Linux-libre 5.3.12-gnu
[librecmc/linux-libre.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71
72 enum ipu_image_convert_type {
73         IMAGE_CONVERT_IN = 0,
74         IMAGE_CONVERT_OUT,
75 };
76
77 struct ipu_image_convert_dma_buf {
78         void          *virt;
79         dma_addr_t    phys;
80         unsigned long len;
81 };
82
83 struct ipu_image_convert_dma_chan {
84         int in;
85         int out;
86         int rot_in;
87         int rot_out;
88         int vdi_in_p;
89         int vdi_in;
90         int vdi_in_n;
91 };
92
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95         u32 width;
96         u32 height;
97         u32 left;
98         u32 top;
99         /* size and strides are in bytes */
100         u32 size;
101         u32 stride;
102         u32 rot_stride;
103         /* start Y or packed offset of this tile */
104         u32 offset;
105         /* offset from start to tile in U plane, for planar formats */
106         u32 u_off;
107         /* offset from start to tile in V plane, for planar formats */
108         u32 v_off;
109 };
110
111 struct ipu_image_convert_image {
112         struct ipu_image base;
113         enum ipu_image_convert_type type;
114
115         const struct ipu_image_pixfmt *fmt;
116         unsigned int stride;
117
118         /* # of rows (horizontal stripes) if dest height is > 1024 */
119         unsigned int num_rows;
120         /* # of columns (vertical stripes) if dest width is > 1024 */
121         unsigned int num_cols;
122
123         struct ipu_image_tile tile[MAX_TILES];
124 };
125
126 struct ipu_image_pixfmt {
127         u32     fourcc;        /* V4L2 fourcc */
128         int     bpp;           /* total bpp */
129         int     uv_width_dec;  /* decimation in width for U/V planes */
130         int     uv_height_dec; /* decimation in height for U/V planes */
131         bool    planar;        /* planar format */
132         bool    uv_swapped;    /* U and V planes are swapped */
133         bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139
140 struct ipu_image_convert_ctx {
141         struct ipu_image_convert_chan *chan;
142
143         ipu_image_convert_cb_t complete;
144         void *complete_context;
145
146         /* Source/destination image data and rotation mode */
147         struct ipu_image_convert_image in;
148         struct ipu_image_convert_image out;
149         struct ipu_ic_csc csc;
150         enum ipu_rotate_mode rot_mode;
151         u32 downsize_coeff_h;
152         u32 downsize_coeff_v;
153         u32 image_resize_coeff_h;
154         u32 image_resize_coeff_v;
155         u32 resize_coeffs_h[MAX_STRIPES_W];
156         u32 resize_coeffs_v[MAX_STRIPES_H];
157
158         /* intermediate buffer for rotation */
159         struct ipu_image_convert_dma_buf rot_intermediate[2];
160
161         /* current buffer number for double buffering */
162         int cur_buf_num;
163
164         bool aborting;
165         struct completion aborted;
166
167         /* can we use double-buffering for this conversion operation? */
168         bool double_buffering;
169         /* num_rows * num_cols */
170         unsigned int num_tiles;
171         /* next tile to process */
172         unsigned int next_tile;
173         /* where to place converted tile in dest image */
174         unsigned int out_tile_map[MAX_TILES];
175
176         struct list_head list;
177 };
178
179 struct ipu_image_convert_chan {
180         struct ipu_image_convert_priv *priv;
181
182         enum ipu_ic_task ic_task;
183         const struct ipu_image_convert_dma_chan *dma_ch;
184
185         struct ipu_ic *ic;
186         struct ipuv3_channel *in_chan;
187         struct ipuv3_channel *out_chan;
188         struct ipuv3_channel *rotation_in_chan;
189         struct ipuv3_channel *rotation_out_chan;
190
191         /* the IPU end-of-frame irqs */
192         int out_eof_irq;
193         int rot_out_eof_irq;
194
195         spinlock_t irqlock;
196
197         /* list of convert contexts */
198         struct list_head ctx_list;
199         /* queue of conversion runs */
200         struct list_head pending_q;
201         /* queue of completed runs */
202         struct list_head done_q;
203
204         /* the current conversion run */
205         struct ipu_image_convert_run *current_run;
206 };
207
208 struct ipu_image_convert_priv {
209         struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210         struct ipu_soc *ipu;
211 };
212
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215         [IC_TASK_VIEWFINDER] = {
216                 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217                 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218                 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219                 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220                 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221                 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222                 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223         },
224         [IC_TASK_POST_PROCESSOR] = {
225                 .in = IPUV3_CHANNEL_MEM_IC_PP,
226                 .out = IPUV3_CHANNEL_IC_PP_MEM,
227                 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228                 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229         },
