Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / input / rmi4 / rmi_driver.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  *
6  * This driver provides the core support for a single RMI4-based device.
7  *
8  * The RMI4 specification can be found here (URL split for line length):
9  *
10  * http://www.synaptics.com/sites/default/files/
11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12  */
13
14 #include <linux/bitmap.h>
15 #include <linux/delay.h>
16 #include <linux/fs.h>
17 #include <linux/irq.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/irqdomain.h>
22 #include <uapi/linux/input.h>
23 #include <linux/rmi.h>
24 #include "rmi_bus.h"
25 #include "rmi_driver.h"
26
27 #define HAS_NONSTANDARD_PDT_MASK 0x40
28 #define RMI4_MAX_PAGE 0xff
29 #define RMI4_PAGE_SIZE 0x100
30 #define RMI4_PAGE_MASK 0xFF00
31
32 #define RMI_DEVICE_RESET_CMD    0x01
33 #define DEFAULT_RESET_DELAY_MS  100
34
35 void rmi_free_function_list(struct rmi_device *rmi_dev)
36 {
37         struct rmi_function *fn, *tmp;
38         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
39
40         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
41
42         /* Doing it in the reverse order so F01 will be removed last */
43         list_for_each_entry_safe_reverse(fn, tmp,
44                                          &data->function_list, node) {
45                 list_del(&fn->node);
46                 rmi_unregister_function(fn);
47         }
48
49         devm_kfree(&rmi_dev->dev, data->irq_memory);
50         data->irq_memory = NULL;
51         data->irq_status = NULL;
52         data->fn_irq_bits = NULL;
53         data->current_irq_mask = NULL;
54         data->new_irq_mask = NULL;
55
56         data->f01_container = NULL;
57         data->f34_container = NULL;
58 }
59
60 static int reset_one_function(struct rmi_function *fn)
61 {
62         struct rmi_function_handler *fh;
63         int retval = 0;
64
65         if (!fn || !fn->dev.driver)
66                 return 0;
67
68         fh = to_rmi_function_handler(fn->dev.driver);
69         if (fh->reset) {
70                 retval = fh->reset(fn);
71                 if (retval < 0)
72                         dev_err(&fn->dev, "Reset failed with code %d.\n",
73                                 retval);
74         }
75
76         return retval;
77 }
78
79 static int configure_one_function(struct rmi_function *fn)
80 {
81         struct rmi_function_handler *fh;
82         int retval = 0;
83
84         if (!fn || !fn->dev.driver)
85                 return 0;
86
87         fh = to_rmi_function_handler(fn->dev.driver);
88         if (fh->config) {
89                 retval = fh->config(fn);
90                 if (retval < 0)
91                         dev_err(&fn->dev, "Config failed with code %d.\n",
92                                 retval);
93         }
94
95         return retval;
96 }
97
98 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
99 {
100         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
101         struct rmi_function *entry;
102         int retval;
103
104         list_for_each_entry(entry, &data->function_list, node) {
105                 retval = reset_one_function(entry);
106                 if (retval < 0)
107                         return retval;
108         }
109
110         return 0;
111 }
112
113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
114 {
115         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
116         struct rmi_function *entry;
117         int retval;
118
119         list_for_each_entry(entry, &data->function_list, node) {
120                 retval = configure_one_function(entry);
121                 if (retval < 0)
122                         return retval;
123         }
124
125         return 0;
126 }
127
128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
129 {
130         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
131         struct device *dev = &rmi_dev->dev;
132         int i;
133         int error;
134
135         if (!data)
136                 return 0;
137
138         if (!data->attn_data.data) {
139                 error = rmi_read_block(rmi_dev,
140                                 data->f01_container->fd.data_base_addr + 1,
141                                 data->irq_status, data->num_of_irq_regs);
142                 if (error < 0) {
143                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
144                         return error;
145                 }
146         }
147
148         mutex_lock(&data->irq_mutex);
149         bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
150                data->irq_count);
151         /*
152          * At this point, irq_status has all bits that are set in the
153          * interrupt status register and are enabled.
