Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / macintosh / windfarm_pm112.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Windfarm PowerMac thermal control.
4  * Control loops for machines with SMU and PPC970MP processors.
5  *
6  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8  */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
17
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
20
21 #define VERSION "0.2"
22
23 #define DEBUG
24 #undef LOTSA_DEBUG
25
26 #ifdef DEBUG
27 #define DBG(args...)    printk(args)
28 #else
29 #define DBG(args...)    do { } while(0)
30 #endif
31
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...)       printk(args)
34 #else
35 #define DBG_LOTS(args...)       do { } while(0)
36 #endif
37
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39  * the overtemp code
40  */
41 #undef HACKED_OVERTEMP
42
43 /* We currently only handle 2 chips, 4 cores... */
44 #define NR_CHIPS        2
45 #define NR_CORES        4
46 #define NR_CPU_FANS     3 * NR_CHIPS
47
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CORES];
50 static struct wf_sensor *sens_cpu_power[NR_CORES];
51 static struct wf_sensor *hd_temp;
52 static struct wf_sensor *slots_power;
53 static struct wf_sensor *u4_temp;
54
55 static struct wf_control *cpu_fans[NR_CPU_FANS];
56 static char *cpu_fan_names[NR_CPU_FANS] = {
57         "cpu-rear-fan-0",
58         "cpu-rear-fan-1",
59         "cpu-front-fan-0",
60         "cpu-front-fan-1",
61         "cpu-pump-0",
62         "cpu-pump-1",
63 };
64 static struct wf_control *cpufreq_clamp;
65
66 /* Second pump isn't required (and isn't actually present) */
67 #define CPU_FANS_REQD           (NR_CPU_FANS - 2)
68 #define FIRST_PUMP              4
69 #define LAST_PUMP               5
70
71 /* We keep a temperature history for average calculation of 180s */
72 #define CPU_TEMP_HIST_SIZE      180
73
74 /* Scale factor for fan speed, *100 */
75 static int cpu_fan_scale[NR_CPU_FANS] = {
76         100,
77         100,
78         97,             /* inlet fans run at 97% of exhaust fan */
79         97,
80         100,            /* updated later */
81         100,            /* updated later */
82 };
83
84 static struct wf_control *backside_fan;
85 static struct wf_control *slots_fan;
86 static struct wf_control *drive_bay_fan;
87
88 /* PID loop state */
89 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91 static int cpu_thist_pt;
92 static s64 cpu_thist_total;
93 static s32 cpu_all_tmax = 100 << 16;
94 static int cpu_last_target;
95 static struct wf_pid_state backside_pid;
96 static int backside_tick;
97 static struct wf_pid_state slots_pid;
98 static bool slots_started;
99 static struct wf_pid_state drive_bay_pid;
100 static int drive_bay_tick;
101
102 static int nr_cores;
103 static int have_all_controls;
104 static int have_all_sensors;
105 static bool started;
106
107 static int failure_state;
108 #define FAILURE_SENSOR          1
109 #define FAILURE_FAN             2
110 #define FAILURE_PERM            4
111 #define FAILURE_LOW_OVERTEMP    8
112 #define FAILURE_HIGH_OVERTEMP   16
113
114 /* Overtemp values */
115 #define LOW_OVER_AVERAGE        0
116 #define LOW_OVER_IMMEDIATE      (10 << 16)
117 #define LOW_OVER_CLEAR          ((-10) << 16)
118 #define HIGH_OVER_IMMEDIATE     (14 << 16)
119 #define HIGH_OVER_AVERAGE       (10 << 16)
120 #define HIGH_OVER_IMMEDIATE     (14 << 16)
121
122
123 /* Implementation... */
124 static int create_cpu_loop(int cpu)
125 {
126         int chip = cpu / 2;
127         int core = cpu & 1;
128         struct smu_sdbp_header *hdr;
129         struct smu_sdbp_cpupiddata *piddata;
130         struct wf_cpu_pid_param pid;
131         struct wf_control *main_fan = cpu_fans[0];
132         s32 tmax;
133         int fmin;
134
135         /* Get PID params from the appropriate SAT */
136         hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
137         if (hdr == NULL) {
138                 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
139                 return -EINVAL;
140         }
141         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
142
143         /* Get FVT params to get Tmax; if not found, assume default */
144         hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
145         if (hdr) {
146                 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
147                 tmax = fvt->maxtemp << 16;
148         } else
149                 tmax = 95 << 16;        /* default to 95 degrees C */
150
151         /* We keep a global tmax for overtemp calculations */
152         if (tmax < cpu_all_tmax)
153                 cpu_all_tmax = tmax;
154
155         /*
156          * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
157          * 515 for the 2-way.  That appears to be overkill, so for now,
158          * impose a minimum of 750 or 515.
