Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54  * Register a new report for a device.
55  */
56
57 struct hid_report *hid_register_report(struct hid_device *device,
58                                        unsigned int type, unsigned int id,
59                                        unsigned int application)
60 {
61         struct hid_report_enum *report_enum = device->report_enum + type;
62         struct hid_report *report;
63
64         if (id >= HID_MAX_IDS)
65                 return NULL;
66         if (report_enum->report_id_hash[id])
67                 return report_enum->report_id_hash[id];
68
69         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70         if (!report)
71                 return NULL;
72
73         if (id != 0)
74                 report_enum->numbered = 1;
75
76         report->id = id;
77         report->type = type;
78         report->size = 0;
79         report->device = device;
80         report->application = application;
81         report_enum->report_id_hash[id] = report;
82
83         list_add_tail(&report->list, &report_enum->report_list);
84
85         return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90  * Register a new field for this report.
91  */
92
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95         struct hid_field *field;
96
97         if (report->maxfield == HID_MAX_FIELDS) {
98                 hid_err(report->device, "too many fields in report\n");
99                 return NULL;
100         }
101
102         field = kzalloc((sizeof(struct hid_field) +
103                          usages * sizeof(struct hid_usage) +
104                          values * sizeof(unsigned)), GFP_KERNEL);
105         if (!field)
106                 return NULL;
107
108         field->index = report->maxfield++;
109         report->field[field->index] = field;
110         field->usage = (struct hid_usage *)(field + 1);
111         field->value = (s32 *)(field->usage + usages);
112         field->report = report;
113
114         return field;
115 }
116
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123         struct hid_collection *collection;
124         unsigned usage;
125         int collection_index;
126
127         usage = parser->local.usage[0];
128
129         if (parser->collection_stack_ptr == parser->collection_stack_size) {
130                 unsigned int *collection_stack;
131                 unsigned int new_size = parser->collection_stack_size +
132                                         HID_COLLECTION_STACK_SIZE;
133
134                 collection_stack = krealloc(parser->collection_stack,
135                                             new_size * sizeof(unsigned int),
136                                             GFP_KERNEL);
137                 if (!collection_stack)
138                         return -ENOMEM;
139
140                 parser->collection_stack = collection_stack;
141                 parser->collection_stack_size = new_size;
142         }
143
144         if (parser->device->maxcollection == parser->device->collection_size) {
145                 collection = kmalloc(
146                                 array3_size(sizeof(struct hid_collection),
147                                             parser->device->collection_size,
148                                             2),
149                                 GFP_KERNEL);
150                 if (collection == NULL) {
151                         hid_err(parser->device, "failed to reallocate collection array\n");
152                         return -ENOMEM;
153                 }
154                 memcpy(collection, parser->device->collection,
155                         sizeof(struct hid_collection) *
156                         parser->device->collection_size);
157                 memset(collection + parser->device->collection_size, 0,
158                         sizeof(struct hid_collection) *
159                         parser->device->collection_size);
160                 kfree(parser->device->collection);
161                 parser->device->collection = collection;
162                 parser->device->collection_size *= 2;
163         }
164
165         parser->collection_stack[parser->collection_stack_ptr++] =
166                 parser->device->maxcollection;
167
168         collection_index = parser->device->maxcollection++;
169         collection = parser->device->collection + collection_index;
170         collection->type = type;
171         collection->usage = usage;
172         collection->level = parser->collection_stack_ptr - 1;
173         collection->parent_idx = (collection->level == 0) ? -1 :
174                 parser->collection_stack[collection->level - 1];
175
176         if (type == HID_COLLECTION_APPLICATION)
177                 parser->device->maxapplication++;
178
179         return 0;
180 }
181
182 /*
183  * Close a collection.
184  */
185
186 static int close_collection(struct hid_parser *parser)
187 {
188         if (!parser->collection_stack_ptr) {
189                 hid_err(parser->device, "collection stack underflow\n");
190                 return -EINVAL;
191         }
192         parser->collection_stack_ptr--;
193         return 0;
194 }
195
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203         struct hid_collection *collection = parser->device->collection;
204         int n;
205
206         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207                 unsigned index = parser->collection_stack[n];
208                 if (collection[index].type == type)
209                         return collection[index].usage;
210         }
211         return 0; /* we know nothing about this usage type */
212 }
213
214 /*
215  * Add a usage to the temporary parser table.
216  */
217
218 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
219 {
220         if (parser->local.usage_index >= HID_MAX_USAGES) {
221                 hid_err(parser->device, "usage index exceeded\n");
222                 return -1;
223         }
224         parser->local.usage[parser->local.usage_index] = usage;
225         parser->local.usage_size[parser->local.usage_index] = size;
226         parser->local.collection_index[parser->local.usage_index] =
227                 parser->collection_stack_ptr ?
228                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
229         parser->local.usage_index++;
230         return 0;
231 }
232
233 /*
234  * Register a new field for this report.
235  */
236
237 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
238 {
239         struct hid_report *report;
240         struct hid_field *field;
241         unsigned int usages;
242         unsigned int offset;
243         unsigned int i;
244         unsigned int application;
245
246         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
247
248         report = hid_register_report(parser->device, report_type,
249                                      parser->global.report_id, application);
250         if (!report) {
251                 hid_err(parser->device, "hid_register_report failed\n");
252                 return -1;
253         }
254
255         /* Handle both signed and unsigned cases properly */
256         if ((parser->global.logical_minimum < 0 &&
257                 parser->global.logical_maximum <
258                 parser->global.logical_minimum) ||
259                 (parser->global.logical_minimum >= 0 &&
260                 (__u32)parser->global.logical_maximum <
261                 (__u32)parser->global.logical_minimum)) {
262                 dbg_hid("logical range invalid 0x%x 0x%x\n",
263                         parser->global.logical_minimum,
264                         parser->global.logical_maximum);
265                 return -1;
266         }
267
268         offset = report->size;
269         report->size += parser->global.report_size * parser->global.report_count;
270
271         if (!parser->local.usage_index) /* Ignore padding fields */
272                 return 0;
273
274         usages = max_t(unsigned, parser->local.usage_index,
275                                  parser->global.report_count);
276
277         field = hid_register_field(report, usages, parser->global.report_count);
278         if (!field)
279                 return 0;
280
281         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
282         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
283         field->application = application;
284
285         for (i = 0; i < usages; i++) {
286                 unsigned j = i;
287                 /* Duplicate the last usage we parsed if we have excess values */
288                 if (i >= parser->local.usage_index)
289                         j = parser->local.usage_index - 1;
290                 field->usage[i].hid = parser->local.usage[j];
291                 field->usage[i].collection_index =
292                         parser->local.collection_index[j];
293                 field->usage[i].usage_index = i;
294                 field->usage[i].resolution_multiplier = 1;
295         }
296
297         field->maxusage = usages;
298         field->flags = flags;
299         field->report_offset = offset;
300         field->report_type = report_type;
301         field->report_size = parser->global.report_size;
302         field->report_count = parser->global.report_count;
303         field->logical_minimum = parser->global.logical_minimum;
304         field->logical_maximum = parser->global.logical_maximum;
305         field->physical_minimum = parser->global.physical_minimum;
306         field->physical_maximum = parser->global.physical_maximum;
307         field->unit_exponent = parser->global.unit_exponent;
308         field->unit = parser->global.unit;
309
310         return 0;
311 }
312
313 /*
314  * Read data value from item.
315  */
316
317 static u32 item_udata(struct hid_item *item)
318 {
319         switch (item->size) {
320         case 1: return item->data.u8;
321         case 2: return item->data.u16;
322         case 4: return item->data.u32;
323         }
324         return 0;
325 }
326
327 static s32 item_sdata(struct hid_item *item)
328 {
329         switch (item->size) {
330         case 1: return item->data.s8;
331         case 2: return item->data.s16;
332         case 4: return item->data.s32;
333         }
334         return 0;
335 }
336
337 /*
338  * Process a global item.