154          */
155         mutex_unlock(&data->irq_mutex);
156
157         for_each_set_bit(i, data->irq_status, data->irq_count)
158                 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
159
160         if (data->input)
161                 input_sync(data->input);
162
163         return 0;
164 }
165
166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
167                        void *data, size_t size)
168 {
169         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
170         struct rmi4_attn_data attn_data;
171         void *fifo_data;
172
173         if (!drvdata->enabled)
174                 return;
175
176         fifo_data = kmemdup(data, size, GFP_ATOMIC);
177         if (!fifo_data)
178                 return;
179
180         attn_data.irq_status = irq_status;
181         attn_data.size = size;
182         attn_data.data = fifo_data;
183
184         kfifo_put(&drvdata->attn_fifo, attn_data);
185 }
186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
187
188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
189 {
190         struct rmi_device *rmi_dev = dev_id;
191         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
192         struct rmi4_attn_data attn_data = {0};
193         int ret, count;
194
195         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
196         if (count) {
197                 *(drvdata->irq_status) = attn_data.irq_status;
198                 drvdata->attn_data = attn_data;
199         }
200
201         ret = rmi_process_interrupt_requests(rmi_dev);
202         if (ret)
203                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
204                         "Failed to process interrupt request: %d\n", ret);
205
206         if (count) {
207                 kfree(attn_data.data);
208                 attn_data.data = NULL;
209         }
210
211         if (!kfifo_is_empty(&drvdata->attn_fifo))
212                 return rmi_irq_fn(irq, dev_id);
213
214         return IRQ_HANDLED;
215 }
216
217 static int rmi_irq_init(struct rmi_device *rmi_dev)
218 {
219         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
220         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
221         int irq_flags = irq_get_trigger_type(pdata->irq);
222         int ret;
223
224         if (!irq_flags)
225                 irq_flags = IRQF_TRIGGER_LOW;
226
227         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
228                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
229                                         dev_driver_string(rmi_dev->xport->dev),
230                                         rmi_dev);
231         if (ret < 0) {
232                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
233                         pdata->irq);
234
235                 return ret;
236         }
237
238         data->enabled = true;
239
240         return 0;
241 }
242
243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
244 {
245         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246         struct rmi_function *entry;
247
248         list_for_each_entry(entry, &data->function_list, node) {
249                 if (entry->fd.function_number == number)
250                         return entry;
251         }
252
253         return NULL;
254 }
255
256 static int suspend_one_function(struct rmi_function *fn)
257 {
258         struct rmi_function_handler *fh;
259         int retval = 0;
260
261         if (!fn || !fn->dev.driver)
262                 return 0;
263
264         fh = to_rmi_function_handler(fn->dev.driver);
265         if (fh->suspend) {
266                 retval = fh->suspend(fn);
267                 if (retval < 0)
268                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
269                                 retval);
270         }
271
272         return retval;
273 }
274
275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
276 {
277         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
278         struct rmi_function *entry;
279         int retval;
280
281         list_for_each_entry(entry, &data->function_list, node) {
282                 retval = suspend_one_function(entry);
283                 if (retval < 0)
284                         return retval;
285         }
286
287         return 0;
288 }
289
290 static int resume_one_function(struct rmi_function *fn)
291 {
292         struct rmi_function_handler *fh;
293         int retval = 0;
294
295         if (!fn || !fn->dev.driver)
296                 return 0;
297
298         fh = to_rmi_function_handler(fn->dev.driver);
299         if (fh->resume) {
300                 retval = fh->resume(fn);
301                 if (retval < 0)
302                         dev_err(&fn->dev, "Resume failed with code %d.\n",
303                                 retval);
304         }
305
306         return retval;
307 }
308
309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
310 {
311         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
312         struct rmi_function *entry;
313         int retval;
314
315         list_for_each_entry(entry, &data->function_list, node) {
316                 retval = resume_one_function(entry);
317                 if (retval < 0)
318                         return retval;
319         }
320
321         return 0;
322 }
323
324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
325 {
326         int retval = 0;
327
328         retval = rmi_driver_process_config_requests(rmi_dev);
329         if (retval < 0)
330                 return retval;
331
332         return rmi_process_interrupt_requests(rmi_dev);
333 }
334
335 /**
336  * rmi_driver_set_input_params - set input device id and other data.
