Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitmap.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/list.h>
18 #include <linux/log2.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_pci.h>
26 #include <linux/of_platform.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30
31 #include <linux/irqchip.h>
32 #include <linux/irqchip/arm-gic-v3.h>
33 #include <linux/irqchip/arm-gic-v4.h>
34
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37
38 #include "irq-gic-common.h"
39
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
43 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
44
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
47
48 static u32 lpi_id_bits;
49
50 /*
51  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
52  * deal with (one configuration byte per interrupt). PENDBASE has to
53  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
54  */
55 #define LPI_NRBITS              lpi_id_bits
56 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
57 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
58
59 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
60
61 /*
62  * Collection structure - just an ID, and a redistributor address to
63  * ping. We use one per CPU as a bag of interrupts assigned to this
64  * CPU.
65  */
66 struct its_collection {
67         u64                     target_address;
68         u16                     col_id;
69 };
70
71 /*
72  * The ITS_BASER structure - contains memory information, cached
73  * value of BASER register configuration and ITS page size.
74  */
75 struct its_baser {
76         void            *base;
77         u64             val;
78         u32             order;
79         u32             psz;
80 };
81
82 struct its_device;
83
84 /*
85  * The ITS structure - contains most of the infrastructure, with the
86  * top-level MSI domain, the command queue, the collections, and the
87  * list of devices writing to it.
88  *
89  * dev_alloc_lock has to be taken for device allocations, while the
90  * spinlock must be taken to parse data structures such as the device
91  * list.
92  */
93 struct its_node {
94         raw_spinlock_t          lock;
95         struct mutex            dev_alloc_lock;
96         struct list_head        entry;
97         void __iomem            *base;
98         phys_addr_t             phys_base;
99         struct its_cmd_block    *cmd_base;
100         struct its_cmd_block    *cmd_write;
101         struct its_baser        tables[GITS_BASER_NR_REGS];
102         struct its_collection   *collections;
103         struct fwnode_handle    *fwnode_handle;
104         u64                     (*get_msi_base)(struct its_device *its_dev);
105         u64                     cbaser_save;
106         u32                     ctlr_save;
107         struct list_head        its_device_list;
108         u64                     flags;
109         unsigned long           list_nr;
110         u32                     ite_size;
111         u32                     device_ids;
112         int                     numa_node;
113         unsigned int            msi_domain_flags;
114         u32                     pre_its_base; /* for Socionext Synquacer */
115         bool                    is_v4;
116         int                     vlpi_redist_offset;
117 };
118
119 #define ITS_ITT_ALIGN           SZ_256
120
121 /* The maximum number of VPEID bits supported by VLPI commands */
122 #define ITS_MAX_VPEID_BITS      (16)
123 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
124
125 /* Convert page order to size in bytes */
126 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
127
128 struct event_lpi_map {
129         unsigned long           *lpi_map;
130         u16                     *col_map;
131         irq_hw_number_t         lpi_base;
132         int                     nr_lpis;
133         struct mutex            vlpi_lock;
134         struct its_vm           *vm;
135         struct its_vlpi_map     *vlpi_maps;
136         int                     nr_vlpis;
137 };
138
139 /*
140  * The ITS view of a device - belongs to an ITS, owns an interrupt
141  * translation table, and a list of interrupts.  If it some of its
142  * LPIs are injected into a guest (GICv4), the event_map.vm field
143  * indicates which one.
144  */
145 struct its_device {
146         struct list_head        entry;
147         struct its_node         *its;
148         struct event_lpi_map    event_map;
149         void                    *itt;
150         u32                     nr_ites;
151         u32                     device_id;
152         bool                    shared;
153 };
154
155 static struct {
156         raw_spinlock_t          lock;
157         struct its_device       *dev;
158         struct its_vpe          **vpes;
159         int                     next_victim;
160 } vpe_proxy;
161
162 static LIST_HEAD(its_nodes);
163 static DEFINE_RAW_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170
171 static DEFINE_IDA(its_vpeid_ida);
172
173 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
175 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
176 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
177
178 static u16 get_its_list(struct its_vm *vm)
179 {
180         struct its_node *its;
181         unsigned long its_list = 0;
182
183         list_for_each_entry(its, &its_nodes, entry) {
184                 if (!its->is_v4)
185                         continue;
186
187                 if (vm->vlpi_count[its->list_nr])
188                         __set_bit(its->list_nr, &its_list);
189         }
190
191         return (u16)its_list;
192 }
193
194 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
195                                                u32 event)
196 {
197         struct its_node *its = its_dev->its;
198
199         return its->collections + its_dev->event_map.col_map[event];
200 }
201
202 static struct its_collection *valid_col(struct its_collection *col)
203 {
204         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
205                 return NULL;
206
207         return col;
208 }
209
210 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
211 {
212         if (valid_col(its->collections + vpe->col_idx))
213                 return vpe;
214
215         return NULL;
216 }
217
218 /*
219  * ITS command descriptors - parameters to be encoded in a command
220  * block.
221  */
222 struct its_cmd_desc {
223         union {
224                 struct {
225                         struct its_device *dev;
226                         u32 event_id;
227                 } its_inv_cmd;
228
229                 struct {
230                         struct its_device *dev;
231                         u32 event_id;
232                 } its_clear_cmd;
233
234                 struct {
235                         struct its_device *dev;
236                         u32 event_id;
237                 } its_int_cmd;
238
239                 struct {
240                         struct its_device *dev;
241                         int valid;
242                 } its_mapd_cmd;
243
244                 struct {
245                         struct its_collection *col;
246                         int valid;
247                 } its_mapc_cmd;
248
249                 struct {
250                         struct its_device *dev;
251                         u32 phys_id;
252                         u32 event_id;
253                 } its_mapti_cmd;
254
255                 struct {
256                         struct its_device *dev;
257                         struct its_collection *col;
258                         u32 event_id;
259                 } its_movi_cmd;
260
261                 struct {
262                         struct its_device *dev;
263                         u32 event_id;
264                 } its_discard_cmd;
265
266                 struct {
267                         struct its_collection *col;
268                 } its_invall_cmd;
269
270                 struct {
271                         struct its_vpe *vpe;
272                 } its_vinvall_cmd;
273
274                 struct {
275                         struct its_vpe *vpe;
276                         struct its_collection *col;
277                         bool valid;
278                 } its_vmapp_cmd;
279
280                 struct {
281                         struct its_vpe *vpe;
282                         struct its_device *dev;
283                         u32 virt_id;
284                         u32 event_id;
285                         bool db_enabled;
286                 } its_vmapti_cmd;
287
288                 struct {
289                         struct its_vpe *vpe;
290                         struct its_device *dev;
291                         u32 event_id;
292                         bool db_enabled;
293                 } its_vmovi_cmd;
294
295                 struct {
296                         struct its_vpe *vpe;
297                         struct its_collection *col;
298                         u16 seq_num;
299                         u16 its_list;
300                 } its_vmovp_cmd;
301         };
302 };
303
304 /*
305  * The ITS command block, which is what the ITS actually parses.
306  */
307 struct its_cmd_block {
308         u64     raw_cmd[4];
309 };
310
311 #define ITS_CMD_QUEUE_SZ                SZ_64K
312 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
313
314 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
315                                                     struct its_cmd_block *,
316                                                     struct its_cmd_desc *);
317
318 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
319                                               struct its_cmd_block *,
320                                               struct its_cmd_desc *);
321
322 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
323 {
324         u64 mask = GENMASK_ULL(h, l);
325         *raw_cmd &= ~mask;
326         *raw_cmd |= (val << l) & mask;
327 }
328
329 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
330 {
331         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
332 }
333
334 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
335 {
336         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
337 }
338
339 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
340 {
341         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
342 }
343
344 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
345 {
346         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
347 }
348
349 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
350 {
351         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
352 }
353
354 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
355 {
356         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
357 }
358
359 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
360 {
361         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
362 }
363
364 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
365 {
366         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
367 }
368
369 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
370 {
371         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
372 }
373
374 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
375 {
376         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
377 }
378
379 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
380 {
381         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
382 }
383
384 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
385 {
386         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
387 }
388
389 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
390 {
391         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
392 }
393
394 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
395 {
396         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
397 }
398
399 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
400 {
401         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
402 }
403
404 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
405 {
406         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
407 }
408
409 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
410 {
411         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
412 }
413
414 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
415 {
416         /* Let's fixup BE commands */
417         cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
418         cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
419         cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
420         cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
421 }
422
423 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
424                                                  struct its_cmd_block *cmd,
425                                                  struct its_cmd_desc *desc)
426 {
427         unsigned long itt_addr;
428         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
429
430         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
431         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
432
433         its_encode_cmd(cmd, GITS_CMD_MAPD);
434         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
435         its_encode_size(cmd, size - 1);
436         its_encode_itt(cmd, itt_addr);
437         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
438
439         its_fixup_cmd(cmd);
440
441         return NULL;
442 }
443
444 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
445                                                  struct its_cmd_block *cmd,
446                                                  struct its_cmd_desc *desc)
447 {
448         its_encode_cmd(cmd, GITS_CMD_MAPC);
449         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
450         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
451         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
452
453         its_fixup_cmd(cmd);
454
455         return desc->its_mapc_cmd.col;
456 }
457
458 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
459                                                   struct its_cmd_block *cmd,
460                                                   struct its_cmd_desc *desc)
461 {
462         struct its_collection *col;
463
464         col = dev_event_to_col(desc->its_mapti_cmd.dev,
465                                desc->its_mapti_cmd.event_id);
466
467         its_encode_cmd(cmd, GITS_CMD_MAPTI);
468         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
469         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
470         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
471         its_encode_collection(cmd, col->col_id);
472
473         its_fixup_cmd(cmd);
474
475         return valid_col(col);
476 }
477
478 static struct its_collection *its_build_movi_cmd(struct its_node *its,
479                                                  struct its_cmd_block *cmd,
480                                                  struct its_cmd_desc *desc)
481 {
482         struct its_collection *col;
483
484         col = dev_event_to_col(desc->its_movi_cmd.dev,
485                                desc->its_movi_cmd.event_id);
486
487         its_encode_cmd(cmd, GITS_CMD_MOVI);
488         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
489         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
490         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
491
492         its_fixup_cmd(cmd);
493
494         return valid_col(col);
495 }
496
497 static struct its_collection *its_build_discard_cmd(struct its_node *its,
498                                                     struct its_cmd_block *cmd,
499                                                     struct its_cmd_desc *desc)
500 {
501         struct its_collection *col;
502
503         col = dev_event_to_col(desc->its_discard_cmd.dev,
504                                desc->its_discard_cmd.event_id);
505
506         its_encode_cmd(cmd, GITS_CMD_DISCARD);
507         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
508         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
509
510         its_fixup_cmd(cmd);
511
512         return valid_col(col);
513 }
514
515 static struct its_collection *its_build_inv_cmd(struct its_node *its,
516                                                 struct its_cmd_block *cmd,
517                                                 struct its_cmd_desc *desc)
518 {
519         struct its_collection *col;
520
521         col = dev_event_to_col(desc->its_inv_cmd.dev,
522                                desc->its_inv_cmd.event_id);
523
524         its_encode_cmd(cmd, GITS_CMD_INV);
525         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
526         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
527
528         its_fixup_cmd(cmd);
529
530         return valid_col(col);
531 }
532
533 static struct its_collection *its_build_int_cmd(struct its_node *its,
534                                                 struct its_cmd_block *cmd,
535                                                 struct its_cmd_desc *desc)
536 {
537         struct its_collection *col;
538
539         col = dev_event_to_col(desc->its_int_cmd.dev,
540                                desc->its_int_cmd.event_id);
541
542         its_encode_cmd(cmd, GITS_CMD_INT);
543         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
544         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
545
546         its_fixup_cmd(cmd);
547
548         return valid_col(col);
549 }
550
551 static struct its_collection *its_build_clear_cmd(struct its_node *its,
552                                                   struct its_cmd_block *cmd,
553                                                   struct its_cmd_desc *desc)
554 {
555         struct its_collection *col;
556
557         col = dev_event_to_col(desc->its_clear_cmd.dev,
558                                desc->its_clear_cmd.event_id);
559
560         its_encode_cmd(cmd, GITS_CMD_CLEAR);
561         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
562         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
563
564         its_fixup_cmd(cmd);
565
566         return valid_col(col);
567 }
568
569 static struct its_collection *its_build_invall_cmd(struct its_node *its,
570                                                    struct its_cmd_block *cmd,
571                                                    struct its_cmd_desc *desc)
572 {
573         its_encode_cmd(cmd, GITS_CMD_INVALL);
574         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
575
576         its_fixup_cmd(cmd);
577
578         return NULL;
579 }
580
581 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
582                                              struct its_cmd_block *cmd,
583                                              struct its_cmd_desc *desc)
584 {
585         its_encode_cmd(cmd, GITS_CMD_VINVALL);
586         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
587
588         its_fixup_cmd(cmd);
589
590         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
591 }
592
593 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
594                                            struct its_cmd_block *cmd,
595                                            struct its_cmd_desc *desc)
596 {
597         unsigned long vpt_addr;
598         u64 target;
599
600         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
601         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
602
603         its_encode_cmd(cmd, GITS_CMD_VMAPP);
604         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
605         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
606         its_encode_target(cmd, target);
607         its_encode_vpt_addr(cmd, vpt_addr);
608         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
609
610         its_fixup_cmd(cmd);
611
612         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
613 }
614
615 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
616                                             struct its_cmd_block *cmd,
617                                             struct its_cmd_desc *desc)
618 {
619         u32 db;
620
621         if (desc->its_vmapti_cmd.db_enabled)
622                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
623         else
624                 db = 1023;
625
626         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
627         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
628         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
629         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
630         its_encode_db_phys_id(cmd, db);
631         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
632
633         its_fixup_cmd(cmd);
634
635         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
636 }
637
638 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
639                                            struct its_cmd_block *cmd,
640                                            struct its_cmd_desc *desc)
641 {
642         u32 db;
643
644         if (desc->its_vmovi_cmd.db_enabled)
645                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
646         else
647                 db = 1023;
648
649         its_encode_cmd(cmd, GITS_CMD_VMOVI);
650         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
651         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
652         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
653         its_encode_db_phys_id(cmd, db);
654         its_encode_db_valid(cmd, true);
655
656         its_fixup_cmd(cmd);
657
658         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
659 }
660
661 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
662                                            struct its_cmd_block *cmd,
663                                            struct its_cmd_desc *desc)
664 {
665         u64 target;
666
667         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
668         its_encode_cmd(cmd, GITS_CMD_VMOVP);
669         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
670         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
671         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
672         its_encode_target(cmd, target);
673
674         its_fixup_cmd(cmd);
675
676         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
677 }
678
679 static u64 its_cmd_ptr_to_offset(struct its_node *its,
680                                  struct its_cmd_block *ptr)
681 {
682         return (ptr - its->cmd_base) * sizeof(*ptr);
683 }
684
685 static int its_queue_full(struct its_node *its)
686 {
687         int widx;
688         int ridx;
689
690         widx = its->cmd_write - its->cmd_base;
691         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
692
693         /* This is incredibly unlikely to happen, unless the ITS locks up. */
694         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
695                 return 1;
696
697         return 0;
698 }
699
700 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
701 {
702         struct its_cmd_block *cmd;
703         u32 count = 1000000;    /* 1s! */
704
705         while (its_queue_full(its)) {
706                 count--;
707                 if (!count) {
708                         pr_err_ratelimited("ITS queue not draining\n");
709                         return NULL;
710                 }
711                 cpu_relax();
712                 udelay(1);
713         }
714
715         cmd = its->cmd_write++;
716
717         /* Handle queue wrapping */
718         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
719                 its->cmd_write = its->cmd_base;
720
721         /* Clear command  */
722         cmd->raw_cmd[0] = 0;
723         cmd->raw_cmd[1] = 0;
724         cmd->raw_cmd[2] = 0;
725         cmd->raw_cmd[3] = 0;
726
727         return cmd;
728 }
729
730 static struct its_cmd_block *its_post_commands(struct its_node *its)
731 {
732         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
733
734         writel_relaxed(wr, its->base + GITS_CWRITER);
735
736         return its->cmd_write;
737 }
738
739 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
740 {
741         /*
742          * Make sure the commands written to memory are observable by
743          * the ITS.
