and we need to record
2615          * a bad block.
2616          */
2617         int m;
2618         struct md_rdev *rdev;
2619
2620         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2621             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2622                 for (m = 0; m < conf->copies; m++) {
2623                         int dev = r10_bio->devs[m].devnum;
2624                         rdev = conf->mirrors[dev].rdev;
2625                         if (r10_bio->devs[m].bio == NULL ||
2626                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2627                                 continue;
2628                         if (!r10_bio->devs[m].bio->bi_status) {
2629                                 rdev_clear_badblocks(
2630                                         rdev,
2631                                         r10_bio->devs[m].addr,
2632                                         r10_bio->sectors, 0);
2633                         } else {
2634                                 if (!rdev_set_badblocks(
2635                                             rdev,
2636                                             r10_bio->devs[m].addr,
2637                                             r10_bio->sectors, 0))
2638                                         md_error(conf->mddev, rdev);
2639                         }
2640                         rdev = conf->mirrors[dev].replacement;
2641                         if (r10_bio->devs[m].repl_bio == NULL ||
2642                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2643                                 continue;
2644
2645                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2646                                 rdev_clear_badblocks(
2647                                         rdev,
2648                                         r10_bio->devs[m].addr,
2649                                         r10_bio->sectors, 0);
2650                         } else {
2651                                 if (!rdev_set_badblocks(
2652                                             rdev,
2653                                             r10_bio->devs[m].addr,
2654                                             r10_bio->sectors, 0))
2655                                         md_error(conf->mddev, rdev);
2656                         }
2657                 }
2658                 put_buf(r10_bio);
2659         } else {
2660                 bool fail = false;
2661                 for (m = 0; m < conf->copies; m++) {
2662                         int dev = r10_bio->devs[m].devnum;
2663                         struct bio *bio = r10_bio->devs[m].bio;
2664                         rdev = conf->mirrors[dev].rdev;
2665                         if (bio == IO_MADE_GOOD) {
2666                                 rdev_clear_badblocks(
2667                                         rdev,
2668                                         r10_bio->devs[m].addr,
2669                                         r10_bio->sectors, 0);
2670                                 rdev_dec_pending(rdev, conf->mddev);
2671                         } else if (bio != NULL && bio->bi_status) {
2672                                 fail = true;
2673                                 if (!narrow_write_error(r10_bio, m)) {
2674                                         md_error(conf->mddev, rdev);
2675                                         set_bit(R10BIO_Degraded,
2676                                                 &r10_bio->state);
2677                                 }
2678                                 rdev_dec_pending(rdev, conf->mddev);
2679                         }
2680                         bio = r10_bio->devs[m].repl_bio;
2681                         rdev = conf->mirrors[dev].replacement;
2682                         if (rdev && bio == IO_MADE_GOOD) {
2683                                 rdev_clear_badblocks(
2684                                         rdev,
2685                                         r10_bio->devs[m].addr,
2686                                         r10_bio->sectors, 0);
2687                                 rdev_dec_pending(rdev, conf->mddev);
2688                         }
2689                 }
2690                 if (fail) {
2691                         spin_lock_irq(&conf->device_lock);
2692                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2693                         conf->nr_queued++;
2694                         spin_unlock_irq(&conf->device_lock);
2695                         /*
2696                          * In case freeze_array() is waiting for condition
2697                          * nr_pending == nr_queued + extra to be true.
2698                          */
2699                         wake_up(&conf->wait_barrier);
2700                         md_wakeup_thread(conf->mddev->thread);
2701                 } else {
2702                         if (test_bit(R10BIO_WriteError,
2703                                      &r10_bio->state))
2704                                 close_write(r10_bio);
2705                         raid_end_bio_io(r10_bio);
2706                 }
2707         }
2708 }
2709
2710 static void raid10d(struct md_thread *thread)
2711 {
2712         struct mddev *mddev = thread->mddev;
2713         struct r10bio *r10_bio;
2714         unsigned long flags;
2715         struct r10conf *conf = mddev->private;
2716         struct list_head *head = &conf->retry_list;
2717         struct blk_plug plug;
2718
2719         md_check_recovery(mddev);
2720
2721         if (!list_empty_careful(&conf->bio_end_io_list) &&
2722             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2723                 LIST_HEAD(tmp);
2724                 spin_lock_irqsave(&conf->device_lock, flags);
2725                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2726                         while (!list_empty(&conf->bio_end_io_list)) {
2727                                 list_move(conf->bio_end_io_list.prev, &tmp);
2728                                 conf->nr_queued--;
2729                         }
2730                 }
2731                 spin_unlock_irqrestore(&conf->device_lock, flags);
2732                 while (!list_empty(&tmp)) {
2733                         r10_bio = list_first_entry(&tmp, struct r10bio,
2734                                                    retry_list);
2735                         list_del(&r10_bio->retry_list);
2736                         if (mddev->degraded)
2737                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2738
2739                         if (test_bit(R10BIO_WriteError,
2740                                      &r10_bio->state))
2741                                 close_write(r10_bio);
2742                         raid_end_bio_io(r10_bio);
2743                 }
2744         }
2745
2746         blk_start_plug(&plug);
2747         for (;;) {
2748
2749                 flush_pending_writes(conf);
2750
2751                 spin_lock_irqsave(&conf->device_lock, flags);
2752                 if (list_empty(head)) {
2753                         spin_unlock_irqrestore(&conf->device_lock, flags);
2754                         break;
2755                 }
2756                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2757                 list_del(head->prev);
2758                 conf->nr_queued--;
2759                 spin_unlock_irqrestore(&conf->device_lock, flags);
2760
2761                 mddev = r10_bio->mddev;
2762                 conf = mddev->private;
2763                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2764                     test_bit(R10BIO_WriteError, &r10_bio->state))
2765                         handle_write_completed(conf, r10_bio);
2766                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2767                         reshape_request_write(mddev, r10_bio);
2768                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2769                         sync_request_write(mddev, r10_bio);
2770                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2771                         recovery_request_write(mddev, r10_bio);
2772                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2773                         handle_read_error(mddev, r10_bio);
2774                 else
2775                         WARN_ON_ONCE(1);
2776
2777                 cond_resched();
2778                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2779                         md_check_recovery(mddev);
2780         }
2781         blk_finish_plug(&plug);
2782 }
2783
2784 static int init_resync(struct r10conf *conf)
2785 {
2786         int ret, buffs, i;
2787
2788         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2790         conf->have_replacement = 0;
2791         for (i = 0; i < conf->geo.raid_disks; i++)
2792                 if (conf->mirrors[i].replacement)
2793                         conf->have_replacement = 1;
2794         ret = mempool_init(&conf->r10buf_pool, buffs,
2795                            r10buf_pool_alloc, r10buf_pool_free, conf);
2796         if (ret)
2797                 return ret;
2798         conf->next_resync = 0;
2799         return 0;
2800 }
2801
2802 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2803 {
2804         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2805         struct rsync_pages *rp;
2806         struct bio *bio;
2807         int nalloc;
2808         int i;
2809
2810         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2811             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2812                 nalloc = conf->copies; /* resync */
2813         else
2814                 nalloc = 2; /* recovery */
2815
2816         for (i = 0; i < nalloc; i++) {
2817                 bio = r10bio->devs[i].bio;
2818                 rp = bio->bi_private;
2819                 bio_reset(bio);
2820                 bio->bi_private = rp;
2821                 bio = r10bio->devs[i].repl_bio;
2822                 if (bio) {
2823                         rp = bio->bi_private;
2824                         bio_reset(bio);
2825                         bio->bi_private = rp;
2826                 }
2827         }
2828         return r10bio;
2829 }
2830
2831 /*
2832  * Set cluster_sync_high since we need other nodes to add the
2833  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2834  */
2835 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2836 {
2837         sector_t window_size;
2838         int extra_chunk, chunks;
2839
2840         /*
2841          * First, here we define "stripe" as a unit which across
2842          * all member devices one time, so we get chunks by use
2843          * raid_disks / near_copies. Otherwise, if near_copies is
2844          * close to raid_disks, then resync window could increases
2845          * linearly with the increase of raid_disks, which means
2846          * we will suspend a really large IO window while it is not
2847          * necessary. If raid_disks is not divisible by near_copies,
2848          * an extra chunk is needed to ensure the whole "stripe" is
2849          * covered.
2850          */
2851
2852         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2853         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2854                 extra_chunk = 0;
2855         else
2856                 extra_chunk = 1;
2857         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2858
2859         /*
2860          * At least use a 32M window to align with raid1's resync window
2861          */
2862         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2863                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2864
2865         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2866 }
2867
2868 /*
2869  * perform a "sync" on one "block"
2870  *
2871  * We need to make sure that no normal I/O request - particularly write
2872  * requests - conflict with active sync requests.
2873  *
2874  * This is achieved by tracking pending requests and a 'barrier' concept
2875  * that can be installed to exclude normal IO requests.
2876  *
2877  * Resync and recovery are handled very differently.
2878  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879  *
2880  * For resync, we iterate over virtual addresses, read all copies,
2881  * and update if there are differences.  If only one copy is live,
2882  * skip it.
2883  * For recovery, we iterate over physical addresses, read a good
2884  * value for each non-in_sync drive, and over-write.
2885  *
2886  * So, for recovery we may have several outstanding complex requests for a
2887  * given address, one for each out-of-sync device.  We model this by allocating
2888  * a number of r10_bio structures, one for each out-of-sync device.
2889  * As we setup these structures, we collect all bio's together into a list
2890  * which we then process collectively to add pages, and then process again
2891  * to pass to generic_make_request.
2892  *
2893  * The r10_bio structures are linked using a borrowed master_bio pointer.
2894  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895  * has its remaining count decremented to 0, the whole complex operation
2896  * is complete.