337  *
338  * @rmi_dev: Pointer to an RMI device
339  * @input: Pointer to input device
340  *
341  */
342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
343                                 struct input_dev *input)
344 {
345         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
346         input->id.vendor  = SYNAPTICS_VENDOR_ID;
347         input->id.bustype = BUS_RMI;
348         return 0;
349 }
350
351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
352                                 struct input_dev *input)
353 {
354         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
355         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
356         char *name;
357
358         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
359                               "Synaptics %s", device_name);
360         if (!name)
361                 return;
362
363         input->name = name;
364 }
365
366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
367                                    unsigned long *mask)
368 {
369         int error = 0;
370         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
371         struct device *dev = &rmi_dev->dev;
372
373         mutex_lock(&data->irq_mutex);
374         bitmap_or(data->new_irq_mask,
375                   data->current_irq_mask, mask, data->irq_count);
376
377         error = rmi_write_block(rmi_dev,
378                         data->f01_container->fd.control_base_addr + 1,
379                         data->new_irq_mask, data->num_of_irq_regs);
380         if (error < 0) {
381                 dev_err(dev, "%s: Failed to change enabled interrupts!",
382                                                         __func__);
383                 goto error_unlock;
384         }
385         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
386                     data->num_of_irq_regs);
387
388         bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
389
390 error_unlock:
391         mutex_unlock(&data->irq_mutex);
392         return error;
393 }
394
395 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
396                                      unsigned long *mask)
397 {
398         int error = 0;
399         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
400         struct device *dev = &rmi_dev->dev;
401
402         mutex_lock(&data->irq_mutex);
403         bitmap_andnot(data->fn_irq_bits,
404                       data->fn_irq_bits, mask, data->irq_count);
405         bitmap_andnot(data->new_irq_mask,
406                   data->current_irq_mask, mask, data->irq_count);
407
408         error = rmi_write_block(rmi_dev,
409                         data->f01_container->fd.control_base_addr + 1,
410                         data->new_irq_mask, data->num_of_irq_regs);
411         if (error < 0) {
412                 dev_err(dev, "%s: Failed to change enabled interrupts!",
413                                                         __func__);
414                 goto error_unlock;
415         }
416         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
417                     data->num_of_irq_regs);
418
419 error_unlock:
420         mutex_unlock(&data->irq_mutex);
421         return error;
422 }
423
424 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
425 {
426         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
427         int error;
428
429         /*
430          * Can get called before the driver is fully ready to deal with
431          * this situation.
432          */
433         if (!data || !data->f01_container) {
434                 dev_warn(&rmi_dev->dev,
435                          "Not ready to handle reset yet!\n");
436                 return 0;
437         }
438
439         error = rmi_read_block(rmi_dev,
440                                data->f01_container->fd.control_base_addr + 1,
441                                data->current_irq_mask, data->num_of_irq_regs);
442         if (error < 0) {
443                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
444                         __func__);
445                 return error;
446         }
447
448         error = rmi_driver_process_reset_requests(rmi_dev);
449         if (error < 0)
450                 return error;
451
452         error = rmi_driver_process_config_requests(rmi_dev);
453         if (error < 0)
454                 return error;
455
456         return 0;
457 }
458
459 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
460                               struct pdt_entry *entry, u16 pdt_address)
461 {
462         u8 buf[RMI_PDT_ENTRY_SIZE];
463         int error;
464
465         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
466         if (error) {
467                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
468                                 pdt_address, error);
469                 return error;
470         }
471
472         entry->page_start = pdt_address & RMI4_PAGE_MASK;
473         entry->query_base_addr = buf[0];
474         entry->command_base_addr = buf[1];
475         entry->control_base_addr = buf[2];
476         entry->data_base_addr = buf[3];
477         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
478         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
479         entry->function_number = buf[5];
480
481         return 0;
482 }
483
484 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
485                                       struct rmi_function_descriptor *fd)
486 {
487         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
488         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
489         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
490         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
491         fd->function_number = pdt->function_number;
492         fd->interrupt_source_count = pdt->interrupt_source_count;
493         fd->function_version = pdt->function_version;
494 }
495
496 #define RMI_SCAN_CONTINUE       0
497 #define RMI_SCAN_DONE           1
498
499 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
500                              int page,
501                              int *empty_pages,
502                              void *ctx,
503                              int (*callback)(struct rmi_device *rmi_dev,
504                                              void *ctx,
505                                              const struct pdt_entry *entry))
506 {
507         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
508         struct pdt_entry pdt_entry;
509         u16 page_start = RMI4_PAGE_SIZE * page;
510         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
511         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
512         u16 addr;
513         int error;
514         int retval;
515
516         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
517                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
518                 if (error)
519                         return error;
520
521                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
522                         break;
523
524                 retval = callback(rmi_dev, ctx, &pdt_entry);
525                 if (retval != RMI_SCAN_CONTINUE)
526                         return retval;
527         }
528
529         /*
530          * Count number of empty PDT pages. If a gap of two pages
531          * or more is found, stop scanning.