339  */
340
341 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
342 {
343         __s32 raw_value;
344         switch (item->tag) {
345         case HID_GLOBAL_ITEM_TAG_PUSH:
346
347                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
348                         hid_err(parser->device, "global environment stack overflow\n");
349                         return -1;
350                 }
351
352                 memcpy(parser->global_stack + parser->global_stack_ptr++,
353                         &parser->global, sizeof(struct hid_global));
354                 return 0;
355
356         case HID_GLOBAL_ITEM_TAG_POP:
357
358                 if (!parser->global_stack_ptr) {
359                         hid_err(parser->device, "global environment stack underflow\n");
360                         return -1;
361                 }
362
363                 memcpy(&parser->global, parser->global_stack +
364                         --parser->global_stack_ptr, sizeof(struct hid_global));
365                 return 0;
366
367         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
368                 parser->global.usage_page = item_udata(item);
369                 return 0;
370
371         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
372                 parser->global.logical_minimum = item_sdata(item);
373                 return 0;
374
375         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
376                 if (parser->global.logical_minimum < 0)
377                         parser->global.logical_maximum = item_sdata(item);
378                 else
379                         parser->global.logical_maximum = item_udata(item);
380                 return 0;
381
382         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
383                 parser->global.physical_minimum = item_sdata(item);
384                 return 0;
385
386         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
387                 if (parser->global.physical_minimum < 0)
388                         parser->global.physical_maximum = item_sdata(item);
389                 else
390                         parser->global.physical_maximum = item_udata(item);
391                 return 0;
392
393         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
394                 /* Many devices provide unit exponent as a two's complement
395                  * nibble due to the common misunderstanding of HID
396                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
397                  * both this and the standard encoding. */
398                 raw_value = item_sdata(item);
399                 if (!(raw_value & 0xfffffff0))
400                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
401                 else
402                         parser->global.unit_exponent = raw_value;
403                 return 0;
404
405         case HID_GLOBAL_ITEM_TAG_UNIT:
406                 parser->global.unit = item_udata(item);
407                 return 0;
408
409         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
410                 parser->global.report_size = item_udata(item);
411                 if (parser->global.report_size > 256) {
412                         hid_err(parser->device, "invalid report_size %d\n",
413                                         parser->global.report_size);
414                         return -1;
415                 }
416                 return 0;
417
418         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
419                 parser->global.report_count = item_udata(item);
420                 if (parser->global.report_count > HID_MAX_USAGES) {
421                         hid_err(parser->device, "invalid report_count %d\n",
422                                         parser->global.report_count);
423                         return -1;
424                 }
425                 return 0;
426
427         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
428                 parser->global.report_id = item_udata(item);
429                 if (parser->global.report_id == 0 ||
430                     parser->global.report_id >= HID_MAX_IDS) {
431                         hid_err(parser->device, "report_id %u is invalid\n",
432                                 parser->global.report_id);
433                         return -1;
434                 }
435                 return 0;
436
437         default:
438                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
439                 return -1;
440         }
441 }
442
443 /*
444  * Process a local item.
445  */
446
447 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
448 {
449         __u32 data;
450         unsigned n;
451         __u32 count;
452
453         data = item_udata(item);
454
455         switch (item->tag) {
456         case HID_LOCAL_ITEM_TAG_DELIMITER:
457
458                 if (data) {
459                         /*
460                          * We treat items before the first delimiter
461                          * as global to all usage sets (branch 0).
462                          * In the moment we process only these global
463                          * items and the first delimiter set.
464                          */
465                         if (parser->local.delimiter_depth != 0) {
466                                 hid_err(parser->device, "nested delimiters\n");
467                                 return -1;
468                         }
469                         parser->local.delimiter_depth++;
470                         parser->local.delimiter_branch++;
471                 } else {
472                         if (parser->local.delimiter_depth < 1) {
473                                 hid_err(parser->device, "bogus close delimiter\n");
474                                 return -1;
475                         }
476                         parser->local.delimiter_depth--;
477                 }
478                 return 0;
479
480         case HID_LOCAL_ITEM_TAG_USAGE:
481
482                 if (parser->local.delimiter_branch > 1) {
483                         dbg_hid("alternative usage ignored\n");
484                         return 0;
485                 }
486
487                 return hid_add_usage(parser, data, item->size);
488
489         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
490
491                 if (parser->local.delimiter_branch > 1) {
492                         dbg_hid("alternative usage ignored\n");
493                         return 0;
494                 }
495
496                 parser->local.usage_minimum = data;
497                 return 0;
498
499         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
500
501                 if (parser->local.delimiter_branch > 1) {
502                         dbg_hid("alternative usage ignored\n");
503                         return 0;
504                 }
505
506                 count = data - parser->local.usage_minimum;
507                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
508                         /*
509                          * We do not warn if the name is not set, we are
510                          * actually pre-scanning the device.
511                          */
512                         if (dev_name(&parser->device->dev))
513                                 hid_warn(parser->device,
514                                          "ignoring exceeding usage max\n");
515                         data = HID_MAX_USAGES - parser->local.usage_index +
516                                 parser->local.usage_minimum - 1;
517                         if (data <= 0) {
518                                 hid_err(parser->device,
519                                         "no more usage index available\n");
520                                 return -1;
521                         }
522                 }
523
524                 for (n = parser->local.usage_minimum; n <= data; n++)
525                         if (hid_add_usage(parser, n, item->size)) {
526                                 dbg_hid("hid_add_usage failed\n");
527                                 return -1;
528                         }
529                 return 0;
530
531         default:
532
533                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
534                 return 0;
535         }
536         return 0;
537 }
538
539 /*
540  * Concatenate Usage Pages into Usages where relevant:
541  * As per specification, 6.2.2.8: "When the parser encounters a main item it
542  * concatenates the last declared Usage Page with a Usage to form a complete
543  * usage value."
544  */
545
546 static void hid_concatenate_usage_page(struct hid_parser *parser)
547 {
548         int i;
549
550         for (i = 0; i < parser->local.usage_index; i++)
551                 if (parser->local.usage_size[i] <= 2)
552                         parser->local.usage[i] += parser->global.usage_page << 16;
553 }
554
555 /*
556  * Process a main item.
557  */
558
559 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
560 {
561         __u32 data;
562         int ret;
563
564         hid_concatenate_usage_page(parser);
565
566         data = item_udata(item);
567
568         switch (item->tag) {
569         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
570                 ret = open_collection(parser, data & 0xff);
571                 break;
572         case HID_MAIN_ITEM_TAG_END_COLLECTION:
573                 ret = close_collection(parser);
574                 break;
575         case HID_MAIN_ITEM_TAG_INPUT:
576                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
577                 break;
578         case HID_MAIN_ITEM_TAG_OUTPUT:
579                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
580                 break;
581         case HID_MAIN_ITEM_TAG_FEATURE:
582                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
583                 break;
584         default:
585                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
586                 ret = 0;
587         }
588
589         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
590
591         return ret;
592 }
593
594 /*
595  * Process a reserved item.
596  */
597
598 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
599 {
600         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
601         return 0;
602 }
603
604 /*
605  * Free a report and all registered fields. The field->usage and
606  * field->value table's are allocated behind the field, so we need
607  * only to free(field) itself.
608  */
609
610 static void hid_free_report(struct hid_report *report)
611 {
612         unsigned n;
613
614         for (n = 0; n < report->maxfield; n++)
615                 kfree(report->field[n]);
616         kfree(report);
617 }
618
619 /*
620  * Close report. This function returns the device
621  * state to the point prior to hid_open_report().
622  */
623 static void hid_close_report(struct hid_device *device)
624 {
625         unsigned i, j;
626
627         for (i = 0; i < HID_REPORT_TYPES; i++) {
628                 struct hid_report_enum *report_enum = device->report_enum + i;
629
630                 for (j = 0; j < HID_MAX_IDS; j++) {
631                         struct hid_report *report = report_enum->report_id_hash[j];
632                         if (report)
633                                 hid_free_report(report);
634                 }
635                 memset(report_enum, 0, sizeof(*report_enum));
636                 INIT_LIST_HEAD(&report_enum->report_list);
637         }
638
639         kfree(device->rdesc);
640         device->rdesc = NULL;
641         device->rsize = 0;
642
643         kfree(device->collection);
644         device->collection = NULL;
645         device->collection_size = 0;
646         device->maxcollection = 0;
647         device->maxapplication = 0;
648
649         device->status &= ~HID_STAT_PARSED;
650 }
651
652 /*
653  * Free a device structure, all reports, and all fields.
654  */
655
656 static void hid_device_release(struct device *dev)
657 {
658         struct hid_device *hid = to_hid_device(dev);
659
660         hid_close_report(hid);
661         kfree(hid->dev_rdesc);
662         kfree(hid);
663 }
664
665 /*
666  * Fetch a report description item from the data stream. We support long
667  * items, though they are not used yet.