230 };
231
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233         {
234                 .fourcc = V4L2_PIX_FMT_RGB565,
235                 .bpp    = 16,
236         }, {
237                 .fourcc = V4L2_PIX_FMT_RGB24,
238                 .bpp    = 24,
239         }, {
240                 .fourcc = V4L2_PIX_FMT_BGR24,
241                 .bpp    = 24,
242         }, {
243                 .fourcc = V4L2_PIX_FMT_RGB32,
244                 .bpp    = 32,
245         }, {
246                 .fourcc = V4L2_PIX_FMT_BGR32,
247                 .bpp    = 32,
248         }, {
249                 .fourcc = V4L2_PIX_FMT_XRGB32,
250                 .bpp    = 32,
251         }, {
252                 .fourcc = V4L2_PIX_FMT_XBGR32,
253                 .bpp    = 32,
254         }, {
255                 .fourcc = V4L2_PIX_FMT_YUYV,
256                 .bpp    = 16,
257                 .uv_width_dec = 2,
258                 .uv_height_dec = 1,
259         }, {
260                 .fourcc = V4L2_PIX_FMT_UYVY,
261                 .bpp    = 16,
262                 .uv_width_dec = 2,
263                 .uv_height_dec = 1,
264         }, {
265                 .fourcc = V4L2_PIX_FMT_YUV420,
266                 .bpp    = 12,
267                 .planar = true,
268                 .uv_width_dec = 2,
269                 .uv_height_dec = 2,
270         }, {
271                 .fourcc = V4L2_PIX_FMT_YVU420,
272                 .bpp    = 12,
273                 .planar = true,
274                 .uv_width_dec = 2,
275                 .uv_height_dec = 2,
276                 .uv_swapped = true,
277         }, {
278                 .fourcc = V4L2_PIX_FMT_NV12,
279                 .bpp    = 12,
280                 .planar = true,
281                 .uv_width_dec = 2,
282                 .uv_height_dec = 2,
283                 .uv_packed = true,
284         }, {
285                 .fourcc = V4L2_PIX_FMT_YUV422P,
286                 .bpp    = 16,
287                 .planar = true,
288                 .uv_width_dec = 2,
289                 .uv_height_dec = 1,
290         }, {
291                 .fourcc = V4L2_PIX_FMT_NV16,
292                 .bpp    = 16,
293                 .planar = true,
294                 .uv_width_dec = 2,
295                 .uv_height_dec = 1,
296                 .uv_packed = true,
297         },
298 };
299
300 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
301 {
302         const struct ipu_image_pixfmt *ret = NULL;
303         unsigned int i;
304
305         for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
306                 if (image_convert_formats[i].fourcc == fourcc) {
307                         ret = &image_convert_formats[i];
308                         break;
309                 }
310         }
311
312         return ret;
313 }
314
315 static void dump_format(struct ipu_image_convert_ctx *ctx,
316                         struct ipu_image_convert_image *ic_image)
317 {
318         struct ipu_image_convert_chan *chan = ctx->chan;
319         struct ipu_image_convert_priv *priv = chan->priv;
320
321         dev_dbg(priv->ipu->dev,
322                 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
323                 chan->ic_task, ctx,
324                 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
325                 ic_image->base.pix.width, ic_image->base.pix.height,
326                 ic_image->num_cols, ic_image->num_rows,
327                 ic_image->fmt->fourcc & 0xff,
328                 (ic_image->fmt->fourcc >> 8) & 0xff,
329                 (ic_image->fmt->fourcc >> 16) & 0xff,
330                 (ic_image->fmt->fourcc >> 24) & 0xff);
331 }
332
333 int ipu_image_convert_enum_format(int index, u32 *fourcc)
334 {
335         const struct ipu_image_pixfmt *fmt;
336
337         if (index >= (int)ARRAY_SIZE(image_convert_formats))
338                 return -EINVAL;
339
340         /* Format found */
341         fmt = &image_convert_formats[index];
342         *fourcc = fmt->fourcc;
343         return 0;
344 }
345 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
346
347 static void free_dma_buf(struct ipu_image_convert_priv *priv,
348                          struct ipu_image_convert_dma_buf *buf)
349 {
350         if (buf->virt)
351                 dma_free_coherent(priv->ipu->dev,
352                                   buf->len, buf->virt, buf->phys);
353         buf->virt = NULL;
354         buf->phys = 0;
355 }
356
357 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
358                          struct ipu_image_convert_dma_buf *buf,
359                          int size)
360 {
361         buf->len = PAGE_ALIGN(size);
362         buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
363                                        GFP_DMA | GFP_KERNEL);
364         if (!buf->virt) {
365                 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
366                 return -ENOMEM;
367         }
368
369         return 0;
370 }
371
372 static inline int num_stripes(int dim)
373 {
374         return (dim - 1) / 1024 + 1;
375 }
376
377 /*
378  * Calculate downsizing coefficients, which are the same for all tiles,
379  * and bilinear resizing coefficients, which are used to find the best
380  * seam positions.