532          */
533         if (addr == pdt_start)
534                 ++*empty_pages;
535         else
536                 *empty_pages = 0;
537
538         return (data->bootloader_mode || *empty_pages >= 2) ?
539                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
540 }
541
542 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
543                  int (*callback)(struct rmi_device *rmi_dev,
544                  void *ctx, const struct pdt_entry *entry))
545 {
546         int page;
547         int empty_pages = 0;
548         int retval = RMI_SCAN_DONE;
549
550         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
551                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
552                                            ctx, callback);
553                 if (retval != RMI_SCAN_CONTINUE)
554                         break;
555         }
556
557         return retval < 0 ? retval : 0;
558 }
559
560 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
561                                 struct rmi_register_descriptor *rdesc)
562 {
563         int ret;
564         u8 size_presence_reg;
565         u8 buf[35];
566         int presense_offset = 1;
567         u8 *struct_buf;
568         int reg;
569         int offset = 0;
570         int map_offset = 0;
571         int i;
572         int b;
573
574         /*
575          * The first register of the register descriptor is the size of
576          * the register descriptor's presense register.
577          */
578         ret = rmi_read(d, addr, &size_presence_reg);
579         if (ret)
580                 return ret;
581         ++addr;
582
583         if (size_presence_reg < 0 || size_presence_reg > 35)
584                 return -EIO;
585
586         memset(buf, 0, sizeof(buf));
587
588         /*
589          * The presence register contains the size of the register structure
590          * and a bitmap which identified which packet registers are present
591          * for this particular register type (ie query, control, or data).
592          */
593         ret = rmi_read_block(d, addr, buf, size_presence_reg);
594         if (ret)
595                 return ret;
596         ++addr;
597
598         if (buf[0] == 0) {
599                 presense_offset = 3;
600                 rdesc->struct_size = buf[1] | (buf[2] << 8);
601         } else {
602                 rdesc->struct_size = buf[0];
603         }
604
605         for (i = presense_offset; i < size_presence_reg; i++) {
606                 for (b = 0; b < 8; b++) {
607                         if (buf[i] & (0x1 << b))
608                                 bitmap_set(rdesc->presense_map, map_offset, 1);
609                         ++map_offset;
610                 }
611         }
612
613         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
614                                                 RMI_REG_DESC_PRESENSE_BITS);
615
616         rdesc->registers = devm_kcalloc(&d->dev,
617                                         rdesc->num_registers,
618                                         sizeof(struct rmi_register_desc_item),
619                                         GFP_KERNEL);
620         if (!rdesc->registers)
621                 return -ENOMEM;
622
623         /*
624          * Allocate a temporary buffer to hold the register structure.
625          * I'm not using devm_kzalloc here since it will not be retained
626          * after exiting this function
627          */
628         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
629         if (!struct_buf)
630                 return -ENOMEM;
631
632         /*
633          * The register structure contains information about every packet
634          * register of this type. This includes the size of the packet
635          * register and a bitmap of all subpackets contained in the packet
636          * register.