668  */
669
670 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
671 {
672         u8 b;
673
674         if ((end - start) <= 0)
675                 return NULL;
676
677         b = *start++;
678
679         item->type = (b >> 2) & 3;
680         item->tag  = (b >> 4) & 15;
681
682         if (item->tag == HID_ITEM_TAG_LONG) {
683
684                 item->format = HID_ITEM_FORMAT_LONG;
685
686                 if ((end - start) < 2)
687                         return NULL;
688
689                 item->size = *start++;
690                 item->tag  = *start++;
691
692                 if ((end - start) < item->size)
693                         return NULL;
694
695                 item->data.longdata = start;
696                 start += item->size;
697                 return start;
698         }
699
700         item->format = HID_ITEM_FORMAT_SHORT;
701         item->size = b & 3;
702
703         switch (item->size) {
704         case 0:
705                 return start;
706
707         case 1:
708                 if ((end - start) < 1)
709                         return NULL;
710                 item->data.u8 = *start++;
711                 return start;
712
713         case 2:
714                 if ((end - start) < 2)
715                         return NULL;
716                 item->data.u16 = get_unaligned_le16(start);
717                 start = (__u8 *)((__le16 *)start + 1);
718                 return start;
719
720         case 3:
721                 item->size++;
722                 if ((end - start) < 4)
723                         return NULL;
724                 item->data.u32 = get_unaligned_le32(start);
725                 start = (__u8 *)((__le32 *)start + 1);
726                 return start;
727         }
728
729         return NULL;
730 }
731
732 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
733 {
734         struct hid_device *hid = parser->device;
735
736         if (usage == HID_DG_CONTACTID)
737                 hid->group = HID_GROUP_MULTITOUCH;
738 }
739
740 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
741 {
742         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
743             parser->global.report_size == 8)
744                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
745 }
746
747 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
748 {
749         struct hid_device *hid = parser->device;
750         int i;
751
752         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
753             type == HID_COLLECTION_PHYSICAL)
754                 hid->group = HID_GROUP_SENSOR_HUB;
755
756         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
757             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
758             hid->group == HID_GROUP_MULTITOUCH)
759                 hid->group = HID_GROUP_GENERIC;
760
761         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
762                 for (i = 0; i < parser->local.usage_index; i++)
763                         if (parser->local.usage[i] == HID_GD_POINTER)
764                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
765
766         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
767                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
768 }
769
770 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
771 {
772         __u32 data;
773         int i;
774
775         hid_concatenate_usage_page(parser);
776
777         data = item_udata(item);
778
779         switch (item->tag) {
780         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
781                 hid_scan_collection(parser, data & 0xff);
782                 break;
783         case HID_MAIN_ITEM_TAG_END_COLLECTION:
784                 break;
785         case HID_MAIN_ITEM_TAG_INPUT:
786                 /* ignore constant inputs, they will be ignored by hid-input */
787                 if (data & HID_MAIN_ITEM_CONSTANT)
788                         break;
789                 for (i = 0; i < parser->local.usage_index; i++)
790                         hid_scan_input_usage(parser, parser->local.usage[i]);
791                 break;
792         case HID_MAIN_ITEM_TAG_OUTPUT:
793                 break;
794         case HID_MAIN_ITEM_TAG_FEATURE:
795                 for (i = 0; i < parser->local.usage_index; i++)
796                         hid_scan_feature_usage(parser, parser->local.usage[i]);
797                 break;
798         }
799
800         /* Reset the local parser environment */
801         memset(&parser->local, 0, sizeof(parser->local));
802
803         return 0;
804 }
805
806 /*
807  * Scan a report descriptor before the device is added to the bus.
808  * Sets device groups and other properties that determine what driver
809  * to load.
810  */
811 static int hid_scan_report(struct hid_device *hid)
812 {
813         struct hid_parser *parser;
814         struct hid_item item;
815         __u8 *start = hid->dev_rdesc;
816         __u8 *end = start + hid->dev_rsize;
817         static int (*dispatch_type[])(struct hid_parser *parser,
818                                       struct hid_item *item) = {
819                 hid_scan_main,
820                 hid_parser_global,
821                 hid_parser_local,
822                 hid_parser_reserved
823         };
824
825         parser = vzalloc(sizeof(struct hid_parser));
826         if (!parser)
827                 return -ENOMEM;
828
829         parser->device = hid;
830         hid->group = HID_GROUP_GENERIC;
831
832         /*
833          * The parsing is simpler than the one in hid_open_report() as we should
834          * be robust against hid errors. Those errors will be raised by
835          * hid_open_report() anyway.
836          */
837         while ((start = fetch_item(start, end, &item)) != NULL)
838                 dispatch_type[item.type](parser, &item);
839
840         /*
841          * Handle special flags set during scanning.
842          */
843         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
844             (hid->group == HID_GROUP_MULTITOUCH))
845                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
846
847         /*
848          * Vendor specific handlings
849          */
850         switch (hid->vendor) {
851         case USB_VENDOR_ID_WACOM:
852                 hid->group = HID_GROUP_WACOM;
853                 break;
854         case USB_VENDOR_ID_SYNAPTICS:
855                 if (hid->group == HID_GROUP_GENERIC)
856                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
857                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
858                                 /*
859                                  * hid-rmi should take care of them,
860                                  * not hid-generic
861                                  */
862                                 hid->group = HID_GROUP_RMI;
863                 break;
864         }
865
866         kfree(parser->collection_stack);
867         vfree(parser);
868         return 0;
869 }
870
871 /**
872  * hid_parse_report - parse device report
873  *
874  * @device: hid device
875  * @start: report start
876  * @size: report size
877  *
878  * Allocate the device report as read by the bus driver. This function should
879  * only be called from parse() in ll drivers.
880  */
881 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
882 {
883         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
884         if (!hid->dev_rdesc)
885                 return -ENOMEM;
886         hid->dev_rsize = size;
887         return 0;
888 }
889 EXPORT_SYMBOL_GPL(hid_parse_report);
890
891 static const char * const hid_report_names[] = {
892         "HID_INPUT_REPORT",
893         "HID_OUTPUT_REPORT",
894         "HID_FEATURE_REPORT",
895 };
896 /**
897  * hid_validate_values - validate existing device report's value indexes
898  *
899  * @device: hid device
900  * @type: which report type to examine
901  * @id: which report ID to examine (0 for first)
902  * @field_index: which report field to examine
903  * @report_counts: expected number of values
904  *
905  * Validate the number of values in a given field of a given report, after
906  * parsing.
907  */
908 struct hid_report *hid_validate_values(struct hid_device *hid,
909                                        unsigned int type, unsigned int id,
910                                        unsigned int field_index,
911                                        unsigned int report_counts)
912 {
913         struct hid_report *report;
914
915         if (type > HID_FEATURE_REPORT) {
916                 hid_err(hid, "invalid HID report type %u\n", type);
917                 return NULL;
918         }
919
920         if (id >= HID_MAX_IDS) {
921                 hid_err(hid, "invalid HID report id %u\n", id);
922                 return NULL;
923         }
924
925         /*
926          * Explicitly not using hid_get_report() here since it depends on
927          * ->numbered being checked, which may not always be the case when
928          * drivers go to access report values.
929          */
930         if (id == 0) {
931                 /*
932                  * Validating on id 0 means we should examine the first
933                  * report in the list.
934                  */
935                 report = list_entry(
936                                 hid->report_enum[type].report_list.next,
937                                 struct hid_report, list);
938         } else {
939                 report = hid->report_enum[type].report_id_hash[id];
940         }
941         if (!report) {
942                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
943                 return NULL;
944         }
945         if (report->maxfield <= field_index) {
946                 hid_err(hid, "not enough fields in %s %u\n",
947                         hid_report_names[type], id);
948                 return NULL;
949         }
950         if (report->field[field_index]->report_count < report_counts) {
951                 hid_err(hid, "not enough values in %s %u field %u\n",
952                         hid_report_names[type], id, field_index);
953                 return NULL;
954         }
955         return report;
956 }
957 EXPORT_SYMBOL_GPL(hid_validate_values);
958
959 static int hid_calculate_multiplier(struct hid_device *hid,
960                                      struct hid_field *multiplier)
961 {
962         int m;
963         __s32 v = *multiplier->value;
964         __s32 lmin = multiplier->logical_minimum;
965         __s32 lmax = multiplier->logical_maximum;
966         __s32 pmin = multiplier->physical_minimum;
967         __s32 pmax = multiplier->physical_maximum;
968
969         /*
970          * "Because OS implementations will generally divide the control's
971          * reported count by the Effective Resolution Multiplier, designers
972          * should take care not to establish a potential Effective
973          * Resolution Multiplier of zero."
974          * HID Usage Table, v1.12, Section 4.3.1, p31
975          */
976         if (lmax - lmin == 0)
977                 return 1;
978         /*
979          * Handling the unit exponent is left as an exercise to whoever
980          * finds a device where that exponent is not 0.
981          */
982         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
983         if (unlikely(multiplier->unit_exponent != 0)) {
984                 hid_warn(hid,
985                          "unsupported Resolution Multiplier unit exponent %d\n",
986                          multiplier->unit_exponent);
987         }
988
989         /* There are no devices with an effective multiplier > 255 */
990         if (unlikely(m == 0 || m > 255 || m < -255)) {
991                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
992                 m = 1;
993         }
994
995         return m;
996 }
997
998 static void hid_apply_multiplier_to_field(struct hid_device *hid,
999                                           struct hid_field *field,
1000                                           struct hid_collection *multiplier_collection,
1001                                           int effective_multiplier)
1002 {
1003         struct hid_collection *collection;
1004         struct hid_usage *usage;
1005         int i;
1006
1007         /*
1008          * If multiplier_collection is NULL, the multiplier applies
1009          * to all fields in the report.
1010          * Otherwise, it is the Logical Collection the multiplier applies to
1011          * but our field may be in a subcollection of that collection.
1012          */
1013         for (i = 0; i < field->maxusage; i++) {
1014                 usage = &field->usage[i];
1015
1016                 collection = &hid->collection[usage->collection_index];
1017                 while (collection->parent_idx != -1 &&
1018                        collection != multiplier_collection)
1019                         collection = &hid->collection[collection->parent_idx];
1020
1021                 if (collection->parent_idx != -1 ||
1022                     multiplier_collection == NULL)
1023                         usage->resolution_multiplier = effective_multiplier;
1024
1025         }
1026 }
1027
1028 static void hid_apply_multiplier(struct hid_device *hid,
1029                                  struct hid_field *multiplier)
1030 {
1031         struct hid_report_enum *rep_enum;
1032         struct hid_report *rep;
1033         struct hid_field *field;
1034         struct hid_collection *multiplier_collection;
1035         int effective_multiplier;
1036         int i;
1037
1038         /*
1039          * "The Resolution Multiplier control must be contained in the same
1040          * Logical Collection as the control(s) to which it is to be applied.