2897  *
2898  */
2899
2900 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2901                              int *skipped)
2902 {
2903         struct r10conf *conf = mddev->private;
2904         struct r10bio *r10_bio;
2905         struct bio *biolist = NULL, *bio;
2906         sector_t max_sector, nr_sectors;
2907         int i;
2908         int max_sync;
2909         sector_t sync_blocks;
2910         sector_t sectors_skipped = 0;
2911         int chunks_skipped = 0;
2912         sector_t chunk_mask = conf->geo.chunk_mask;
2913         int page_idx = 0;
2914
2915         if (!mempool_initialized(&conf->r10buf_pool))
2916                 if (init_resync(conf))
2917                         return 0;
2918
2919         /*
2920          * Allow skipping a full rebuild for incremental assembly
2921          * of a clean array, like RAID1 does.
2922          */
2923         if (mddev->bitmap == NULL &&
2924             mddev->recovery_cp == MaxSector &&
2925             mddev->reshape_position == MaxSector &&
2926             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2927             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2929             conf->fullsync == 0) {
2930                 *skipped = 1;
2931                 return mddev->dev_sectors - sector_nr;
2932         }
2933
2934  skipped:
2935         max_sector = mddev->dev_sectors;
2936         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2937             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2938                 max_sector = mddev->resync_max_sectors;
2939         if (sector_nr >= max_sector) {
2940                 conf->cluster_sync_low = 0;
2941                 conf->cluster_sync_high = 0;
2942
2943                 /* If we aborted, we need to abort the
2944                  * sync on the 'current' bitmap chucks (there can
2945                  * be several when recovering multiple devices).
2946                  * as we may have started syncing it but not finished.
2947                  * We can find the current address in
2948                  * mddev->curr_resync, but for recovery,
2949                  * we need to convert that to several
2950                  * virtual addresses.
2951                  */
2952                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2953                         end_reshape(conf);
2954                         close_sync(conf);
2955                         return 0;
2956                 }
2957
2958                 if (mddev->curr_resync < max_sector) { /* aborted */
2959                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2960                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2961                                                    &sync_blocks, 1);
2962                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2963                                 sector_t sect =
2964                                         raid10_find_virt(conf, mddev->curr_resync, i);
2965                                 md_bitmap_end_sync(mddev->bitmap, sect,
2966                                                    &sync_blocks, 1);
2967                         }
2968                 } else {
2969                         /* completed sync */
2970                         if ((!mddev->bitmap || conf->fullsync)
2971                             && conf->have_replacement
2972                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2973                                 /* Completed a full sync so the replacements
2974                                  * are now fully recovered.
2975                                  */
2976                                 rcu_read_lock();
2977                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2978                                         struct md_rdev *rdev =
2979                                                 rcu_dereference(conf->mirrors[i].replacement);
2980                                         if (rdev)
2981                                                 rdev->recovery_offset = MaxSector;
2982                                 }
2983                                 rcu_read_unlock();
2984                         }
2985                         conf->fullsync = 0;
2986                 }
2987                 md_bitmap_close_sync(mddev->bitmap);
2988                 close_sync(conf);
2989                 *skipped = 1;
2990                 return sectors_skipped;
2991         }
2992
2993         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2994                 return reshape_request(mddev, sector_nr, skipped);
2995
2996         if (chunks_skipped >= conf->geo.raid_disks) {
2997                 /* if there has been nothing to do on any drive,
2998                  * then there is nothing to do at all..
2999                  */
3000                 *skipped = 1;
3001                 return (max_sector - sector_nr) + sectors_skipped;
3002         }
3003
3004         if (max_sector > mddev->resync_max)
3005                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3006
3007         /* make sure whole request will fit in a chunk - if chunks
3008          * are meaningful
3009          */
3010         if (conf->geo.near_copies < conf->geo.raid_disks &&
3011             max_sector > (sector_nr | chunk_mask))
3012                 max_sector = (sector_nr | chunk_mask) + 1;
3013
3014         /*
3015          * If there is non-resync activity waiting for a turn, then let it
3016          * though before starting on this new sync request.
3017          */
3018         if (conf->nr_waiting)
3019                 schedule_timeout_uninterruptible(1);
3020
3021         /* Again, very different code for resync and recovery.
3022          * Both must result in an r10bio with a list of bios that
3023          * have bi_end_io, bi_sector, bi_disk set,
3024          * and bi_private set to the r10bio.
3025          * For recovery, we may actually create several r10bios
3026          * with 2 bios in each, that correspond to the bios in the main one.
3027          * In this case, the subordinate r10bios link back through a
3028          * borrowed master_bio pointer, and the counter in the master
3029          * includes a ref from each subordinate.
3030          */
3031         /* First, we decide what to do and set ->bi_end_io
3032          * To end_sync_read if we want to read, and
3033          * end_sync_write if we will want to write.
3034          */
3035
3036         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3037         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3038                 /* recovery... the complicated one */
3039                 int j;
3040                 r10_bio = NULL;
3041
3042                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3043                         int still_degraded;
3044                         struct r10bio *rb2;
3045                         sector_t sect;
3046                         int must_sync;
3047                         int any_working;
3048                         int need_recover = 0;
3049                         int need_replace = 0;
3050                         struct raid10_info *mirror = &conf->mirrors[i];
3051                         struct md_rdev *mrdev, *mreplace;
3052
3053                         rcu_read_lock();
3054                         mrdev = rcu_dereference(mirror->rdev);
3055                         mreplace = rcu_dereference(mirror->replacement);
3056
3057                         if (mrdev != NULL &&
3058                             !test_bit(Faulty, &mrdev->flags) &&
3059                             !test_bit(In_sync, &mrdev->flags))
3060                                 need_recover = 1;
3061                         if (mreplace != NULL &&
3062                             !test_bit(Faulty, &mreplace->flags))
3063                                 need_replace = 1;
3064
3065                         if (!need_recover && !need_replace) {
3066                                 rcu_read_unlock();
3067                                 continue;
3068                         }
3069
3070                         still_degraded = 0;
3071                         /* want to reconstruct this device */
3072                         rb2 = r10_bio;
3073                         sect = raid10_find_virt(conf, sector_nr, i);
3074                         if (sect >= mddev->resync_max_sectors) {
3075                                 /* last stripe is not complete - don't
3076                                  * try to recover this sector.
3077                                  */
3078                                 rcu_read_unlock();
3079                                 continue;
3080                         }
3081                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3082                                 mreplace = NULL;
3083                         /* Unless we are doing a full sync, or a replacement
3084                          * we only need to recover the block if it is set in
3085                          * the bitmap
3086                          */
3087                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3088                                                          &sync_blocks, 1);
3089                         if (sync_blocks < max_sync)
3090                                 max_sync = sync_blocks;
3091                         if (!must_sync &&
3092                             mreplace == NULL &&
3093                             !conf->fullsync) {
3094                                 /* yep, skip the sync_blocks here, but don't assume
3095                                  * that there will never be anything to do here
3096                                  */
3097                                 chunks_skipped = -1;
3098                                 rcu_read_unlock();
3099                                 continue;
3100                         }
3101                         atomic_inc(&mrdev->nr_pending);
3102                         if (mreplace)
3103                                 atomic_inc(&mreplace->nr_pending);
3104                         rcu_read_unlock();
3105
3106                         r10_bio = raid10_alloc_init_r10buf(conf);
3107                         r10_bio->state = 0;
3108                         raise_barrier(conf, rb2 != NULL);
3109                         atomic_set(&r10_bio->remaining, 0);
3110
3111                         r10_bio->master_bio = (struct bio*)rb2;
3112                         if (rb2)
3113                                 atomic_inc(&rb2->remaining);
3114                         r10_bio->mddev = mddev;
3115                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3116                         r10_bio->sector = sect;
3117
3118                         raid10_find_phys(conf, r10_bio);
3119
3120                         /* Need to check if the array will still be
3121                          * degraded
3122                          */
3123                         rcu_read_lock();
3124                         for (j = 0; j < conf->geo.raid_disks; j++) {
3125                                 struct md_rdev *rdev = rcu_dereference(
3126                                         conf->mirrors[j].rdev);
3127                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3128                                         still_degraded = 1;
3129                                         break;
3130                                 }
3131                         }
3132
3133                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3134                                                          &sync_blocks, still_degraded);
3135
3136                         any_working = 0;
3137                         for (j=0; j<conf->copies;j++) {
3138                                 int k;
3139                                 int d = r10_bio->devs[j].devnum;
3140                                 sector_t from_addr, to_addr;
3141                                 struct md_rdev *rdev =
3142                                         rcu_dereference(conf->mirrors[d].rdev);
3143                                 sector_t sector, first_bad;
3144                                 int bad_sectors;
3145                                 if (!rdev ||
3146                                     !test_bit(In_sync, &rdev->flags))
3147                                         continue;
3148                                 /* This is where we read from */
3149                                 any_working = 1;
3150                                 sector = r10_bio->devs[j].addr;
3151
3152                                 if (is_badblock(rdev, sector, max_sync,
3153                                                 &first_bad, &bad_sectors)) {
3154                                         if (first_bad > sector)
3155                                                 max_sync = first_bad - sector;
3156                                         else {
3157                                                 bad_sectors -= (sector
3158                                                                 - first_bad);
3159                                                 if (max_sync > bad_sectors)
3160                                                         max_sync = bad_sectors;
3161                                                 continue;
3162                                         }
3163                                 }
3164                                 bio = r10_bio->devs[0].bio;
3165                                 bio->bi_next = biolist;
3166                                 biolist = bio;
3167                                 bio->bi_end_io = end_sync_read;
3168                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3169                                 if (test_bit(FailFast, &rdev->flags))
3170                                         bio->bi_opf |= MD_FAILFAST;
3171                                 from_addr = r10_bio->devs[j].addr;
3172                                 bio->bi_iter.bi_sector = from_addr +
3173                                         rdev->data_offset;
3174                                 bio_set_dev(bio, rdev->bdev);
3175                                 atomic_inc(&rdev->nr_pending);
3176                                 /* and we write to 'i' (if not in_sync) */
3177
3178                                 for (k=0; k<conf->copies; k++)
3179                                         if (r10_bio->devs[k].devnum == i)
3180                                                 break;
3181                                 BUG_ON(k == conf->copies);
3182                                 to_addr = r10_bio->devs[k].addr;
3183                                 r10_bio->devs[0].devnum = d;
3184                                 r10_bio->devs[0].addr = from_addr;
3185                                 r10_bio->devs[1].devnum = i;
3186                                 r10_bio->devs[1].addr = to_addr;
3187
3188                                 if (need_recover) {
3189                                         bio = r10_bio->devs[1].bio;
3190                                         bio->bi_next = biolist;
3191                                         biolist = bio;
3192                                         bio->bi_end_io = end_sync_write;
3193                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3194                                         bio->bi_iter.bi_sector = to_addr
3195                                                 + mrdev->data_offset;
3196                                         bio_set_dev(bio, mrdev->bdev);
3197                                         atomic_inc(&r10_bio->remaining);
3198                                 } else
3199                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3200
3201                                 /* and maybe write to replacement */
3202                                 bio = r10_bio->devs[1].repl_bio;
3203                                 if (bio)
3204                                         bio->bi_end_io = NULL;
3205                                 /* Note: if need_replace, then bio
3206                                  * cannot be NULL as r10buf_pool_alloc will
3207                                  * have allocated it.