744          */
745         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
746                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
747         else
748                 dsb(ishst);
749 }
750
751 static int its_wait_for_range_completion(struct its_node *its,
752                                          u64    prev_idx,
753                                          struct its_cmd_block *to)
754 {
755         u64 rd_idx, to_idx, linear_idx;
756         u32 count = 1000000;    /* 1s! */
757
758         /* Linearize to_idx if the command set has wrapped around */
759         to_idx = its_cmd_ptr_to_offset(its, to);
760         if (to_idx < prev_idx)
761                 to_idx += ITS_CMD_QUEUE_SZ;
762
763         linear_idx = prev_idx;
764
765         while (1) {
766                 s64 delta;
767
768                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
769
770                 /*
771                  * Compute the read pointer progress, taking the
772                  * potential wrap-around into account.
773                  */
774                 delta = rd_idx - prev_idx;
775                 if (rd_idx < prev_idx)
776                         delta += ITS_CMD_QUEUE_SZ;
777
778                 linear_idx += delta;
779                 if (linear_idx >= to_idx)
780                         break;
781
782                 count--;
783                 if (!count) {
784                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
785                                            to_idx, linear_idx);
786                         return -1;
787                 }
788                 prev_idx = rd_idx;
789                 cpu_relax();
790                 udelay(1);
791         }
792
793         return 0;
794 }
795
796 /* Warning, macro hell follows */
797 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
798 void name(struct its_node *its,                                         \
799           buildtype builder,                                            \
800           struct its_cmd_desc *desc)                                    \
801 {                                                                       \
802         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
803         synctype *sync_obj;                                             \
804         unsigned long flags;                                            \
805         u64 rd_idx;                                                     \
806                                                                         \
807         raw_spin_lock_irqsave(&its->lock, flags);                       \
808                                                                         \
809         cmd = its_allocate_entry(its);                                  \
810         if (!cmd) {             /* We're soooooo screewed... */         \
811                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
812                 return;                                                 \
813         }                                                               \
814         sync_obj = builder(its, cmd, desc);                             \
815         its_flush_cmd(its, cmd);                                        \
816                                                                         \
817         if (sync_obj) {                                                 \
818                 sync_cmd = its_allocate_entry(its);                     \
819                 if (!sync_cmd)                                          \
820                         goto post;                                      \
821                                                                         \
822                 buildfn(its, sync_cmd, sync_obj);                       \
823                 its_flush_cmd(its, sync_cmd);                           \
824         }                                                               \
825                                                                         \
826 post:                                                                   \
827         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
828         next_cmd = its_post_commands(its);                              \
829         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
830                                                                         \
831         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
832                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
833 }
834
835 static void its_build_sync_cmd(struct its_node *its,
836                                struct its_cmd_block *sync_cmd,
837                                struct its_collection *sync_col)
838 {
839         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
840         its_encode_target(sync_cmd, sync_col->target_address);
841
842         its_fixup_cmd(sync_cmd);
843 }
844
845 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
846                              struct its_collection, its_build_sync_cmd)
847
848 static void its_build_vsync_cmd(struct its_node *its,
849                                 struct its_cmd_block *sync_cmd,
850                                 struct its_vpe *sync_vpe)
851 {
852         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
853         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
854
855         its_fixup_cmd(sync_cmd);
856 }
857
858 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
859                              struct its_vpe, its_build_vsync_cmd)
860
861 static void its_send_int(struct its_device *dev, u32 event_id)
862 {
863         struct its_cmd_desc desc;
864
865         desc.its_int_cmd.dev = dev;
866         desc.its_int_cmd.event_id = event_id;
867
868         its_send_single_command(dev->its, its_build_int_cmd, &desc);
869 }
870
871 static void its_send_clear(struct its_device *dev, u32 event_id)
872 {
873         struct its_cmd_desc desc;
874
875         desc.its_clear_cmd.dev = dev;
876         desc.its_clear_cmd.event_id = event_id;
877
878         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
879 }
880
881 static void its_send_inv(struct its_device *dev, u32 event_id)
882 {
883         struct its_cmd_desc desc;
884
885         desc.its_inv_cmd.dev = dev;
886         desc.its_inv_cmd.event_id = event_id;
887
888         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
889 }
890
891 static void its_send_mapd(struct its_device *dev, int valid)
892 {
893         struct its_cmd_desc desc;
894
895         desc.its_mapd_cmd.dev = dev;
896         desc.its_mapd_cmd.valid = !!valid;
897
898         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
899 }
900
901 static void its_send_mapc(struct its_node *its, struct its_collection *col,
902                           int valid)
903 {
904         struct its_cmd_desc desc;
905
906         desc.its_mapc_cmd.col = col;
907         desc.its_mapc_cmd.valid = !!valid;
908
909         its_send_single_command(its, its_build_mapc_cmd, &desc);
910 }
911
912 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
913 {
914         struct its_cmd_desc desc;
915
916         desc.its_mapti_cmd.dev = dev;
917         desc.its_mapti_cmd.phys_id = irq_id;
918         desc.its_mapti_cmd.event_id = id;
919
920         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
921 }
922
923 static void its_send_movi(struct its_device *dev,
924                           struct its_collection *col, u32 id)
925 {
926         struct its_cmd_desc desc;
927
928         desc.its_movi_cmd.dev = dev;
929         desc.its_movi_cmd.col = col;
930         desc.its_movi_cmd.event_id = id;
931
932         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
933 }
934
935 static void its_send_discard(struct its_device *dev, u32 id)
936 {
937         struct its_cmd_desc desc;
938
939         desc.its_discard_cmd.dev = dev;
940         desc.its_discard_cmd.event_id = id;
941
942         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
943 }
944
945 static void its_send_invall(struct its_node *its, struct its_collection *col)
946 {
947         struct its_cmd_desc desc;
948
949         desc.its_invall_cmd.col = col;
950
951         its_send_single_command(its, its_build_invall_cmd, &desc);
952 }
953
954 static void its_send_vmapti(struct its_device *dev, u32 id)
955 {
956         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
957         struct its_cmd_desc desc;
958
959         desc.its_vmapti_cmd.vpe = map->vpe;
960         desc.its_vmapti_cmd.dev = dev;
961         desc.its_vmapti_cmd.virt_id = map->vintid;
962         desc.its_vmapti_cmd.event_id = id;
963         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
964
965         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
966 }
967
968 static void its_send_vmovi(struct its_device *dev, u32 id)
969 {
970         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
971         struct its_cmd_desc desc;
972
973         desc.its_vmovi_cmd.vpe = map->vpe;
974         desc.its_vmovi_cmd.dev = dev;
975         desc.its_vmovi_cmd.event_id = id;
976         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
977
978         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
979 }
980
981 static void its_send_vmapp(struct its_node *its,
982                            struct its_vpe *vpe, bool valid)
983 {
984         struct its_cmd_desc desc;
985
986         desc.its_vmapp_cmd.vpe = vpe;
987         desc.its_vmapp_cmd.valid = valid;
988         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
989
990         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
991 }
992
993 static void its_send_vmovp(struct its_vpe *vpe)
994 {
995         struct its_cmd_desc desc = {};
996         struct its_node *its;
997         unsigned long flags;
998         int col_id = vpe->col_idx;
999
1000         desc.its_vmovp_cmd.vpe = vpe;
1001
1002         if (!its_list_map) {
1003                 its = list_first_entry(&its_nodes, struct its_node, entry);
1004                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1005                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1006                 return;
1007         }
1008
1009         /*
1010          * Yet another marvel of the architecture. If using the
1011          * its_list "feature", we need to make sure that all ITSs
1012          * receive all VMOVP commands in the same order. The only way
1013          * to guarantee this is to make vmovp a serialization point.
1014          *
1015          * Wall <-- Head.
1016          */
1017         raw_spin_lock_irqsave(&vmovp_lock, flags);
1018
1019         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1020         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1021
1022         /* Emit VMOVPs */
1023         list_for_each_entry(its, &its_nodes, entry) {
1024                 if (!its->is_v4)
1025                         continue;
1026
1027                 if (!vpe->its_vm->vlpi_count[its->list_nr])
1028                         continue;
1029
1030                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1031                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1032         }
1033
1034         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1035 }
1036
1037 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1038 {
1039         struct its_cmd_desc desc;
1040
1041         desc.its_vinvall_cmd.vpe = vpe;
1042         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1043 }
1044
1045 /*
1046  * irqchip functions - assumes MSI, mostly.
1047  */
1048
1049 static inline u32 its_get_event_id(struct irq_data *d)
1050 {
1051         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1052         return d->hwirq - its_dev->event_map.lpi_base;
1053 }
1054
1055 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1056 {
1057         irq_hw_number_t hwirq;
1058         void *va;
1059         u8 *cfg;
1060
1061         if (irqd_is_forwarded_to_vcpu(d)) {
1062                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1063                 u32 event = its_get_event_id(d);
1064                 struct its_vlpi_map *map;
1065
1066                 va = page_address(its_dev->event_map.vm->vprop_page);
1067                 map = &its_dev->event_map.vlpi_maps[event];
1068                 hwirq = map->vintid;
1069
1070                 /* Remember the updated property */
1071                 map->properties &= ~clr;
1072                 map->properties |= set | LPI_PROP_GROUP1;
1073         } else {
1074                 va = gic_rdists->prop_table_va;
1075                 hwirq = d->hwirq;
1076         }
1077
1078         cfg = va + hwirq - 8192;
1079         *cfg &= ~clr;
1080         *cfg |= set | LPI_PROP_GROUP1;
1081
1082         /*
1083          * Make the above write visible to the redistributors.
1084          * And yes, we're flushing exactly: One. Single. Byte.
1085          * Humpf...
1086          */
1087         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1088                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1089         else
1090                 dsb(ishst);
1091 }
1092
1093 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1094 {
1095         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1096
1097         lpi_write_config(d, clr, set);
1098         its_send_inv(its_dev, its_get_event_id(d));
1099 }
1100
1101 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1102 {
1103         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1104         u32 event = its_get_event_id(d);
1105
1106         if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1107                 return;
1108
1109         its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1110
1111         /*
1112          * More fun with the architecture:
1113          *
1114          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1115          * value or to 1023, depending on the enable bit. But that
1116          * would be issueing a mapping for an /existing/ DevID+EventID
1117          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1118          * to the /same/ vPE, using this opportunity to adjust the
1119          * doorbell. Mouahahahaha. We loves it, Precious.
