Linux-libre 4.14.68-gnu
[librecmc/linux-libre.git] / drivers / infiniband / core / addr.c
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51
52 #include "core_priv.h"
53
54 struct addr_req {
55         struct list_head list;
56         struct sockaddr_storage src_addr;
57         struct sockaddr_storage dst_addr;
58         struct rdma_dev_addr *addr;
59         struct rdma_addr_client *client;
60         void *context;
61         void (*callback)(int status, struct sockaddr *src_addr,
62                          struct rdma_dev_addr *addr, void *context);
63         unsigned long timeout;
64         struct delayed_work work;
65         int status;
66         u32 seq;
67 };
68
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70
71 static void process_req(struct work_struct *work);
72
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79         [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80                 .len = sizeof(struct rdma_nla_ls_gid)},
81 };
82
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85         struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86         int ret;
87
88         if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89                 return false;
90
91         ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92                         nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93         if (ret)
94                 return false;
95
96         return true;
97 }
98
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101         const struct nlattr *head, *curr;
102         union ib_gid gid;
103         struct addr_req *req;
104         int len, rem;
105         int found = 0;
106
107         head = (const struct nlattr *)nlmsg_data(nlh);
108         len = nlmsg_len(nlh);
109
110         nla_for_each_attr(curr, head, len, rem) {
111                 if (curr->nla_type == LS_NLA_TYPE_DGID)
112                         memcpy(&gid, nla_data(curr), nla_len(curr));
113         }
114
115         mutex_lock(&lock);
116         list_for_each_entry(req, &req_list, list) {
117                 if (nlh->nlmsg_seq != req->seq)
118                         continue;
119                 /* We set the DGID part, the rest was set earlier */
120                 rdma_addr_set_dgid(req->addr, &gid);
121                 req->status = 0;
122                 found = 1;
123                 break;
124         }
125         mutex_unlock(&lock);
126
127         if (!found)
128                 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129                         &gid);
130 }
131
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133                              struct nlmsghdr *nlh,
134                              struct netlink_ext_ack *extack)
135 {
136         if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137             !(NETLINK_CB(skb).sk))
138                 return -EPERM;
139
140         if (ib_nl_is_good_ip_resp(nlh))
141                 ib_nl_process_good_ip_rsep(nlh);
142
143         return skb->len;
144 }
145
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147                              const void *daddr,
148                              u32 seq, u16 family)
149 {
150         struct sk_buff *skb = NULL;
151         struct nlmsghdr *nlh;
152         struct rdma_ls_ip_resolve_header *header;
153         void *data;
154         size_t size;
155         int attrtype;
156         int len;
157
158         if (family == AF_INET) {
159                 size = sizeof(struct in_addr);
160                 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161         } else {
162                 size = sizeof(struct in6_addr);
163                 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164         }
165
166         len = nla_total_size(sizeof(size));
167         len += NLMSG_ALIGN(sizeof(*header));
168
169         skb = nlmsg_new(len, GFP_KERNEL);
170         if (!skb)
171                 return -ENOMEM;
172
173         data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174                             RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175         if (!data) {
176                 nlmsg_free(skb);
177                 return -ENODATA;
178         }
179
180         /* Construct the family header first */
181         header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182         header->ifindex = dev_addr->bound_dev_if;
183         nla_put(skb, attrtype, size, daddr);
184
185         /* Repair the nlmsg header length */
186         nlmsg_end(skb, nlh);
187         rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188
189         /* Make the request retry, so when we get the response from userspace
190          * we will have something.