1041          * If no Resolution Multiplier is defined, then the Resolution
1042          * Multiplier defaults to 1.  If more than one control exists in a
1043          * Logical Collection, the Resolution Multiplier is associated with
1044          * all controls in the collection. If no Logical Collection is
1045          * defined, the Resolution Multiplier is associated with all
1046          * controls in the report."
1047          * HID Usage Table, v1.12, Section 4.3.1, p30
1048          *
1049          * Thus, search from the current collection upwards until we find a
1050          * logical collection. Then search all fields for that same parent
1051          * collection. Those are the fields the multiplier applies to.
1052          *
1053          * If we have more than one multiplier, it will overwrite the
1054          * applicable fields later.
1055          */
1056         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057         while (multiplier_collection->parent_idx != -1 &&
1058                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1060
1061         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1062
1063         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064         list_for_each_entry(rep, &rep_enum->report_list, list) {
1065                 for (i = 0; i < rep->maxfield; i++) {
1066                         field = rep->field[i];
1067                         hid_apply_multiplier_to_field(hid, field,
1068                                                       multiplier_collection,
1069                                                       effective_multiplier);
1070                 }
1071         }
1072 }
1073
1074 /*
1075  * hid_setup_resolution_multiplier - set up all resolution multipliers
1076  *
1077  * @device: hid device
1078  *
1079  * Search for all Resolution Multiplier Feature Reports and apply their
1080  * value to all matching Input items. This only updates the internal struct
1081  * fields.
1082  *
1083  * The Resolution Multiplier is applied by the hardware. If the multiplier
1084  * is anything other than 1, the hardware will send pre-multiplied events
1085  * so that the same physical interaction generates an accumulated
1086  *      accumulated_value = value * * multiplier
1087  * This may be achieved by sending
1088  * - "value * multiplier" for each event, or
1089  * - "value" but "multiplier" times as frequently, or
1090  * - a combination of the above
1091  * The only guarantee is that the same physical interaction always generates
1092  * an accumulated 'value * multiplier'.
1093  *
1094  * This function must be called before any event processing and after
1095  * any SetRequest to the Resolution Multiplier.
1096  */
1097 void hid_setup_resolution_multiplier(struct hid_device *hid)
1098 {
1099         struct hid_report_enum *rep_enum;
1100         struct hid_report *rep;
1101         struct hid_usage *usage;
1102         int i, j;
1103
1104         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105         list_for_each_entry(rep, &rep_enum->report_list, list) {
1106                 for (i = 0; i < rep->maxfield; i++) {
1107                         /* Ignore if report count is out of bounds. */
1108                         if (rep->field[i]->report_count < 1)
1109                                 continue;
1110
1111                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1112                                 usage = &rep->field[i]->usage[j];
1113                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114                                         hid_apply_multiplier(hid,
1115                                                              rep->field[i]);
1116                         }
1117                 }
1118         }
1119 }
1120 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1121
1122 /**
1123  * hid_open_report - open a driver-specific device report
1124  *
1125  * @device: hid device
1126  *
1127  * Parse a report description into a hid_device structure. Reports are
1128  * enumerated, fields are attached to these reports.
1129  * 0 returned on success, otherwise nonzero error value.
1130  *
1131  * This function (or the equivalent hid_parse() macro) should only be
1132  * called from probe() in drivers, before starting the device.
1133  */
1134 int hid_open_report(struct hid_device *device)
1135 {
1136         struct hid_parser *parser;
1137         struct hid_item item;
1138         unsigned int size;
1139         __u8 *start;
1140         __u8 *buf;
1141         __u8 *end;
1142         __u8 *next;
1143         int ret;
1144         static int (*dispatch_type[])(struct hid_parser *parser,
1145                                       struct hid_item *item) = {
1146                 hid_parser_main,
1147                 hid_parser_global,
1148                 hid_parser_local,
1149                 hid_parser_reserved
1150         };
1151
1152         if (WARN_ON(device->status & HID_STAT_PARSED))
1153                 return -EBUSY;
1154
1155         start = device->dev_rdesc;
1156         if (WARN_ON(!start))
1157                 return -ENODEV;
1158         size = device->dev_rsize;
1159
1160         buf = kmemdup(start, size, GFP_KERNEL);
1161         if (buf == NULL)
1162                 return -ENOMEM;
1163
1164         if (device->driver->report_fixup)
1165                 start = device->driver->report_fixup(device, buf, &size);
1166         else
1167                 start = buf;
1168
1169         start = kmemdup(start, size, GFP_KERNEL);
1170         kfree(buf);
1171         if (start == NULL)
1172                 return -ENOMEM;
1173
1174         device->rdesc = start;
1175         device->rsize = size;
1176
1177         parser = vzalloc(sizeof(struct hid_parser));
1178         if (!parser) {
1179                 ret = -ENOMEM;
1180                 goto alloc_err;
1181         }
1182
1183         parser->device = device;
1184
1185         end = start + size;
1186
1187         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1188                                      sizeof(struct hid_collection), GFP_KERNEL);
1189         if (!device->collection) {
1190                 ret = -ENOMEM;
1191                 goto err;
1192         }
1193         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1194
1195         ret = -EINVAL;
1196         while ((next = fetch_item(start, end, &item)) != NULL) {
1197                 start = next;
1198
1199                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1200                         hid_err(device, "unexpected long global item\n");
1201                         goto err;
1202                 }
1203
1204                 if (dispatch_type[item.type](parser, &item)) {
1205                         hid_err(device, "item %u %u %u %u parsing failed\n",
1206                                 item.format, (unsigned)item.size,
1207                                 (unsigned)item.type, (unsigned)item.tag);
1208                         goto err;
1209                 }
1210
1211                 if (start == end) {
1212                         if (parser->collection_stack_ptr) {
1213                                 hid_err(device, "unbalanced collection at end of report description\n");
1214                                 goto err;
1215                         }
1216                         if (parser->local.delimiter_depth) {
1217                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1218                                 goto err;
1219                         }
1220
1221                         /*
1222                          * fetch initial values in case the device's
1223                          * default multiplier isn't the recommended 1
1224                          */
1225                         hid_setup_resolution_multiplier(device);
1226
1227                         kfree(parser->collection_stack);
1228                         vfree(parser);
1229                         device->status |= HID_STAT_PARSED;
1230
1231                         return 0;
1232                 }
1233         }
1234
1235         hid_err(device, "item fetching failed at offset %u/%u\n",
1236                 size - (unsigned int)(end - start), size);
1237 err:
1238         kfree(parser->collection_stack);
1239 alloc_err:
1240         vfree(parser);
1241         hid_close_report(device);
1242         return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(hid_open_report);
1245
1246 /*
1247  * Convert a signed n-bit integer to signed 32-bit integer. Common
1248  * cases are done through the compiler, the screwed things has to be
1249  * done by hand.
1250  */
1251
1252 static s32 snto32(__u32 value, unsigned n)
1253 {
1254         switch (n) {
1255         case 8:  return ((__s8)value);
1256         case 16: return ((__s16)value);
1257         case 32: return ((__s32)value);
1258         }
1259         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1260 }
1261
1262 s32 hid_snto32(__u32 value, unsigned n)
1263 {
1264         return snto32(value, n);
1265 }
1266 EXPORT_SYMBOL_GPL(hid_snto32);
1267
1268 /*
1269  * Convert a signed 32-bit integer to a signed n-bit integer.
1270  */
1271
1272 static u32 s32ton(__s32 value, unsigned n)
1273 {
1274         s32 a = value >> (n - 1);
1275         if (a && a != -1)
1276                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1277         return value & ((1 << n) - 1);
1278 }
1279
1280 /*
1281  * Extract/implement a data field from/to a little endian report (bit array).
1282  *
1283  * Code sort-of follows HID spec:
1284  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1285  *
1286  * While the USB HID spec allows unlimited length bit fields in "report
1287  * descriptors", most devices never use more than 16 bits.
1288  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1289  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1290  */
1291
1292 static u32 __extract(u8 *report, unsigned offset, int n)
1293 {
1294         unsigned int idx = offset / 8;
1295         unsigned int bit_nr = 0;
1296         unsigned int bit_shift = offset % 8;
1297         int bits_to_copy = 8 - bit_shift;
1298         u32 value = 0;
1299         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1300
1301         while (n > 0) {
1302                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1303                 n -= bits_to_copy;
1304                 bit_nr += bits_to_copy;
1305                 bits_to_copy = 8;
1306                 bit_shift = 0;
1307                 idx++;
1308         }
1309
1310         return value & mask;
1311 }
1312
1313 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1314                         unsigned offset, unsigned n)
1315 {
1316         if (n > 32) {
1317                 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1318                          n, current->comm);
1319                 n = 32;
1320         }
1321
1322         return __extract(report, offset, n);
1323 }
1324 EXPORT_SYMBOL_GPL(hid_field_extract);
1325
1326 /*
1327  * "implement" : set bits in a little endian bit stream.