1120          */
1121         its_send_vmovi(its_dev, event);
1122 }
1123
1124 static void its_mask_irq(struct irq_data *d)
1125 {
1126         if (irqd_is_forwarded_to_vcpu(d))
1127                 its_vlpi_set_doorbell(d, false);
1128
1129         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1130 }
1131
1132 static void its_unmask_irq(struct irq_data *d)
1133 {
1134         if (irqd_is_forwarded_to_vcpu(d))
1135                 its_vlpi_set_doorbell(d, true);
1136
1137         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1138 }
1139
1140 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1141                             bool force)
1142 {
1143         unsigned int cpu;
1144         const struct cpumask *cpu_mask = cpu_online_mask;
1145         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1146         struct its_collection *target_col;
1147         u32 id = its_get_event_id(d);
1148
1149         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1150         if (irqd_is_forwarded_to_vcpu(d))
1151                 return -EINVAL;
1152
1153        /* lpi cannot be routed to a redistributor that is on a foreign node */
1154         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1155                 if (its_dev->its->numa_node >= 0) {
1156                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1157                         if (!cpumask_intersects(mask_val, cpu_mask))
1158                                 return -EINVAL;
1159                 }
1160         }
1161
1162         cpu = cpumask_any_and(mask_val, cpu_mask);
1163
1164         if (cpu >= nr_cpu_ids)
1165                 return -EINVAL;
1166
1167         /* don't set the affinity when the target cpu is same as current one */
1168         if (cpu != its_dev->event_map.col_map[id]) {
1169                 target_col = &its_dev->its->collections[cpu];
1170                 its_send_movi(its_dev, target_col, id);
1171                 its_dev->event_map.col_map[id] = cpu;
1172                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1173         }
1174
1175         return IRQ_SET_MASK_OK_DONE;
1176 }
1177
1178 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1179 {
1180         struct its_node *its = its_dev->its;
1181
1182         return its->phys_base + GITS_TRANSLATER;
1183 }
1184
1185 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1186 {
1187         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1188         struct its_node *its;
1189         u64 addr;
1190
1191         its = its_dev->its;
1192         addr = its->get_msi_base(its_dev);
1193
1194         msg->address_lo         = lower_32_bits(addr);
1195         msg->address_hi         = upper_32_bits(addr);
1196         msg->data               = its_get_event_id(d);
1197
1198         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1199 }
1200
1201 static int its_irq_set_irqchip_state(struct irq_data *d,
1202                                      enum irqchip_irq_state which,
1203                                      bool state)
1204 {
1205         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1206         u32 event = its_get_event_id(d);
1207
1208         if (which != IRQCHIP_STATE_PENDING)
1209                 return -EINVAL;
1210
1211         if (state)
1212                 its_send_int(its_dev, event);
1213         else
1214                 its_send_clear(its_dev, event);
1215
1216         return 0;
1217 }
1218
1219 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1220 {
1221         unsigned long flags;
1222
1223         /* Not using the ITS list? Everything is always mapped. */
1224         if (!its_list_map)
1225                 return;
1226
1227         raw_spin_lock_irqsave(&vmovp_lock, flags);
1228
1229         /*
1230          * If the VM wasn't mapped yet, iterate over the vpes and get
1231          * them mapped now.
1232          */
1233         vm->vlpi_count[its->list_nr]++;
1234
1235         if (vm->vlpi_count[its->list_nr] == 1) {
1236                 int i;
1237
1238                 for (i = 0; i < vm->nr_vpes; i++) {
1239                         struct its_vpe *vpe = vm->vpes[i];
1240                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1241
1242                         /* Map the VPE to the first possible CPU */
1243                         vpe->col_idx = cpumask_first(cpu_online_mask);
1244                         its_send_vmapp(its, vpe, true);
1245                         its_send_vinvall(its, vpe);
1246                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1247                 }
1248         }
1249
1250         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1251 }
1252
1253 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1254 {
1255         unsigned long flags;
1256
1257         /* Not using the ITS list? Everything is always mapped. */
1258         if (!its_list_map)
1259                 return;
1260
1261         raw_spin_lock_irqsave(&vmovp_lock, flags);
1262
1263         if (!--vm->vlpi_count[its->list_nr]) {
1264                 int i;
1265
1266                 for (i = 0; i < vm->nr_vpes; i++)
1267                         its_send_vmapp(its, vm->vpes[i], false);
1268         }
1269
1270         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1271 }
1272
1273 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1274 {
1275         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1276         u32 event = its_get_event_id(d);
1277         int ret = 0;
1278
1279         if (!info->map)
1280                 return -EINVAL;
1281
1282         mutex_lock(&its_dev->event_map.vlpi_lock);
1283
1284         if (!its_dev->event_map.vm) {
1285                 struct its_vlpi_map *maps;
1286
1287                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1288                                GFP_KERNEL);
1289                 if (!maps) {
1290                         ret = -ENOMEM;
1291                         goto out;
1292                 }
1293
1294                 its_dev->event_map.vm = info->map->vm;
1295                 its_dev->event_map.vlpi_maps = maps;
1296         } else if (its_dev->event_map.vm != info->map->vm) {
1297                 ret = -EINVAL;
1298                 goto out;
1299         }
1300
1301         /* Get our private copy of the mapping information */
1302         its_dev->event_map.vlpi_maps[event] = *info->map;
1303
1304         if (irqd_is_forwarded_to_vcpu(d)) {
1305                 /* Already mapped, move it around */
1306                 its_send_vmovi(its_dev, event);
1307         } else {
1308                 /* Ensure all the VPEs are mapped on this ITS */
1309                 its_map_vm(its_dev->its, info->map->vm);
1310
1311                 /*
1312                  * Flag the interrupt as forwarded so that we can
1313                  * start poking the virtual property table.
1314                  */
1315                 irqd_set_forwarded_to_vcpu(d);
1316
1317                 /* Write out the property to the prop table */
1318                 lpi_write_config(d, 0xff, info->map->properties);
1319
1320                 /* Drop the physical mapping */
1321                 its_send_discard(its_dev, event);
1322
1323                 /* and install the virtual one */
1324                 its_send_vmapti(its_dev, event);
1325
1326                 /* Increment the number of VLPIs */
1327                 its_dev->event_map.nr_vlpis++;
1328         }
1329
1330 out:
1331         mutex_unlock(&its_dev->event_map.vlpi_lock);
1332         return ret;
1333 }
1334
1335 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1336 {
1337         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338         u32 event = its_get_event_id(d);
1339         int ret = 0;
1340
1341         mutex_lock(&its_dev->event_map.vlpi_lock);
1342
1343         if (!its_dev->event_map.vm ||
1344             !its_dev->event_map.vlpi_maps[event].vm) {
1345                 ret = -EINVAL;
1346                 goto out;
1347         }
1348
1349         /* Copy our mapping information to the incoming request */
1350         *info->map = its_dev->event_map.vlpi_maps[event];
1351
1352 out:
1353         mutex_unlock(&its_dev->event_map.vlpi_lock);
1354         return ret;
1355 }
1356
1357 static int its_vlpi_unmap(struct irq_data *d)
1358 {
1359         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1360         u32 event = its_get_event_id(d);
1361         int ret = 0;
1362
1363         mutex_lock(&its_dev->event_map.vlpi_lock);
1364
1365         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1366                 ret = -EINVAL;
1367                 goto out;
1368         }
1369
1370         /* Drop the virtual mapping */
1371         its_send_discard(its_dev, event);
1372
1373         /* and restore the physical one */
1374         irqd_clr_forwarded_to_vcpu(d);
1375         its_send_mapti(its_dev, d->hwirq, event);
1376         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1377                                     LPI_PROP_ENABLED |
1378                                     LPI_PROP_GROUP1));
1379
1380         /* Potentially unmap the VM from this ITS */
1381         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1382
1383         /*
1384          * Drop the refcount and make the device available again if
1385          * this was the last VLPI.
1386          */
1387         if (!--its_dev->event_map.nr_vlpis) {
1388                 its_dev->event_map.vm = NULL;
1389                 kfree(its_dev->event_map.vlpi_maps);
1390         }
1391
1392 out:
1393         mutex_unlock(&its_dev->event_map.vlpi_lock);
1394         return ret;
1395 }
1396
1397 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1398 {
1399         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400
1401         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1402                 return -EINVAL;
1403
1404         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1405                 lpi_update_config(d, 0xff, info->config);
1406         else
1407                 lpi_write_config(d, 0xff, info->config);
1408         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1409
1410         return 0;
1411 }
1412
1413 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1414 {
1415         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1416         struct its_cmd_info *info = vcpu_info;
1417
1418         /* Need a v4 ITS */
1419         if (!its_dev->its->is_v4)
1420                 return -EINVAL;
1421
1422         /* Unmap request? */
1423         if (!info)
1424                 return its_vlpi_unmap(d);
1425
1426         switch (info->cmd_type) {
1427         case MAP_VLPI:
1428                 return its_vlpi_map(d, info);
1429
1430         case GET_VLPI:
1431                 return its_vlpi_get(d, info);
1432
1433         case PROP_UPDATE_VLPI:
1434         case PROP_UPDATE_AND_INV_VLPI:
1435                 return its_vlpi_prop_update(d, info);
1436
1437         default:
1438                 return -EINVAL;
1439         }
1440 }
1441
1442 static struct irq_chip its_irq_chip = {
1443         .name                   = "ITS",
1444         .irq_mask               = its_mask_irq,
1445         .irq_unmask             = its_unmask_irq,
1446         .irq_eoi                = irq_chip_eoi_parent,
1447         .irq_set_affinity       = its_set_affinity,
1448         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1449         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1450         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1451 };
1452
1453
1454 /*
1455  * How we allocate LPIs:
1456  *
1457  * lpi_range_list contains ranges of LPIs that are to available to
1458  * allocate from. To allocate LPIs, just pick the first range that
1459  * fits the required allocation, and reduce it by the required
1460  * amount. Once empty, remove the range from the list.
1461  *
1462  * To free a range of LPIs, add a free range to the list, sort it and
1463  * merge the result if the new range happens to be adjacent to an
1464  * already free block.
1465  *
1466  * The consequence of the above is that allocation is cost is low, but
1467  * freeing is expensive. We assumes that freeing rarely occurs.
1468  */
1469 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1470
1471 static DEFINE_MUTEX(lpi_range_lock);
1472 static LIST_HEAD(lpi_range_list);
1473
1474 struct lpi_range {
1475         struct list_head        entry;
1476         u32                     base_id;
1477         u32                     span;
1478 };
1479
1480 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1481 {
1482         struct lpi_range *range;
1483
1484         range = kmalloc(sizeof(*range), GFP_KERNEL);
1485         if (range) {
1486                 range->base_id = base;
1487                 range->span = span;
1488         }
1489
1490         return range;
1491 }
1492
1493 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1494 {
1495         struct lpi_range *range, *tmp;
1496         int err = -ENOSPC;
1497
1498         mutex_lock(&lpi_range_lock);
1499
1500         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1501                 if (range->span >= nr_lpis) {
1502                         *base = range->base_id;
1503                         range->base_id += nr_lpis;
1504                         range->span -= nr_lpis;
1505
1506                         if (range->span == 0) {
1507                                 list_del(&range->entry);
1508                                 kfree(range);
1509                         }
1510
1511                         err = 0;
1512                         break;
1513                 }
1514         }
1515
1516         mutex_unlock(&lpi_range_lock);
1517
1518         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1519         return err;
1520 }
1521
1522 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1523 {
1524         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1525                 return;
1526         if (a->base_id + a->span != b->base_id)
1527                 return;
1528         b->base_id = a->base_id;
1529         b->span += a->span;
1530         list_del(&a->entry);
1531         kfree(a);
1532 }
1533
1534 static int free_lpi_range(u32 base, u32 nr_lpis)
1535 {
1536         struct lpi_range *new, *old;
1537
1538         new = mk_lpi_range(base, nr_lpis);
1539         if (!new)
1540                 return -ENOMEM;
1541
1542         mutex_lock(&lpi_range_lock);
1543
1544         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1545                 if (old->base_id < base)
1546                         break;
1547         }
1548         /*
1549          * old is the last element with ->base_id smaller than base,
1550          * so new goes right after it. If there are no elements with
1551          * ->base_id smaller than base, &old->entry ends up pointing
1552          * at the head of the list, and inserting new it the start of
1553          * the list is the right thing to do in that case as well.
1554          */
1555         list_add(&new->entry, &old->entry);
1556         /*
1557          * Now check if we can merge with the preceding and/or
1558          * following ranges.
1559          */
1560         merge_lpi_ranges(old, new);
1561         merge_lpi_ranges(new, list_next_entry(new, entry));
1562
1563         mutex_unlock(&lpi_range_lock);
1564         return 0;
1565 }
1566
1567 static int __init its_lpi_init(u32 id_bits)
1568 {
1569         u32 lpis = (1UL << id_bits) - 8192;
1570         u32 numlpis;
1571         int err;
1572
1573         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1574
1575         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1576                 lpis = numlpis;
1577                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1578                         lpis);
1579         }
1580
1581         /*
1582          * Initializing the allocator is just the same as freeing the
1583          * full range of LPIs.