3208                                  */
3209                                 if (!need_replace)
3210                                         break;
3211                                 bio->bi_next = biolist;
3212                                 biolist = bio;
3213                                 bio->bi_end_io = end_sync_write;
3214                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3215                                 bio->bi_iter.bi_sector = to_addr +
3216                                         mreplace->data_offset;
3217                                 bio_set_dev(bio, mreplace->bdev);
3218                                 atomic_inc(&r10_bio->remaining);
3219                                 break;
3220                         }
3221                         rcu_read_unlock();
3222                         if (j == conf->copies) {
3223                                 /* Cannot recover, so abort the recovery or
3224                                  * record a bad block */
3225                                 if (any_working) {
3226                                         /* problem is that there are bad blocks
3227                                          * on other device(s)
3228                                          */
3229                                         int k;
3230                                         for (k = 0; k < conf->copies; k++)
3231                                                 if (r10_bio->devs[k].devnum == i)
3232                                                         break;
3233                                         if (!test_bit(In_sync,
3234                                                       &mrdev->flags)
3235                                             && !rdev_set_badblocks(
3236                                                     mrdev,
3237                                                     r10_bio->devs[k].addr,
3238                                                     max_sync, 0))
3239                                                 any_working = 0;
3240                                         if (mreplace &&
3241                                             !rdev_set_badblocks(
3242                                                     mreplace,
3243                                                     r10_bio->devs[k].addr,
3244                                                     max_sync, 0))
3245                                                 any_working = 0;
3246                                 }
3247                                 if (!any_working)  {
3248                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3249                                                               &mddev->recovery))
3250                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3251                                                        mdname(mddev));
3252                                         mirror->recovery_disabled
3253                                                 = mddev->recovery_disabled;
3254                                 }
3255                                 put_buf(r10_bio);
3256                                 if (rb2)
3257                                         atomic_dec(&rb2->remaining);
3258                                 r10_bio = rb2;
3259                                 rdev_dec_pending(mrdev, mddev);
3260                                 if (mreplace)
3261                                         rdev_dec_pending(mreplace, mddev);
3262                                 break;
3263                         }
3264                         rdev_dec_pending(mrdev, mddev);
3265                         if (mreplace)
3266                                 rdev_dec_pending(mreplace, mddev);
3267                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3268                                 /* Only want this if there is elsewhere to
3269                                  * read from. 'j' is currently the first
3270                                  * readable copy.
3271                                  */
3272                                 int targets = 1;
3273                                 for (; j < conf->copies; j++) {
3274                                         int d = r10_bio->devs[j].devnum;
3275                                         if (conf->mirrors[d].rdev &&
3276                                             test_bit(In_sync,
3277                                                       &conf->mirrors[d].rdev->flags))
3278                                                 targets++;
3279                                 }
3280                                 if (targets == 1)
3281                                         r10_bio->devs[0].bio->bi_opf
3282                                                 &= ~MD_FAILFAST;
3283                         }
3284                 }
3285                 if (biolist == NULL) {
3286                         while (r10_bio) {
3287                                 struct r10bio *rb2 = r10_bio;
3288                                 r10_bio = (struct r10bio*) rb2->master_bio;
3289                                 rb2->master_bio = NULL;
3290                                 put_buf(rb2);
3291                         }
3292                         goto giveup;
3293                 }
3294         } else {
3295                 /* resync. Schedule a read for every block at this virt offset */
3296                 int count = 0;
3297
3298                 /*
3299                  * Since curr_resync_completed could probably not update in
3300                  * time, and we will set cluster_sync_low based on it.
3301                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3302                  * safety reason, which ensures curr_resync_completed is
3303                  * updated in bitmap_cond_end_sync.
3304                  */
3305                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3306                                         mddev_is_clustered(mddev) &&
3307                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3308
3309                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3310                                           &sync_blocks, mddev->degraded) &&
3311                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3312                                                  &mddev->recovery)) {
3313                         /* We can skip this block */
3314                         *skipped = 1;
3315                         return sync_blocks + sectors_skipped;
3316                 }
3317                 if (sync_blocks < max_sync)
3318                         max_sync = sync_blocks;
3319                 r10_bio = raid10_alloc_init_r10buf(conf);
3320                 r10_bio->state = 0;
3321
3322                 r10_bio->mddev = mddev;
3323                 atomic_set(&r10_bio->remaining, 0);
3324                 raise_barrier(conf, 0);
3325                 conf->next_resync = sector_nr;
3326
3327                 r10_bio->master_bio = NULL;
3328                 r10_bio->sector = sector_nr;
3329                 set_bit(R10BIO_IsSync, &r10_bio->state);
3330                 raid10_find_phys(conf, r10_bio);
3331                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3332
3333                 for (i = 0; i < conf->copies; i++) {
3334                         int d = r10_bio->devs[i].devnum;
3335                         sector_t first_bad, sector;
3336                         int bad_sectors;
3337                         struct md_rdev *rdev;
3338
3339                         if (r10_bio->devs[i].repl_bio)
3340                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3341
3342                         bio = r10_bio->devs[i].bio;
3343                         bio->bi_status = BLK_STS_IOERR;
3344                         rcu_read_lock();
3345                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3346                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3347                                 rcu_read_unlock();
3348                                 continue;
3349                         }
3350                         sector = r10_bio->devs[i].addr;
3351                         if (is_badblock(rdev, sector, max_sync,
3352                                         &first_bad, &bad_sectors)) {
3353                                 if (first_bad > sector)
3354                                         max_sync = first_bad - sector;
3355                                 else {
3356                                         bad_sectors -= (sector - first_bad);
3357                                         if (max_sync > bad_sectors)
3358                                                 max_sync = bad_sectors;
3359                                         rcu_read_unlock();
3360                                         continue;
3361                                 }
3362                         }
3363                         atomic_inc(&rdev->nr_pending);
3364                         atomic_inc(&r10_bio->remaining);
3365                         bio->bi_next = biolist;
3366                         biolist = bio;
3367                         bio->bi_end_io = end_sync_read;
3368                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3369                         if (test_bit(FailFast, &rdev->flags))
3370                                 bio->bi_opf |= MD_FAILFAST;
3371                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3372                         bio_set_dev(bio, rdev->bdev);
3373                         count++;
3374
3375                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3376                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3377                                 rcu_read_unlock();
3378                                 continue;
3379                         }
3380                         atomic_inc(&rdev->nr_pending);
3381
3382                         /* Need to set up for writing to the replacement */
3383                         bio = r10_bio->devs[i].repl_bio;
3384                         bio->bi_status = BLK_STS_IOERR;
3385
3386                         sector = r10_bio->devs[i].addr;
3387                         bio->bi_next = biolist;
3388                         biolist = bio;
3389                         bio->bi_end_io = end_sync_write;
3390                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3391                         if (test_bit(FailFast, &rdev->flags))
3392                                 bio->bi_opf |= MD_FAILFAST;
3393                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3394                         bio_set_dev(bio, rdev->bdev);
3395                         count++;
3396                         rcu_read_unlock();
3397                 }
3398
3399                 if (count < 2) {
3400                         for (i=0; i<conf->copies; i++) {
3401                                 int d = r10_bio->devs[i].devnum;
3402                                 if (r10_bio->devs[i].bio->bi_end_io)
3403                                         rdev_dec_pending(conf->mirrors[d].rdev,
3404                                                          mddev);
3405                                 if (r10_bio->devs[i].repl_bio &&
3406                                     r10_bio->devs[i].repl_bio->bi_end_io)
3407                                         rdev_dec_pending(
3408                                                 conf->mirrors[d].replacement,
3409                                                 mddev);
3410                         }
3411                         put_buf(r10_bio);
3412                         biolist = NULL;
3413                         goto giveup;
3414                 }
3415         }
3416
3417         nr_sectors = 0;
3418         if (sector_nr + max_sync < max_sector)
3419                 max_sector = sector_nr + max_sync;
3420         do {
3421                 struct page *page;
3422                 int len = PAGE_SIZE;
3423                 if (sector_nr + (len>>9) > max_sector)
3424                         len = (max_sector - sector_nr) << 9;
3425                 if (len == 0)
3426                         break;
3427                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3428                         struct resync_pages *rp = get_resync_pages(bio);
3429                         page = resync_fetch_page(rp, page_idx);
3430                         /*
3431                          * won't fail because the vec table is big enough
3432                          * to hold all these pages
3433                          */
3434                         bio_add_page(bio, page, len, 0);
3435                 }
3436                 nr_sectors += len>>9;
3437                 sector_nr += len>>9;
3438         } while (++page_idx < RESYNC_PAGES);
3439         r10_bio->sectors = nr_sectors;
3440
3441         if (mddev_is_clustered(mddev) &&
3442             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3443                 /* It is resync not recovery */
3444                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3445                         conf->cluster_sync_low = mddev->curr_resync_completed;
3446                         raid10_set_cluster_sync_high(conf);
3447                         /* Send resync message */
3448                         md_cluster_ops->resync_info_update(mddev,
3449                                                 conf->cluster_sync_low,
3450                                                 conf->cluster_sync_high);
3451                 }
3452         } else if (mddev_is_clustered(mddev)) {
3453                 /* This is recovery not resync */
3454                 sector_t sect_va1, sect_va2;
3455                 bool broadcast_msg = false;
3456
3457                 for (i = 0; i < conf->geo.raid_disks; i++) {
3458                         /*
3459                          * sector_nr is a device address for recovery, so we
3460                          * need translate it to array address before compare
3461                          * with cluster_sync_high.