159          */
160         fmin = (nr_cores > 2) ? 750 : 515;
161
162         /* Initialize PID loop */
163         pid.interval = 1;       /* seconds */
164         pid.history_len = piddata->history_len;
165         pid.gd = piddata->gd;
166         pid.gp = piddata->gp;
167         pid.gr = piddata->gr / piddata->history_len;
168         pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
169         pid.ttarget = tmax - (piddata->target_temp_delta << 16);
170         pid.tmax = tmax;
171         pid.min = main_fan->ops->get_min(main_fan);
172         pid.max = main_fan->ops->get_max(main_fan);
173         if (pid.min < fmin)
174                 pid.min = fmin;
175
176         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
177         return 0;
178 }
179
180 static void cpu_max_all_fans(void)
181 {
182         int i;
183
184         /* We max all CPU fans in case of a sensor error. We also do the
185          * cpufreq clamping now, even if it's supposedly done later by the
186          * generic code anyway, we do it earlier here to react faster
187          */
188         if (cpufreq_clamp)
189                 wf_control_set_max(cpufreq_clamp);
190         for (i = 0; i < NR_CPU_FANS; ++i)
191                 if (cpu_fans[i])
192                         wf_control_set_max(cpu_fans[i]);
193 }
194
195 static int cpu_check_overtemp(s32 temp)
196 {
197         int new_state = 0;
198         s32 t_avg, t_old;
199
200         /* First check for immediate overtemps */
201         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
202                 new_state |= FAILURE_LOW_OVERTEMP;
203                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
204                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
205                                " temperature !\n");
206         }
207         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
208                 new_state |= FAILURE_HIGH_OVERTEMP;
209                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
210                         printk(KERN_ERR "windfarm: Critical overtemp due to"
211                                " immediate CPU temperature !\n");
212         }
213
214         /* We calculate a history of max temperatures and use that for the
215          * overtemp management
216          */
217         t_old = cpu_thist[cpu_thist_pt];
218         cpu_thist[cpu_thist_pt] = temp;
219         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
220         cpu_thist_total -= t_old;
221         cpu_thist_total += temp;
222         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
223
224         DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
225                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
226
227         /* Now check for average overtemps */
228         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
229                 new_state |= FAILURE_LOW_OVERTEMP;
230                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
231                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
232                                " temperature !\n");
233         }
234         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
235                 new_state |= FAILURE_HIGH_OVERTEMP;
236                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
237                         printk(KERN_ERR "windfarm: Critical overtemp due to"
238                                " average CPU temperature !\n");
239         }
240
241         /* Now handle overtemp conditions. We don't currently use the windfarm
242          * overtemp handling core as it's not fully suited to the needs of those
243          * new machine. This will be fixed later.
244          */
245         if (new_state) {
246                 /* High overtemp -> immediate shutdown */
247                 if (new_state & FAILURE_HIGH_OVERTEMP)
248                         machine_power_off();
249                 if ((failure_state & new_state) != new_state)
250                         cpu_max_all_fans();
251                 failure_state |= new_state;
252         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
253                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
254                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
255                 failure_state &= ~FAILURE_LOW_OVERTEMP;
256         }
257
258         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
259 }
260
261 static void cpu_fans_tick(void)
262 {
263         int err, cpu;
264         s32 greatest_delta = 0;
265         s32 temp, power, t_max = 0;
266         int i, t, target = 0;
267         struct wf_sensor *sr;
268         struct wf_control *ct;
269         struct wf_cpu_pid_state *sp;
270
271         DBG_LOTS(KERN_DEBUG);
272         for (cpu = 0; cpu < nr_cores; ++cpu) {
273                 /* Get CPU core temperature */
274                 sr = sens_cpu_temp[cpu];
275                 err = sr->ops->get_value(sr, &temp);
276                 if (err) {
277                         DBG("\n");
278                         printk(KERN_WARNING "windfarm: CPU %d temperature "
279                                "sensor error %d\n", cpu, err);
280                         failure_state |= FAILURE_SENSOR;
