Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / iio / magnetometer / rm3100-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PNI RM3100 3-axis geomagnetic sensor driver core.
4  *
5  * Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
6  *
7  * User Manual available at
8  * <https://www.pnicorp.com/download/rm3100-user-manual/>
9  *
10  * TODO: event generation, pm.
11  */
12
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24
25 #include "rm3100.h"
26
27 /* Cycle Count Registers. */
28 #define RM3100_REG_CC_X                 0x05
29 #define RM3100_REG_CC_Y                 0x07
30 #define RM3100_REG_CC_Z                 0x09
31
32 /* Poll Measurement Mode register. */
33 #define RM3100_REG_POLL                 0x00
34 #define         RM3100_POLL_X           BIT(4)
35 #define         RM3100_POLL_Y           BIT(5)
36 #define         RM3100_POLL_Z           BIT(6)
37
38 /* Continuous Measurement Mode register. */
39 #define RM3100_REG_CMM                  0x01
40 #define         RM3100_CMM_START        BIT(0)
41 #define         RM3100_CMM_X            BIT(4)
42 #define         RM3100_CMM_Y            BIT(5)
43 #define         RM3100_CMM_Z            BIT(6)
44
45 /* TiMe Rate Configuration register. */
46 #define RM3100_REG_TMRC                 0x0B
47 #define RM3100_TMRC_OFFSET              0x92
48
49 /* Result Status register. */
50 #define RM3100_REG_STATUS               0x34
51 #define         RM3100_STATUS_DRDY      BIT(7)
52
53 /* Measurement result registers. */
54 #define RM3100_REG_MX2                  0x24
55 #define RM3100_REG_MY2                  0x27
56 #define RM3100_REG_MZ2                  0x2a
57
58 #define RM3100_W_REG_START              RM3100_REG_POLL
59 #define RM3100_W_REG_END                RM3100_REG_TMRC
60 #define RM3100_R_REG_START              RM3100_REG_POLL
61 #define RM3100_R_REG_END                RM3100_REG_STATUS
62 #define RM3100_V_REG_START              RM3100_REG_POLL
63 #define RM3100_V_REG_END                RM3100_REG_STATUS
64
65 /*
66  * This is computed by hand, is the sum of channel storage bits and padding
67  * bits, which is 4+4+4+12=24 in here.
68  */
69 #define RM3100_SCAN_BYTES               24
70
71 #define RM3100_CMM_AXIS_SHIFT           4
72
73 struct rm3100_data {
74         struct regmap *regmap;
75         struct completion measuring_done;
76         bool use_interrupt;
77         int conversion_time;
78         int scale;
79         u8 buffer[RM3100_SCAN_BYTES];
80         struct iio_trigger *drdy_trig;
81
82         /*
83          * This lock is for protecting the consistency of series of i2c
84          * operations, that is, to make sure a measurement process will
85          * not be interrupted by a set frequency operation, which should
86          * be taken where a series of i2c operation starts, released where
87          * the operation ends.
88          */
89         struct mutex lock;
90 };
91
92 static const struct regmap_range rm3100_readable_ranges[] = {
93         regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
94 };
95
96 const struct regmap_access_table rm3100_readable_table = {
97         .yes_ranges = rm3100_readable_ranges,
98         .n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
99 };
100 EXPORT_SYMBOL_GPL(rm3100_readable_table);
101
102 static const struct regmap_range rm3100_writable_ranges[] = {
103         regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
104 };
105
106 const struct regmap_access_table rm3100_writable_table = {
107         .yes_ranges = rm3100_writable_ranges,
108         .n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
109 };
110 EXPORT_SYMBOL_GPL(rm3100_writable_table);
111
112 static const struct regmap_range rm3100_volatile_ranges[] = {
113         regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
114 };
115
116 const struct regmap_access_table rm3100_volatile_table = {
117         .yes_ranges = rm3100_volatile_ranges,
118         .n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
119 };
120 EXPORT_SYMBOL_GPL(rm3100_volatile_table);
121
122 static irqreturn_t rm3100_thread_fn(int irq, void *d)
123 {
124         struct iio_dev *indio_dev = d;
125         struct rm3100_data *data = iio_priv(indio_dev);
126
127         /*
128          * Write operation to any register or read operation
129          * to first byte of results will clear the interrupt.