3462                          */
3463                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3464
3465                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3466                                 broadcast_msg = true;
3467                                 /*
3468                                  * curr_resync_completed is similar as
3469                                  * sector_nr, so make the translation too.
3470                                  */
3471                                 sect_va2 = raid10_find_virt(conf,
3472                                         mddev->curr_resync_completed, i);
3473
3474                                 if (conf->cluster_sync_low == 0 ||
3475                                     conf->cluster_sync_low > sect_va2)
3476                                         conf->cluster_sync_low = sect_va2;
3477                         }
3478                 }
3479                 if (broadcast_msg) {
3480                         raid10_set_cluster_sync_high(conf);
3481                         md_cluster_ops->resync_info_update(mddev,
3482                                                 conf->cluster_sync_low,
3483                                                 conf->cluster_sync_high);
3484                 }
3485         }
3486
3487         while (biolist) {
3488                 bio = biolist;
3489                 biolist = biolist->bi_next;
3490
3491                 bio->bi_next = NULL;
3492                 r10_bio = get_resync_r10bio(bio);
3493                 r10_bio->sectors = nr_sectors;
3494
3495                 if (bio->bi_end_io == end_sync_read) {
3496                         md_sync_acct_bio(bio, nr_sectors);
3497                         bio->bi_status = 0;
3498                         generic_make_request(bio);
3499                 }
3500         }
3501
3502         if (sectors_skipped)
3503                 /* pretend they weren't skipped, it makes
3504                  * no important difference in this case
3505                  */
3506                 md_done_sync(mddev, sectors_skipped, 1);
3507
3508         return sectors_skipped + nr_sectors;
3509  giveup:
3510         /* There is nowhere to write, so all non-sync
3511          * drives must be failed or in resync, all drives
3512          * have a bad block, so try the next chunk...
3513          */
3514         if (sector_nr + max_sync < max_sector)
3515                 max_sector = sector_nr + max_sync;
3516
3517         sectors_skipped += (max_sector - sector_nr);
3518         chunks_skipped ++;
3519         sector_nr = max_sector;
3520         goto skipped;
3521 }
3522
3523 static sector_t
3524 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3525 {
3526         sector_t size;
3527         struct r10conf *conf = mddev->private;
3528
3529         if (!raid_disks)
3530                 raid_disks = min(conf->geo.raid_disks,
3531                                  conf->prev.raid_disks);
3532         if (!sectors)
3533                 sectors = conf->dev_sectors;
3534
3535         size = sectors >> conf->geo.chunk_shift;
3536         sector_div(size, conf->geo.far_copies);
3537         size = size * raid_disks;
3538         sector_div(size, conf->geo.near_copies);
3539
3540         return size << conf->geo.chunk_shift;
3541 }
3542
3543 static void calc_sectors(struct r10conf *conf, sector_t size)
3544 {
3545         /* Calculate the number of sectors-per-device that will
3546          * actually be used, and set conf->dev_sectors and
3547          * conf->stride
3548          */
3549
3550         size = size >> conf->geo.chunk_shift;
3551         sector_div(size, conf->geo.far_copies);
3552         size = size * conf->geo.raid_disks;
3553         sector_div(size, conf->geo.near_copies);
3554         /* 'size' is now the number of chunks in the array */
3555         /* calculate "used chunks per device" */
3556         size = size * conf->copies;
3557
3558         /* We need to round up when dividing by raid_disks to
3559          * get the stride size.
3560          */
3561         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3562
3563         conf->dev_sectors = size << conf->geo.chunk_shift;
3564
3565         if (conf->geo.far_offset)
3566                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3567         else {
3568                 sector_div(size, conf->geo.far_copies);
3569                 conf->geo.stride = size << conf->geo.chunk_shift;
3570         }
3571 }
3572
3573 enum geo_type {geo_new, geo_old, geo_start};
3574 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3575 {
3576         int nc, fc, fo;
3577         int layout, chunk, disks;
3578         switch (new) {
3579         case geo_old:
3580                 layout = mddev->layout;
3581                 chunk = mddev->chunk_sectors;
3582                 disks = mddev->raid_disks - mddev->delta_disks;
3583                 break;
3584         case geo_new:
3585                 layout = mddev->new_layout;
3586                 chunk = mddev->new_chunk_sectors;
3587                 disks = mddev->raid_disks;
3588                 break;
3589         default: /* avoid 'may be unused' warnings */
3590         case geo_start: /* new when starting reshape - raid_disks not
3591                          * updated yet. */
3592                 layout = mddev->new_layout;
3593                 chunk = mddev->new_chunk_sectors;
3594                 disks = mddev->raid_disks + mddev->delta_disks;
3595                 break;
3596         }
3597         if (layout >> 19)
3598                 return -1;
3599         if (chunk < (PAGE_SIZE >> 9) ||
3600             !is_power_of_2(chunk))
3601                 return -2;
3602         nc = layout & 255;
3603         fc = (layout >> 8) & 255;
3604         fo = layout & (1<<16);
3605         geo->raid_disks = disks;
3606         geo->near_copies = nc;
3607         geo->far_copies = fc;
3608         geo->far_offset = fo;
3609         switch (layout >> 17) {
3610         case 0: /* original layout.  simple but not always optimal */
3611                 geo->far_set_size = disks;
3612                 break;
3613         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3614                  * actually using this, but leave code here just in case.*/
3615                 geo->far_set_size = disks/fc;
3616                 WARN(geo->far_set_size < fc,
3617                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3618                 break;
3619         case 2: /* "improved" layout fixed to match documentation */
3620                 geo->far_set_size = fc * nc;
3621                 break;
3622         default: /* Not a valid layout */
3623                 return -1;
3624         }
3625         geo->chunk_mask = chunk - 1;
3626         geo->chunk_shift = ffz(~chunk);
3627         return nc*fc;
3628 }
3629
3630 static struct r10conf *setup_conf(struct mddev *mddev)
3631 {
3632         struct r10conf *conf = NULL;
3633         int err = -EINVAL;
3634         struct geom geo;
3635         int copies;
3636
3637         copies = setup_geo(&geo, mddev, geo_new);
3638
3639         if (copies == -2) {
3640                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3641                         mdname(mddev), PAGE_SIZE);
3642                 goto out;
3643         }
3644
3645         if (copies < 2 || copies > mddev->raid_disks) {
3646                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3647                         mdname(mddev), mddev->new_layout);
3648                 goto out;
3649         }
3650
3651         err = -ENOMEM;
3652         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3653         if (!conf)
3654                 goto out;
3655
3656         /* FIXME calc properly */
3657         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3658                                 sizeof(struct raid10_info),
3659                                 GFP_KERNEL);
3660         if (!conf->mirrors)
3661                 goto out;
3662
3663         conf->tmppage = alloc_page(GFP_KERNEL);
3664         if (!conf->tmppage)
3665                 goto out;
3666
3667         conf->geo = geo;
3668         conf->copies = copies;
3669         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3670                            rbio_pool_free, conf);
3671         if (err)
3672                 goto out;
3673
3674         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3675         if (err)
3676                 goto out;
3677
3678         calc_sectors(conf, mddev->dev_sectors);
3679         if (mddev->reshape_position == MaxSector) {
3680                 conf->prev = conf->geo;
3681                 conf->reshape_progress = MaxSector;
3682         } else {
3683                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3684                         err = -EINVAL;
3685                         goto out;
3686                 }
3687                 conf->reshape_progress = mddev->reshape_position;
3688                 if (conf->prev.far_offset)
3689                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3690                 else
3691                         /* far_copies must be 1 */
3692                         conf->prev.stride = conf->dev_sectors;
3693         }
3694         conf->reshape_safe = conf->reshape_progress;
3695         spin_lock_init(&conf->device_lock);
3696         INIT_LIST_HEAD(&conf->retry_list);
3697         INIT_LIST_HEAD(&conf->bio_end_io_list);
3698
3699         spin_lock_init(&conf->resync_lock);
3700         init_waitqueue_head(&conf->wait_barrier);
3701         atomic_set(&conf->nr_pending, 0);
3702
3703         err = -ENOMEM;
3704         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3705         if (!conf->thread)
3706                 goto out;
3707
3708         conf->mddev = mddev;
3709         return conf;
3710
3711  out:
3712         if (conf) {
3713                 mempool_exit(&conf->r10bio_pool);
3714                 kfree(conf->mirrors);
3715                 safe_put_page(conf->tmppage);
3716                 bioset_exit(&conf->bio_split);
3717                 kfree(conf);
3718         }
3719         return ERR_PTR(err);
3720 }
3721
3722 static int raid10_run(struct mddev *mddev)
3723 {
3724         struct r10conf *conf;
3725         int i, disk_idx, chunk_size;
3726         struct raid10_info *disk;
3727         struct md_rdev *rdev;
3728         sector_t size;
3729         sector_t min_offset_diff = 0;
3730         int first = 1;
3731         bool discard_supported = false;
3732
3733         if (mddev_init_writes_pending(mddev) < 0)
3734                 return -ENOMEM;
3735
3736         if (mddev->private == NULL) {
3737                 conf = setup_conf(mddev);
3738                 if (IS_ERR(conf))
3739                         return PTR_ERR(conf);
3740                 mddev->private = conf;
3741         }
3742         conf = mddev->private;
3743         if (!conf)
3744                 goto out;
3745
3746         if (mddev_is_clustered(conf->mddev)) {
3747                 int fc, fo;
3748
3749                 fc = (mddev->layout >> 8) & 255;
3750                 fo = mddev->layout & (1<<16);
3751                 if (fc > 1 || fo > 0) {
3752                         pr_err("only near layout is supported by clustered"
3753                                 " raid10\n");
3754                         goto out_free_conf;
3755                 }
3756         }
3757
3758         mddev->thread = conf->thread;
3759         conf->thread = NULL;
3760
3761         chunk_size = mddev->chunk_sectors << 9;
3762         if (mddev->queue) {
3763                 blk_queue_max_discard_sectors(mddev->queue,
3764                                               mddev->chunk_sectors);
3765                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3766                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3767                 blk_queue_io_min(mddev->queue, chunk_size);
3768                 if (conf->geo.raid_disks % conf->geo.near_copies)
3769                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3770                 else
3771                         blk_queue_io_opt(mddev->queue, chunk_size *
3772                                          (conf->geo.raid_disks / conf->geo.near_copies));