191          */
192         return -ENODATA;
193 }
194
195 int rdma_addr_size(struct sockaddr *addr)
196 {
197         switch (addr->sa_family) {
198         case AF_INET:
199                 return sizeof(struct sockaddr_in);
200         case AF_INET6:
201                 return sizeof(struct sockaddr_in6);
202         case AF_IB:
203                 return sizeof(struct sockaddr_ib);
204         default:
205                 return 0;
206         }
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209
210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212         int ret = rdma_addr_size((struct sockaddr *) addr);
213
214         return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217
218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220         int ret = rdma_addr_size((struct sockaddr *) addr);
221
222         return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225
226 static struct rdma_addr_client self;
227
228 void rdma_addr_register_client(struct rdma_addr_client *client)
229 {
230         atomic_set(&client->refcount, 1);
231         init_completion(&client->comp);
232 }
233 EXPORT_SYMBOL(rdma_addr_register_client);
234
235 static inline void put_client(struct rdma_addr_client *client)
236 {
237         if (atomic_dec_and_test(&client->refcount))
238                 complete(&client->comp);
239 }
240
241 void rdma_addr_unregister_client(struct rdma_addr_client *client)
242 {
243         put_client(client);
244         wait_for_completion(&client->comp);
245 }
246 EXPORT_SYMBOL(rdma_addr_unregister_client);
247
248 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
249                      const unsigned char *dst_dev_addr)
250 {
251         dev_addr->dev_type = dev->type;
252         memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
253         memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
254         if (dst_dev_addr)
255                 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
256         dev_addr->bound_dev_if = dev->ifindex;
257         return 0;
258 }
259 EXPORT_SYMBOL(rdma_copy_addr);
260
261 int rdma_translate_ip(const struct sockaddr *addr,
262                       struct rdma_dev_addr *dev_addr,
263                       u16 *vlan_id)
264 {
265         struct net_device *dev;
266         int ret = -EADDRNOTAVAIL;
267
268         if (dev_addr->bound_dev_if) {
269                 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
270                 if (!dev)
271                         return -ENODEV;
272                 ret = rdma_copy_addr(dev_addr, dev, NULL);
273                 dev_put(dev);
274                 return ret;
275         }
276
277         switch (addr->sa_family) {
278         case AF_INET:
279                 dev = ip_dev_find(dev_addr->net,
280                         ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
281
282                 if (!dev)
283                         return ret;
284
285                 ret = rdma_copy_addr(dev_addr, dev, NULL);
286                 dev_addr->bound_dev_if = dev->ifindex;
287                 if (vlan_id)
288                         *vlan_id = rdma_vlan_dev_vlan_id(dev);
289                 dev_put(dev);
290                 break;
291 #if IS_ENABLED(CONFIG_IPV6)
292         case AF_INET6:
293                 rcu_read_lock();
294                 for_each_netdev_rcu(dev_addr->net, dev) {
295                         if (ipv6_chk_addr(dev_addr->net,
296                                           &((const struct sockaddr_in6 *)addr)->sin6_addr,
297                                           dev, 1)) {
298                                 ret = rdma_copy_addr(dev_addr, dev, NULL);
299                                 dev_addr->bound_dev_if = dev->ifindex;
300                                 if (vlan_id)
301                                         *vlan_id = rdma_vlan_dev_vlan_id(dev);
302                                 break;
303                         }
304                 }
305                 rcu_read_unlock();
306                 break;
307 #endif
308         }
309         return ret;
310 }
311 EXPORT_SYMBOL(rdma_translate_ip);
312
313 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
314 {
315         unsigned long delay;
316
317         delay = time - jiffies;
318         if ((long)delay < 0)
319                 delay = 0;
320
321         mod_delayed_work(addr_wq, delayed_work, delay);
322 }
323
324 static void queue_req(struct addr_req *req)
325 {
326         struct addr_req *temp_req;
327
328         mutex_lock(&lock);
329         list_for_each_entry_reverse(temp_req, &req_list, list) {
330                 if (time_after_eq(req->timeout, temp_req->timeout))
331                         break;
332         }
333
334         list_add(&req->list, &temp_req->list);
335
336         set_timeout(&req->work, req->timeout);
337         mutex_unlock(&lock);
338 }
339
340 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
341                           const void *daddr, u32 seq, u16 family)
342 {
343         if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
344                 return -EADDRNOTAVAIL;
345
346         /* We fill in what we can, the response will fill the rest */
347         rdma_copy_addr(dev_addr, dst->dev, NULL);
348         return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
349 }
350
351 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
352                         const void *daddr)
353 {
354         struct neighbour *n;
355         int ret;
356
357         n = dst_neigh_lookup(dst, daddr);
358
359         rcu_read_lock();
360         if (!n || !(n->nud_state & NUD_VALID)) {
361                 if (n)
362                         neigh_event_send(n, NULL);
363                 ret = -ENODATA;
364         } else {
365                 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
366         }
367         rcu_read_unlock();
368
369         if (n)
370                 neigh_release(n);
371
372         return ret;
373 }
374
375 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
376 {
377         struct rtable *rt;
378         struct rt6_info *rt6;
379
380         if (family == AF_INET) {
381                 rt = container_of(dst, struct rtable, dst);
382                 return rt->rt_uses_gateway;
383         }
384
385         rt6 = container_of(dst, struct rt6_info, dst);
386         return rt6->rt6i_flags & RTF_GATEWAY;
387 }
388
389 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
390                     const struct sockaddr *dst_in, u32 seq)
391 {
392         const struct sockaddr_in *dst_in4 =
393                 (const struct sockaddr_in *)dst_in;
394         const struct sockaddr_in6 *dst_in6 =
395                 (const struct sockaddr_in6 *)dst_in;
396         const void *daddr = (dst_in->sa_family == AF_INET) ?