130          */
131         regmap_write(data->regmap, RM3100_REG_POLL, 0);
132
133         return IRQ_HANDLED;
134 }
135
136 static irqreturn_t rm3100_irq_handler(int irq, void *d)
137 {
138         struct iio_dev *indio_dev = d;
139         struct rm3100_data *data = iio_priv(indio_dev);
140
141         switch (indio_dev->currentmode) {
142         case INDIO_DIRECT_MODE:
143                 complete(&data->measuring_done);
144                 break;
145         case INDIO_BUFFER_TRIGGERED:
146                 iio_trigger_poll(data->drdy_trig);
147                 break;
148         default:
149                 dev_err(indio_dev->dev.parent,
150                         "device mode out of control, current mode: %d",
151                         indio_dev->currentmode);
152         }
153
154         return IRQ_WAKE_THREAD;
155 }
156
157 static int rm3100_wait_measurement(struct rm3100_data *data)
158 {
159         struct regmap *regmap = data->regmap;
160         unsigned int val;
161         int tries = 20;
162         int ret;
163
164         /*
165          * A read cycle of 400kbits i2c bus is about 20us, plus the time
166          * used for scheduling, a read cycle of fast mode of this device
167          * can reach 1.7ms, it may be possible for data to arrive just
168          * after we check the RM3100_REG_STATUS. In this case, irq_handler is
169          * called before measuring_done is reinitialized, it will wait
170          * forever for data that has already been ready.
171          * Reinitialize measuring_done before looking up makes sure we
172          * will always capture interrupt no matter when it happens.
173          */
174         if (data->use_interrupt)
175                 reinit_completion(&data->measuring_done);
176
177         ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
178         if (ret < 0)
179                 return ret;
180
181         if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
182                 if (data->use_interrupt) {
183                         ret = wait_for_completion_timeout(&data->measuring_done,
184                                 msecs_to_jiffies(data->conversion_time));
185                         if (!ret)
186                                 return -ETIMEDOUT;
187                 } else {
188                         do {
189                                 usleep_range(1000, 5000);
190
191                                 ret = regmap_read(regmap, RM3100_REG_STATUS,
192                                                   &val);
193                                 if (ret < 0)
194                                         return ret;
195
196                                 if (val & RM3100_STATUS_DRDY)
197                                         break;
198                         } while (--tries);
199                         if (!tries)
200                                 return -ETIMEDOUT;
201                 }
202         }
203         return 0;
204 }
205
206 static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
207 {
208         struct regmap *regmap = data->regmap;
209         u8 buffer[3];
210         int ret;
211
212         mutex_lock(&data->lock);
213         ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
214         if (ret < 0)
215                 goto unlock_return;
216
217         ret = rm3100_wait_measurement(data);
218         if (ret < 0)
219                 goto unlock_return;
220
221         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
222         if (ret < 0)
223                 goto unlock_return;
224         mutex_unlock(&data->lock);
225
226         *val = sign_extend32((buffer[0] << 16) | (buffer[1] << 8) | buffer[2],
227                              23);
228
229         return IIO_VAL_INT;
230
231 unlock_return:
232         mutex_unlock(&data->lock);
233         return ret;
234 }
235
236 #define RM3100_CHANNEL(axis, idx)                                       \
237         {                                                               \
238                 .type = IIO_MAGN,                                       \
239                 .modified = 1,                                          \
240                 .channel2 = IIO_MOD_##axis,                             \
241                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),           \
242                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
243                         BIT(IIO_CHAN_INFO_SAMP_FREQ),                   \
244                 .scan_index = idx,                                      \
245                 .scan_type = {                                          \
246                         .sign = 's',                                    \
247                         .realbits = 24,                                 \
248                         .storagebits = 32,                              \
249                         .shift = 8,                                     \
250                         .endianness = IIO_BE,                           \
251                 },                                                      \
252         }
253
254 static const struct iio_chan_spec rm3100_channels[] = {
255         RM3100_CHANNEL(X, 0),
256         RM3100_CHANNEL(Y, 1),
257         RM3100_CHANNEL(Z, 2),
258         IIO_CHAN_SOFT_TIMESTAMP(3),
259 };
260
261 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
262         "600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
263 );
264
265 static struct attribute *rm3100_attributes[] = {
266         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
267         NULL,
268 };
269
270 static const struct attribute_group rm3100_attribute_group = {
271         .attrs = rm3100_attributes,
272 };
273
274 #define RM3100_SAMP_NUM                 14
275
276 /*
277  * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
278  * Time between reading: rm3100_sam_rates[][2]ms.
279  * The first one is actually 1.7ms.
280  */
281 static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
282         {600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
283         {18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
284         {1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
285         {0, 15000, 6700},  {0, 75000, 13000}
286 };
287
288 static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
289 {
290         unsigned int tmp;
291         int ret;
292
293         mutex_lock(&data->lock);
294         ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
295         mutex_unlock(&data->lock);
296         if (ret < 0)
297                 return ret;
298         *val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
299         *val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
300
301         return IIO_VAL_INT_PLUS_MICRO;
302 }
303
304 static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
305 {
306         int ret;
307         u8 i;
308
309         for (i = 0; i < 3; i++) {
310                 ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
311                 if (ret < 0)
312                         return ret;
313         }
314
315         /*
316          * The scale of this sensor depends on the cycle count value, these
317          * three values are corresponding to the cycle count value 50, 100,
318          * 200. scale = output / gain * 10^4.