3773         }
3774
3775         rdev_for_each(rdev, mddev) {
3776                 long long diff;
3777
3778                 disk_idx = rdev->raid_disk;
3779                 if (disk_idx < 0)
3780                         continue;
3781                 if (disk_idx >= conf->geo.raid_disks &&
3782                     disk_idx >= conf->prev.raid_disks)
3783                         continue;
3784                 disk = conf->mirrors + disk_idx;
3785
3786                 if (test_bit(Replacement, &rdev->flags)) {
3787                         if (disk->replacement)
3788                                 goto out_free_conf;
3789                         disk->replacement = rdev;
3790                 } else {
3791                         if (disk->rdev)
3792                                 goto out_free_conf;
3793                         disk->rdev = rdev;
3794                 }
3795                 diff = (rdev->new_data_offset - rdev->data_offset);
3796                 if (!mddev->reshape_backwards)
3797                         diff = -diff;
3798                 if (diff < 0)
3799                         diff = 0;
3800                 if (first || diff < min_offset_diff)
3801                         min_offset_diff = diff;
3802
3803                 if (mddev->gendisk)
3804                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3805                                           rdev->data_offset << 9);
3806
3807                 disk->head_position = 0;
3808
3809                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3810                         discard_supported = true;
3811                 first = 0;
3812         }
3813
3814         if (mddev->queue) {
3815                 if (discard_supported)
3816                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3817                                                 mddev->queue);
3818                 else
3819                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3820                                                   mddev->queue);
3821         }
3822         /* need to check that every block has at least one working mirror */
3823         if (!enough(conf, -1)) {
3824                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3825                        mdname(mddev));
3826                 goto out_free_conf;
3827         }
3828
3829         if (conf->reshape_progress != MaxSector) {
3830                 /* must ensure that shape change is supported */
3831                 if (conf->geo.far_copies != 1 &&
3832                     conf->geo.far_offset == 0)
3833                         goto out_free_conf;
3834                 if (conf->prev.far_copies != 1 &&
3835                     conf->prev.far_offset == 0)
3836                         goto out_free_conf;
3837         }
3838
3839         mddev->degraded = 0;
3840         for (i = 0;
3841              i < conf->geo.raid_disks
3842                      || i < conf->prev.raid_disks;
3843              i++) {
3844
3845                 disk = conf->mirrors + i;
3846
3847                 if (!disk->rdev && disk->replacement) {
3848                         /* The replacement is all we have - use it */
3849                         disk->rdev = disk->replacement;
3850                         disk->replacement = NULL;
3851                         clear_bit(Replacement, &disk->rdev->flags);
3852                 }
3853
3854                 if (!disk->rdev ||
3855                     !test_bit(In_sync, &disk->rdev->flags)) {
3856                         disk->head_position = 0;
3857                         mddev->degraded++;
3858                         if (disk->rdev &&
3859                             disk->rdev->saved_raid_disk < 0)
3860                                 conf->fullsync = 1;
3861                 }
3862
3863                 if (disk->replacement &&
3864                     !test_bit(In_sync, &disk->replacement->flags) &&
3865                     disk->replacement->saved_raid_disk < 0) {
3866                         conf->fullsync = 1;
3867                 }
3868
3869                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3870         }
3871
3872         if (mddev->recovery_cp != MaxSector)
3873                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3874                           mdname(mddev));
3875         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3876                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3877                 conf->geo.raid_disks);
3878         /*
3879          * Ok, everything is just fine now
3880          */
3881         mddev->dev_sectors = conf->dev_sectors;
3882         size = raid10_size(mddev, 0, 0);
3883         md_set_array_sectors(mddev, size);
3884         mddev->resync_max_sectors = size;
3885         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3886
3887         if (mddev->queue) {
3888                 int stripe = conf->geo.raid_disks *
3889                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3890
3891                 /* Calculate max read-ahead size.
3892                  * We need to readahead at least twice a whole stripe....
3893                  * maybe...
3894                  */
3895                 stripe /= conf->geo.near_copies;
3896                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3897                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3898         }
3899
3900         if (md_integrity_register(mddev))
3901                 goto out_free_conf;
3902
3903         if (conf->reshape_progress != MaxSector) {
3904                 unsigned long before_length, after_length;
3905
3906                 before_length = ((1 << conf->prev.chunk_shift) *
3907                                  conf->prev.far_copies);
3908                 after_length = ((1 << conf->geo.chunk_shift) *
3909                                 conf->geo.far_copies);
3910
3911                 if (max(before_length, after_length) > min_offset_diff) {
3912                         /* This cannot work */
3913                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3914                         goto out_free_conf;
3915                 }
3916                 conf->offset_diff = min_offset_diff;
3917
3918                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3919                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3920                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3921                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3922                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3923                                                         "reshape");
3924                 if (!mddev->sync_thread)
3925                         goto out_free_conf;
3926         }
3927
3928         return 0;
3929
3930 out_free_conf:
3931         md_unregister_thread(&mddev->thread);
3932         mempool_exit(&conf->r10bio_pool);
3933         safe_put_page(conf->tmppage);
3934         kfree(conf->mirrors);
3935         kfree(conf);
3936         mddev->private = NULL;
3937 out:
3938         return -EIO;
3939 }
3940
3941 static void raid10_free(struct mddev *mddev, void *priv)
3942 {
3943         struct r10conf *conf = priv;
3944
3945         mempool_exit(&conf->r10bio_pool);
3946         safe_put_page(conf->tmppage);
3947         kfree(conf->mirrors);
3948         kfree(conf->mirrors_old);
3949         kfree(conf->mirrors_new);
3950         bioset_exit(&conf->bio_split);
3951         kfree(conf);
3952 }
3953
3954 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3955 {
3956         struct r10conf *conf = mddev->private;
3957
3958         if (quiesce)
3959                 raise_barrier(conf, 0);
3960         else
3961                 lower_barrier(conf);
3962 }
3963
3964 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3965 {
3966         /* Resize of 'far' arrays is not supported.
3967          * For 'near' and 'offset' arrays we can set the
3968          * number of sectors used to be an appropriate multiple
3969          * of the chunk size.
3970          * For 'offset', this is far_copies*chunksize.
3971          * For 'near' the multiplier is the LCM of
3972          * near_copies and raid_disks.
3973          * So if far_copies > 1 && !far_offset, fail.
3974          * Else find LCM(raid_disks, near_copy)*far_copies and
3975          * multiply by chunk_size.  Then round to this number.
3976          * This is mostly done by raid10_size()
3977          */
3978         struct r10conf *conf = mddev->private;
3979         sector_t oldsize, size;
3980
3981         if (mddev->reshape_position != MaxSector)
3982                 return -EBUSY;
3983
3984         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3985                 return -EINVAL;
3986
3987         oldsize = raid10_size(mddev, 0, 0);
3988         size = raid10_size(mddev, sectors, 0);
3989         if (mddev->external_size &&
3990             mddev->array_sectors > size)
3991                 return -EINVAL;
3992         if (mddev->bitmap) {
3993                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3994                 if (ret)
3995                         return ret;
3996         }
3997         md_set_array_sectors(mddev, size);
3998         if (sectors > mddev->dev_sectors &&
3999             mddev->recovery_cp > oldsize) {
4000                 mddev->recovery_cp = oldsize;
4001                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4002         }
4003         calc_sectors(conf, sectors);
4004         mddev->dev_sectors = conf->dev_sectors;
4005         mddev->resync_max_sectors = size;
4006         return 0;
4007 }
4008
4009 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4010 {
4011         struct md_rdev *rdev;
4012         struct r10conf *conf;
4013
4014         if (mddev->degraded > 0) {
4015                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4016                         mdname(mddev));
4017                 return ERR_PTR(-EINVAL);
4018         }
4019         sector_div(size, devs);
4020
4021         /* Set new parameters */
4022         mddev->new_level = 10;
4023         /* new layout: far_copies = 1, near_copies = 2 */
4024         mddev->new_layout = (1<<8) + 2;
4025         mddev->new_chunk_sectors = mddev->chunk_sectors;
4026         mddev->delta_disks = mddev->raid_disks;
4027         mddev->raid_disks *= 2;
4028         /* make sure it will be not marked as dirty */
4029         mddev->recovery_cp = MaxSector;
4030         mddev->dev_sectors = size;
4031
4032         conf = setup_conf(mddev);
4033         if (!IS_ERR(conf)) {
4034                 rdev_for_each(rdev, mddev)
4035                         if (rdev->raid_disk >= 0) {
4036                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4037                                 rdev->sectors = size;
4038                         }
4039                 conf->barrier = 1;
4040         }
4041
4042         return conf;
4043 }
4044
4045 static void *raid10_takeover(struct mddev *mddev)
4046 {
4047         struct r0conf *raid0_conf;
4048
4049         /* raid10 can take over:
4050          *  raid0 - providing it has only two drives
4051          */
4052         if (mddev->level == 0) {
4053                 /* for raid0 takeover only one zone is supported */
4054                 raid0_conf = mddev->private;
4055                 if (raid0_conf->nr_strip_zones > 1) {
4056                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4057                                 mdname(mddev));
4058                         return ERR_PTR(-EINVAL);
4059                 }
4060                 return raid10_takeover_raid0(mddev,
4061                         raid0_conf->strip_zone->zone_end,
4062                         raid0_conf->strip_zone->nb_dev);
4063         }
4064         return ERR_PTR(-EINVAL);
4065 }
4066
4067 static int raid10_check_reshape(struct mddev *mddev)
4068 {
4069         /* Called when there is a request to change
4070          * - layout (to ->new_layout)
4071          * - chunk size (to ->new_chunk_sectors)
4072          * - raid_disks (by delta_disks)
4073          * or when trying to restart a reshape that was ongoing.