1328  * Same concepts as "extract" (see comments above).
1329  * The data mangled in the bit stream remains in little endian
1330  * order the whole time. It make more sense to talk about
1331  * endianness of register values by considering a register
1332  * a "cached" copy of the little endian bit stream.
1333  */
1334
1335 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1336 {
1337         unsigned int idx = offset / 8;
1338         unsigned int bit_shift = offset % 8;
1339         int bits_to_set = 8 - bit_shift;
1340
1341         while (n - bits_to_set >= 0) {
1342                 report[idx] &= ~(0xff << bit_shift);
1343                 report[idx] |= value << bit_shift;
1344                 value >>= bits_to_set;
1345                 n -= bits_to_set;
1346                 bits_to_set = 8;
1347                 bit_shift = 0;
1348                 idx++;
1349         }
1350
1351         /* last nibble */
1352         if (n) {
1353                 u8 bit_mask = ((1U << n) - 1);
1354                 report[idx] &= ~(bit_mask << bit_shift);
1355                 report[idx] |= value << bit_shift;
1356         }
1357 }
1358
1359 static void implement(const struct hid_device *hid, u8 *report,
1360                       unsigned offset, unsigned n, u32 value)
1361 {
1362         if (unlikely(n > 32)) {
1363                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1364                          __func__, n, current->comm);
1365                 n = 32;
1366         } else if (n < 32) {
1367                 u32 m = (1U << n) - 1;
1368
1369                 if (unlikely(value > m)) {
1370                         hid_warn(hid,
1371                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1372                                  __func__, value, n, current->comm);
1373                         WARN_ON(1);
1374                         value &= m;
1375                 }
1376         }
1377
1378         __implement(report, offset, n, value);
1379 }
1380
1381 /*
1382  * Search an array for a value.
1383  */
1384
1385 static int search(__s32 *array, __s32 value, unsigned n)
1386 {
1387         while (n--) {
1388                 if (*array++ == value)
1389                         return 0;
1390         }
1391         return -1;
1392 }
1393
1394 /**
1395  * hid_match_report - check if driver's raw_event should be called
1396  *
1397  * @hid: hid device
1398  * @report_type: type to match against
1399  *
1400  * compare hid->driver->report_table->report_type to report->type
1401  */
1402 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1403 {
1404         const struct hid_report_id *id = hid->driver->report_table;
1405
1406         if (!id) /* NULL means all */
1407                 return 1;
1408
1409         for (; id->report_type != HID_TERMINATOR; id++)
1410                 if (id->report_type == HID_ANY_ID ||
1411                                 id->report_type == report->type)
1412                         return 1;
1413         return 0;
1414 }
1415
1416 /**
1417  * hid_match_usage - check if driver's event should be called
1418  *
1419  * @hid: hid device
1420  * @usage: usage to match against
1421  *
1422  * compare hid->driver->usage_table->usage_{type,code} to
1423  * usage->usage_{type,code}
1424  */
1425 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1426 {
1427         const struct hid_usage_id *id = hid->driver->usage_table;
1428
1429         if (!id) /* NULL means all */
1430                 return 1;
1431
1432         for (; id->usage_type != HID_ANY_ID - 1; id++)
1433                 if ((id->usage_hid == HID_ANY_ID ||
1434                                 id->usage_hid == usage->hid) &&
1435                                 (id->usage_type == HID_ANY_ID ||
1436                                 id->usage_type == usage->type) &&
1437                                 (id->usage_code == HID_ANY_ID ||
1438                                  id->usage_code == usage->code))
1439                         return 1;
1440         return 0;
1441 }
1442
1443 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1444                 struct hid_usage *usage, __s32 value, int interrupt)
1445 {
1446         struct hid_driver *hdrv = hid->driver;
1447         int ret;
1448
1449         if (!list_empty(&hid->debug_list))
1450                 hid_dump_input(hid, usage, value);
1451
1452         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1453                 ret = hdrv->event(hid, field, usage, value);
1454                 if (ret != 0) {
1455                         if (ret < 0)
1456                                 hid_err(hid, "%s's event failed with %d\n",
1457                                                 hdrv->name, ret);
1458                         return;
1459                 }
1460         }
1461
1462         if (hid->claimed & HID_CLAIMED_INPUT)
1463                 hidinput_hid_event(hid, field, usage, value);
1464         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1465                 hid->hiddev_hid_event(hid, field, usage, value);
1466 }
1467
1468 /*
1469  * Analyse a received field, and fetch the data from it. The field
1470  * content is stored for next report processing (we do differential
1471  * reporting to the layer).
1472  */
1473
1474 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1475                             __u8 *data, int interrupt)
1476 {
1477         unsigned n;
1478         unsigned count = field->report_count;
1479         unsigned offset = field->report_offset;
1480         unsigned size = field->report_size;
1481         __s32 min = field->logical_minimum;
1482         __s32 max = field->logical_maximum;
1483         __s32 *value;
1484
1485         value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1486         if (!value)
1487                 return;
1488
1489         for (n = 0; n < count; n++) {
1490
1491                 value[n] = min < 0 ?
1492                         snto32(hid_field_extract(hid, data, offset + n * size,
1493                                size), size) :
1494                         hid_field_extract(hid, data, offset + n * size, size);
1495
1496                 /* Ignore report if ErrorRollOver */
1497                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1498                     value[n] >= min && value[n] <= max &&
1499                     value[n] - min < field->maxusage &&
1500                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1501                         goto exit;
1502         }
1503
1504         for (n = 0; n < count; n++) {
1505
1506                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1507                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1508                         continue;
1509                 }
1510
1511                 if (field->value[n] >= min && field->value[n] <= max
1512                         && field->value[n] - min < field->maxusage
1513                         && field->usage[field->value[n] - min].hid
1514                         && search(value, field->value[n], count))
1515                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1516
1517                 if (value[n] >= min && value[n] <= max
1518                         && value[n] - min < field->maxusage
1519                         && field->usage[value[n] - min].hid
1520                         && search(field->value, value[n], count))
1521                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1522         }
1523
1524         memcpy(field->value, value, count * sizeof(__s32));
1525 exit:
1526         kfree(value);
1527 }
1528
1529 /*
1530  * Output the field into the report.
1531  */
1532
1533 static void hid_output_field(const struct hid_device *hid,
1534                              struct hid_field *field, __u8 *data)
1535 {
1536         unsigned count = field->report_count;
1537         unsigned offset = field->report_offset;
1538         unsigned size = field->report_size;
1539         unsigned n;
1540
1541         for (n = 0; n < count; n++) {
1542                 if (field->logical_minimum < 0) /* signed values */
1543                         implement(hid, data, offset + n * size, size,
1544                                   s32ton(field->value[n], size));
1545                 else                            /* unsigned values */
1546                         implement(hid, data, offset + n * size, size,
1547                                   field->value[n]);
1548         }
1549 }
1550
1551 /*
1552  * Create a report. 'data' has to be allocated using
1553  * hid_alloc_report_buf() so that it has proper size.
1554  */
1555
1556 void hid_output_report(struct hid_report *report, __u8 *data)
1557 {
1558         unsigned n;
1559
1560         if (report->id > 0)
1561                 *data++ = report->id;
1562
1563         memset(data, 0, ((report->size - 1) >> 3) + 1);
1564         for (n = 0; n < report->maxfield; n++)
1565                 hid_output_field(report->device, report->field[n], data);
1566 }
1567 EXPORT_SYMBOL_GPL(hid_output_report);
1568
1569 /*
1570  * Allocator for buffer that is going to be passed to hid_output_report()
1571  */
1572 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1573 {
1574         /*
1575          * 7 extra bytes are necessary to achieve proper functionality
1576          * of implement() working on 8 byte chunks
1577          */
1578
1579         u32 len = hid_report_len(report) + 7;
1580
1581         return kmalloc(len, flags);
1582 }
1583 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1584
1585 /*
1586  * Set a field value. The report this field belongs to has to be
1587  * created and transferred to the device, to set this value in the
1588  * device.