319          */
320         switch (val) {
321         case 50:
322                 data->scale = 500;
323                 break;
324         case 100:
325                 data->scale = 263;
326                 break;
327         /*
328          * case 200:
329          * This function will never be called by users' code, so here we
330          * assume that it will never get a wrong parameter.
331          */
332         default:
333                 data->scale = 133;
334         }
335
336         return 0;
337 }
338
339 static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
340 {
341         struct rm3100_data *data = iio_priv(indio_dev);
342         struct regmap *regmap = data->regmap;
343         unsigned int cycle_count;
344         int ret;
345         int i;
346
347         mutex_lock(&data->lock);
348         /* All cycle count registers use the same value. */
349         ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
350         if (ret < 0)
351                 goto unlock_return;
352
353         for (i = 0; i < RM3100_SAMP_NUM; i++) {
354                 if (val == rm3100_samp_rates[i][0] &&
355                     val2 == rm3100_samp_rates[i][1])
356                         break;
357         }
358         if (i == RM3100_SAMP_NUM) {
359                 ret = -EINVAL;
360                 goto unlock_return;
361         }
362
363         ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
364         if (ret < 0)
365                 goto unlock_return;
366
367         /* Checking if cycle count registers need changing. */
368         if (val == 600 && cycle_count == 200) {
369                 ret = rm3100_set_cycle_count(data, 100);
370                 if (ret < 0)
371                         goto unlock_return;
372         } else if (val != 600 && cycle_count == 100) {
373                 ret = rm3100_set_cycle_count(data, 200);
374                 if (ret < 0)
375                         goto unlock_return;
376         }
377
378         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
379                 /* Writing TMRC registers requires CMM reset. */
380                 ret = regmap_write(regmap, RM3100_REG_CMM, 0);
381                 if (ret < 0)
382                         goto unlock_return;
383                 ret = regmap_write(data->regmap, RM3100_REG_CMM,
384                         (*indio_dev->active_scan_mask & 0x7) <<
385                         RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
386                 if (ret < 0)
387                         goto unlock_return;
388         }
389         mutex_unlock(&data->lock);
390
391         data->conversion_time = rm3100_samp_rates[i][2] * 2;
392         return 0;
393
394 unlock_return:
395         mutex_unlock(&data->lock);
396         return ret;
397 }
398
399 static int rm3100_read_raw(struct iio_dev *indio_dev,
400                            const struct iio_chan_spec *chan,
401                            int *val, int *val2, long mask)
402 {
403         struct rm3100_data *data = iio_priv(indio_dev);
404         int ret;
405
406         switch (mask) {
407         case IIO_CHAN_INFO_RAW:
408                 ret = iio_device_claim_direct_mode(indio_dev);
409                 if (ret < 0)
410                         return ret;
411
412                 ret = rm3100_read_mag(data, chan->scan_index, val);
413                 iio_device_release_direct_mode(indio_dev);
414
415                 return ret;
416         case IIO_CHAN_INFO_SCALE:
417                 *val = 0;
418                 *val2 = data->scale;
419
420                 return IIO_VAL_INT_PLUS_MICRO;
421         case IIO_CHAN_INFO_SAMP_FREQ:
422                 return rm3100_get_samp_freq(data, val, val2);
423         default:
424                 return -EINVAL;
425         }
426 }
427
428 static int rm3100_write_raw(struct iio_dev *indio_dev,
429                             struct iio_chan_spec const *chan,
430                             int val, int val2, long mask)
431 {
432         switch (mask) {
433         case IIO_CHAN_INFO_SAMP_FREQ:
434                 return rm3100_set_samp_freq(indio_dev, val, val2);
435         default:
436                 return -EINVAL;
437         }
438 }
439
440 static const struct iio_info rm3100_info = {
441         .attrs = &rm3100_attribute_group,
442         .read_raw = rm3100_read_raw,
443         .write_raw = rm3100_write_raw,
444 };
445
446 static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
447 {
448         struct rm3100_data *data = iio_priv(indio_dev);
449
450         /* Starting channels enabled. */
451         return regmap_write(data->regmap, RM3100_REG_CMM,
452                 (*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
453                 RM3100_CMM_START);
454 }
455
456 static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
457 {
458         struct rm3100_data *data = iio_priv(indio_dev);
459
460         return regmap_write(data->regmap, RM3100_REG_CMM, 0);
461 }
462
463 static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
464         .preenable = rm3100_buffer_preenable,
465         .postenable = iio_triggered_buffer_postenable,
466         .predisable = iio_triggered_buffer_predisable,
467         .postdisable = rm3100_buffer_postdisable,
468 };
469
470 static irqreturn_t rm3100_trigger_handler(int irq, void *p)
471 {
472         struct iio_poll_func *pf = p;
473         struct iio_dev *indio_dev = pf->indio_dev;
474         unsigned long scan_mask = *indio_dev->active_scan_mask;
475         unsigned int mask_len = indio_dev->masklength;
476         struct rm3100_data *data = iio_priv(indio_dev);
477         struct regmap *regmap = data->regmap;
478         int ret, i, bit;
479
480         mutex_lock(&data->lock);
481         switch (scan_mask) {