637          */
638         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
639         if (ret)
640                 goto free_struct_buff;
641
642         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
643         for (i = 0; i < rdesc->num_registers; i++) {
644                 struct rmi_register_desc_item *item = &rdesc->registers[i];
645                 int reg_size = struct_buf[offset];
646
647                 ++offset;
648                 if (reg_size == 0) {
649                         reg_size = struct_buf[offset] |
650                                         (struct_buf[offset + 1] << 8);
651                         offset += 2;
652                 }
653
654                 if (reg_size == 0) {
655                         reg_size = struct_buf[offset] |
656                                         (struct_buf[offset + 1] << 8) |
657                                         (struct_buf[offset + 2] << 16) |
658                                         (struct_buf[offset + 3] << 24);
659                         offset += 4;
660                 }
661
662                 item->reg = reg;
663                 item->reg_size = reg_size;
664
665                 map_offset = 0;
666
667                 do {
668                         for (b = 0; b < 7; b++) {
669                                 if (struct_buf[offset] & (0x1 << b))
670                                         bitmap_set(item->subpacket_map,
671                                                 map_offset, 1);
672                                 ++map_offset;
673                         }
674                 } while (struct_buf[offset++] & 0x80);
675
676                 item->num_subpackets = bitmap_weight(item->subpacket_map,
677                                                 RMI_REG_DESC_SUBPACKET_BITS);
678
679                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
680                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
681                         item->reg, item->reg_size, item->num_subpackets);
682
683                 reg = find_next_bit(rdesc->presense_map,
684                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
685         }
686
687 free_struct_buff:
688         kfree(struct_buf);
689         return ret;
690 }
691
692 const struct rmi_register_desc_item *rmi_get_register_desc_item(
693                                 struct rmi_register_descriptor *rdesc, u16 reg)
694 {
695         const struct rmi_register_desc_item *item;
696         int i;
697
698         for (i = 0; i < rdesc->num_registers; i++) {
699                 item = &rdesc->registers[i];
700                 if (item->reg == reg)
701                         return item;
702         }
703
704         return NULL;
705 }
706
707 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
708 {
709         const struct rmi_register_desc_item *item;
710         int i;
711         size_t size = 0;
712
713         for (i = 0; i < rdesc->num_registers; i++) {
714                 item = &rdesc->registers[i];
715                 size += item->reg_size;
716         }
717         return size;
718 }
719
720 /* Compute the register offset relative to the base address */
721 int rmi_register_desc_calc_reg_offset(
722                 struct rmi_register_descriptor *rdesc, u16 reg)
723 {
724         const struct rmi_register_desc_item *item;
725         int offset = 0;
726         int i;
727
728         for (i = 0; i < rdesc->num_registers; i++) {
729                 item = &rdesc->registers[i];
730                 if (item->reg == reg)
731                         return offset;
732                 ++offset;
733         }
734         return -1;
735 }
736
737 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
738         u8 subpacket)
739 {
740         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
741                                 subpacket) == subpacket;
742 }
743
744 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
745                                      const struct pdt_entry *pdt)
746 {
747         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
748         int ret;
749         u8 status;
750
751         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
752                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
753                 if (ret) {
754                         dev_err(&rmi_dev->dev,
755                                 "Failed to read F34 status: %d.\n", ret);
756                         return ret;
757                 }
758
759                 if (status & BIT(7))
760                         data->bootloader_mode = true;
761         } else if (pdt->function_number == 0x01) {
762                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
763                 if (ret) {
764                         dev_err(&rmi_dev->dev,
765                                 "Failed to read F01 status: %d.\n", ret);
766                         return ret;
767                 }
768
769                 if (status & BIT(6))
770                         data->bootloader_mode = true;
771         }
772
773         return 0;
774 }
775
776 static int rmi_count_irqs(struct rmi_device *rmi_dev,
777                          void *ctx, const struct pdt_entry *pdt)
778 {
779         int *irq_count = ctx;
780         int ret;
781
782         *irq_count += pdt->interrupt_source_count;
783
784         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
785         if (ret < 0)
786                 return ret;
787
788         return RMI_SCAN_CONTINUE;
789 }
790
791 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
792                       const struct pdt_entry *pdt)
793 {
794         int error;
795
796         if (pdt->function_number == 0x01) {
797                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
798                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
799                 const struct rmi_device_platform_data *pdata =
800                                 rmi_get_platform_data(rmi_dev);
801
802                 if (rmi_dev->xport->ops->reset) {
803                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
804                                                                 cmd_addr);
805                         if (error)
806                                 return error;
807
808                         return RMI_SCAN_DONE;
809                 }
810
811                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
812                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
813                 if (error) {
814                         dev_err(&rmi_dev->dev,
815                                 "Initial reset failed. Code = %d.\n", error);
816                         return error;
817                 }
818
819                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
820