397                 (const void *)&dst_in4->sin_addr.s_addr :
398                 (const void *)&dst_in6->sin6_addr;
399         sa_family_t family = dst_in->sa_family;
400
401         /* Gateway + ARPHRD_INFINIBAND -> IB router */
402         if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
403                 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
404         else
405                 return dst_fetch_ha(dst, dev_addr, daddr);
406 }
407
408 static int addr4_resolve(struct sockaddr_in *src_in,
409                          const struct sockaddr_in *dst_in,
410                          struct rdma_dev_addr *addr,
411                          struct rtable **prt)
412 {
413         __be32 src_ip = src_in->sin_addr.s_addr;
414         __be32 dst_ip = dst_in->sin_addr.s_addr;
415         struct rtable *rt;
416         struct flowi4 fl4;
417         int ret;
418
419         memset(&fl4, 0, sizeof(fl4));
420         fl4.daddr = dst_ip;
421         fl4.saddr = src_ip;
422         fl4.flowi4_oif = addr->bound_dev_if;
423         rt = ip_route_output_key(addr->net, &fl4);
424         ret = PTR_ERR_OR_ZERO(rt);
425         if (ret)
426                 return ret;
427
428         src_in->sin_family = AF_INET;
429         src_in->sin_addr.s_addr = fl4.saddr;
430
431         /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
432          * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
433          * type accordingly.
434          */
435         if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
436                 addr->network = RDMA_NETWORK_IPV4;
437
438         addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
439
440         *prt = rt;
441         return 0;
442 }
443
444 #if IS_ENABLED(CONFIG_IPV6)
445 static int addr6_resolve(struct sockaddr_in6 *src_in,
446                          const struct sockaddr_in6 *dst_in,
447                          struct rdma_dev_addr *addr,
448                          struct dst_entry **pdst)
449 {
450         struct flowi6 fl6;
451         struct dst_entry *dst;
452         struct rt6_info *rt;
453         int ret;
454
455         memset(&fl6, 0, sizeof fl6);
456         fl6.daddr = dst_in->sin6_addr;
457         fl6.saddr = src_in->sin6_addr;
458         fl6.flowi6_oif = addr->bound_dev_if;
459
460         ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
461         if (ret < 0)
462                 return ret;
463
464         rt = (struct rt6_info *)dst;
465         if (ipv6_addr_any(&src_in->sin6_addr)) {
466                 src_in->sin6_family = AF_INET6;
467                 src_in->sin6_addr = fl6.saddr;
468         }
469
470         /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
471          * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
472          * type accordingly.