1584          */
1585         err = free_lpi_range(8192, lpis);
1586         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1587         return err;
1588 }
1589
1590 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1591 {
1592         unsigned long *bitmap = NULL;
1593         int err = 0;
1594
1595         do {
1596                 err = alloc_lpi_range(nr_irqs, base);
1597                 if (!err)
1598                         break;
1599
1600                 nr_irqs /= 2;
1601         } while (nr_irqs > 0);
1602
1603         if (!nr_irqs)
1604                 err = -ENOSPC;
1605
1606         if (err)
1607                 goto out;
1608
1609         bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1610         if (!bitmap)
1611                 goto out;
1612
1613         *nr_ids = nr_irqs;
1614
1615 out:
1616         if (!bitmap)
1617                 *base = *nr_ids = 0;
1618
1619         return bitmap;
1620 }
1621
1622 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1623 {
1624         WARN_ON(free_lpi_range(base, nr_ids));
1625         kfree(bitmap);
1626 }
1627
1628 static void gic_reset_prop_table(void *va)
1629 {
1630         /* Priority 0xa0, Group-1, disabled */
1631         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1632
1633         /* Make sure the GIC will observe the written configuration */
1634         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1635 }
1636
1637 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1638 {
1639         struct page *prop_page;
1640
1641         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1642         if (!prop_page)
1643                 return NULL;
1644
1645         gic_reset_prop_table(page_address(prop_page));
1646
1647         return prop_page;
1648 }
1649
1650 static void its_free_prop_table(struct page *prop_page)
1651 {
1652         free_pages((unsigned long)page_address(prop_page),
1653                    get_order(LPI_PROPBASE_SZ));
1654 }
1655
1656 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1657 {
1658         phys_addr_t start, end, addr_end;
1659         u64 i;
1660
1661         /*
1662          * We don't bother checking for a kdump kernel as by
1663          * construction, the LPI tables are out of this kernel's
1664          * memory map.
1665          */
1666         if (is_kdump_kernel())
1667                 return true;
1668
1669         addr_end = addr + size - 1;
1670
1671         for_each_reserved_mem_region(i, &start, &end) {
1672                 if (addr >= start && addr_end <= end)
1673                         return true;
1674         }
1675
1676         /* Not found, not a good sign... */
1677         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1678                 &addr, &addr_end);
1679         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1680         return false;
1681 }
1682
1683 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1684 {
1685         if (efi_enabled(EFI_CONFIG_TABLES))
1686                 return efi_mem_reserve_persistent(addr, size);
1687
1688         return 0;
1689 }
1690
1691 static int __init its_setup_lpi_prop_table(void)
1692 {
1693         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1694                 u64 val;
1695
1696                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1697                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1698
1699                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1700                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1701                                                      LPI_PROPBASE_SZ,
1702                                                      MEMREMAP_WB);
1703                 gic_reset_prop_table(gic_rdists->prop_table_va);
1704         } else {
1705                 struct page *page;
1706
1707                 lpi_id_bits = min_t(u32,
1708                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1709                                     ITS_MAX_LPI_NRBITS);
1710                 page = its_allocate_prop_table(GFP_NOWAIT);
1711                 if (!page) {
1712                         pr_err("Failed to allocate PROPBASE\n");
1713                         return -ENOMEM;
1714                 }
1715
1716                 gic_rdists->prop_table_pa = page_to_phys(page);
1717                 gic_rdists->prop_table_va = page_address(page);
1718                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1719                                           LPI_PROPBASE_SZ));
1720         }
1721
1722         pr_info("GICv3: using LPI property table @%pa\n",
1723                 &gic_rdists->prop_table_pa);
1724
1725         return its_lpi_init(lpi_id_bits);
1726 }
1727
1728 static const char *its_base_type_string[] = {
1729         [GITS_BASER_TYPE_DEVICE]        = "Devices",
1730         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1731         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1732         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1733         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1734         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1735         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1736 };
1737
1738 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1739 {
1740         u32 idx = baser - its->tables;
1741
1742         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1743 }
1744
1745 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1746                             u64 val)
1747 {
1748         u32 idx = baser - its->tables;
1749
1750         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1751         baser->val = its_read_baser(its, baser);
1752 }
1753
1754 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1755                            u64 cache, u64 shr, u32 psz, u32 order,
1756                            bool indirect)
1757 {
1758         u64 val = its_read_baser(its, baser);
1759         u64 esz = GITS_BASER_ENTRY_SIZE(val);
1760         u64 type = GITS_BASER_TYPE(val);
1761         u64 baser_phys, tmp;
1762         u32 alloc_pages;
1763         struct page *page;
1764         void *base;
1765
1766 retry_alloc_baser:
1767         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1768         if (alloc_pages > GITS_BASER_PAGES_MAX) {
1769                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1770                         &its->phys_base, its_base_type_string[type],
1771                         alloc_pages, GITS_BASER_PAGES_MAX);
1772                 alloc_pages = GITS_BASER_PAGES_MAX;
1773                 order = get_order(GITS_BASER_PAGES_MAX * psz);
1774         }
1775
1776         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1777         if (!page)
1778                 return -ENOMEM;
1779
1780         base = (void *)page_address(page);
1781         baser_phys = virt_to_phys(base);
1782
1783         /* Check if the physical address of the memory is above 48bits */
1784         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1785
1786                 /* 52bit PA is supported only when PageSize=64K */
1787                 if (psz != SZ_64K) {
1788                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1789                         free_pages((unsigned long)base, order);
1790                         return -ENXIO;
1791                 }
1792
1793                 /* Convert 52bit PA to 48bit field */
1794                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1795         }
1796
1797 retry_baser:
1798         val = (baser_phys                                        |
1799                 (type << GITS_BASER_TYPE_SHIFT)                  |
1800                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1801                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1802                 cache                                            |
1803                 shr                                              |
1804                 GITS_BASER_VALID);
1805
1806         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1807
1808         switch (psz) {
1809         case SZ_4K:
1810                 val |= GITS_BASER_PAGE_SIZE_4K;
1811                 break;
1812         case SZ_16K:
1813                 val |= GITS_BASER_PAGE_SIZE_16K;
1814                 break;
1815         case SZ_64K:
1816                 val |= GITS_BASER_PAGE_SIZE_64K;
1817                 break;
1818         }
1819
1820         its_write_baser(its, baser, val);
1821         tmp = baser->val;
1822
1823         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1824                 /*
1825                  * Shareability didn't stick. Just use
1826                  * whatever the read reported, which is likely
1827                  * to be the only thing this redistributor
1828                  * supports. If that's zero, make it
1829                  * non-cacheable as well.
1830                  */
1831                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1832                 if (!shr) {
1833                         cache = GITS_BASER_nC;
1834                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1835                 }
1836                 goto retry_baser;
1837         }
1838
1839         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1840                 /*
1841                  * Page size didn't stick. Let's try a smaller
1842                  * size and retry. If we reach 4K, then
1843                  * something is horribly wrong...
1844                  */
1845                 free_pages((unsigned long)base, order);
1846                 baser->base = NULL;
1847
1848                 switch (psz) {
1849                 case SZ_16K:
1850                         psz = SZ_4K;
1851                         goto retry_alloc_baser;
1852                 case SZ_64K:
1853                         psz = SZ_16K;
1854                         goto retry_alloc_baser;
1855                 }
1856         }
1857
1858         if (val != tmp) {
1859                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1860                        &its->phys_base, its_base_type_string[type],
1861                        val, tmp);
1862                 free_pages((unsigned long)base, order);
1863                 return -ENXIO;
1864         }
1865
1866         baser->order = order;
1867         baser->base = base;
1868         baser->psz = psz;
1869         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1870
1871         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1872                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1873                 its_base_type_string[type],
1874                 (unsigned long)virt_to_phys(base),
1875                 indirect ? "indirect" : "flat", (int)esz,
1876                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1877
1878         return 0;
1879 }
1880
1881 static bool its_parse_indirect_baser(struct its_node *its,
1882                                      struct its_baser *baser,
1883                                      u32 psz, u32 *order, u32 ids)
1884 {
1885         u64 tmp = its_read_baser(its, baser);
1886         u64 type = GITS_BASER_TYPE(tmp);
1887         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1888         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1889         u32 new_order = *order;
1890         bool indirect = false;
1891
1892         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1893         if ((esz << ids) > (psz * 2)) {
1894                 /*
1895                  * Find out whether hw supports a single or two-level table by
1896                  * table by reading bit at offset '62' after writing '1' to it.
1897                  */
1898                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1899                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1900
1901                 if (indirect) {
1902                         /*
1903                          * The size of the lvl2 table is equal to ITS page size
1904                          * which is 'psz'. For computing lvl1 table size,
1905                          * subtract ID bits that sparse lvl2 table from 'ids'
1906                          * which is reported by ITS hardware times lvl1 table
1907                          * entry size.
1908                          */
1909                         ids -= ilog2(psz / (int)esz);
1910                         esz = GITS_LVL1_ENTRY_SIZE;
1911                 }
1912         }
1913
1914         /*
1915          * Allocate as many entries as required to fit the
1916          * range of device IDs that the ITS can grok... The ID
1917          * space being incredibly sparse, this results in a
1918          * massive waste of memory if two-level device table
1919          * feature is not supported by hardware.
1920          */
1921         new_order = max_t(u32, get_order(esz << ids), new_order);
1922         if (new_order >= MAX_ORDER) {
1923                 new_order = MAX_ORDER - 1;
1924                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1925                 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1926                         &its->phys_base, its_base_type_string[type],
1927                         its->device_ids, ids);
1928         }
1929
1930         *order = new_order;
1931
1932         return indirect;
1933 }
1934
1935 static void its_free_tables(struct its_node *its)
1936 {
1937         int i;
1938
1939         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1940                 if (its->tables[i].base) {
1941                         free_pages((unsigned long)its->tables[i].base,
1942                                    its->tables[i].order);
1943                         its->tables[i].base = NULL;
1944                 }
1945         }
1946 }
1947
1948 static int its_alloc_tables(struct its_node *its)
1949 {
1950         u64 shr = GITS_BASER_InnerShareable;
1951         u64 cache = GITS_BASER_RaWaWb;
1952         u32 psz = SZ_64K;
1953         int err, i;
1954
1955         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1956                 /* erratum 24313: ignore memory access type */
1957                 cache = GITS_BASER_nCnB;
1958
1959         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1960                 struct its_baser *baser = its->tables + i;
1961                 u64 val = its_read_baser(its, baser);
1962                 u64 type = GITS_BASER_TYPE(val);
1963                 u32 order = get_order(psz);
1964                 bool indirect = false;
1965
1966                 switch (type) {
1967                 case GITS_BASER_TYPE_NONE:
1968                         continue;
1969
1970                 case GITS_BASER_TYPE_DEVICE:
1971                         indirect = its_parse_indirect_baser(its, baser,
1972                                                             psz, &order,
1973                                                             its->device_ids);
1974                         break;
1975
1976                 case GITS_BASER_TYPE_VCPU:
1977                         indirect = its_parse_indirect_baser(its, baser,
1978                                                             psz, &order,
1979                                                             ITS_MAX_VPEID_BITS);
1980                         break;
1981                 }
1982
1983                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1984                 if (err < 0) {
1985                         its_free_tables(its);
1986                         return err;
1987                 }
1988
1989                 /* Update settings which will be used for next BASERn */
1990                 psz = baser->psz;
1991                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1992                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1993         }
1994
1995         return 0;
1996 }
1997
1998 static int its_alloc_collections(struct its_node *its)
1999 {
2000         int i;
2001
2002         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2003                                    GFP_KERNEL);
2004         if (!its->collections)
2005                 return -ENOMEM;
2006
2007         for (i = 0; i < nr_cpu_ids; i++)
2008                 its->collections[i].target_address = ~0ULL;
2009
2010         return 0;
2011 }
2012
2013 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2014 {
2015         struct page *pend_page;
2016
2017         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2018                                 get_order(LPI_PENDBASE_SZ));
2019         if (!pend_page)
2020                 return NULL;
2021
2022         /* Make sure the GIC will observe the zero-ed page */
2023         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2024
2025         return pend_page;
2026 }
2027
2028 static void its_free_pending_table(struct page *pt)
2029 {
2030         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2031 }
2032
2033 /*
2034  * Booting with kdump and LPIs enabled is generally fine. Any other
2035  * case is wrong in the absence of firmware/EFI support.
2036  */
2037 static bool enabled_lpis_allowed(void)
2038 {
2039         phys_addr_t addr;
2040         u64 val;
2041
2042         /* Check whether the property table is in a reserved region */
2043         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2044         addr = val & GENMASK_ULL(51, 12);
2045
2046         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2047 }
2048
2049 static int __init allocate_lpi_tables(void)
2050 {
2051         u64 val;
2052         int err, cpu;
2053
2054         /*
2055          * If LPIs are enabled while we run this from the boot CPU,
2056          * flag the RD tables as pre-allocated if the stars do align.
2057          */
2058         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2059         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2060                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2061                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2062                 pr_info("GICv3: Using preallocated redistributor tables\n");
2063         }
2064
2065         err = its_setup_lpi_prop_table();
2066         if (err)
2067                 return err;
2068
2069         /*
2070          * We allocate all the pending tables anyway, as we may have a
2071          * mix of RDs that have had LPIs enabled, and some that
2072          * don't. We'll free the unused ones as each CPU comes online.
2073          */
2074         for_each_possible_cpu(cpu) {
2075                 struct page *pend_page;
2076
2077                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2078                 if (!pend_page) {
2079                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2080                         return -ENOMEM;
2081                 }
2082
2083                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2084         }
2085
2086         return 0;
2087 }
2088
2089 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2090 {
2091         u32 count = 1000000;    /* 1s! */
2092         bool clean;
2093         u64 val;
2094
2095         val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2096         val &= ~GICR_VPENDBASER_Valid;
2097         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2098
2099         do {
2100                 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2101                 clean = !(val & GICR_VPENDBASER_Dirty);
2102                 if (!clean) {
2103                         count--;
2104                         cpu_relax();
2105                         udelay(1);
2106                 }
2107         } while (!clean && count);
2108
2109         return val;
2110 }
2111
2112 static void its_cpu_init_lpis(void)
2113 {
2114         void __iomem *rbase = gic_data_rdist_rd_base();
2115         struct page *pend_page;
2116         phys_addr_t paddr;
2117         u64 val, tmp;
2118
2119         if (gic_data_rdist()->lpi_enabled)
2120                 return;
2121
2122         val = readl_relaxed(rbase + GICR_CTLR);
2123         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2124             (val & GICR_CTLR_ENABLE_LPIS)) {
2125                 /*
2126                  * Check that we get the same property table on all
2127                  * RDs. If we don't, this is hopeless.