4074          *
4075          * We need to validate the request and possibly allocate
4076          * space if that might be an issue later.
4077          *
4078          * Currently we reject any reshape of a 'far' mode array,
4079          * allow chunk size to change if new is generally acceptable,
4080          * allow raid_disks to increase, and allow
4081          * a switch between 'near' mode and 'offset' mode.
4082          */
4083         struct r10conf *conf = mddev->private;
4084         struct geom geo;
4085
4086         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4087                 return -EINVAL;
4088
4089         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4090                 /* mustn't change number of copies */
4091                 return -EINVAL;
4092         if (geo.far_copies > 1 && !geo.far_offset)
4093                 /* Cannot switch to 'far' mode */
4094                 return -EINVAL;
4095
4096         if (mddev->array_sectors & geo.chunk_mask)
4097                         /* not factor of array size */
4098                         return -EINVAL;
4099
4100         if (!enough(conf, -1))
4101                 return -EINVAL;
4102
4103         kfree(conf->mirrors_new);
4104         conf->mirrors_new = NULL;
4105         if (mddev->delta_disks > 0) {
4106                 /* allocate new 'mirrors' list */
4107                 conf->mirrors_new =
4108                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4109                                 sizeof(struct raid10_info),
4110                                 GFP_KERNEL);
4111                 if (!conf->mirrors_new)
4112                         return -ENOMEM;
4113         }
4114         return 0;
4115 }
4116
4117 /*
4118  * Need to check if array has failed when deciding whether to:
4119  *  - start an array
4120  *  - remove non-faulty devices
4121  *  - add a spare
4122  *  - allow a reshape
4123  * This determination is simple when no reshape is happening.
4124  * However if there is a reshape, we need to carefully check
4125  * both the before and after sections.
4126  * This is because some failed devices may only affect one
4127  * of the two sections, and some non-in_sync devices may
4128  * be insync in the section most affected by failed devices.
4129  */
4130 static int calc_degraded(struct r10conf *conf)
4131 {
4132         int degraded, degraded2;
4133         int i;
4134
4135         rcu_read_lock();
4136         degraded = 0;
4137         /* 'prev' section first */
4138         for (i = 0; i < conf->prev.raid_disks; i++) {
4139                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140                 if (!rdev || test_bit(Faulty, &rdev->flags))
4141                         degraded++;
4142                 else if (!test_bit(In_sync, &rdev->flags))
4143                         /* When we can reduce the number of devices in
4144                          * an array, this might not contribute to
4145                          * 'degraded'.  It does now.
4146                          */
4147                         degraded++;
4148         }
4149         rcu_read_unlock();
4150         if (conf->geo.raid_disks == conf->prev.raid_disks)
4151                 return degraded;
4152         rcu_read_lock();
4153         degraded2 = 0;
4154         for (i = 0; i < conf->geo.raid_disks; i++) {
4155                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4156                 if (!rdev || test_bit(Faulty, &rdev->flags))
4157                         degraded2++;
4158                 else if (!test_bit(In_sync, &rdev->flags)) {
4159                         /* If reshape is increasing the number of devices,
4160                          * this section has already been recovered, so
4161                          * it doesn't contribute to degraded.
4162                          * else it does.
4163                          */
4164                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4165                                 degraded2++;
4166                 }
4167         }
4168         rcu_read_unlock();
4169         if (degraded2 > degraded)
4170                 return degraded2;
4171         return degraded;
4172 }
4173
4174 static int raid10_start_reshape(struct mddev *mddev)
4175 {
4176         /* A 'reshape' has been requested. This commits
4177          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4178          * This also checks if there are enough spares and adds them
4179          * to the array.
4180          * We currently require enough spares to make the final
4181          * array non-degraded.  We also require that the difference
4182          * between old and new data_offset - on each device - is
4183          * enough that we never risk over-writing.
4184          */
4185
4186         unsigned long before_length, after_length;
4187         sector_t min_offset_diff = 0;
4188         int first = 1;
4189         struct geom new;
4190         struct r10conf *conf = mddev->private;
4191         struct md_rdev *rdev;
4192         int spares = 0;
4193         int ret;
4194
4195         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4196                 return -EBUSY;
4197
4198         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4199                 return -EINVAL;
4200
4201         before_length = ((1 << conf->prev.chunk_shift) *
4202                          conf->prev.far_copies);
4203         after_length = ((1 << conf->geo.chunk_shift) *
4204                         conf->geo.far_copies);
4205
4206         rdev_for_each(rdev, mddev) {
4207                 if (!test_bit(In_sync, &rdev->flags)
4208                     && !test_bit(Faulty, &rdev->flags))
4209                         spares++;
4210                 if (rdev->raid_disk >= 0) {
4211                         long long diff = (rdev->new_data_offset
4212                                           - rdev->data_offset);
4213                         if (!mddev->reshape_backwards)
4214                                 diff = -diff;
4215                         if (diff < 0)
4216                                 diff = 0;
4217                         if (first || diff < min_offset_diff)
4218                                 min_offset_diff = diff;
4219                         first = 0;
4220                 }
4221         }
4222
4223         if (max(before_length, after_length) > min_offset_diff)
4224                 return -EINVAL;
4225
4226         if (spares < mddev->delta_disks)
4227                 return -EINVAL;
4228
4229         conf->offset_diff = min_offset_diff;
4230         spin_lock_irq(&conf->device_lock);
4231         if (conf->mirrors_new) {
4232                 memcpy(conf->mirrors_new, conf->mirrors,
4233                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4234                 smp_mb();
4235                 kfree(conf->mirrors_old);
4236                 conf->mirrors_old = conf->mirrors;
4237                 conf->mirrors = conf->mirrors_new;
4238                 conf->mirrors_new = NULL;
4239         }
4240         setup_geo(&conf->geo, mddev, geo_start);
4241         smp_mb();
4242         if (mddev->reshape_backwards) {
4243                 sector_t size = raid10_size(mddev, 0, 0);
4244                 if (size < mddev->array_sectors) {
4245                         spin_unlock_irq(&conf->device_lock);
4246                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4247                                 mdname(mddev));
4248                         return -EINVAL;
4249                 }
4250                 mddev->resync_max_sectors = size;
4251                 conf->reshape_progress = size;
4252         } else
4253                 conf->reshape_progress = 0;
4254         conf->reshape_safe = conf->reshape_progress;
4255         spin_unlock_irq(&conf->device_lock);
4256
4257         if (mddev->delta_disks && mddev->bitmap) {
4258                 struct mdp_superblock_1 *sb = NULL;
4259                 sector_t oldsize, newsize;
4260
4261                 oldsize = raid10_size(mddev, 0, 0);
4262                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4263
4264                 if (!mddev_is_clustered(mddev)) {
4265                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4266                         if (ret)
4267                                 goto abort;
4268                         else
4269                                 goto out;
4270                 }
4271
4272                 rdev_for_each(rdev, mddev) {
4273                         if (rdev->raid_disk > -1 &&
4274                             !test_bit(Faulty, &rdev->flags))
4275                                 sb = page_address(rdev->sb_page);
4276                 }
4277
4278                 /*
4279                  * some node is already performing reshape, and no need to
4280                  * call md_bitmap_resize again since it should be called when
4281                  * receiving BITMAP_RESIZE msg
4282                  */
4283                 if ((sb && (le32_to_cpu(sb->feature_map) &
4284                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4285                         goto out;
4286
4287                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4288                 if (ret)
4289                         goto abort;
4290
4291                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4292                 if (ret) {
4293                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4294                         goto abort;
4295                 }
4296         }
4297 out:
4298         if (mddev->delta_disks > 0) {
4299                 rdev_for_each(rdev, mddev)
4300                         if (rdev->raid_disk < 0 &&
4301                             !test_bit(Faulty, &rdev->flags)) {
4302                                 if (raid10_add_disk(mddev, rdev) == 0) {
4303                                         if (rdev->raid_disk >=
4304                                             conf->prev.raid_disks)
4305                                                 set_bit(In_sync, &rdev->flags);
4306                                         else
4307                                                 rdev->recovery_offset = 0;
4308
4309                                         if (sysfs_link_rdev(mddev, rdev))
4310                                                 /* Failure here  is OK */;
4311                                 }
4312                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4313                                    && !test_bit(Faulty, &rdev->flags)) {
4314                                 /* This is a spare that was manually added */
4315                                 set_bit(In_sync, &rdev->flags);
4316                         }
4317         }
4318         /* When a reshape changes the number of devices,
4319          * ->degraded is measured against the larger of the
4320          * pre and  post numbers.
4321          */
4322         spin_lock_irq(&conf->device_lock);
4323         mddev->degraded = calc_degraded(conf);
4324         spin_unlock_irq(&conf->device_lock);
4325         mddev->raid_disks = conf->geo.raid_disks;
4326         mddev->reshape_position = conf->reshape_progress;
4327         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4328
4329         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4330         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4331         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4332         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4333         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4334
4335         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4336                                                 "reshape");
4337         if (!mddev->sync_thread) {
4338                 ret = -EAGAIN;
4339                 goto abort;
4340         }
4341         conf->reshape_checkpoint = jiffies;
4342         md_wakeup_thread(mddev->sync_thread);
4343         md_new_event(mddev);
4344         return 0;
4345
4346 abort:
4347         mddev->recovery = 0;
4348         spin_lock_irq(&conf->device_lock);
4349         conf->geo = conf->prev;
4350         mddev->raid_disks = conf->geo.raid_disks;
4351         rdev_for_each(rdev, mddev)
4352                 rdev->new_data_offset = rdev->data_offset;
4353         smp_wmb();
4354         conf->reshape_progress = MaxSector;
4355         conf->reshape_safe = MaxSector;
4356         mddev->reshape_position = MaxSector;
4357         spin_unlock_irq(&conf->device_lock);
4358         return ret;
4359 }
4360
4361 /* Calculate the last device-address that could contain
4362  * any block from the chunk that includes the array-address 's'
4363  * and report the next address.