281                         cpu_max_all_fans();
282                         return;
283                 }
284
285                 /* Keep track of highest temp */
286                 t_max = max(t_max, temp);
287
288                 /* Get CPU power */
289                 sr = sens_cpu_power[cpu];
290                 err = sr->ops->get_value(sr, &power);
291                 if (err) {
292                         DBG("\n");
293                         printk(KERN_WARNING "windfarm: CPU %d power "
294                                "sensor error %d\n", cpu, err);
295                         failure_state |= FAILURE_SENSOR;
296                         cpu_max_all_fans();
297                         return;
298                 }
299
300                 /* Run PID */
301                 sp = &cpu_pid[cpu];
302                 t = wf_cpu_pid_run(sp, power, temp);
303
304                 if (cpu == 0 || sp->last_delta > greatest_delta) {
305                         greatest_delta = sp->last_delta;
306                         target = t;
307                 }
308                 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
309                     cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
310         }
311         DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
312
313         /* Darwin limits decrease to 20 per iteration */
314         if (target < (cpu_last_target - 20))
315                 target = cpu_last_target - 20;
316         cpu_last_target = target;
317         for (cpu = 0; cpu < nr_cores; ++cpu)
318                 cpu_pid[cpu].target = target;
319
320         /* Handle possible overtemps */
321         if (cpu_check_overtemp(t_max))
322                 return;
323
324         /* Set fans */
325         for (i = 0; i < NR_CPU_FANS; ++i) {
326                 ct = cpu_fans[i];
327                 if (ct == NULL)
328                         continue;
329                 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
330                 if (err) {
331                         printk(KERN_WARNING "windfarm: fan %s reports "
332                                "error %d\n", ct->name, err);
333                         failure_state |= FAILURE_FAN;
334                         break;
335                 }
336         }
337 }
338
339 /* Backside/U4 fan */
340 static struct wf_pid_param backside_param = {
341         .interval       = 5,
342         .history_len    = 2,
343         .gd             = 48 << 20,
344         .gp             = 5 << 20,
345         .gr             = 0,
346         .itarget        = 64 << 16,
347         .additive       = 1,
348 };
349
350 static void backside_fan_tick(void)
351 {
352         s32 temp;
353         int speed;
354         int err;
355
356         if (!backside_fan || !u4_temp)
357                 return;
358         if (!backside_tick) {
359                 /* first time; initialize things */
360                 printk(KERN_INFO "windfarm: Backside control loop started.\n");
361                 backside_param.min = backside_fan->ops->get_min(backside_fan);
362                 backside_param.max = backside_fan->ops->get_max(backside_fan);
363                 wf_pid_init(&backside_pid, &backside_param);
364                 backside_tick = 1;
365         }
366         if (--backside_tick > 0)
367                 return;
368         backside_tick = backside_pid.param.interval;
369
370         err = u4_temp->ops->get_value(u4_temp, &temp);
371         if (err) {
372                 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
373                        err);
374                 failure_state |= FAILURE_SENSOR;
375                 wf_control_set_max(backside_fan);
376                 return;
377         }
378         speed = wf_pid_run(&backside_pid, temp);
379         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
380                  FIX32TOPRINT(temp), speed);
381
382         err = backside_fan->ops->set_value(backside_fan, speed);
383         if (err) {
384                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
385                 failure_state |= FAILURE_FAN;
386         }
387 }
388
389 /* Drive bay fan */
390 static struct wf_pid_param drive_bay_prm = {
391         .interval       = 5,
392         .history_len    = 2,
393         .gd             = 30 << 20,
394         .gp             = 5 << 20,
395         .gr             = 0,
396         .itarget        = 40 << 16,
397         .additive       = 1,
398 };
399
400 static void drive_bay_fan_tick(void)
401 {
402         s32 temp;
403         int speed;
404         int err;
405
406         if (!drive_bay_fan || !hd_temp)
407                 return;
408         if (!drive_bay_tick) {
409                 /* first time; initialize things */
410                 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
411                 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
412                 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
413                 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
414                 drive_bay_tick = 1;
415         }
416         if (--drive_bay_tick > 0)
417                 return;
418         drive_bay_tick = drive_bay_pid.param.interval;
419
420         err = hd_temp->ops->get_value(hd_temp, &temp);