381  */
382 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
383                                           struct ipu_image *in,
384                                           struct ipu_image *out)
385 {
386         u32 downsized_width = in->rect.width;
387         u32 downsized_height = in->rect.height;
388         u32 downsize_coeff_v = 0;
389         u32 downsize_coeff_h = 0;
390         u32 resized_width = out->rect.width;
391         u32 resized_height = out->rect.height;
392         u32 resize_coeff_h;
393         u32 resize_coeff_v;
394
395         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
396                 resized_width = out->rect.height;
397                 resized_height = out->rect.width;
398         }
399
400         /* Do not let invalid input lead to an endless loop below */
401         if (WARN_ON(resized_width == 0 || resized_height == 0))
402                 return -EINVAL;
403
404         while (downsized_width > 1024 ||
405                downsized_width >= resized_width * 2) {
406                 downsized_width >>= 1;
407                 downsize_coeff_h++;
408         }
409
410         while (downsized_height > 1024 ||
411                downsized_height >= resized_height * 2) {
412                 downsized_height >>= 1;
413                 downsize_coeff_v++;
414         }
415
416         /*
417          * Calculate the bilinear resizing coefficients that could be used if
418          * we were converting with a single tile. The bottom right output pixel
419          * should sample as close as possible to the bottom right input pixel
420          * out of the decimator, but not overshoot it:
421          */
422         resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
423         resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
424
425         dev_dbg(ctx->chan->priv->ipu->dev,
426                 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
427                 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
428                 resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
429
430         if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
431             resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
432                 return -EINVAL;
433
434         ctx->downsize_coeff_h = downsize_coeff_h;
435         ctx->downsize_coeff_v = downsize_coeff_v;
436         ctx->image_resize_coeff_h = resize_coeff_h;
437         ctx->image_resize_coeff_v = resize_coeff_v;
438
439         return 0;
440 }
441
442 #define round_closest(x, y) round_down((x) + (y)/2, (y))
443
444 /*
445  * Find the best aligned seam position in the inverval [out_start, out_end].
446  * Rotation and image offsets are out of scope.
447  *
448  * @out_start: start of inverval, must be within 1024 pixels / lines
449  *             of out_end
450  * @out_end: end of interval, smaller than or equal to out_edge
451  * @in_edge: input right / bottom edge
452  * @out_edge: output right / bottom edge
453  * @in_align: input alignment, either horizontal 8-byte line start address
454  *            alignment, or pixel alignment due to image format
455  * @out_align: output alignment, either horizontal 8-byte line start address
456  *             alignment, or pixel alignment due to image format or rotator
457  *             block size
458  * @in_burst: horizontal input burst size in case of horizontal flip
459  * @out_burst: horizontal output burst size or rotator block size
460  * @downsize_coeff: downsizing section coefficient
461  * @resize_coeff: main processing section resizing coefficient
462  * @_in_seam: aligned input seam position return value
463  * @_out_seam: aligned output seam position return value
464  */
465 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
466                            unsigned int out_start,
467                            unsigned int out_end,
468                            unsigned int in_edge,
469                            unsigned int out_edge,
470                            unsigned int in_align,
471                            unsigned int out_align,
472                            unsigned int in_burst,
473                            unsigned int out_burst,
474                            unsigned int downsize_coeff,
475                            unsigned int resize_coeff,
476                            u32 *_in_seam,
477                            u32 *_out_seam)
478 {
479         struct device *dev = ctx->chan->priv->ipu->dev;
480         unsigned int out_pos;
481         /* Input / output seam position candidates */
482         unsigned int out_seam = 0;
483         unsigned int in_seam = 0;
484         unsigned int min_diff = UINT_MAX;
485
486         /*
487          * Output tiles must start at a multiple of 8 bytes horizontally and
488          * possibly at an even line horizontally depending on the pixel format.
489          * Only consider output aligned positions for the seam.
490          */
491         out_start = round_up(out_start, out_align);
492         for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
493                 unsigned int in_pos;
494                 unsigned int in_pos_aligned;
495                 unsigned int abs_diff;
496
497                 /*
498                  * Tiles in the right row / bottom column may not be allowed to
499                  * overshoot horizontally / vertically. out_burst may be the
500                  * actual DMA burst size, or the rotator block size.