4364  * i.e. the address returned will be chunk-aligned and after
4365  * any data that is in the chunk containing 's'.
4366  */
4367 static sector_t last_dev_address(sector_t s, struct geom *geo)
4368 {
4369         s = (s | geo->chunk_mask) + 1;
4370         s >>= geo->chunk_shift;
4371         s *= geo->near_copies;
4372         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4373         s *= geo->far_copies;
4374         s <<= geo->chunk_shift;
4375         return s;
4376 }
4377
4378 /* Calculate the first device-address that could contain
4379  * any block from the chunk that includes the array-address 's'.
4380  * This too will be the start of a chunk
4381  */
4382 static sector_t first_dev_address(sector_t s, struct geom *geo)
4383 {
4384         s >>= geo->chunk_shift;
4385         s *= geo->near_copies;
4386         sector_div(s, geo->raid_disks);
4387         s *= geo->far_copies;
4388         s <<= geo->chunk_shift;
4389         return s;
4390 }
4391
4392 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4393                                 int *skipped)
4394 {
4395         /* We simply copy at most one chunk (smallest of old and new)
4396          * at a time, possibly less if that exceeds RESYNC_PAGES,
4397          * or we hit a bad block or something.
4398          * This might mean we pause for normal IO in the middle of
4399          * a chunk, but that is not a problem as mddev->reshape_position
4400          * can record any location.
4401          *
4402          * If we will want to write to a location that isn't
4403          * yet recorded as 'safe' (i.e. in metadata on disk) then
4404          * we need to flush all reshape requests and update the metadata.
4405          *
4406          * When reshaping forwards (e.g. to more devices), we interpret
4407          * 'safe' as the earliest block which might not have been copied
4408          * down yet.  We divide this by previous stripe size and multiply
4409          * by previous stripe length to get lowest device offset that we
4410          * cannot write to yet.
4411          * We interpret 'sector_nr' as an address that we want to write to.
4412          * From this we use last_device_address() to find where we might
4413          * write to, and first_device_address on the  'safe' position.
4414          * If this 'next' write position is after the 'safe' position,
4415          * we must update the metadata to increase the 'safe' position.
4416          *
4417          * When reshaping backwards, we round in the opposite direction
4418          * and perform the reverse test:  next write position must not be
4419          * less than current safe position.
4420          *
4421          * In all this the minimum difference in data offsets
4422          * (conf->offset_diff - always positive) allows a bit of slack,
4423          * so next can be after 'safe', but not by more than offset_diff
4424          *
4425          * We need to prepare all the bios here before we start any IO
4426          * to ensure the size we choose is acceptable to all devices.
4427          * The means one for each copy for write-out and an extra one for
4428          * read-in.
4429          * We store the read-in bio in ->master_bio and the others in
4430          * ->devs[x].bio and ->devs[x].repl_bio.
4431          */
4432         struct r10conf *conf = mddev->private;
4433         struct r10bio *r10_bio;
4434         sector_t next, safe, last;
4435         int max_sectors;
4436         int nr_sectors;
4437         int s;
4438         struct md_rdev *rdev;
4439         int need_flush = 0;
4440         struct bio *blist;
4441         struct bio *bio, *read_bio;
4442         int sectors_done = 0;
4443         struct page **pages;
4444
4445         if (sector_nr == 0) {
4446                 /* If restarting in the middle, skip the initial sectors */
4447                 if (mddev->reshape_backwards &&
4448                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4449                         sector_nr = (raid10_size(mddev, 0, 0)
4450                                      - conf->reshape_progress);
4451                 } else if (!mddev->reshape_backwards &&
4452                            conf->reshape_progress > 0)
4453                         sector_nr = conf->reshape_progress;
4454                 if (sector_nr) {
4455                         mddev->curr_resync_completed = sector_nr;
4456                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4457                         *skipped = 1;
4458                         return sector_nr;
4459                 }
4460         }
4461
4462         /* We don't use sector_nr to track where we are up to
4463          * as that doesn't work well for ->reshape_backwards.
4464          * So just use ->reshape_progress.
4465          */
4466         if (mddev->reshape_backwards) {
4467                 /* 'next' is the earliest device address that we might
4468                  * write to for this chunk in the new layout
4469                  */
4470                 next = first_dev_address(conf->reshape_progress - 1,
4471                                          &conf->geo);
4472
4473                 /* 'safe' is the last device address that we might read from
4474                  * in the old layout after a restart
4475                  */
4476                 safe = last_dev_address(conf->reshape_safe - 1,
4477                                         &conf->prev);
4478
4479                 if (next + conf->offset_diff < safe)
4480                         need_flush = 1;
4481
4482                 last = conf->reshape_progress - 1;
4483                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4484                                                & conf->prev.chunk_mask);
4485                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4486                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4487         } else {
4488                 /* 'next' is after the last device address that we
4489                  * might write to for this chunk in the new layout
4490                  */
4491                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4492
4493                 /* 'safe' is the earliest device address that we might
4494                  * read from in the old layout after a restart
4495                  */
4496                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4497
4498                 /* Need to update metadata if 'next' might be beyond 'safe'
4499                  * as that would possibly corrupt data
4500                  */
4501                 if (next > safe + conf->offset_diff)
4502                         need_flush = 1;
4503
4504                 sector_nr = conf->reshape_progress;
4505                 last  = sector_nr | (conf->geo.chunk_mask
4506                                      & conf->prev.chunk_mask);
4507
4508                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4509                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4510         }
4511
4512         if (need_flush ||
4513             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4514                 /* Need to update reshape_position in metadata */
4515                 wait_barrier(conf);
4516                 mddev->reshape_position = conf->reshape_progress;
4517                 if (mddev->reshape_backwards)
4518                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4519                                 - conf->reshape_progress;
4520                 else
4521                         mddev->curr_resync_completed = conf->reshape_progress;
4522                 conf->reshape_checkpoint = jiffies;
4523                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4524                 md_wakeup_thread(mddev->thread);
4525                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4526                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4527                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4528                         allow_barrier(conf);
4529                         return sectors_done;
4530                 }
4531                 conf->reshape_safe = mddev->reshape_position;
4532                 allow_barrier(conf);
4533         }
4534
4535         raise_barrier(conf, 0);
4536 read_more:
4537         /* Now schedule reads for blocks from sector_nr to last */
4538         r10_bio = raid10_alloc_init_r10buf(conf);
4539         r10_bio->state = 0;
4540         raise_barrier(conf, 1);
4541         atomic_set(&r10_bio->remaining, 0);
4542         r10_bio->mddev = mddev;
4543         r10_bio->sector = sector_nr;
4544         set_bit(R10BIO_IsReshape, &r10_bio->state);
4545         r10_bio->sectors = last - sector_nr + 1;
4546         rdev = read_balance(conf, r10_bio, &max_sectors);
4547         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4548
4549         if (!rdev) {
4550                 /* Cannot read from here, so need to record bad blocks
4551                  * on all the target devices.
4552                  */
4553                 // FIXME
4554                 mempool_free(r10_bio, &conf->r10buf_pool);
4555                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4556                 return sectors_done;
4557         }
4558
4559         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4560
4561         bio_set_dev(read_bio, rdev->bdev);
4562         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4563                                + rdev->data_offset);
4564         read_bio->bi_private = r10_bio;
4565         read_bio->bi_end_io = end_reshape_read;
4566         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4567         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4568         read_bio->bi_status = 0;
4569         read_bio->bi_vcnt = 0;
4570         read_bio->bi_iter.bi_size = 0;
4571         r10_bio->master_bio = read_bio;
4572         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4573
4574         /*
4575          * Broadcast RESYNC message to other nodes, so all nodes would not
4576          * write to the region to avoid conflict.
4577         */
4578         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4579                 struct mdp_superblock_1 *sb = NULL;
4580                 int sb_reshape_pos = 0;
4581
4582                 conf->cluster_sync_low = sector_nr;
4583                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4584                 sb = page_address(rdev->sb_page);
4585                 if (sb) {
4586                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4587                         /*
4588                          * Set cluster_sync_low again if next address for array
4589                          * reshape is less than cluster_sync_low. Since we can't
4590                          * update cluster_sync_low until it has finished reshape.
4591                          */
4592                         if (sb_reshape_pos < conf->cluster_sync_low)
4593                                 conf->cluster_sync_low = sb_reshape_pos;
4594                 }
4595
4596                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4597                                                           conf->cluster_sync_high);
4598         }
4599
4600         /* Now find the locations in the new layout */
4601         __raid10_find_phys(&conf->geo, r10_bio);
4602
4603         blist = read_bio;
4604         read_bio->bi_next = NULL;
4605
4606         rcu_read_lock();
4607         for (s = 0; s < conf->copies*2; s++) {
4608                 struct bio *b;
4609                 int d = r10_bio->devs[s/2].devnum;
4610                 struct md_rdev *rdev2;
4611                 if (s&1) {
4612                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4613                         b = r10_bio->devs[s/2].repl_bio;
4614                 } else {
4615                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4616                         b = r10_bio->devs[s/2].bio;
4617                 }
4618                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4619                         continue;
4620
4621                 bio_set_dev(b, rdev2->bdev);
4622                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4623                         rdev2->new_data_offset;
4624                 b->bi_end_io = end_reshape_write;
4625                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4626                 b->bi_next = blist;
4627                 blist = b;
4628         }
4629
4630         /* Now add as many pages as possible to all of these bios. */
4631
4632         nr_sectors = 0;
4633         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4634         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4635                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4636                 int len = (max_sectors - s) << 9;
4637                 if (len > PAGE_SIZE)
4638                         len = PAGE_SIZE;
4639                 for (bio = blist; bio ; bio = bio->bi_next) {
4640                         /*
4641                          * won't fail because the vec table is big enough
4642                          * to hold all these pages
4643                          */
4644                         bio_add_page(bio, page, len, 0);
4645                 }
4646                 sector_nr += len >> 9;
4647                 nr_sectors += len >> 9;
4648         }
4649         rcu_read_unlock();
4650         r10_bio->sectors = nr_sectors;
4651
4652         /* Now submit the read */
4653         md_sync_acct_bio(read_bio, r10_bio->sectors);
4654         atomic_inc(&r10_bio->remaining);
4655         read_bio->bi_next = NULL;
4656         generic_make_request(read_bio);
4657         sectors_done += nr_sectors;
4658         if (sector_nr <= last)
4659                 goto read_more;
4660
4661         lower_barrier(conf);
4662
4663         /* Now that we have done the whole section we can
4664          * update reshape_progress
4665          */
4666         if (mddev->reshape_backwards)
4667                 conf->reshape_progress -= sectors_done;
4668         else
4669                 conf->reshape_progress += sectors_done;
4670
4671         return sectors_done;
4672 }
4673
4674 static void end_reshape_request(struct r10bio *r10_bio);
4675 static int handle_reshape_read_error(struct mddev *mddev,
4676                                      struct r10bio *r10_bio);
4677 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4678 {
4679         /* Reshape read completed.  Hopefully we have a block
4680          * to write out.