2128                  */
2129                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2130                 paddr &= GENMASK_ULL(51, 12);
2131                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2132                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2133
2134                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2135                 paddr &= GENMASK_ULL(51, 16);
2136
2137                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2138                 its_free_pending_table(gic_data_rdist()->pend_page);
2139                 gic_data_rdist()->pend_page = NULL;
2140
2141                 goto out;
2142         }
2143
2144         pend_page = gic_data_rdist()->pend_page;
2145         paddr = page_to_phys(pend_page);
2146         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2147
2148         /* set PROPBASE */
2149         val = (gic_rdists->prop_table_pa |
2150                GICR_PROPBASER_InnerShareable |
2151                GICR_PROPBASER_RaWaWb |
2152                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2153
2154         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2155         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2156
2157         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2158                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2159                         /*
2160                          * The HW reports non-shareable, we must
2161                          * remove the cacheability attributes as
2162                          * well.
2163                          */
2164                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2165                                  GICR_PROPBASER_CACHEABILITY_MASK);
2166                         val |= GICR_PROPBASER_nC;
2167                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2168                 }
2169                 pr_info_once("GIC: using cache flushing for LPI property table\n");
2170                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2171         }
2172
2173         /* set PENDBASE */
2174         val = (page_to_phys(pend_page) |
2175                GICR_PENDBASER_InnerShareable |
2176                GICR_PENDBASER_RaWaWb);
2177
2178         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2179         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2180
2181         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2182                 /*
2183                  * The HW reports non-shareable, we must remove the
2184                  * cacheability attributes as well.
2185                  */
2186                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2187                          GICR_PENDBASER_CACHEABILITY_MASK);
2188                 val |= GICR_PENDBASER_nC;
2189                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2190         }
2191
2192         /* Enable LPIs */
2193         val = readl_relaxed(rbase + GICR_CTLR);
2194         val |= GICR_CTLR_ENABLE_LPIS;
2195         writel_relaxed(val, rbase + GICR_CTLR);
2196
2197         if (gic_rdists->has_vlpis) {
2198                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2199
2200                 /*
2201                  * It's possible for CPU to receive VLPIs before it is
2202                  * sheduled as a vPE, especially for the first CPU, and the
2203                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
2204                  * as out of range and dropped by GIC.
2205                  * So we initialize IDbits to known value to avoid VLPI drop.
2206                  */
2207                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2208                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2209                         smp_processor_id(), val);
2210                 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2211
2212                 /*
2213                  * Also clear Valid bit of GICR_VPENDBASER, in case some
2214                  * ancient programming gets left in and has possibility of
2215                  * corrupting memory.
2216                  */
2217                 val = its_clear_vpend_valid(vlpi_base);
2218                 WARN_ON(val & GICR_VPENDBASER_Dirty);
2219         }
2220
2221         /* Make sure the GIC has seen the above */
2222         dsb(sy);
2223 out:
2224         gic_data_rdist()->lpi_enabled = true;
2225         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2226                 smp_processor_id(),
2227                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
2228                 &paddr);
2229 }
2230
2231 static void its_cpu_init_collection(struct its_node *its)
2232 {
2233         int cpu = smp_processor_id();
2234         u64 target;
2235
2236         /* avoid cross node collections and its mapping */
2237         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2238                 struct device_node *cpu_node;
2239
2240                 cpu_node = of_get_cpu_node(cpu, NULL);
2241                 if (its->numa_node != NUMA_NO_NODE &&
2242                         its->numa_node != of_node_to_nid(cpu_node))
2243                         return;
2244         }
2245
2246         /*
2247          * We now have to bind each collection to its target
2248          * redistributor.
2249          */
2250         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2251                 /*
2252                  * This ITS wants the physical address of the
2253                  * redistributor.
2254                  */
2255                 target = gic_data_rdist()->phys_base;
2256         } else {
2257                 /* This ITS wants a linear CPU number. */
2258                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2259                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
2260         }
2261
2262         /* Perform collection mapping */
2263         its->collections[cpu].target_address = target;
2264         its->collections[cpu].col_id = cpu;
2265
2266         its_send_mapc(its, &its->collections[cpu], 1);
2267         its_send_invall(its, &its->collections[cpu]);
2268 }
2269
2270 static void its_cpu_init_collections(void)
2271 {
2272         struct its_node *its;
2273
2274         raw_spin_lock(&its_lock);
2275
2276         list_for_each_entry(its, &its_nodes, entry)
2277                 its_cpu_init_collection(its);
2278
2279         raw_spin_unlock(&its_lock);
2280 }
2281
2282 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2283 {
2284         struct its_device *its_dev = NULL, *tmp;
2285         unsigned long flags;
2286
2287         raw_spin_lock_irqsave(&its->lock, flags);
2288
2289         list_for_each_entry(tmp, &its->its_device_list, entry) {
2290                 if (tmp->device_id == dev_id) {
2291                         its_dev = tmp;
2292                         break;
2293                 }
2294         }
2295
2296         raw_spin_unlock_irqrestore(&its->lock, flags);
2297
2298         return its_dev;
2299 }
2300
2301 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2302 {
2303         int i;
2304
2305         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2306                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2307                         return &its->tables[i];
2308         }
2309
2310         return NULL;
2311 }
2312
2313 static bool its_alloc_table_entry(struct its_node *its,
2314                                   struct its_baser *baser, u32 id)
2315 {
2316         struct page *page;
2317         u32 esz, idx;
2318         __le64 *table;
2319
2320         /* Don't allow device id that exceeds single, flat table limit */
2321         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2322         if (!(baser->val & GITS_BASER_INDIRECT))
2323                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2324
2325         /* Compute 1st level table index & check if that exceeds table limit */
2326         idx = id >> ilog2(baser->psz / esz);
2327         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2328                 return false;
2329
2330         table = baser->base;
2331
2332         /* Allocate memory for 2nd level table */
2333         if (!table[idx]) {
2334                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2335                                         get_order(baser->psz));
2336                 if (!page)
2337                         return false;
2338
2339                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2340                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2341                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2342
2343                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2344
2345                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2346                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2347                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2348
2349                 /* Ensure updated table contents are visible to ITS hardware */
2350                 dsb(sy);
2351         }
2352
2353         return true;
2354 }
2355
2356 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2357 {
2358         struct its_baser *baser;
2359
2360         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2361
2362         /* Don't allow device id that exceeds ITS hardware limit */
2363         if (!baser)
2364                 return (ilog2(dev_id) < its->device_ids);
2365
2366         return its_alloc_table_entry(its, baser, dev_id);
2367 }
2368
2369 static bool its_alloc_vpe_table(u32 vpe_id)
2370 {
2371         struct its_node *its;
2372
2373         /*
2374          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2375          * could try and only do it on ITSs corresponding to devices
2376          * that have interrupts targeted at this VPE, but the
2377          * complexity becomes crazy (and you have tons of memory
2378          * anyway, right?).
2379          */
2380         list_for_each_entry(its, &its_nodes, entry) {
2381                 struct its_baser *baser;
2382
2383                 if (!its->is_v4)
2384                         continue;
2385
2386                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2387                 if (!baser)
2388                         return false;
2389
2390                 if (!its_alloc_table_entry(its, baser, vpe_id))
2391                         return false;
2392         }
2393
2394         return true;
2395 }
2396
2397 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2398                                             int nvecs, bool alloc_lpis)
2399 {
2400         struct its_device *dev;
2401         unsigned long *lpi_map = NULL;
2402         unsigned long flags;
2403         u16 *col_map = NULL;
2404         void *itt;
2405         int lpi_base;
2406         int nr_lpis;
2407         int nr_ites;
2408         int sz;
2409
2410         if (!its_alloc_device_table(its, dev_id))
2411                 return NULL;
2412
2413         if (WARN_ON(!is_power_of_2(nvecs)))
2414                 nvecs = roundup_pow_of_two(nvecs);
2415
2416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2417         /*
2418          * Even if the device wants a single LPI, the ITT must be
2419          * sized as a power of two (and you need at least one bit...).
2420          */
2421         nr_ites = max(2, nvecs);
2422         sz = nr_ites * its->ite_size;
2423         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2424         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2425         if (alloc_lpis) {
2426                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2427                 if (lpi_map)
2428                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
2429                                           GFP_KERNEL);
2430         } else {
2431                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2432                 nr_lpis = 0;
2433                 lpi_base = 0;
2434         }
2435
2436         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2437                 kfree(dev);
2438                 kfree(itt);
2439                 kfree(lpi_map);
2440                 kfree(col_map);
2441                 return NULL;
2442         }
2443
2444         gic_flush_dcache_to_poc(itt, sz);
2445
2446         dev->its = its;
2447         dev->itt = itt;
2448         dev->nr_ites = nr_ites;
2449         dev->event_map.lpi_map = lpi_map;
2450         dev->event_map.col_map = col_map;
2451         dev->event_map.lpi_base = lpi_base;
2452         dev->event_map.nr_lpis = nr_lpis;
2453         mutex_init(&dev->event_map.vlpi_lock);
2454         dev->device_id = dev_id;
2455         INIT_LIST_HEAD(&dev->entry);
2456
2457         raw_spin_lock_irqsave(&its->lock, flags);
2458         list_add(&dev->entry, &its->its_device_list);
2459         raw_spin_unlock_irqrestore(&its->lock, flags);
2460
2461         /* Map device to its ITT */
2462         its_send_mapd(dev, 1);
2463
2464         return dev;
2465 }
2466
2467 static void its_free_device(struct its_device *its_dev)
2468 {
2469         unsigned long flags;
2470
2471         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2472         list_del(&its_dev->entry);
2473         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2474         kfree(its_dev->itt);
2475         kfree(its_dev);
2476 }
2477
2478 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2479 {
2480         int idx;
2481
2482         idx = bitmap_find_free_region(dev->event_map.lpi_map,
2483                                       dev->event_map.nr_lpis,
2484                                       get_count_order(nvecs));
2485         if (idx < 0)
2486                 return -ENOSPC;
2487
2488         *hwirq = dev->event_map.lpi_base + idx;
2489         set_bit(idx, dev->event_map.lpi_map);
2490
2491         return 0;
2492 }
2493
2494 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2495                            int nvec, msi_alloc_info_t *info)
2496 {
2497         struct its_node *its;
2498         struct its_device *its_dev;
2499         struct msi_domain_info *msi_info;
2500         u32 dev_id;
2501         int err = 0;
2502
2503         /*
2504          * We ignore "dev" entirely, and rely on the dev_id that has
2505          * been passed via the scratchpad. This limits this domain's
2506          * usefulness to upper layers that definitely know that they
2507          * are built on top of the ITS.
2508          */
2509         dev_id = info->scratchpad[0].ul;
2510
2511         msi_info = msi_get_domain_info(domain);
2512         its = msi_info->data;
2513
2514         if (!gic_rdists->has_direct_lpi &&
2515             vpe_proxy.dev &&
2516             vpe_proxy.dev->its == its &&
2517             dev_id == vpe_proxy.dev->device_id) {
2518                 /* Bad luck. Get yourself a better implementation */
2519                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2520                           dev_id);
2521                 return -EINVAL;
2522         }
2523
2524         mutex_lock(&its->dev_alloc_lock);
2525         its_dev = its_find_device(its, dev_id);
2526         if (its_dev) {
2527                 /*
2528                  * We already have seen this ID, probably through
2529                  * another alias (PCI bridge of some sort). No need to
2530                  * create the device.