1589  */
1590
1591 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1592 {
1593         unsigned size;
1594
1595         if (!field)
1596                 return -1;
1597
1598         size = field->report_size;
1599
1600         hid_dump_input(field->report->device, field->usage + offset, value);
1601
1602         if (offset >= field->report_count) {
1603                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1604                                 offset, field->report_count);
1605                 return -1;
1606         }
1607         if (field->logical_minimum < 0) {
1608                 if (value != snto32(s32ton(value, size), size)) {
1609                         hid_err(field->report->device, "value %d is out of range\n", value);
1610                         return -1;
1611                 }
1612         }
1613         field->value[offset] = value;
1614         return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(hid_set_field);
1617
1618 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1619                 const u8 *data)
1620 {
1621         struct hid_report *report;
1622         unsigned int n = 0;     /* Normally report number is 0 */
1623
1624         /* Device uses numbered reports, data[0] is report number */
1625         if (report_enum->numbered)
1626                 n = *data;
1627
1628         report = report_enum->report_id_hash[n];
1629         if (report == NULL)
1630                 dbg_hid("undefined report_id %u received\n", n);
1631
1632         return report;
1633 }
1634
1635 /*
1636  * Implement a generic .request() callback, using .raw_request()
1637  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1638  */
1639 int __hid_request(struct hid_device *hid, struct hid_report *report,
1640                 int reqtype)
1641 {
1642         char *buf;
1643         int ret;
1644         u32 len;
1645
1646         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1647         if (!buf)
1648                 return -ENOMEM;
1649
1650         len = hid_report_len(report);
1651
1652         if (reqtype == HID_REQ_SET_REPORT)
1653                 hid_output_report(report, buf);
1654
1655         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1656                                           report->type, reqtype);
1657         if (ret < 0) {
1658                 dbg_hid("unable to complete request: %d\n", ret);
1659                 goto out;
1660         }
1661
1662         if (reqtype == HID_REQ_GET_REPORT)
1663                 hid_input_report(hid, report->type, buf, ret, 0);
1664
1665         ret = 0;
1666
1667 out:
1668         kfree(buf);
1669         return ret;
1670 }
1671 EXPORT_SYMBOL_GPL(__hid_request);
1672
1673 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1674                 int interrupt)
1675 {
1676         struct hid_report_enum *report_enum = hid->report_enum + type;
1677         struct hid_report *report;
1678         struct hid_driver *hdrv;
1679         unsigned int a;
1680         u32 rsize, csize = size;
1681         u8 *cdata = data;
1682         int ret = 0;
1683
1684         report = hid_get_report(report_enum, data);
1685         if (!report)
1686                 goto out;
1687
1688         if (report_enum->numbered) {
1689                 cdata++;
1690                 csize--;
1691         }
1692
1693         rsize = ((report->size - 1) >> 3) + 1;
1694
1695         if (rsize > HID_MAX_BUFFER_SIZE)
1696                 rsize = HID_MAX_BUFFER_SIZE;
1697
1698         if (csize < rsize) {
1699                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1700                                 csize, rsize);
1701                 memset(cdata + csize, 0, rsize - csize);
1702         }
1703
1704         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1705                 hid->hiddev_report_event(hid, report);
1706         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1707                 ret = hidraw_report_event(hid, data, size);
1708                 if (ret)
1709                         goto out;
1710         }
1711
1712         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1713                 for (a = 0; a < report->maxfield; a++)
1714                         hid_input_field(hid, report->field[a], cdata, interrupt);
1715                 hdrv = hid->driver;
1716                 if (hdrv && hdrv->report)
1717                         hdrv->report(hid, report);
1718         }
1719
1720         if (hid->claimed & HID_CLAIMED_INPUT)
1721                 hidinput_report_event(hid, report);
1722 out:
1723         return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1726
1727 /**
1728  * hid_input_report - report data from lower layer (usb, bt...)
1729  *
1730  * @hid: hid device
1731  * @type: HID report type (HID_*_REPORT)
1732  * @data: report contents
1733  * @size: size of data parameter
1734  * @interrupt: distinguish between interrupt and control transfers
1735  *
1736  * This is data entry for lower layers.
1737  */
1738 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1739 {
1740         struct hid_report_enum *report_enum;
1741         struct hid_driver *hdrv;
1742         struct hid_report *report;
1743         int ret = 0;
1744
1745         if (!hid)
1746                 return -ENODEV;
1747
1748         if (down_trylock(&hid->driver_input_lock))
1749                 return -EBUSY;
1750
1751         if (!hid->driver) {
1752                 ret = -ENODEV;
1753                 goto unlock;
1754         }
1755         report_enum = hid->report_enum + type;
1756         hdrv = hid->driver;
1757
1758         if (!size) {
1759                 dbg_hid("empty report\n");
1760                 ret = -1;
1761                 goto unlock;
1762         }
1763
1764         /* Avoid unnecessary overhead if debugfs is disabled */
1765         if (!list_empty(&hid->debug_list))
1766                 hid_dump_report(hid, type, data, size);
1767
1768         report = hid_get_report(report_enum, data);
1769
1770         if (!report) {
1771                 ret = -1;
1772                 goto unlock;
1773         }
1774
1775         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1776                 ret = hdrv->raw_event(hid, report, data, size);
1777                 if (ret < 0)
1778                         goto unlock;
1779         }
1780
1781         ret = hid_report_raw_event(hid, type, data, size, interrupt);
1782
1783 unlock:
1784         up(&hid->driver_input_lock);
1785         return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(hid_input_report);
1788
1789 bool hid_match_one_id(const struct hid_device *hdev,
1790                       const struct hid_device_id *id)
1791 {
1792         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1793                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1794                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1795                 (id->product == HID_ANY_ID || id->product == hdev->product);
1796 }
1797
1798 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1799                 const struct hid_device_id *id)
1800 {
1801         for (; id->bus; id++)
1802                 if (hid_match_one_id(hdev, id))
1803                         return id;
1804
1805         return NULL;
1806 }
1807
1808 static const struct hid_device_id hid_hiddev_list[] = {
1809         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1810         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1811         { }
1812 };
1813
1814 static bool hid_hiddev(struct hid_device *hdev)
1815 {
1816         return !!hid_match_id(hdev, hid_hiddev_list);
1817 }
1818
1819
1820 static ssize_t
1821 read_report_descriptor(struct file *filp, struct kobject *kobj,
1822                 struct bin_attribute *attr,
1823                 char *buf, loff_t off, size_t count)
1824 {
1825         struct device *dev = kobj_to_dev(kobj);
1826         struct hid_device *hdev = to_hid_device(dev);
1827
1828         if (off >= hdev->rsize)
1829                 return 0;
1830
1831         if (off + count > hdev->rsize)
1832                 count = hdev->rsize - off;
1833
1834         memcpy(buf, hdev->rdesc + off, count);
1835
1836         return count;
1837 }
1838
1839 static ssize_t
1840 show_country(struct device *dev, struct device_attribute *attr,
1841                 char *buf)
1842 {
1843         struct hid_device *hdev = to_hid_device(dev);
1844
1845         return sprintf(buf, "%02x\n", hdev->country & 0xff);
1846 }
1847
1848 static struct bin_attribute dev_bin_attr_report_desc = {
1849         .attr = { .name = "report_descriptor", .mode = 0444 },
1850         .read = read_report_descriptor,
1851         .size = HID_MAX_DESCRIPTOR_SIZE,
1852 };
1853
1854 static const struct device_attribute dev_attr_country = {
1855         .attr = { .name = "country", .mode = 0444 },
1856         .show = show_country,
1857 };
1858
1859 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1860 {
1861         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1862                 "Joystick", "Gamepad", "Keyboard", "Keypad",
1863                 "Multi-Axis Controller"
1864         };
1865         const char *type, *bus;
1866         char buf[64] = "";
1867         unsigned int i;
1868         int len;
1869         int ret;
1870
1871         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1872                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1873         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1874                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1875         if (hdev->bus != BUS_USB)
1876                 connect_mask &= ~HID_CONNECT_HIDDEV;
1877         if (hid_hiddev(hdev))
1878                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1879
1880         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1881                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1882                 hdev->claimed |= HID_CLAIMED_INPUT;
1883
1884         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1885                         !hdev->hiddev_connect(hdev,
1886                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1887                 hdev->claimed |= HID_CLAIMED_HIDDEV;
1888         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1889                 hdev->claimed |= HID_CLAIMED_HIDRAW;
1890
1891         if (connect_mask & HID_CONNECT_DRIVER)
1892                 hdev->claimed |= HID_CLAIMED_DRIVER;
1893
1894         /* Drivers with the ->raw_event callback set are not required to connect
1895          * to any other listener. */
1896         if (!hdev->claimed && !hdev->driver->raw_event) {
1897                 hid_err(hdev, "device has no listeners, quitting\n");
1898                 return -ENODEV;
1899         }
1900
1901         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1902                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1903                 hdev->ff_init(hdev);
1904
1905         len = 0;
1906         if (hdev->claimed & HID_CLAIMED_INPUT)
1907                 len += sprintf(buf + len, "input");
1908         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1909                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1910                                 ((struct hiddev *)hdev->hiddev)->minor);
1911         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1912                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1913                                 ((struct hidraw *)hdev->hidraw)->minor);
1914
1915         type = "Device";
1916         for (i = 0; i < hdev->maxcollection; i++) {
1917                 struct hid_collection *col = &hdev->collection[i];
1918                 if (col->type == HID_COLLECTION_APPLICATION &&
1919                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1920                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1921                         type = types[col->usage & 0xffff];
1922                         break;
1923                 }
1924         }
1925
1926         switch (hdev->bus) {
1927         case BUS_USB:
1928                 bus = "USB";
1929                 break;
1930         case BUS_BLUETOOTH:
1931                 bus = "BLUETOOTH";
1932                 break;
1933         case BUS_I2C:
1934                 bus = "I2C";
1935                 break;
1936         default:
1937                 bus = "<UNKNOWN>";
1938         }
1939
1940         ret = device_create_file(&hdev->dev, &dev_attr_country);
1941         if (ret)
1942                 hid_warn(hdev,
1943                          "can't create sysfs country code attribute err: %d\n", ret);
1944
1945         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1946                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
1947                  type, hdev->name, hdev->phys);
1948
1949         return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(hid_connect);
1952
1953 void hid_disconnect(struct hid_device *hdev)
1954 {
1955         device_remove_file(&hdev->dev, &dev_attr_country);
1956         if (hdev->claimed & HID_CLAIMED_INPUT)
1957                 hidinput_disconnect(hdev);
1958         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1959                 hdev->hiddev_disconnect(hdev);
1960         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1961                 hidraw_disconnect(hdev);
1962         hdev->claimed = 0;
1963 }
1964 EXPORT_SYMBOL_GPL(hid_disconnect);
1965
1966 /**
1967  * hid_hw_start - start underlying HW
1968  * @hdev: hid device
1969  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1970  *
1971  * Call this in probe function *after* hid_parse. This will setup HW
1972  * buffers and start the device (if not defeirred to device open).