473          */
474         if (rt->rt6i_flags & RTF_GATEWAY &&
475             ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
476                 addr->network = RDMA_NETWORK_IPV6;
477
478         addr->hoplimit = ip6_dst_hoplimit(dst);
479
480         *pdst = dst;
481         return 0;
482 }
483 #else
484 static int addr6_resolve(struct sockaddr_in6 *src_in,
485                          const struct sockaddr_in6 *dst_in,
486                          struct rdma_dev_addr *addr,
487                          struct dst_entry **pdst)
488 {
489         return -EADDRNOTAVAIL;
490 }
491 #endif
492
493 static int addr_resolve_neigh(struct dst_entry *dst,
494                               const struct sockaddr *dst_in,
495                               struct rdma_dev_addr *addr,
496                               u32 seq)
497 {
498         if (dst->dev->flags & IFF_LOOPBACK) {
499                 int ret;
500
501                 ret = rdma_translate_ip(dst_in, addr, NULL);
502                 if (!ret)
503                         memcpy(addr->dst_dev_addr, addr->src_dev_addr,
504                                MAX_ADDR_LEN);
505
506                 return ret;
507         }
508
509         /* If the device doesn't do ARP internally */
510         if (!(dst->dev->flags & IFF_NOARP))
511                 return fetch_ha(dst, addr, dst_in, seq);
512
513         return rdma_copy_addr(addr, dst->dev, NULL);
514 }
515
516 static int addr_resolve(struct sockaddr *src_in,
517                         const struct sockaddr *dst_in,
518                         struct rdma_dev_addr *addr,
519                         bool resolve_neigh,
520                         u32 seq)
521 {
522         struct net_device *ndev;
523         struct dst_entry *dst;
524         int ret;
525
526         if (!addr->net) {
527                 pr_warn_ratelimited("%s: missing namespace\n", __func__);
528                 return -EINVAL;
529         }
530
531         if (src_in->sa_family == AF_INET) {
532                 struct rtable *rt = NULL;
533                 const struct sockaddr_in *dst_in4 =
534                         (const struct sockaddr_in *)dst_in;
535
536                 ret = addr4_resolve((struct sockaddr_in *)src_in,
537                                     dst_in4, addr, &rt);
538                 if (ret)
539                         return ret;
540
541                 if (resolve_neigh)
542                         ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
543
544                 if (addr->bound_dev_if) {
545                         ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
546                 } else {
547                         ndev = rt->dst.dev;
548                         dev_hold(ndev);
549                 }
550
551                 ip_rt_put(rt);
552         } else {
553                 const struct sockaddr_in6 *dst_in6 =
554                         (const struct sockaddr_in6 *)dst_in;
555
556                 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
557                                     dst_in6, addr,
558                                     &dst);
559                 if (ret)
560                         return ret;
561
562                 if (resolve_neigh)
563                         ret = addr_resolve_neigh(dst, dst_in, addr, seq);
564
565                 if (addr->bound_dev_if) {
566                         ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
567                 } else {
568                         ndev = dst->dev;
569                         dev_hold(ndev);
570                 }
571
572                 dst_release(dst);
573         }
574
575         if (ndev->flags & IFF_LOOPBACK) {
576                 ret = rdma_translate_ip(dst_in, addr, NULL);
577                 /*
578                  * Put the loopback device and get the translated
579                  * device instead.
580                  */
581                 dev_put(ndev);
582                 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
583         } else {
584                 addr->bound_dev_if = ndev->ifindex;
585         }
586         dev_put(ndev);
587
588         return ret;
589 }
590
591 static void process_one_req(struct work_struct *_work)
592 {
593         struct addr_req *req;
594         struct sockaddr *src_in, *dst_in;
595
596         mutex_lock(&lock);
597         req = container_of(_work, struct addr_req, work.work);
598
599         if (req->status == -ENODATA) {
600                 src_in = (struct sockaddr *)&req->src_addr;
601                 dst_in = (struct sockaddr *)&req->dst_addr;
602                 req->status = addr_resolve(src_in, dst_in, req->addr,
603                                            true, req->seq);
604                 if (req->status && time_after_eq(jiffies, req->timeout)) {
605                         req->status = -ETIMEDOUT;
606                 } else if (req->status == -ENODATA) {
607                         /* requeue the work for retrying again */
608                         set_timeout(&req->work, req->timeout);
609                         mutex_unlock(&lock);
610                         return;
611                 }
612         }
613         list_del(&req->list);
614         mutex_unlock(&lock);
615
616         /*
617          * Although the work will normally have been canceled by the
618          * workqueue, it can still be requeued as long as it is on the
619          * req_list, so it could have been requeued before we grabbed &lock.
620          * We need to cancel it after it is removed from req_list to really be
621          * sure it is safe to free.