4681          * If we got a read error then we do sync 1-page reads from
4682          * elsewhere until we find the data - or give up.
4683          */
4684         struct r10conf *conf = mddev->private;
4685         int s;
4686
4687         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4688                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4689                         /* Reshape has been aborted */
4690                         md_done_sync(mddev, r10_bio->sectors, 0);
4691                         return;
4692                 }
4693
4694         /* We definitely have the data in the pages, schedule the
4695          * writes.
4696          */
4697         atomic_set(&r10_bio->remaining, 1);
4698         for (s = 0; s < conf->copies*2; s++) {
4699                 struct bio *b;
4700                 int d = r10_bio->devs[s/2].devnum;
4701                 struct md_rdev *rdev;
4702                 rcu_read_lock();
4703                 if (s&1) {
4704                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4705                         b = r10_bio->devs[s/2].repl_bio;
4706                 } else {
4707                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4708                         b = r10_bio->devs[s/2].bio;
4709                 }
4710                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4711                         rcu_read_unlock();
4712                         continue;
4713                 }
4714                 atomic_inc(&rdev->nr_pending);
4715                 rcu_read_unlock();
4716                 md_sync_acct_bio(b, r10_bio->sectors);
4717                 atomic_inc(&r10_bio->remaining);
4718                 b->bi_next = NULL;
4719                 generic_make_request(b);
4720         }
4721         end_reshape_request(r10_bio);
4722 }
4723
4724 static void end_reshape(struct r10conf *conf)
4725 {
4726         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4727                 return;
4728
4729         spin_lock_irq(&conf->device_lock);
4730         conf->prev = conf->geo;
4731         md_finish_reshape(conf->mddev);
4732         smp_wmb();
4733         conf->reshape_progress = MaxSector;
4734         conf->reshape_safe = MaxSector;
4735         spin_unlock_irq(&conf->device_lock);
4736
4737         /* read-ahead size must cover two whole stripes, which is
4738          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4739          */
4740         if (conf->mddev->queue) {
4741                 int stripe = conf->geo.raid_disks *
4742                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4743                 stripe /= conf->geo.near_copies;
4744                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4745                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4746         }
4747         conf->fullsync = 0;
4748 }
4749
4750 static void raid10_update_reshape_pos(struct mddev *mddev)
4751 {
4752         struct r10conf *conf = mddev->private;
4753         sector_t lo, hi;
4754
4755         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4756         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4757             || mddev->reshape_position == MaxSector)
4758                 conf->reshape_progress = mddev->reshape_position;
4759         else
4760                 WARN_ON_ONCE(1);
4761 }
4762
4763 static int handle_reshape_read_error(struct mddev *mddev,
4764                                      struct r10bio *r10_bio)
4765 {
4766         /* Use sync reads to get the blocks from somewhere else */
4767         int sectors = r10_bio->sectors;
4768         struct r10conf *conf = mddev->private;
4769         struct r10bio *r10b;
4770         int slot = 0;
4771         int idx = 0;
4772         struct page **pages;
4773
4774         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4775         if (!r10b) {
4776                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4777                 return -ENOMEM;
4778         }
4779
4780         /* reshape IOs share pages from .devs[0].bio */
4781         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4782
4783         r10b->sector = r10_bio->sector;
4784         __raid10_find_phys(&conf->prev, r10b);
4785
4786         while (sectors) {
4787                 int s = sectors;
4788                 int success = 0;
4789                 int first_slot = slot;
4790
4791                 if (s > (PAGE_SIZE >> 9))
4792                         s = PAGE_SIZE >> 9;
4793
4794                 rcu_read_lock();
4795                 while (!success) {
4796                         int d = r10b->devs[slot].devnum;
4797                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4798                         sector_t addr;
4799                         if (rdev == NULL ||
4800                             test_bit(Faulty, &rdev->flags) ||
4801                             !test_bit(In_sync, &rdev->flags))
4802                                 goto failed;
4803
4804                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4805                         atomic_inc(&rdev->nr_pending);
4806                         rcu_read_unlock();
4807                         success = sync_page_io(rdev,
4808                                                addr,
4809                                                s << 9,
4810                                                pages[idx],
4811                                                REQ_OP_READ, 0, false);
4812                         rdev_dec_pending(rdev, mddev);
4813                         rcu_read_lock();
4814                         if (success)
4815                                 break;
4816                 failed:
4817                         slot++;
4818                         if (slot >= conf->copies)
4819                                 slot = 0;
4820                         if (slot == first_slot)
4821                                 break;
4822                 }
4823                 rcu_read_unlock();
4824                 if (!success) {
4825                         /* couldn't read this block, must give up */
4826                         set_bit(MD_RECOVERY_INTR,
4827                                 &mddev->recovery);
4828                         kfree(r10b);
4829                         return -EIO;
4830                 }
4831                 sectors -= s;
4832                 idx++;
4833         }
4834         kfree(r10b);
4835         return 0;
4836 }
4837
4838 static void end_reshape_write(struct bio *bio)
4839 {
4840         struct r10bio *r10_bio = get_resync_r10bio(bio);
4841         struct mddev *mddev = r10_bio->mddev;
4842         struct r10conf *conf = mddev->private;
4843         int d;
4844         int slot;
4845         int repl;
4846         struct md_rdev *rdev = NULL;
4847
4848         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4849         if (repl)
4850                 rdev = conf->mirrors[d].replacement;
4851         if (!rdev) {
4852                 smp_mb();
4853                 rdev = conf->mirrors[d].rdev;
4854         }
4855
4856         if (bio->bi_status) {
4857                 /* FIXME should record badblock */
4858                 md_error(mddev, rdev);
4859         }
4860
4861         rdev_dec_pending(rdev, mddev);
4862         end_reshape_request(r10_bio);
4863 }
4864
4865 static void end_reshape_request(struct r10bio *r10_bio)
4866 {
4867         if (!atomic_dec_and_test(&r10_bio->remaining))
4868                 return;
4869         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4870         bio_put(r10_bio->master_bio);
4871         put_buf(r10_bio);
4872 }
4873
4874 static void raid10_finish_reshape(struct mddev *mddev)
4875 {
4876         struct r10conf *conf = mddev->private;
4877
4878         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4879                 return;
4880
4881         if (mddev->delta_disks > 0) {
4882                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4883                         mddev->recovery_cp = mddev->resync_max_sectors;
4884                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4885                 }
4886                 mddev->resync_max_sectors = mddev->array_sectors;
4887         } else {
4888                 int d;
4889                 rcu_read_lock();
4890                 for (d = conf->geo.raid_disks ;
4891                      d < conf->geo.raid_disks - mddev->delta_disks;
4892                      d++) {
4893                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4894                         if (rdev)
4895                                 clear_bit(In_sync, &rdev->flags);
4896                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4897                         if (rdev)
4898                                 clear_bit(In_sync, &rdev->flags);
4899                 }
4900                 rcu_read_unlock();
4901         }
4902         mddev->layout = mddev->new_layout;
4903         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4904         mddev->reshape_position = MaxSector;
4905         mddev->delta_disks = 0;
4906         mddev->reshape_backwards = 0;
4907 }
4908
4909 static struct md_personality raid10_personality =
4910 {
4911         .name           = "raid10",
4912         .level          = 10,
4913         .owner          = THIS_MODULE,
4914         .make_request   = raid10_make_request,
4915         .run            = raid10_run,
4916         .free           = raid10_free,
4917         .status         = raid10_status,
4918         .error_handler  = raid10_error,
4919         .hot_add_disk   = raid10_add_disk,
4920         .hot_remove_disk= raid10_remove_disk,
4921         .spare_active   = raid10_spare_active,
4922         .sync_request   = raid10_sync_request,
4923         .quiesce        = raid10_quiesce,
4924         .size           = raid10_size,
4925         .resize         = raid10_resize,
4926         .takeover       = raid10_takeover,
4927         .check_reshape  = raid10_check_reshape,
4928         .start_reshape  = raid10_start_reshape,
4929         .finish_reshape = raid10_finish_reshape,
4930         .update_reshape_pos = raid10_update_reshape_pos,
4931         .congested      = raid10_congested,
4932 };
4933
4934 static int __init raid_init(void)
4935 {
4936         return register_md_personality(&raid10_personality);
4937 }
4938
4939 static void raid_exit(void)
4940 {
4941         unregister_md_personality(&raid10_personality);
4942 }
4943
4944 module_init(raid_init);
4945 module_exit(raid_exit);
4946 MODULE_LICENSE("GPL");
4947 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4948 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4949 MODULE_ALIAS("md-raid10");
4950 MODULE_ALIAS("md-level-10");
4951
4952 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);