1973  * hid_hw_stop must be called if this was successful.
1974  */
1975 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1976 {
1977         int error;
1978
1979         error = hdev->ll_driver->start(hdev);
1980         if (error)
1981                 return error;
1982
1983         if (connect_mask) {
1984                 error = hid_connect(hdev, connect_mask);
1985                 if (error) {
1986                         hdev->ll_driver->stop(hdev);
1987                         return error;
1988                 }
1989         }
1990
1991         return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(hid_hw_start);
1994
1995 /**
1996  * hid_hw_stop - stop underlying HW
1997  * @hdev: hid device
1998  *
1999  * This is usually called from remove function or from probe when something
2000  * failed and hid_hw_start was called already.
2001  */
2002 void hid_hw_stop(struct hid_device *hdev)
2003 {
2004         hid_disconnect(hdev);
2005         hdev->ll_driver->stop(hdev);
2006 }
2007 EXPORT_SYMBOL_GPL(hid_hw_stop);
2008
2009 /**
2010  * hid_hw_open - signal underlying HW to start delivering events
2011  * @hdev: hid device
2012  *
2013  * Tell underlying HW to start delivering events from the device.
2014  * This function should be called sometime after successful call
2015  * to hid_hw_start().
2016  */
2017 int hid_hw_open(struct hid_device *hdev)
2018 {
2019         int ret;
2020
2021         ret = mutex_lock_killable(&hdev->ll_open_lock);
2022         if (ret)
2023                 return ret;
2024
2025         if (!hdev->ll_open_count++) {
2026                 ret = hdev->ll_driver->open(hdev);
2027                 if (ret)
2028                         hdev->ll_open_count--;
2029         }
2030
2031         mutex_unlock(&hdev->ll_open_lock);
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(hid_hw_open);
2035
2036 /**
2037  * hid_hw_close - signal underlaying HW to stop delivering events
2038  *
2039  * @hdev: hid device
2040  *
2041  * This function indicates that we are not interested in the events
2042  * from this device anymore. Delivery of events may or may not stop,
2043  * depending on the number of users still outstanding.
2044  */
2045 void hid_hw_close(struct hid_device *hdev)
2046 {
2047         mutex_lock(&hdev->ll_open_lock);
2048         if (!--hdev->ll_open_count)
2049                 hdev->ll_driver->close(hdev);
2050         mutex_unlock(&hdev->ll_open_lock);
2051 }
2052 EXPORT_SYMBOL_GPL(hid_hw_close);
2053
2054 struct hid_dynid {
2055         struct list_head list;
2056         struct hid_device_id id;
2057 };
2058
2059 /**
2060  * store_new_id - add a new HID device ID to this driver and re-probe devices
2061  * @driver: target device driver
2062  * @buf: buffer for scanning device ID data
2063  * @count: input size
2064  *
2065  * Adds a new dynamic hid device ID to this driver,
2066  * and causes the driver to probe for all devices again.
2067  */
2068 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2069                 size_t count)
2070 {
2071         struct hid_driver *hdrv = to_hid_driver(drv);
2072         struct hid_dynid *dynid;
2073         __u32 bus, vendor, product;
2074         unsigned long driver_data = 0;
2075         int ret;
2076
2077         ret = sscanf(buf, "%x %x %x %lx",
2078                         &bus, &vendor, &product, &driver_data);
2079         if (ret < 3)
2080                 return -EINVAL;
2081
2082         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2083         if (!dynid)
2084                 return -ENOMEM;
2085
2086         dynid->id.bus = bus;
2087         dynid->id.group = HID_GROUP_ANY;
2088         dynid->id.vendor = vendor;
2089         dynid->id.product = product;
2090         dynid->id.driver_data = driver_data;
2091
2092         spin_lock(&hdrv->dyn_lock);
2093         list_add_tail(&dynid->list, &hdrv->dyn_list);
2094         spin_unlock(&hdrv->dyn_lock);
2095
2096         ret = driver_attach(&hdrv->driver);
2097
2098         return ret ? : count;
2099 }
2100 static DRIVER_ATTR_WO(new_id);
2101
2102 static struct attribute *hid_drv_attrs[] = {
2103         &driver_attr_new_id.attr,
2104         NULL,
2105 };
2106 ATTRIBUTE_GROUPS(hid_drv);
2107
2108 static void hid_free_dynids(struct hid_driver *hdrv)
2109 {
2110         struct hid_dynid *dynid, *n;
2111
2112         spin_lock(&hdrv->dyn_lock);
2113         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2114                 list_del(&dynid->list);
2115                 kfree(dynid);
2116         }
2117         spin_unlock(&hdrv->dyn_lock);
2118 }
2119
2120 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2121                                              struct hid_driver *hdrv)
2122 {
2123         struct hid_dynid *dynid;
2124
2125         spin_lock(&hdrv->dyn_lock);
2126         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2127                 if (hid_match_one_id(hdev, &dynid->id)) {
2128                         spin_unlock(&hdrv->dyn_lock);
2129                         return &dynid->id;
2130                 }
2131         }
2132         spin_unlock(&hdrv->dyn_lock);
2133
2134         return hid_match_id(hdev, hdrv->id_table);
2135 }
2136 EXPORT_SYMBOL_GPL(hid_match_device);
2137
2138 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2139 {
2140         struct hid_driver *hdrv = to_hid_driver(drv);
2141         struct hid_device *hdev = to_hid_device(dev);
2142
2143         return hid_match_device(hdev, hdrv) != NULL;
2144 }
2145
2146 /**
2147  * hid_compare_device_paths - check if both devices share the same path
2148  * @hdev_a: hid device
2149  * @hdev_b: hid device
2150  * @separator: char to use as separator
2151  *
2152  * Check if two devices share the same path up to the last occurrence of
2153  * the separator char. Both paths must exist (i.e., zero-length paths
2154  * don't match).
2155  */
2156 bool hid_compare_device_paths(struct hid_device *hdev_a,
2157                               struct hid_device *hdev_b, char separator)
2158 {
2159         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2160         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2161
2162         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2163                 return false;
2164
2165         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2166 }
2167 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2168
2169 static int hid_device_probe(struct device *dev)
2170 {
2171         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2172         struct hid_device *hdev = to_hid_device(dev);
2173         const struct hid_device_id *id;
2174         int ret = 0;
2175
2176         if (down_interruptible(&hdev->driver_input_lock)) {
2177                 ret = -EINTR;
2178                 goto end;
2179         }
2180         hdev->io_started = false;
2181
2182         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2183
2184         if (!hdev->driver) {
2185                 id = hid_match_device(hdev, hdrv);
2186                 if (id == NULL) {
2187                         ret = -ENODEV;
2188                         goto unlock;
2189                 }
2190
2191                 if (hdrv->match) {
2192                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2193                                 ret = -ENODEV;
2194                                 goto unlock;
2195                         }
2196                 } else {
2197                         /*
2198                          * hid-generic implements .match(), so if
2199                          * hid_ignore_special_drivers is set, we can safely
2200                          * return.