622          */
623         cancel_delayed_work(&req->work);
624
625         req->callback(req->status, (struct sockaddr *)&req->src_addr,
626                 req->addr, req->context);
627         put_client(req->client);
628         kfree(req);
629 }
630
631 static void process_req(struct work_struct *work)
632 {
633         struct addr_req *req, *temp_req;
634         struct sockaddr *src_in, *dst_in;
635         struct list_head done_list;
636
637         INIT_LIST_HEAD(&done_list);
638
639         mutex_lock(&lock);
640         list_for_each_entry_safe(req, temp_req, &req_list, list) {
641                 if (req->status == -ENODATA) {
642                         src_in = (struct sockaddr *) &req->src_addr;
643                         dst_in = (struct sockaddr *) &req->dst_addr;
644                         req->status = addr_resolve(src_in, dst_in, req->addr,
645                                                    true, req->seq);
646                         if (req->status && time_after_eq(jiffies, req->timeout))
647                                 req->status = -ETIMEDOUT;
648                         else if (req->status == -ENODATA) {
649                                 set_timeout(&req->work, req->timeout);
650                                 continue;
651                         }
652                 }
653                 list_move_tail(&req->list, &done_list);
654         }
655
656         mutex_unlock(&lock);
657
658         list_for_each_entry_safe(req, temp_req, &done_list, list) {
659                 list_del(&req->list);
660                 /* It is safe to cancel other work items from this work item
661                  * because at a time there can be only one work item running
662                  * with this single threaded work queue.
663                  */
664                 cancel_delayed_work(&req->work);
665                 req->callback(req->status, (struct sockaddr *) &req->src_addr,
666                         req->addr, req->context);
667                 put_client(req->client);
668                 kfree(req);
669         }
670 }
671
672 int rdma_resolve_ip(struct rdma_addr_client *client,
673                     struct sockaddr *src_addr, struct sockaddr *dst_addr,
674                     struct rdma_dev_addr *addr, int timeout_ms,
675                     void (*callback)(int status, struct sockaddr *src_addr,
676                                      struct rdma_dev_addr *addr, void *context),
677                     void *context)
678 {
679         struct sockaddr *src_in, *dst_in;
680         struct addr_req *req;
681         int ret = 0;
682
683         req = kzalloc(sizeof *req, GFP_KERNEL);
684         if (!req)
685                 return -ENOMEM;
686
687         src_in = (struct sockaddr *) &req->src_addr;
688         dst_in = (struct sockaddr *) &req->dst_addr;
689
690         if (src_addr) {
691                 if (src_addr->sa_family != dst_addr->sa_family) {
692                         ret = -EINVAL;
693                         goto err;
694                 }
695
696                 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
697         } else {
698                 src_in->sa_family = dst_addr->sa_family;
699         }
700
701         memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
702         req->addr = addr;
703         req->callback = callback;
704         req->context = context;
705         req->client = client;
706         atomic_inc(&client->refcount);
707         INIT_DELAYED_WORK(&req->work, process_one_req);
708         req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
709
710         req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
711         switch (req->status) {
712         case 0:
713                 req->timeout = jiffies;
714                 queue_req(req);
715                 break;
716         case -ENODATA:
717                 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
718                 queue_req(req);
719                 break;
720         default:
721                 ret = req->status;
722                 atomic_dec(&client->refcount);
723                 goto err;
724         }
725         return ret;
726 err:
727         kfree(req);
728         return ret;
729 }
730 EXPORT_SYMBOL(rdma_resolve_ip);
731
732 int rdma_resolve_ip_route(struct sockaddr *src_addr,
733                           const struct sockaddr *dst_addr,
734                           struct rdma_dev_addr *addr)
735 {
736         struct sockaddr_storage ssrc_addr = {};
737         struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
738
739         if (src_addr) {
740                 if (src_addr->sa_family != dst_addr->sa_family)
741                         return -EINVAL;
742
743                 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
744         } else {
745                 src_in->sa_family = dst_addr->sa_family;
746         }