421         if (err) {
422                 printk(KERN_WARNING "windfarm: drive bay temp sensor "
423                        "error %d\n", err);
424                 failure_state |= FAILURE_SENSOR;
425                 wf_control_set_max(drive_bay_fan);
426                 return;
427         }
428         speed = wf_pid_run(&drive_bay_pid, temp);
429         DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
430                  FIX32TOPRINT(temp), speed);
431
432         err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
433         if (err) {
434                 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
435                 failure_state |= FAILURE_FAN;
436         }
437 }
438
439 /* PCI slots area fan */
440 /* This makes the fan speed proportional to the power consumed */
441 static struct wf_pid_param slots_param = {
442         .interval       = 1,
443         .history_len    = 2,
444         .gd             = 0,
445         .gp             = 0,
446         .gr             = 0x1277952,
447         .itarget        = 0,
448         .min            = 1560,
449         .max            = 3510,
450 };
451
452 static void slots_fan_tick(void)
453 {
454         s32 power;
455         int speed;
456         int err;
457
458         if (!slots_fan || !slots_power)
459                 return;
460         if (!slots_started) {
461                 /* first time; initialize things */
462                 printk(KERN_INFO "windfarm: Slots control loop started.\n");
463                 wf_pid_init(&slots_pid, &slots_param);
464                 slots_started = true;
465         }
466
467         err = slots_power->ops->get_value(slots_power, &power);
468         if (err) {
469                 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
470                        err);
471                 failure_state |= FAILURE_SENSOR;
472                 wf_control_set_max(slots_fan);
473                 return;
474         }
475         speed = wf_pid_run(&slots_pid, power);
476         DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
477                  FIX32TOPRINT(power), speed);
478
479         err = slots_fan->ops->set_value(slots_fan, speed);
480         if (err) {
481                 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
482                 failure_state |= FAILURE_FAN;
483         }
484 }
485
486 static void set_fail_state(void)
487 {
488         int i;
489
490         if (cpufreq_clamp)
491                 wf_control_set_max(cpufreq_clamp);
492         for (i = 0; i < NR_CPU_FANS; ++i)
493                 if (cpu_fans[i])
494                         wf_control_set_max(cpu_fans[i]);
495         if (backside_fan)
496                 wf_control_set_max(backside_fan);
497         if (slots_fan)
498                 wf_control_set_max(slots_fan);
499         if (drive_bay_fan)
500                 wf_control_set_max(drive_bay_fan);
501 }
502
503 static void pm112_tick(void)
504 {
505         int i, last_failure;
506
507         if (!started) {
508                 started = true;
509                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
510                 for (i = 0; i < nr_cores; ++i) {
511                         if (create_cpu_loop(i) < 0) {
512                                 failure_state = FAILURE_PERM;
513                                 set_fail_state();
514                                 break;
515                         }
516                 }
517                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
518
519 #ifdef HACKED_OVERTEMP
520                 cpu_all_tmax = 60 << 16;
521 #endif
522         }
523
524         /* Permanent failure, bail out */
525         if (failure_state & FAILURE_PERM)
526                 return;
527         /* Clear all failure bits except low overtemp which will be eventually
528          * cleared by the control loop itself
529          */
530         last_failure = failure_state;
531         failure_state &= FAILURE_LOW_OVERTEMP;
532         cpu_fans_tick();
533         backside_fan_tick();
534         slots_fan_tick();
535         drive_bay_fan_tick();
536
537         DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
538                  last_failure, failure_state);
539
540         /* Check for failures. Any failure causes cpufreq clamping */
541         if (failure_state && last_failure == 0 && cpufreq_clamp)
542                 wf_control_set_max(cpufreq_clamp);
543         if (failure_state == 0 && last_failure && cpufreq_clamp)
544                 wf_control_set_min(cpufreq_clamp);
545
546         /* That's it for now, we might want to deal with other failures
547          * differently in the future though
548          */
549 }
550
551 static void pm112_new_control(struct wf_control *ct)
552 {
553         int i, max_exhaust;
554
555         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
556                 if (wf_get_control(ct) == 0)
557                         cpufreq_clamp = ct;
558         }
559
560         for (i = 0; i < NR_CPU_FANS; ++i) {
561                 if (!strcmp(ct->name, cpu_fan_names[i])) {
562                         if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
563                                 cpu_fans[i] = ct;
564                         break;
565                 }