2201                          */
2202                         if (hid_ignore_special_drivers) {
2203                                 ret = -ENODEV;
2204                                 goto unlock;
2205                         }
2206                 }
2207
2208                 /* reset the quirks that has been previously set */
2209                 hdev->quirks = hid_lookup_quirk(hdev);
2210                 hdev->driver = hdrv;
2211                 if (hdrv->probe) {
2212                         ret = hdrv->probe(hdev, id);
2213                 } else { /* default probe */
2214                         ret = hid_open_report(hdev);
2215                         if (!ret)
2216                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2217                 }
2218                 if (ret) {
2219                         hid_close_report(hdev);
2220                         hdev->driver = NULL;
2221                 }
2222         }
2223 unlock:
2224         if (!hdev->io_started)
2225                 up(&hdev->driver_input_lock);
2226 end:
2227         return ret;
2228 }
2229
2230 static int hid_device_remove(struct device *dev)
2231 {
2232         struct hid_device *hdev = to_hid_device(dev);
2233         struct hid_driver *hdrv;
2234         int ret = 0;
2235
2236         if (down_interruptible(&hdev->driver_input_lock)) {
2237                 ret = -EINTR;
2238                 goto end;
2239         }
2240         hdev->io_started = false;
2241
2242         hdrv = hdev->driver;
2243         if (hdrv) {
2244                 if (hdrv->remove)
2245                         hdrv->remove(hdev);
2246                 else /* default remove */
2247                         hid_hw_stop(hdev);
2248                 hid_close_report(hdev);
2249                 hdev->driver = NULL;
2250         }
2251
2252         if (!hdev->io_started)
2253                 up(&hdev->driver_input_lock);
2254 end:
2255         return ret;
2256 }
2257
2258 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2259                              char *buf)
2260 {
2261         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2262
2263         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2264                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2265 }
2266 static DEVICE_ATTR_RO(modalias);
2267
2268 static struct attribute *hid_dev_attrs[] = {
2269         &dev_attr_modalias.attr,
2270         NULL,
2271 };
2272 static struct bin_attribute *hid_dev_bin_attrs[] = {
2273         &dev_bin_attr_report_desc,
2274         NULL
2275 };
2276 static const struct attribute_group hid_dev_group = {
2277         .attrs = hid_dev_attrs,
2278         .bin_attrs = hid_dev_bin_attrs,
2279 };
2280 __ATTRIBUTE_GROUPS(hid_dev);
2281
2282 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2283 {
2284         struct hid_device *hdev = to_hid_device(dev);
2285
2286         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2287                         hdev->bus, hdev->vendor, hdev->product))
2288                 return -ENOMEM;
2289
2290         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2291                 return -ENOMEM;
2292
2293         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2294                 return -ENOMEM;
2295
2296         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2297                 return -ENOMEM;
2298
2299         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2300                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2301                 return -ENOMEM;
2302
2303         return 0;
2304 }
2305
2306 struct bus_type hid_bus_type = {
2307         .name           = "hid",
2308         .dev_groups     = hid_dev_groups,
2309         .drv_groups     = hid_drv_groups,
2310         .match          = hid_bus_match,
2311         .probe          = hid_device_probe,
2312         .remove         = hid_device_remove,
2313         .uevent         = hid_uevent,
2314 };
2315 EXPORT_SYMBOL(hid_bus_type);
2316
2317 int hid_add_device(struct hid_device *hdev)
2318 {
2319         static atomic_t id = ATOMIC_INIT(0);
2320         int ret;
2321
2322         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2323                 return -EBUSY;
2324
2325         hdev->quirks = hid_lookup_quirk(hdev);
2326
2327         /* we need to kill them here, otherwise they will stay allocated to
2328          * wait for coming driver */
2329         if (hid_ignore(hdev))
2330                 return -ENODEV;
2331
2332         /*
2333          * Check for the mandatory transport channel.
2334          */
2335          if (!hdev->ll_driver->raw_request) {
2336                 hid_err(hdev, "transport driver missing .raw_request()\n");
2337                 return -EINVAL;
2338          }
2339
2340         /*
2341          * Read the device report descriptor once and use as template
2342          * for the driver-specific modifications.
2343          */
2344         ret = hdev->ll_driver->parse(hdev);
2345         if (ret)
2346                 return ret;
2347         if (!hdev->dev_rdesc)
2348                 return -ENODEV;
2349
2350         /*
2351          * Scan generic devices for group information
2352          */
2353         if (hid_ignore_special_drivers) {
2354                 hdev->group = HID_GROUP_GENERIC;
2355         } else if (!hdev->group &&
2356                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2357                 ret = hid_scan_report(hdev);
2358                 if (ret)
2359                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2360         }
2361
2362         /* XXX hack, any other cleaner solution after the driver core
2363          * is converted to allow more than 20 bytes as the device name? */
2364         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2365                      hdev->vendor, hdev->product, atomic_inc_return(&id));
2366
2367         hid_debug_register(hdev, dev_name(&hdev->dev));
2368         ret = device_add(&hdev->dev);
2369         if (!ret)
2370                 hdev->status |= HID_STAT_ADDED;
2371         else
2372                 hid_debug_unregister(hdev);
2373
2374         return ret;
2375 }
2376 EXPORT_SYMBOL_GPL(hid_add_device);
2377
2378 /**
2379  * hid_allocate_device - allocate new hid device descriptor
2380  *
2381  * Allocate and initialize hid device, so that hid_destroy_device might be
2382  * used to free it.
2383  *
2384  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2385  * error value.
2386  */
2387 struct hid_device *hid_allocate_device(void)
2388 {
2389         struct hid_device *hdev;
2390         int ret = -ENOMEM;
2391
2392         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2393         if (hdev == NULL)
2394                 return ERR_PTR(ret);
2395
2396         device_initialize(&hdev->dev);
2397         hdev->dev.release = hid_device_release;
2398         hdev->dev.bus = &hid_bus_type;
2399         device_enable_async_suspend(&hdev->dev);
2400
2401         hid_close_report(hdev);
2402
2403         init_waitqueue_head(&hdev->debug_wait);
2404         INIT_LIST_HEAD(&hdev->debug_list);
2405         spin_lock_init(&hdev->debug_list_lock);
2406         sema_init(&hdev->driver_input_lock, 1);
2407         mutex_init(&hdev->ll_open_lock);
2408
2409         return hdev;
2410 }
2411 EXPORT_SYMBOL_GPL(hid_allocate_device);
2412
2413 static void hid_remove_device(struct hid_device *hdev)
2414 {
2415         if (hdev->status & HID_STAT_ADDED) {
2416                 device_del(&hdev->dev);
2417                 hid_debug_unregister(hdev);
2418                 hdev->status &= ~HID_STAT_ADDED;
2419         }
2420         kfree(hdev->dev_rdesc);
2421         hdev->dev_rdesc = NULL;
2422         hdev->dev_rsize = 0;
2423 }
2424
2425 /**
2426  * hid_destroy_device - free previously allocated device
2427  *
2428  * @hdev: hid device
2429  *
2430  * If you allocate hid_device through hid_allocate_device, you should ever
2431  * free by this function.
2432  */
2433 void hid_destroy_device(struct hid_device *hdev)
2434 {
2435         hid_remove_device(hdev);
2436         put_device(&hdev->dev);
2437 }
2438 EXPORT_SYMBOL_GPL(hid_destroy_device);
2439
2440
2441 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2442 {
2443         struct hid_driver *hdrv = data;
2444         struct hid_device *hdev = to_hid_device(dev);
2445
2446         if (hdev->driver == hdrv &&
2447             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2448             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2449                 return device_reprobe(dev);
2450
2451         return 0;
2452 }
2453
2454 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2455 {
2456         struct hid_driver *hdrv = to_hid_driver(drv);
2457
2458         if (hdrv->match) {
2459                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2460                                  __hid_bus_reprobe_drivers);
2461         }
2462
2463         return 0;
2464 }
2465
2466 static int __bus_removed_driver(struct device_driver *drv, void *data)
2467 {
2468         return bus_rescan_devices(&hid_bus_type);
2469 }
2470
2471 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2472                 const char *mod_name)
2473 {
2474         int ret;
2475
2476         hdrv->driver.name = hdrv->name;
2477         hdrv->driver.bus = &hid_bus_type;
2478         hdrv->driver.owner = owner;
2479         hdrv->driver.mod_name = mod_name;
2480
2481         INIT_LIST_HEAD(&hdrv->dyn_list);
2482         spin_lock_init(&hdrv->dyn_lock);
2483
2484         ret = driver_register(&hdrv->driver);
2485
2486         if (ret == 0)
2487                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2488                                  __hid_bus_driver_added);
2489
2490         return ret;
2491 }
2492 EXPORT_SYMBOL_GPL(__hid_register_driver);
2493
2494 void hid_unregister_driver(struct hid_driver *hdrv)
2495 {
2496         driver_unregister(&hdrv->driver);
2497         hid_free_dynids(hdrv);
2498
2499         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2500 }
2501 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2502
2503 int hid_check_keys_pressed(struct hid_device *hid)
2504 {
2505         struct hid_input *hidinput;
2506         int i;
2507
2508         if (!(hid->claimed & HID_CLAIMED_INPUT))
2509                 return 0;
2510
2511         list_for_each_entry(hidinput, &hid->inputs, list) {
2512                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2513                         if (hidinput->input->key[i])
2514                                 return 1;
2515         }
2516
2517         return 0;
2518 }
2519
2520 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2521
2522 static int __init hid_init(void)
2523 {
2524         int ret;
2525
2526         if (hid_debug)
2527                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2528                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2529
2530         ret = bus_register(&hid_bus_type);
2531         if (ret) {
2532                 pr_err("can't register hid bus\n");
2533                 goto err;
2534         }
2535
2536         ret = hidraw_init();
2537         if (ret)
2538                 goto err_bus;
2539
2540         hid_debug_init();
2541
2542         return 0;
2543 err_bus:
2544         bus_unregister(&hid_bus_type);
2545 err:
2546         return ret;
2547 }
2548
2549 static void __exit hid_exit(void)
2550 {
2551         hid_debug_exit();
2552         hidraw_exit();
2553         bus_unregister(&hid_bus_type);
2554         hid_quirks_exit(HID_BUS_ANY);
2555 }
2556
2557 module_init(hid_init);
2558 module_exit(hid_exit);
2559
2560 MODULE_AUTHOR("Andreas Gal");
2561 MODULE_AUTHOR("Vojtech Pavlik");
2562 MODULE_AUTHOR("Jiri Kosina");
2563 MODULE_LICENSE("GPL");