747
748         return addr_resolve(src_in, dst_addr, addr, false, 0);
749 }
750 EXPORT_SYMBOL(rdma_resolve_ip_route);
751
752 void rdma_addr_cancel(struct rdma_dev_addr *addr)
753 {
754         struct addr_req *req, *temp_req;
755
756         mutex_lock(&lock);
757         list_for_each_entry_safe(req, temp_req, &req_list, list) {
758                 if (req->addr == addr) {
759                         req->status = -ECANCELED;
760                         req->timeout = jiffies;
761                         list_move(&req->list, &req_list);
762                         set_timeout(&req->work, req->timeout);
763                         break;
764                 }
765         }
766         mutex_unlock(&lock);
767 }
768 EXPORT_SYMBOL(rdma_addr_cancel);
769
770 struct resolve_cb_context {
771         struct rdma_dev_addr *addr;
772         struct completion comp;
773         int status;
774 };
775
776 static void resolve_cb(int status, struct sockaddr *src_addr,
777              struct rdma_dev_addr *addr, void *context)
778 {
779         if (!status)
780                 memcpy(((struct resolve_cb_context *)context)->addr,
781                        addr, sizeof(struct rdma_dev_addr));
782         ((struct resolve_cb_context *)context)->status = status;
783         complete(&((struct resolve_cb_context *)context)->comp);
784 }
785
786 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
787                                  const union ib_gid *dgid,
788                                  u8 *dmac, u16 *vlan_id, int *if_index,
789                                  int *hoplimit)
790 {
791         int ret = 0;
792         struct rdma_dev_addr dev_addr;
793         struct resolve_cb_context ctx;
794         struct net_device *dev;
795
796         union {
797                 struct sockaddr     _sockaddr;
798                 struct sockaddr_in  _sockaddr_in;
799                 struct sockaddr_in6 _sockaddr_in6;
800         } sgid_addr, dgid_addr;
801
802
803         rdma_gid2ip(&sgid_addr._sockaddr, sgid);
804         rdma_gid2ip(&dgid_addr._sockaddr, dgid);
805
806         memset(&dev_addr, 0, sizeof(dev_addr));
807         if (if_index)
808                 dev_addr.bound_dev_if = *if_index;
809         dev_addr.net = &init_net;
810
811         ctx.addr = &dev_addr;
812         init_completion(&ctx.comp);
813         ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
814                         &dev_addr, 1000, resolve_cb, &ctx);
815         if (ret)
816                 return ret;
817
818         wait_for_completion(&ctx.comp);
819
820         ret = ctx.status;
821         if (ret)
822                 return ret;
823
824         memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
825         dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
826         if (!dev)
827                 return -ENODEV;
828         if (if_index)
829                 *if_index = dev_addr.bound_dev_if;
830         if (vlan_id)
831                 *vlan_id = rdma_vlan_dev_vlan_id(dev);
832         if (hoplimit)
833                 *hoplimit = dev_addr.hoplimit;
834         dev_put(dev);
835         return ret;
836 }
837 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
838
839 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
840 {
841         int ret = 0;
842         struct rdma_dev_addr dev_addr;
843         union {
844                 struct sockaddr     _sockaddr;
845                 struct sockaddr_in  _sockaddr_in;
846                 struct sockaddr_in6 _sockaddr_in6;
847         } gid_addr;
848
849         rdma_gid2ip(&gid_addr._sockaddr, sgid);
850
851         memset(&dev_addr, 0, sizeof(dev_addr));
852         dev_addr.net = &init_net;
853         ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
854         if (ret)
855                 return ret;
856
857         memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
858         return ret;
859 }
860 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
861
862 static int netevent_callback(struct notifier_block *self, unsigned long event,
863         void *ctx)
864 {
865         if (event == NETEVENT_NEIGH_UPDATE) {
866                 struct neighbour *neigh = ctx;
867
868                 if (neigh->nud_state & NUD_VALID)
869                         set_timeout(&work, jiffies);
870         }
871         return 0;
872 }
873
874 static struct notifier_block nb = {
875         .notifier_call = netevent_callback
876 };
877
878 int addr_init(void)
879 {
880         addr_wq = alloc_ordered_workqueue("ib_addr", 0);
881         if (!addr_wq)
882                 return -ENOMEM;
883
884         register_netevent_notifier(&nb);
885         rdma_addr_register_client(&self);
886
887         return 0;
888 }
889
890 void addr_cleanup(void)
891 {
892         rdma_addr_unregister_client(&self);
893         unregister_netevent_notifier(&nb);
894         destroy_workqueue(addr_wq);
895 }