2531                  */
2532                 its_dev->shared = true;
2533                 pr_debug("Reusing ITT for devID %x\n", dev_id);
2534                 goto out;
2535         }
2536
2537         its_dev = its_create_device(its, dev_id, nvec, true);
2538         if (!its_dev) {
2539                 err = -ENOMEM;
2540                 goto out;
2541         }
2542
2543         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2544 out:
2545         mutex_unlock(&its->dev_alloc_lock);
2546         info->scratchpad[0].ptr = its_dev;
2547         return err;
2548 }
2549
2550 static struct msi_domain_ops its_msi_domain_ops = {
2551         .msi_prepare    = its_msi_prepare,
2552 };
2553
2554 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2555                                     unsigned int virq,
2556                                     irq_hw_number_t hwirq)
2557 {
2558         struct irq_fwspec fwspec;
2559
2560         if (irq_domain_get_of_node(domain->parent)) {
2561                 fwspec.fwnode = domain->parent->fwnode;
2562                 fwspec.param_count = 3;
2563                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2564                 fwspec.param[1] = hwirq;
2565                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2566         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2567                 fwspec.fwnode = domain->parent->fwnode;
2568                 fwspec.param_count = 2;
2569                 fwspec.param[0] = hwirq;
2570                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2571         } else {
2572                 return -EINVAL;
2573         }
2574
2575         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2576 }
2577
2578 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2579                                 unsigned int nr_irqs, void *args)
2580 {
2581         msi_alloc_info_t *info = args;
2582         struct its_device *its_dev = info->scratchpad[0].ptr;
2583         struct its_node *its = its_dev->its;
2584         irq_hw_number_t hwirq;
2585         int err;
2586         int i;
2587
2588         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2589         if (err)
2590                 return err;
2591
2592         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2593         if (err)
2594                 return err;
2595
2596         for (i = 0; i < nr_irqs; i++) {
2597                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2598                 if (err)
2599                         return err;
2600
2601                 irq_domain_set_hwirq_and_chip(domain, virq + i,
2602                                               hwirq + i, &its_irq_chip, its_dev);
2603                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2604                 pr_debug("ID:%d pID:%d vID:%d\n",
2605                          (int)(hwirq + i - its_dev->event_map.lpi_base),
2606                          (int)(hwirq + i), virq + i);
2607         }
2608
2609         return 0;
2610 }
2611
2612 static int its_irq_domain_activate(struct irq_domain *domain,
2613                                    struct irq_data *d, bool reserve)
2614 {
2615         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2616         u32 event = its_get_event_id(d);
2617         const struct cpumask *cpu_mask = cpu_online_mask;
2618         int cpu;
2619
2620         /* get the cpu_mask of local node */
2621         if (its_dev->its->numa_node >= 0)
2622                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2623
2624         /* Bind the LPI to the first possible CPU */
2625         cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2626         if (cpu >= nr_cpu_ids) {
2627                 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2628                         return -EINVAL;
2629
2630                 cpu = cpumask_first(cpu_online_mask);
2631         }
2632
2633         its_dev->event_map.col_map[event] = cpu;
2634         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2635
2636         /* Map the GIC IRQ and event to the device */
2637         its_send_mapti(its_dev, d->hwirq, event);
2638         return 0;
2639 }
2640
2641 static void its_irq_domain_deactivate(struct irq_domain *domain,
2642                                       struct irq_data *d)
2643 {
2644         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2645         u32 event = its_get_event_id(d);
2646
2647         /* Stop the delivery of interrupts */
2648         its_send_discard(its_dev, event);
2649 }
2650
2651 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2652                                 unsigned int nr_irqs)
2653 {
2654         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2655         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2656         struct its_node *its = its_dev->its;
2657         int i;
2658
2659         bitmap_release_region(its_dev->event_map.lpi_map,
2660                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2661                               get_count_order(nr_irqs));
2662
2663         for (i = 0; i < nr_irqs; i++) {
2664                 struct irq_data *data = irq_domain_get_irq_data(domain,
2665                                                                 virq + i);
2666                 /* Nuke the entry in the domain */
2667                 irq_domain_reset_irq_data(data);
2668         }
2669
2670         mutex_lock(&its->dev_alloc_lock);
2671
2672         /*
2673          * If all interrupts have been freed, start mopping the
2674          * floor. This is conditionned on the device not being shared.
2675          */
2676         if (!its_dev->shared &&
2677             bitmap_empty(its_dev->event_map.lpi_map,
2678                          its_dev->event_map.nr_lpis)) {
2679                 its_lpi_free(its_dev->event_map.lpi_map,
2680                              its_dev->event_map.lpi_base,
2681                              its_dev->event_map.nr_lpis);
2682                 kfree(its_dev->event_map.col_map);
2683
2684                 /* Unmap device/itt */
2685                 its_send_mapd(its_dev, 0);
2686                 its_free_device(its_dev);
2687         }
2688
2689         mutex_unlock(&its->dev_alloc_lock);
2690
2691         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2692 }
2693
2694 static const struct irq_domain_ops its_domain_ops = {
2695         .alloc                  = its_irq_domain_alloc,
2696         .free                   = its_irq_domain_free,
2697         .activate               = its_irq_domain_activate,
2698         .deactivate             = its_irq_domain_deactivate,
2699 };
2700
2701 /*
2702  * This is insane.
2703  *
2704  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2705  * likely), the only way to perform an invalidate is to use a fake
2706  * device to issue an INV command, implying that the LPI has first
2707  * been mapped to some event on that device. Since this is not exactly
2708  * cheap, we try to keep that mapping around as long as possible, and
2709  * only issue an UNMAP if we're short on available slots.
2710  *
2711  * Broken by design(tm).
2712  */
2713 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2714 {
2715         /* Already unmapped? */
2716         if (vpe->vpe_proxy_event == -1)
2717                 return;
2718
2719         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2720         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2721
2722         /*
2723          * We don't track empty slots at all, so let's move the
2724          * next_victim pointer if we can quickly reuse that slot
2725          * instead of nuking an existing entry. Not clear that this is
2726          * always a win though, and this might just generate a ripple
2727          * effect... Let's just hope VPEs don't migrate too often.
2728          */
2729         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2730                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2731
2732         vpe->vpe_proxy_event = -1;
2733 }
2734
2735 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2736 {
2737         if (!gic_rdists->has_direct_lpi) {
2738                 unsigned long flags;
2739
2740                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2741                 its_vpe_db_proxy_unmap_locked(vpe);
2742                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2743         }
2744 }
2745
2746 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2747 {
2748         /* Already mapped? */
2749         if (vpe->vpe_proxy_event != -1)
2750                 return;
2751
2752         /* This slot was already allocated. Kick the other VPE out. */
2753         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2754                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2755
2756         /* Map the new VPE instead */
2757         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2758         vpe->vpe_proxy_event = vpe_proxy.next_victim;
2759         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2760
2761         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2762         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2763 }
2764
2765 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2766 {
2767         unsigned long flags;
2768         struct its_collection *target_col;
2769
2770         if (gic_rdists->has_direct_lpi) {
2771                 void __iomem *rdbase;
2772
2773                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2774                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2775                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2776                         cpu_relax();
2777
2778                 return;
2779         }
2780
2781         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2782
2783         its_vpe_db_proxy_map_locked(vpe);
2784
2785         target_col = &vpe_proxy.dev->its->collections[to];
2786         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2787         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2788
2789         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2790 }
2791
2792 static int its_vpe_set_affinity(struct irq_data *d,
2793                                 const struct cpumask *mask_val,
2794                                 bool force)
2795 {
2796         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2797         int cpu = cpumask_first(mask_val);
2798
2799         /*
2800          * Changing affinity is mega expensive, so let's be as lazy as
2801          * we can and only do it if we really have to. Also, if mapped
2802          * into the proxy device, we need to move the doorbell
2803          * interrupt to its new location.
2804          */
2805         if (vpe->col_idx != cpu) {
2806                 int from = vpe->col_idx;
2807
2808                 vpe->col_idx = cpu;
2809                 its_send_vmovp(vpe);
2810                 its_vpe_db_proxy_move(vpe, from, cpu);
2811         }
2812
2813         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2814
2815         return IRQ_SET_MASK_OK_DONE;
2816 }
2817
2818 static void its_vpe_schedule(struct its_vpe *vpe)
2819 {
2820         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2821         u64 val;
2822
2823         /* Schedule the VPE */
2824         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2825                 GENMASK_ULL(51, 12);
2826         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2827         val |= GICR_VPROPBASER_RaWb;
2828         val |= GICR_VPROPBASER_InnerShareable;
2829         gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2830
2831         val  = virt_to_phys(page_address(vpe->vpt_page)) &
2832                 GENMASK_ULL(51, 16);
2833         val |= GICR_VPENDBASER_RaWaWb;
2834         val |= GICR_VPENDBASER_NonShareable;
2835         /*
2836          * There is no good way of finding out if the pending table is
2837          * empty as we can race against the doorbell interrupt very
2838          * easily. So in the end, vpe->pending_last is only an
2839          * indication that the vcpu has something pending, not one
2840          * that the pending table is empty. A good implementation
2841          * would be able to read its coarse map pretty quickly anyway,
2842          * making this a tolerable issue.
2843          */
2844         val |= GICR_VPENDBASER_PendingLast;
2845         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2846         val |= GICR_VPENDBASER_Valid;
2847         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2848 }
2849
2850 static void its_vpe_deschedule(struct its_vpe *vpe)
2851 {
2852         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2853         u64 val;
2854
2855         val = its_clear_vpend_valid(vlpi_base);
2856
2857         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2858                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2859                 vpe->idai = false;
2860                 vpe->pending_last = true;
2861         } else {
2862                 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2863                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2864         }
2865 }
2866
2867 static void its_vpe_invall(struct its_vpe *vpe)
2868 {
2869         struct its_node *its;
2870
2871         list_for_each_entry(its, &its_nodes, entry) {
2872                 if (!its->is_v4)
2873                         continue;
2874
2875                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2876                         continue;
2877
2878                 /*
2879                  * Sending a VINVALL to a single ITS is enough, as all
2880                  * we need is to reach the redistributors.
2881                  */
2882                 its_send_vinvall(its, vpe);
2883                 return;
2884         }
2885 }
2886
2887 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2888 {
2889         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2890         struct its_cmd_info *info = vcpu_info;
2891
2892         switch (info->cmd_type) {
2893         case SCHEDULE_VPE:
2894                 its_vpe_schedule(vpe);
2895                 return 0;
2896
2897         case DESCHEDULE_VPE:
2898                 its_vpe_deschedule(vpe);
2899                 return 0;
2900
2901         case INVALL_VPE:
2902                 its_vpe_invall(vpe);
2903                 return 0;
2904
2905         default:
2906                 return -EINVAL;
2907         }
2908 }
2909
2910 static void its_vpe_send_cmd(struct its_vpe *vpe,
2911                              void (*cmd)(struct its_device *, u32))
2912 {
2913         unsigned long flags;
2914
2915         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2916
2917         its_vpe_db_proxy_map_locked(vpe);
2918         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2919
2920         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2921 }
2922
2923 static void its_vpe_send_inv(struct irq_data *d)
2924 {
2925         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2926
2927         if (gic_rdists->has_direct_lpi) {
2928                 void __iomem *rdbase;
2929
2930                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2931                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2932                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2933                         cpu_relax();
2934         } else {
2935                 its_vpe_send_cmd(vpe, its_send_inv);
2936         }
2937 }
2938
2939 static void its_vpe_mask_irq(struct irq_data *d)
2940 {
2941         /*
2942          * We need to unmask the LPI, which is described by the parent
2943          * irq_data. Instead of calling into the parent (which won't
2944          * exactly do the right thing, let's simply use the
2945          * parent_data pointer. Yes, I'm naughty.
2946          */
2947         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2948         its_vpe_send_inv(d);
2949 }
2950
2951 static void its_vpe_unmask_irq(struct irq_data *d)
2952 {
2953         /* Same hack as above... */
2954         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2955         its_vpe_send_inv(d);
2956 }
2957
2958 static int its_vpe_set_irqchip_state(struct irq_data *d,
2959                                      enum irqchip_irq_state which,
2960                                      bool state)
2961 {
2962         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2963
2964         if (which != IRQCHIP_STATE_PENDING)
2965                 return -EINVAL;
2966
2967         if (gic_rdists->has_direct_lpi) {
2968                 void __iomem *rdbase;
2969
2970                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2971                 if (state) {
2972                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2973                 } else {
2974                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2975                         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2976                                 cpu_relax();
2977                 }
2978         } else {
2979                 if (state)
2980                         its_vpe_send_cmd(vpe, its_send_int);
2981                 else
2982                         its_vpe_send_cmd(vpe, its_send_clear);
2983         }
2984
2985         return 0;
2986 }
2987
2988 static struct irq_chip its_vpe_irq_chip = {
2989         .name                   = "GICv4-vpe",
2990         .irq_mask               = its_vpe_mask_irq,
2991         .irq_unmask             = its_vpe_unmask_irq,
2992         .irq_eoi                = irq_chip_eoi_parent,
2993         .irq_set_affinity       = its_vpe_set_affinity,
2994         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2995         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2996 };
2997
2998 static int its_vpe_id_alloc(void)
2999 {
3000         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3001 }
3002
3003 static void its_vpe_id_free(u16 id)
3004 {
3005         ida_simple_remove(&its_vpeid_ida, id);
3006 }
3007
3008 static int its_vpe_init(struct its_vpe *vpe)
3009 {
3010         struct page *vpt_page;
3011         int vpe_id;
3012
3013         /* Allocate vpe_id */
3014         vpe_id = its_vpe_id_alloc();
3015         if (vpe_id < 0)
3016                 return vpe_id;
3017
3018         /* Allocate VPT */
3019         vpt_page = its_allocate_pending_table(GFP_KERNEL);
3020         if (!vpt_page) {
3021                 its_vpe_id_free(vpe_id);
3022                 return -ENOMEM;
3023         }
3024
3025         if (!its_alloc_vpe_table(vpe_id)) {
3026                 its_vpe_id_free(vpe_id);
3027                 its_free_pending_table(vpt_page);
3028                 return -ENOMEM;
3029         }
3030
3031         vpe->vpe_id = vpe_id;
3032         vpe->vpt_page = vpt_page;
3033         vpe->vpe_proxy_event = -1;
3034
3035         return 0;
3036 }
3037
3038 static void its_vpe_teardown(struct its_vpe *vpe)
3039 {
3040         its_vpe_db_proxy_unmap(vpe);
3041         its_vpe_id_free(vpe->vpe_id);
3042         its_free_pending_table(vpe->vpt_page);
3043 }
3044
3045 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3046                                     unsigned int virq,
3047                                     unsigned int nr_irqs)
3048 {
3049         struct its_vm *vm = domain->host_data;
3050         int i;
3051
3052         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3053
3054         for (i = 0; i < nr_irqs; i++) {
3055                 struct irq_data *data = irq_domain_get_irq_data(domain,
3056                                                                 virq + i);
3057                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3058
3059                 BUG_ON(vm != vpe->its_vm);
3060
3061                 clear_bit(data->hwirq, vm->db_bitmap);
3062                 its_vpe_teardown(vpe);
3063                 irq_domain_reset_irq_data(data);
3064         }
3065
3066         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3067                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3068                 its_free_prop_table(vm->vprop_page);
3069         }
3070 }
3071
3072 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3073                                     unsigned int nr_irqs, void *args)
3074 {
3075         struct its_vm *vm = args;
3076         unsigned long *bitmap;
3077         struct page *vprop_page;
3078         int base, nr_ids, i, err = 0;
3079
3080         BUG_ON(!vm);
3081
3082         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3083         if (!bitmap)
3084                 return -ENOMEM;
3085
3086         if (nr_ids < nr_irqs) {
3087                 its_lpi_free(bitmap, base, nr_ids);
3088                 return -ENOMEM;
3089         }
3090
3091         vprop_page = its_allocate_prop_table(GFP_KERNEL);
3092         if (!vprop_page) {
3093                 its_lpi_free(bitmap, base, nr_ids);
3094                 return -ENOMEM;
3095         }
3096
3097         vm->db_bitmap = bitmap;
3098         vm->db_lpi_base = base;
3099         vm->nr_db_lpis = nr_ids;
3100         vm->vprop_page = vprop_page;
3101
3102         for (i = 0; i < nr_irqs; i++) {
3103                 vm->vpes[i]->vpe_db_lpi = base + i;
3104                 err = its_vpe_init(vm->vpes[i]);
3105                 if (err)
3106                         break;
3107                 err = its_irq_gic_domain_alloc(domain, virq + i,
3108                                                vm->vpes[i]->vpe_db_lpi);
3109                 if (err)
3110                         break;
3111                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3112                                               &its_vpe_irq_chip, vm->vpes[i]);
3113                 set_bit(i, bitmap);
3114         }
3115
3116         if (err) {
3117                 if (i > 0)
3118                         its_vpe_irq_domain_free(domain, virq, i - 1);
3119
3120                 its_lpi_free(bitmap, base, nr_ids);
3121                 its_free_prop_table(vprop_page);
3122         }
3123
3124         return err;
3125 }
3126
3127 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3128                                        struct irq_data *d, bool reserve)
3129 {
3130         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3131         struct its_node *its;
3132
3133         /* If we use the list map, we issue VMAPP on demand... */
3134         if (its_list_map)
3135                 return 0;
3136
3137         /* Map the VPE to the first possible CPU */
3138         vpe->col_idx = cpumask_first(cpu_online_mask);
3139
3140         list_for_each_entry(its, &its_nodes, entry) {
3141                 if (!its->is_v4)
3142                         continue;
3143
3144                 its_send_vmapp(its, vpe, true);
3145                 its_send_vinvall(its, vpe);
3146         }
3147
3148         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3149
3150         return 0;
3151 }
3152
3153 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3154                                           struct irq_data *d)
3155 {
3156         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3157         struct its_node *its;
3158
3159         /*
3160          * If we use the list map, we unmap the VPE once no VLPIs are
3161          * associated with the VM.