821                 return RMI_SCAN_DONE;
822         }
823
824         /* F01 should always be on page 0. If we don't find it there, fail. */
825         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
826 }
827
828 static int rmi_create_function(struct rmi_device *rmi_dev,
829                                void *ctx, const struct pdt_entry *pdt)
830 {
831         struct device *dev = &rmi_dev->dev;
832         struct rmi_driver_data *data = dev_get_drvdata(dev);
833         int *current_irq_count = ctx;
834         struct rmi_function *fn;
835         int i;
836         int error;
837
838         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
839                         pdt->function_number);
840
841         fn = kzalloc(sizeof(struct rmi_function) +
842                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
843                      GFP_KERNEL);
844         if (!fn) {
845                 dev_err(dev, "Failed to allocate memory for F%02X\n",
846                         pdt->function_number);
847                 return -ENOMEM;
848         }
849
850         INIT_LIST_HEAD(&fn->node);
851         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
852
853         fn->rmi_dev = rmi_dev;
854
855         fn->num_of_irqs = pdt->interrupt_source_count;
856         fn->irq_pos = *current_irq_count;
857         *current_irq_count += fn->num_of_irqs;
858
859         for (i = 0; i < fn->num_of_irqs; i++)
860                 set_bit(fn->irq_pos + i, fn->irq_mask);
861
862         error = rmi_register_function(fn);
863         if (error)
864                 return error;
865
866         if (pdt->function_number == 0x01)
867                 data->f01_container = fn;
868         else if (pdt->function_number == 0x34)
869                 data->f34_container = fn;
870
871         list_add_tail(&fn->node, &data->function_list);
872
873         return RMI_SCAN_CONTINUE;
874 }
875
876 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
877 {
878         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
879         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
880         int irq = pdata->irq;
881         int irq_flags;
882         int retval;
883
884         mutex_lock(&data->enabled_mutex);
885
886         if (data->enabled)
887                 goto out;
888
889         enable_irq(irq);
890         data->enabled = true;
891         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
892                 retval = disable_irq_wake(irq);
893                 if (retval)
894                         dev_warn(&rmi_dev->dev,
895                                  "Failed to disable irq for wake: %d\n",
896                                  retval);
897         }
898
899         /*
900          * Call rmi_process_interrupt_requests() after enabling irq,
901          * otherwise we may lose interrupt on edge-triggered systems.
902          */
903         irq_flags = irq_get_trigger_type(pdata->irq);
904         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
905                 rmi_process_interrupt_requests(rmi_dev);
906
907 out:
908         mutex_unlock(&data->enabled_mutex);
909 }
910
911 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
912 {
913         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
914         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
915         struct rmi4_attn_data attn_data = {0};
916         int irq = pdata->irq;
917         int retval, count;
918
919         mutex_lock(&data->enabled_mutex);
920
921         if (!data->enabled)
922                 goto out;
923
924         data->enabled = false;
925         disable_irq(irq);
926         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
927                 retval = enable_irq_wake(irq);
928                 if (retval)
929                         dev_warn(&rmi_dev->dev,
930                                  "Failed to enable irq for wake: %d\n",
931                                  retval);
932         }
933
934         /* make sure the fifo is clean */
935         while (!kfifo_is_empty(&data->attn_fifo)) {
936                 count = kfifo_get(&data->attn_fifo, &attn_data);
937                 if (count)
938                         kfree(attn_data.data);
939         }
940
941 out:
942         mutex_unlock(&data->enabled_mutex);
943 }
944
945 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
946 {
947         int retval;
948
949         retval = rmi_suspend_functions(rmi_dev);
950         if (retval)
951                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
952                         retval);
953
954         rmi_disable_irq(rmi_dev, enable_wake);
955         return retval;
956 }
957 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
958
959 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
960 {
961         int retval;
962
963         rmi_enable_irq(rmi_dev, clear_wake);
964
965         retval = rmi_resume_functions(rmi_dev);
966         if (retval)
967                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
968                         retval);
969
970         return retval;
971 }
972 EXPORT_SYMBOL_GPL(rmi_driver_resume);
973
974 static int rmi_driver_remove(struct device *dev)
975 {
976         struct rmi_device *rmi_dev = to_rmi_device(dev);
977         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
978
979         rmi_disable_irq(rmi_dev, false);
980
981         irq_domain_remove(data->irqdomain);
982         data->irqdomain = NULL;
983
984         rmi_f34_remove_sysfs(rmi_dev);
985         rmi_free_function_list(rmi_dev);
986
987         return 0;
988 }
989
990 #ifdef CONFIG_OF
991 static int rmi_driver_of_probe(struct device *dev,
992                                 struct rmi_device_platform_data *pdata)
993 {
994         int retval;
995
996         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
997                                         "syna,reset-delay-ms", 1);
998         if (retval)
999                 return retval;
1000
1001         return 0;
1002 }
1003 #else
1004 static inline int rmi_driver_of_probe(struct device *dev,
1005                                         struct rmi_device_platform_data *pdata)
1006 {
1007         return -ENODEV;
1008 }
1009 #endif
1010
1011 int rmi_probe_interrupts(struct rmi_driver_data *data)
1012 {
1013         struct rmi_device *rmi_dev = data->rmi_dev;
1014         struct device *dev = &rmi_dev->dev;
1015         struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1016         int irq_count = 0;
1017         size_t size;
1018         int retval;
1019
1020         /*
1021          * We need to count the IRQs and allocate their storage before scanning
1022          * the PDT and creating the function entries, because adding a new
1023          * function can trigger events that result in the IRQ related storage
1024          * being accessed.