482         case BIT(0) | BIT(1) | BIT(2):
483                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
484                 mutex_unlock(&data->lock);
485                 if (ret < 0)
486                         goto done;
487                 /* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
488                 for (i = 2; i > 0; i--)
489                         memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
490                 break;
491         case BIT(0) | BIT(1):
492                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
493                 mutex_unlock(&data->lock);
494                 if (ret < 0)
495                         goto done;
496                 memmove(data->buffer + 4, data->buffer + 3, 3);
497                 break;
498         case BIT(1) | BIT(2):
499                 ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
500                 mutex_unlock(&data->lock);
501                 if (ret < 0)
502                         goto done;
503                 memmove(data->buffer + 4, data->buffer + 3, 3);
504                 break;
505         case BIT(0) | BIT(2):
506                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
507                 mutex_unlock(&data->lock);
508                 if (ret < 0)
509                         goto done;
510                 memmove(data->buffer + 4, data->buffer + 6, 3);
511                 break;
512         default:
513                 for_each_set_bit(bit, &scan_mask, mask_len) {
514                         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
515                                                data->buffer, 3);
516                         if (ret < 0) {
517                                 mutex_unlock(&data->lock);
518                                 goto done;
519                         }
520                 }
521                 mutex_unlock(&data->lock);
522         }
523         /*
524          * Always using the same buffer so that we wouldn't need to set the
525          * paddings to 0 in case of leaking any data.
526          */
527         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
528                                            pf->timestamp);
529 done:
530         iio_trigger_notify_done(indio_dev->trig);
531
532         return IRQ_HANDLED;
533 }
534
535 int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
536 {
537         struct iio_dev *indio_dev;
538         struct rm3100_data *data;
539         unsigned int tmp;
540         int ret;
541
542         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
543         if (!indio_dev)
544                 return -ENOMEM;
545
546         data = iio_priv(indio_dev);
547         data->regmap = regmap;
548
549         mutex_init(&data->lock);
550
551         indio_dev->dev.parent = dev;
552         indio_dev->name = "rm3100";
553         indio_dev->info = &rm3100_info;
554         indio_dev->channels = rm3100_channels;
555         indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
556         indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
557         indio_dev->currentmode = INDIO_DIRECT_MODE;
558
559         if (!irq)
560                 data->use_interrupt = false;
561         else {
562                 data->use_interrupt = true;
563
564                 init_completion(&data->measuring_done);
565                 ret = devm_request_threaded_irq(dev,
566                                                 irq,
567                                                 rm3100_irq_handler,
568                                                 rm3100_thread_fn,
569                                                 IRQF_TRIGGER_HIGH |
570                                                 IRQF_ONESHOT,
571                                                 indio_dev->name,
572                                                 indio_dev);
573                 if (ret < 0) {
574                         dev_err(dev, "request irq line failed.\n");
575                         return ret;
576                 }
577
578                 data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
579                                                          indio_dev->name,
580                                                          indio_dev->id);
581                 if (!data->drdy_trig)
582                         return -ENOMEM;
583
584                 data->drdy_trig->dev.parent = dev;
585                 ret = devm_iio_trigger_register(dev, data->drdy_trig);
586                 if (ret < 0)
587                         return ret;
588         }
589
590         ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
591                                               &iio_pollfunc_store_time,
592                                               rm3100_trigger_handler,
593                                               &rm3100_buffer_ops);
594         if (ret < 0)
595                 return ret;
596
597         ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
598         if (ret < 0)
599                 return ret;
600         /* Initializing max wait time, which is double conversion time. */
601         data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
602                                 * 2;
603
604         /* Cycle count values may not be what we want. */
605         if ((tmp - RM3100_TMRC_OFFSET) == 0)
606                 rm3100_set_cycle_count(data, 100);
607         else
608                 rm3100_set_cycle_count(data, 200);
609
610         return devm_iio_device_register(dev, indio_dev);
611 }
612 EXPORT_SYMBOL_GPL(rm3100_common_probe);
613
614 MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
615 MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
616 MODULE_LICENSE("GPL v2");