3162          */
3163         if (its_list_map)
3164                 return;
3165
3166         list_for_each_entry(its, &its_nodes, entry) {
3167                 if (!its->is_v4)
3168                         continue;
3169
3170                 its_send_vmapp(its, vpe, false);
3171         }
3172 }
3173
3174 static const struct irq_domain_ops its_vpe_domain_ops = {
3175         .alloc                  = its_vpe_irq_domain_alloc,
3176         .free                   = its_vpe_irq_domain_free,
3177         .activate               = its_vpe_irq_domain_activate,
3178         .deactivate             = its_vpe_irq_domain_deactivate,
3179 };
3180
3181 static int its_force_quiescent(void __iomem *base)
3182 {
3183         u32 count = 1000000;    /* 1s */
3184         u32 val;
3185
3186         val = readl_relaxed(base + GITS_CTLR);
3187         /*
3188          * GIC architecture specification requires the ITS to be both
3189          * disabled and quiescent for writes to GITS_BASER<n> or
3190          * GITS_CBASER to not have UNPREDICTABLE results.
3191          */
3192         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3193                 return 0;
3194
3195         /* Disable the generation of all interrupts to this ITS */
3196         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3197         writel_relaxed(val, base + GITS_CTLR);
3198
3199         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3200         while (1) {
3201                 val = readl_relaxed(base + GITS_CTLR);
3202                 if (val & GITS_CTLR_QUIESCENT)
3203                         return 0;
3204
3205                 count--;
3206                 if (!count)
3207                         return -EBUSY;
3208
3209                 cpu_relax();
3210                 udelay(1);
3211         }
3212 }
3213
3214 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3215 {
3216         struct its_node *its = data;
3217
3218         /* erratum 22375: only alloc 8MB table size */
3219         its->device_ids = 0x14;         /* 20 bits, 8MB */
3220         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3221
3222         return true;
3223 }
3224
3225 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3226 {
3227         struct its_node *its = data;
3228
3229         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3230
3231         return true;
3232 }
3233
3234 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3235 {
3236         struct its_node *its = data;
3237
3238         /* On QDF2400, the size of the ITE is 16Bytes */
3239         its->ite_size = 16;
3240
3241         return true;
3242 }
3243
3244 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3245 {
3246         struct its_node *its = its_dev->its;
3247
3248         /*
3249          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3250          * which maps 32-bit writes targeted at a separate window of
3251          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3252          * with device ID taken from bits [device_id_bits + 1:2] of
3253          * the window offset.
3254          */
3255         return its->pre_its_base + (its_dev->device_id << 2);
3256 }
3257
3258 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3259 {
3260         struct its_node *its = data;
3261         u32 pre_its_window[2];
3262         u32 ids;
3263
3264         if (!fwnode_property_read_u32_array(its->fwnode_handle,
3265                                            "socionext,synquacer-pre-its",
3266                                            pre_its_window,
3267                                            ARRAY_SIZE(pre_its_window))) {
3268
3269                 its->pre_its_base = pre_its_window[0];
3270                 its->get_msi_base = its_irq_get_msi_base_pre_its;
3271
3272                 ids = ilog2(pre_its_window[1]) - 2;
3273                 if (its->device_ids > ids)
3274                         its->device_ids = ids;
3275
3276                 /* the pre-ITS breaks isolation, so disable MSI remapping */
3277                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3278                 return true;
3279         }
3280         return false;
3281 }
3282
3283 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3284 {
3285         struct its_node *its = data;
3286
3287         /*
3288          * Hip07 insists on using the wrong address for the VLPI
3289          * page. Trick it into doing the right thing...
3290          */
3291         its->vlpi_redist_offset = SZ_128K;
3292         return true;
3293 }
3294
3295 static const struct gic_quirk its_quirks[] = {
3296 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3297         {
3298                 .desc   = "ITS: Cavium errata 22375, 24313",
3299                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3300                 .mask   = 0xffff0fff,
3301                 .init   = its_enable_quirk_cavium_22375,
3302         },
3303 #endif
3304 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3305         {
3306                 .desc   = "ITS: Cavium erratum 23144",
3307                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3308                 .mask   = 0xffff0fff,
3309                 .init   = its_enable_quirk_cavium_23144,
3310         },
3311 #endif
3312 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3313         {
3314                 .desc   = "ITS: QDF2400 erratum 0065",
3315                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3316                 .mask   = 0xffffffff,
3317                 .init   = its_enable_quirk_qdf2400_e0065,
3318         },
3319 #endif
3320 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3321         {
3322                 /*
3323                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3324                  * implementation, but with a 'pre-ITS' added that requires
3325                  * special handling in software.
3326                  */
3327                 .desc   = "ITS: Socionext Synquacer pre-ITS",
3328                 .iidr   = 0x0001143b,
3329                 .mask   = 0xffffffff,
3330                 .init   = its_enable_quirk_socionext_synquacer,
3331         },
3332 #endif
3333 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3334         {
3335                 .desc   = "ITS: Hip07 erratum 161600802",
3336                 .iidr   = 0x00000004,
3337                 .mask   = 0xffffffff,
3338                 .init   = its_enable_quirk_hip07_161600802,
3339         },
3340 #endif
3341         {
3342         }
3343 };
3344
3345 static void its_enable_quirks(struct its_node *its)
3346 {
3347         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3348
3349         gic_enable_quirks(iidr, its_quirks, its);
3350 }
3351
3352 static int its_save_disable(void)
3353 {
3354         struct its_node *its;
3355         int err = 0;
3356
3357         raw_spin_lock(&its_lock);
3358         list_for_each_entry(its, &its_nodes, entry) {
3359                 void __iomem *base;
3360
3361                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3362                         continue;
3363
3364                 base = its->base;
3365                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3366                 err = its_force_quiescent(base);
3367                 if (err) {
3368                         pr_err("ITS@%pa: failed to quiesce: %d\n",
3369                                &its->phys_base, err);
3370                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3371                         goto err;
3372                 }
3373
3374                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3375         }
3376
3377 err:
3378         if (err) {
3379                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3380                         void __iomem *base;
3381
3382                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3383                                 continue;
3384
3385                         base = its->base;
3386                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3387                 }
3388         }
3389         raw_spin_unlock(&its_lock);
3390
3391         return err;
3392 }
3393
3394 static void its_restore_enable(void)
3395 {
3396         struct its_node *its;
3397         int ret;
3398
3399         raw_spin_lock(&its_lock);
3400         list_for_each_entry(its, &its_nodes, entry) {
3401                 void __iomem *base;
3402                 int i;
3403
3404                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3405                         continue;
3406
3407                 base = its->base;
3408
3409                 /*
3410                  * Make sure that the ITS is disabled. If it fails to quiesce,
3411                  * don't restore it since writing to CBASER or BASER<n>
3412                  * registers is undefined according to the GIC v3 ITS
3413                  * Specification.
3414                  */
3415                 ret = its_force_quiescent(base);
3416                 if (ret) {
3417                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3418                                &its->phys_base, ret);
3419                         continue;
3420                 }
3421
3422                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3423
3424                 /*
3425                  * Writing CBASER resets CREADR to 0, so make CWRITER and
3426                  * cmd_write line up with it.
3427                  */
3428                 its->cmd_write = its->cmd_base;
3429                 gits_write_cwriter(0, base + GITS_CWRITER);
3430
3431                 /* Restore GITS_BASER from the value cache. */
3432                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3433                         struct its_baser *baser = &its->tables[i];
3434
3435                         if (!(baser->val & GITS_BASER_VALID))
3436                                 continue;
3437
3438                         its_write_baser(its, baser, baser->val);
3439                 }
3440                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3441
3442                 /*
3443                  * Reinit the collection if it's stored in the ITS. This is
3444                  * indicated by the col_id being less than the HCC field.
3445                  * CID < HCC as specified in the GIC v3 Documentation.
3446                  */
3447                 if (its->collections[smp_processor_id()].col_id <
3448                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3449                         its_cpu_init_collection(its);
3450         }
3451         raw_spin_unlock(&its_lock);
3452 }
3453
3454 static struct syscore_ops its_syscore_ops = {
3455         .suspend = its_save_disable,
3456         .resume = its_restore_enable,
3457 };
3458
3459 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3460 {
3461         struct irq_domain *inner_domain;
3462         struct msi_domain_info *info;
3463
3464         info = kzalloc(sizeof(*info), GFP_KERNEL);
3465         if (!info)
3466                 return -ENOMEM;
3467
3468         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3469         if (!inner_domain) {
3470                 kfree(info);
3471                 return -ENOMEM;
3472         }
3473
3474         inner_domain->parent = its_parent;
3475         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3476         inner_domain->flags |= its->msi_domain_flags;
3477         info->ops = &its_msi_domain_ops;
3478         info->data = its;
3479         inner_domain->host_data = info;
3480
3481         return 0;
3482 }
3483
3484 static int its_init_vpe_domain(void)
3485 {
3486         struct its_node *its;
3487         u32 devid;
3488         int entries;
3489
3490         if (gic_rdists->has_direct_lpi) {
3491                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3492                 return 0;
3493         }
3494
3495         /* Any ITS will do, even if not v4 */
3496         its = list_first_entry(&its_nodes, struct its_node, entry);
3497
3498         entries = roundup_pow_of_two(nr_cpu_ids);
3499         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3500                                  GFP_KERNEL);
3501         if (!vpe_proxy.vpes) {
3502                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3503                 return -ENOMEM;
3504         }
3505
3506         /* Use the last possible DevID */
3507         devid = GENMASK(its->device_ids - 1, 0);
3508         vpe_proxy.dev = its_create_device(its, devid, entries, false);
3509         if (!vpe_proxy.dev) {
3510                 kfree(vpe_proxy.vpes);
3511                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3512                 return -ENOMEM;
3513         }
3514
3515         BUG_ON(entries > vpe_proxy.dev->nr_ites);
3516
3517         raw_spin_lock_init(&vpe_proxy.lock);
3518         vpe_proxy.next_victim = 0;
3519         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3520                 devid, vpe_proxy.dev->nr_ites);
3521
3522         return 0;
3523 }
3524
3525 static int __init its_compute_its_list_map(struct resource *res,
3526                                            void __iomem *its_base)
3527 {
3528         int its_number;
3529         u32 ctlr;
3530
3531         /*
3532          * This is assumed to be done early enough that we're
3533          * guaranteed to be single-threaded, hence no
3534          * locking. Should this change, we should address
3535          * this.