1025          */
1026         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1027         data->bootloader_mode = false;
1028
1029         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1030         if (retval < 0) {
1031                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1032                 return retval;
1033         }
1034
1035         if (data->bootloader_mode)
1036                 dev_warn(dev, "Device in bootloader mode.\n");
1037
1038         /* Allocate and register a linear revmap irq_domain */
1039         data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1040                                                    &irq_domain_simple_ops,
1041                                                    data);
1042         if (!data->irqdomain) {
1043                 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1044                 return -ENOMEM;
1045         }
1046
1047         data->irq_count = irq_count;
1048         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1049
1050         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1051         data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1052         if (!data->irq_memory) {
1053                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1054                 return -ENOMEM;
1055         }
1056
1057         data->irq_status        = data->irq_memory + size * 0;
1058         data->fn_irq_bits       = data->irq_memory + size * 1;
1059         data->current_irq_mask  = data->irq_memory + size * 2;
1060         data->new_irq_mask      = data->irq_memory + size * 3;
1061
1062         return retval;
1063 }
1064
1065 int rmi_init_functions(struct rmi_driver_data *data)
1066 {
1067         struct rmi_device *rmi_dev = data->rmi_dev;
1068         struct device *dev = &rmi_dev->dev;
1069         int irq_count = 0;
1070         int retval;
1071
1072         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1073         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074         if (retval < 0) {
1075                 dev_err(dev, "Function creation failed with code %d.\n",
1076                         retval);
1077                 goto err_destroy_functions;
1078         }
1079
1080         if (!data->f01_container) {
1081                 dev_err(dev, "Missing F01 container!\n");
1082                 retval = -EINVAL;
1083                 goto err_destroy_functions;
1084         }
1085
1086         retval = rmi_read_block(rmi_dev,
1087                                 data->f01_container->fd.control_base_addr + 1,
1088                                 data->current_irq_mask, data->num_of_irq_regs);
1089         if (retval < 0) {
1090                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091                         __func__);
1092                 goto err_destroy_functions;
1093         }
1094
1095         return 0;
1096
1097 err_destroy_functions:
1098         rmi_free_function_list(rmi_dev);
1099         return retval;
1100 }
1101
1102 static int rmi_driver_probe(struct device *dev)
1103 {
1104         struct rmi_driver *rmi_driver;
1105         struct rmi_driver_data *data;
1106         struct rmi_device_platform_data *pdata;
1107         struct rmi_device *rmi_dev;
1108         int retval;
1109
1110         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1111                         __func__);
1112
1113         if (!rmi_is_physical_device(dev)) {
1114                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1115                 return -ENODEV;
1116         }
1117
1118         rmi_dev = to_rmi_device(dev);
1119         rmi_driver = to_rmi_driver(dev->driver);
1120         rmi_dev->driver = rmi_driver;
1121
1122         pdata = rmi_get_platform_data(rmi_dev);
1123
1124         if (rmi_dev->xport->dev->of_node) {
1125                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1126                 if (retval)
1127                         return retval;
1128         }
1129
1130         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1131         if (!data)
1132                 return -ENOMEM;
1133
1134         INIT_LIST_HEAD(&data->function_list);
1135         data->rmi_dev = rmi_dev;
1136         dev_set_drvdata(&rmi_dev->dev, data);
1137
1138         /*
1139          * Right before a warm boot, the sensor might be in some unusual state,
1140          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1141          * or configuration update.  In order to clear the sensor to a known
1142          * state and/or apply any updates, we issue a initial reset to clear any
1143          * previous settings and force it into normal operation.
1144          *
1145          * We have to do this before actually building the PDT because
1146          * the reflash updates (if any) might cause various registers to move
1147          * around.