566         }
567         if (i >= NR_CPU_FANS) {
568                 /* not a CPU fan, try the others */
569                 if (!strcmp(ct->name, "backside-fan")) {
570                         if (backside_fan == NULL && wf_get_control(ct) == 0)
571                                 backside_fan = ct;
572                 } else if (!strcmp(ct->name, "slots-fan")) {
573                         if (slots_fan == NULL && wf_get_control(ct) == 0)
574                                 slots_fan = ct;
575                 } else if (!strcmp(ct->name, "drive-bay-fan")) {
576                         if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
577                                 drive_bay_fan = ct;
578                 }
579                 return;
580         }
581
582         for (i = 0; i < CPU_FANS_REQD; ++i)
583                 if (cpu_fans[i] == NULL)
584                         return;
585
586         /* work out pump scaling factors */
587         max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
588         for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
589                 if ((ct = cpu_fans[i]) != NULL)
590                         cpu_fan_scale[i] =
591                                 ct->ops->get_max(ct) * 100 / max_exhaust;
592
593         have_all_controls = 1;
594 }
595
596 static void pm112_new_sensor(struct wf_sensor *sr)
597 {
598         unsigned int i;
599
600         if (!strncmp(sr->name, "cpu-temp-", 9)) {
601                 i = sr->name[9] - '0';
602                 if (sr->name[10] == 0 && i < NR_CORES &&
603                     sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
604                         sens_cpu_temp[i] = sr;
605
606         } else if (!strncmp(sr->name, "cpu-power-", 10)) {
607                 i = sr->name[10] - '0';
608                 if (sr->name[11] == 0 && i < NR_CORES &&
609                     sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
610                         sens_cpu_power[i] = sr;
611         } else if (!strcmp(sr->name, "hd-temp")) {
612                 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
613                         hd_temp = sr;
614         } else if (!strcmp(sr->name, "slots-power")) {
615                 if (slots_power == NULL && wf_get_sensor(sr) == 0)
616                         slots_power = sr;
617         } else if (!strcmp(sr->name, "backside-temp")) {
618                 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
619                         u4_temp = sr;
620         } else
621                 return;
622
623         /* check if we have all the sensors we need */
624         for (i = 0; i < nr_cores; ++i)
625                 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
626                         return;
627
628         have_all_sensors = 1;
629 }
630
631 static int pm112_wf_notify(struct notifier_block *self,
632                            unsigned long event, void *data)
633 {
634         switch (event) {
635         case WF_EVENT_NEW_SENSOR:
636                 pm112_new_sensor(data);
637                 break;
638         case WF_EVENT_NEW_CONTROL:
639                 pm112_new_control(data);
640                 break;
641         case WF_EVENT_TICK:
642                 if (have_all_controls && have_all_sensors)
643                         pm112_tick();
644         }
645         return 0;
646 }
647
648 static struct notifier_block pm112_events = {
649         .notifier_call = pm112_wf_notify,
650 };
651
652 static int wf_pm112_probe(struct platform_device *dev)
653 {
654         wf_register_client(&pm112_events);
655         return 0;
656 }
657
658 static int wf_pm112_remove(struct platform_device *dev)
659 {
660         wf_unregister_client(&pm112_events);
661         /* should release all sensors and controls */
662         return 0;
663 }
664
665 static struct platform_driver wf_pm112_driver = {
666         .probe = wf_pm112_probe,
667         .remove = wf_pm112_remove,
668         .driver = {
669                 .name = "windfarm",
670         },
671 };
672
673 static int __init wf_pm112_init(void)
674 {
675         struct device_node *cpu;
676
677         if (!of_machine_is_compatible("PowerMac11,2"))
678                 return -ENODEV;
679
680         /* Count the number of CPU cores */
681         nr_cores = 0;
682         for_each_node_by_type(cpu, "cpu")
683                 ++nr_cores;
684
685         printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
686
687 #ifdef MODULE
688         request_module("windfarm_smu_controls");
689         request_module("windfarm_smu_sensors");
690         request_module("windfarm_smu_sat");
691         request_module("windfarm_lm75_sensor");
692         request_module("windfarm_max6690_sensor");
693         request_module("windfarm_cpufreq_clamp");
694
695 #endif /* MODULE */
696
697         platform_driver_register(&wf_pm112_driver);
698         return 0;
699 }
700
701 static void __exit wf_pm112_exit(void)
702 {
703         platform_driver_unregister(&wf_pm112_driver);
704 }
705
706 module_init(wf_pm112_init);
707 module_exit(wf_pm112_exit);
708
709 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
710 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
711 MODULE_LICENSE("GPL");
712 MODULE_ALIAS("platform:windfarm");