3536          */
3537         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3538         if (its_number >= GICv4_ITS_LIST_MAX) {
3539                 pr_err("ITS@%pa: No ITSList entry available!\n",
3540                        &res->start);
3541                 return -EINVAL;
3542         }
3543
3544         ctlr = readl_relaxed(its_base + GITS_CTLR);
3545         ctlr &= ~GITS_CTLR_ITS_NUMBER;
3546         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3547         writel_relaxed(ctlr, its_base + GITS_CTLR);
3548         ctlr = readl_relaxed(its_base + GITS_CTLR);
3549         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3550                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3551                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3552         }
3553
3554         if (test_and_set_bit(its_number, &its_list_map)) {
3555                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3556                        &res->start, its_number);
3557                 return -EINVAL;
3558         }
3559
3560         return its_number;
3561 }
3562
3563 static int __init its_probe_one(struct resource *res,
3564                                 struct fwnode_handle *handle, int numa_node)
3565 {
3566         struct its_node *its;
3567         void __iomem *its_base;
3568         u32 val, ctlr;
3569         u64 baser, tmp, typer;
3570         struct page *page;
3571         int err;
3572
3573         its_base = ioremap(res->start, resource_size(res));
3574         if (!its_base) {
3575                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3576                 return -ENOMEM;
3577         }
3578
3579         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3580         if (val != 0x30 && val != 0x40) {
3581                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3582                 err = -ENODEV;
3583                 goto out_unmap;
3584         }
3585
3586         err = its_force_quiescent(its_base);
3587         if (err) {
3588                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3589                 goto out_unmap;
3590         }
3591
3592         pr_info("ITS %pR\n", res);
3593
3594         its = kzalloc(sizeof(*its), GFP_KERNEL);
3595         if (!its) {
3596                 err = -ENOMEM;
3597                 goto out_unmap;
3598         }
3599
3600         raw_spin_lock_init(&its->lock);
3601         mutex_init(&its->dev_alloc_lock);
3602         INIT_LIST_HEAD(&its->entry);
3603         INIT_LIST_HEAD(&its->its_device_list);
3604         typer = gic_read_typer(its_base + GITS_TYPER);
3605         its->base = its_base;
3606         its->phys_base = res->start;
3607         its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3608         its->device_ids = GITS_TYPER_DEVBITS(typer);
3609         its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3610         if (its->is_v4) {
3611                 if (!(typer & GITS_TYPER_VMOVP)) {
3612                         err = its_compute_its_list_map(res, its_base);
3613                         if (err < 0)
3614                                 goto out_free_its;
3615
3616                         its->list_nr = err;
3617
3618                         pr_info("ITS@%pa: Using ITS number %d\n",
3619                                 &res->start, err);
3620                 } else {
3621                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3622                 }
3623         }
3624
3625         its->numa_node = numa_node;
3626
3627         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3628                                 get_order(ITS_CMD_QUEUE_SZ));
3629         if (!page) {
3630                 err = -ENOMEM;
3631                 goto out_free_its;
3632         }
3633         its->cmd_base = (void *)page_address(page);
3634         its->cmd_write = its->cmd_base;
3635         its->fwnode_handle = handle;
3636         its->get_msi_base = its_irq_get_msi_base;
3637         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3638
3639         its_enable_quirks(its);
3640
3641         err = its_alloc_tables(its);
3642         if (err)
3643                 goto out_free_cmd;
3644
3645         err = its_alloc_collections(its);
3646         if (err)
3647                 goto out_free_tables;
3648
3649         baser = (virt_to_phys(its->cmd_base)    |
3650                  GITS_CBASER_RaWaWb             |
3651                  GITS_CBASER_InnerShareable     |
3652                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3653                  GITS_CBASER_VALID);
3654
3655         gits_write_cbaser(baser, its->base + GITS_CBASER);
3656         tmp = gits_read_cbaser(its->base + GITS_CBASER);
3657
3658         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3659                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3660                         /*
3661                          * The HW reports non-shareable, we must
3662                          * remove the cacheability attributes as
3663                          * well.
3664                          */
3665                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3666                                    GITS_CBASER_CACHEABILITY_MASK);
3667                         baser |= GITS_CBASER_nC;
3668                         gits_write_cbaser(baser, its->base + GITS_CBASER);
3669                 }
3670                 pr_info("ITS: using cache flushing for cmd queue\n");
3671                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3672         }
3673
3674         gits_write_cwriter(0, its->base + GITS_CWRITER);
3675         ctlr = readl_relaxed(its->base + GITS_CTLR);
3676         ctlr |= GITS_CTLR_ENABLE;
3677         if (its->is_v4)
3678                 ctlr |= GITS_CTLR_ImDe;
3679         writel_relaxed(ctlr, its->base + GITS_CTLR);
3680
3681         if (GITS_TYPER_HCC(typer))
3682                 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3683
3684         err = its_init_domain(handle, its);
3685         if (err)
3686                 goto out_free_tables;
3687
3688         raw_spin_lock(&its_lock);
3689         list_add(&its->entry, &its_nodes);
3690         raw_spin_unlock(&its_lock);
3691
3692         return 0;
3693
3694 out_free_tables:
3695         its_free_tables(its);
3696 out_free_cmd:
3697         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3698 out_free_its:
3699         kfree(its);
3700 out_unmap:
3701         iounmap(its_base);
3702         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3703         return err;
3704 }
3705
3706 static bool gic_rdists_supports_plpis(void)
3707 {
3708         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3709 }
3710
3711 static int redist_disable_lpis(void)
3712 {
3713         void __iomem *rbase = gic_data_rdist_rd_base();
3714         u64 timeout = USEC_PER_SEC;
3715         u64 val;
3716
3717         if (!gic_rdists_supports_plpis()) {
3718                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3719                 return -ENXIO;
3720         }
3721
3722         val = readl_relaxed(rbase + GICR_CTLR);
3723         if (!(val & GICR_CTLR_ENABLE_LPIS))
3724                 return 0;
3725
3726         /*
3727          * If coming via a CPU hotplug event, we don't need to disable
3728          * LPIs before trying to re-enable them. They are already
3729          * configured and all is well in the world.
3730          *
3731          * If running with preallocated tables, there is nothing to do.
3732          */
3733         if (gic_data_rdist()->lpi_enabled ||
3734             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3735                 return 0;
3736
3737         /*
3738          * From that point on, we only try to do some damage control.
3739          */
3740         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3741                 smp_processor_id());
3742         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3743
3744         /* Disable LPIs */
3745         val &= ~GICR_CTLR_ENABLE_LPIS;
3746         writel_relaxed(val, rbase + GICR_CTLR);
3747
3748         /* Make sure any change to GICR_CTLR is observable by the GIC */
3749         dsb(sy);
3750
3751         /*
3752          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3753          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3754          * Error out if we time out waiting for RWP to clear.
3755          */
3756         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3757                 if (!timeout) {
3758                         pr_err("CPU%d: Timeout while disabling LPIs\n",
3759                                smp_processor_id());
3760                         return -ETIMEDOUT;
3761                 }
3762                 udelay(1);
3763                 timeout--;
3764         }
3765
3766         /*
3767          * After it has been written to 1, it is IMPLEMENTATION
3768          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3769          * cleared to 0. Error out if clearing the bit failed.
3770          */
3771         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3772                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3773                 return -EBUSY;
3774         }
3775
3776         return 0;
3777 }
3778
3779 int its_cpu_init(void)
3780 {
3781         if (!list_empty(&its_nodes)) {
3782                 int ret;
3783
3784                 ret = redist_disable_lpis();
3785                 if (ret)
3786                         return ret;
3787
3788                 its_cpu_init_lpis();
3789                 its_cpu_init_collections();
3790         }
3791
3792         return 0;
3793 }
3794
3795 static const struct of_device_id its_device_id[] = {
3796         {       .compatible     = "arm,gic-v3-its",     },
3797         {},
3798 };
3799
3800 static int __init its_of_probe(struct device_node *node)
3801 {
3802         struct device_node *np;
3803         struct resource res;
3804
3805         for (np = of_find_matching_node(node, its_device_id); np;
3806              np = of_find_matching_node(np, its_device_id)) {
3807                 if (!of_device_is_available(np))
3808                         continue;
3809                 if (!of_property_read_bool(np, "msi-controller")) {
3810                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3811                                 np);
3812                         continue;
3813                 }
3814
3815                 if (of_address_to_resource(np, 0, &res)) {
3816                         pr_warn("%pOF: no regs?\n", np);
3817                         continue;
3818                 }
3819
3820                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3821         }
3822         return 0;
3823 }
3824
3825 #ifdef CONFIG_ACPI
3826
3827 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3828
3829 #ifdef CONFIG_ACPI_NUMA
3830 struct its_srat_map {
3831         /* numa node id */
3832         u32     numa_node;
3833         /* GIC ITS ID */
3834         u32     its_id;
3835 };
3836
3837 static struct its_srat_map *its_srat_maps __initdata;
3838 static int its_in_srat __initdata;
3839
3840 static int __init acpi_get_its_numa_node(u32 its_id)
3841 {
3842         int i;
3843
3844         for (i = 0; i < its_in_srat; i++) {
3845                 if (its_id == its_srat_maps[i].its_id)
3846                         return its_srat_maps[i].numa_node;
3847         }
3848         return NUMA_NO_NODE;
3849 }
3850
3851 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3852                                           const unsigned long end)
3853 {
3854         return 0;
3855 }
3856
3857 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3858                          const unsigned long end)
3859 {
3860         int node;
3861         struct acpi_srat_gic_its_affinity *its_affinity;
3862
3863         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3864         if (!its_affinity)
3865                 return -EINVAL;
3866
3867         if (its_affinity->header.length < sizeof(*its_affinity)) {
3868                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3869                         its_affinity->header.length);
3870                 return -EINVAL;
3871         }
3872
3873         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3874
3875         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3876                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3877                 return 0;
3878         }
3879
3880         its_srat_maps[its_in_srat].numa_node = node;
3881         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3882         its_in_srat++;
3883         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3884                 its_affinity->proximity_domain, its_affinity->its_id, node);
3885
3886         return 0;
3887 }
3888
3889 static void __init acpi_table_parse_srat_its(void)
3890 {
3891         int count;
3892
3893         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3894                         sizeof(struct acpi_table_srat),
3895                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3896                         gic_acpi_match_srat_its, 0);
3897         if (count <= 0)
3898                 return;
3899
3900         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3901                                       GFP_KERNEL);
3902         if (!its_srat_maps) {
3903                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3904                 return;
3905         }
3906
3907         acpi_table_parse_entries(ACPI_SIG_SRAT,
3908                         sizeof(struct acpi_table_srat),
3909                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3910                         gic_acpi_parse_srat_its, 0);
3911 }
3912
3913 /* free the its_srat_maps after ITS probing */
3914 static void __init acpi_its_srat_maps_free(void)
3915 {
3916         kfree(its_srat_maps);
3917 }
3918 #else
3919 static void __init acpi_table_parse_srat_its(void)      { }
3920 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3921 static void __init acpi_its_srat_maps_free(void) { }
3922 #endif
3923
3924 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3925                                           const unsigned long end)
3926 {
3927         struct acpi_madt_generic_translator *its_entry;
3928         struct fwnode_handle *dom_handle;
3929         struct resource res;
3930         int err;
3931
3932         its_entry = (struct acpi_madt_generic_translator *)header;
3933         memset(&res, 0, sizeof(res));
3934         res.start = its_entry->base_address;
3935         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3936         res.flags = IORESOURCE_MEM;
3937
3938         dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3939         if (!dom_handle) {
3940                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3941                        &res.start);
3942                 return -ENOMEM;
3943         }
3944
3945         err = iort_register_domain_token(its_entry->translation_id, res.start,
3946                                          dom_handle);
3947         if (err) {
3948                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3949                        &res.start, its_entry->translation_id);
3950                 goto dom_err;
3951         }
3952
3953         err = its_probe_one(&res, dom_handle,
3954                         acpi_get_its_numa_node(its_entry->translation_id));
3955         if (!err)
3956                 return 0;
3957
3958         iort_deregister_domain_token(its_entry->translation_id);
3959 dom_err:
3960         irq_domain_free_fwnode(dom_handle);
3961         return err;
3962 }
3963
3964 static void __init its_acpi_probe(void)
3965 {
3966         acpi_table_parse_srat_its();
3967         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3968                               gic_acpi_parse_madt_its, 0);
3969         acpi_its_srat_maps_free();
3970 }
3971 #else
3972 static void __init its_acpi_probe(void) { }
3973 #endif
3974
3975 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3976                     struct irq_domain *parent_domain)
3977 {
3978         struct device_node *of_node;
3979         struct its_node *its;
3980         bool has_v4 = false;
3981         int err;
3982
3983         its_parent = parent_domain;
3984         of_node = to_of_node(handle);
3985         if (of_node)
3986                 its_of_probe(of_node);
3987         else
3988                 its_acpi_probe();
3989
3990         if (list_empty(&its_nodes)) {
3991                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3992                 return -ENXIO;
3993         }
3994
3995         gic_rdists = rdists;
3996
3997         err = allocate_lpi_tables();
3998         if (err)
3999                 return err;
4000
4001         list_for_each_entry(its, &its_nodes, entry)
4002                 has_v4 |= its->is_v4;
4003
4004         if (has_v4 & rdists->has_vlpis) {
4005                 if (its_init_vpe_domain() ||
4006                     its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4007                         rdists->has_vlpis = false;
4008                         pr_err("ITS: Disabling GICv4 support\n");
4009                 }
4010         }
4011
4012         register_syscore_ops(&its_syscore_ops);
4013
4014         return 0;
4015 }