1148          *
1149          * For a number of reasons, this initial reset may fail to return
1150          * within the specified time, but we'll still be able to bring up the
1151          * driver normally after that failure.  This occurs most commonly in
1152          * a cold boot situation (where then firmware takes longer to come up
1153          * than from a warm boot) and the reset_delay_ms in the platform data
1154          * has been set too short to accommodate that.  Since the sensor will
1155          * eventually come up and be usable, we don't want to just fail here
1156          * and leave the customer's device unusable.  So we warn them, and
1157          * continue processing.
1158          */
1159         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160         if (retval < 0)
1161                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162
1163         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1164         if (retval < 0) {
1165                 /*
1166                  * we'll print out a warning and continue since
1167                  * failure to get the PDT properties is not a cause to fail
1168                  */
1169                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1170                          PDT_PROPERTIES_LOCATION, retval);
1171         }
1172
1173         mutex_init(&data->irq_mutex);
1174         mutex_init(&data->enabled_mutex);
1175
1176         retval = rmi_probe_interrupts(data);
1177         if (retval)
1178                 goto err;
1179
1180         if (rmi_dev->xport->input) {
1181                 /*
1182                  * The transport driver already has an input device.
1183                  * In some cases it is preferable to reuse the transport
1184                  * devices input device instead of creating a new one here.
1185                  * One example is some HID touchpads report "pass-through"
1186                  * button events are not reported by rmi registers.
1187                  */
1188                 data->input = rmi_dev->xport->input;
1189         } else {
1190                 data->input = devm_input_allocate_device(dev);
1191                 if (!data->input) {
1192                         dev_err(dev, "%s: Failed to allocate input device.\n",
1193                                 __func__);
1194                         retval = -ENOMEM;
1195                         goto err;
1196                 }
1197                 rmi_driver_set_input_params(rmi_dev, data->input);
1198                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1199                                                 "%s/input0", dev_name(dev));
1200         }
1201
1202         retval = rmi_init_functions(data);
1203         if (retval)
1204                 goto err;
1205
1206         retval = rmi_f34_create_sysfs(rmi_dev);
1207         if (retval)
1208                 goto err;
1209
1210         if (data->input) {
1211                 rmi_driver_set_input_name(rmi_dev, data->input);
1212                 if (!rmi_dev->xport->input) {
1213                         if (input_register_device(data->input)) {
1214                                 dev_err(dev, "%s: Failed to register input device.\n",
1215                                         __func__);
1216                                 goto err_destroy_functions;
1217                         }
1218                 }
1219         }
1220
1221         retval = rmi_irq_init(rmi_dev);
1222         if (retval < 0)
1223                 goto err_destroy_functions;
1224
1225         if (data->f01_container->dev.driver) {
1226                 /* Driver already bound, so enable ATTN now. */
1227                 retval = rmi_enable_sensor(rmi_dev);
1228                 if (retval)
1229                         goto err_disable_irq;
1230         }
1231
1232         return 0;
1233
1234 err_disable_irq:
1235         rmi_disable_irq(rmi_dev, false);
1236 err_destroy_functions:
1237         rmi_free_function_list(rmi_dev);
1238 err:
1239         return retval;
1240 }
1241
1242 static struct rmi_driver rmi_physical_driver = {
1243         .driver = {
1244                 .owner  = THIS_MODULE,
1245                 .name   = "rmi4_physical",
1246                 .bus    = &rmi_bus_type,
1247                 .probe = rmi_driver_probe,
1248                 .remove = rmi_driver_remove,
1249         },
1250         .reset_handler = rmi_driver_reset_handler,
1251         .clear_irq_bits = rmi_driver_clear_irq_bits,
1252         .set_irq_bits = rmi_driver_set_irq_bits,
1253         .set_input_params = rmi_driver_set_input_params,
1254 };
1255
1256 bool rmi_is_physical_driver(struct device_driver *drv)
1257 {
1258         return drv == &rmi_physical_driver.driver;
1259 }
1260
1261 int __init rmi_register_physical_driver(void)
1262 {
1263         int error;
1264
1265         error = driver_register(&rmi_physical_driver.driver);
1266         if (error) {
1267                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1268                        error);
1269                 return error;
1270         }
1271
1272         return 0;
1273 }
1274
1275 void __exit rmi_unregister_physical_driver(void)
1276 {
1277         driver_unregister(&rmi_physical_driver.driver);
1278 }