501                  */
502                 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
503                         continue;
504
505                 /*
506                  * Input sample position, corresponding to out_pos, 19.13 fixed
507                  * point.
508                  */
509                 in_pos = (out_pos * resize_coeff) << downsize_coeff;
510                 /*
511                  * The closest input sample position that we could actually
512                  * start the input tile at, 19.13 fixed point.
513                  */
514                 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
515
516                 if ((in_burst > 1) &&
517                     (in_edge - in_pos_aligned / 8192U) % in_burst)
518                         continue;
519
520                 if (in_pos < in_pos_aligned)
521                         abs_diff = in_pos_aligned - in_pos;
522                 else
523                         abs_diff = in_pos - in_pos_aligned;
524
525                 if (abs_diff < min_diff) {
526                         in_seam = in_pos_aligned;
527                         out_seam = out_pos;
528                         min_diff = abs_diff;
529                 }
530         }
531
532         *_out_seam = out_seam;
533         /* Convert 19.13 fixed point to integer seam position */
534         *_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
535
536         dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
537                 __func__, out_seam, out_align, out_start, out_end,
538                 *_in_seam, in_align, min_diff / 8192,
539                 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
540 }
541
542 /*
543  * Tile left edges are required to be aligned to multiples of 8 bytes
544  * by the IDMAC.
545  */
546 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
547 {
548         if (fmt->planar)
549                 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
550         else
551                 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
552 }
553
554 /*
555  * Tile top edge alignment is only limited by chroma subsampling.
556  */
557 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
558 {
559         return fmt->uv_height_dec > 1 ? 2 : 1;
560 }
561
562 static inline u32 tile_width_align(enum ipu_image_convert_type type,
563                                    const struct ipu_image_pixfmt *fmt,
564                                    enum ipu_rotate_mode rot_mode)
565 {
566         if (type == IMAGE_CONVERT_IN) {
567                 /*
568                  * The IC burst reads 8 pixels at a time. Reading beyond the
569                  * end of the line is usually acceptable. Those pixels are
570                  * ignored, unless the IC has to write the scaled line in
571                  * reverse.
572                  */
573                 return (!ipu_rot_mode_is_irt(rot_mode) &&
574                         (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
575         }
576
577         /*
578          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
579          * formats to guarantee 8-byte aligned line start addresses in the
580          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
581          * for all other formats.
582          */
583         return (ipu_rot_mode_is_irt(rot_mode) &&
584                 fmt->planar && !fmt->uv_packed) ?
585                 8 * fmt->uv_width_dec : 8;
586 }
587
588 static inline u32 tile_height_align(enum ipu_image_convert_type type,
589                                     const struct ipu_image_pixfmt *fmt,
590                                     enum ipu_rotate_mode rot_mode)
591 {
592         if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
593                 return 2;
594
595         /*
596          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
597          * formats to guarantee 8-byte aligned line start addresses in the
598          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
599          * for all other formats.
600          */
601         return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
602 }
603
604 /*
605  * Fill in left position and width and for all tiles in an input column, and
606  * for all corresponding output tiles. If the 90° rotator is used, the output
607  * tiles are in a row, and output tile top position and height are set.
608  */
609 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
610                              unsigned int col,
611                              struct ipu_image_convert_image *in,
612                              unsigned int in_left, unsigned int in_width,
613                              struct ipu_image_convert_image *out,
614                              unsigned int out_left, unsigned int out_width)
615 {
616         unsigned int row, tile_idx;
617         struct ipu_image_tile *in_tile, *out_tile;
618
619         for (row = 0; row < in->num_rows; row++) {
620                 tile_idx = in->num_cols * row + col;
621                 in_tile = &in->tile[tile_idx];
622                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
623
624                 in_tile->left = in_left;
625                 in_tile->width = in_width;
626
627                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
628                         out_tile->top = out_left;
629                         out_tile->height = out_width;
630                 } else {
631                         out_tile->left = out_left;
632                         out_tile->width = out_width;
633                 }
634         }
635 }
636
637 /*
638  * Fill in top position and height and for all tiles in an input row, and
639  * for all corresponding output tiles. If the 90° rotator is used, the output
640  * tiles are in a column, and output tile left position and width are set.
641  */
642 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
643                           struct ipu_image_convert_image *in,
644                           unsigned int in_top, unsigned int in_height,
645                           struct ipu_image_convert_image *out,
646                           unsigned int out_top, unsigned int out_height)
647 {
648         unsigned int col, tile_idx;
649         struct ipu_image_tile *in_tile, *out_tile;
650
651         for (col = 0; col < in->num_cols; col++) {
652                 tile_idx = in->num_cols * row + col;
653                 in_tile = &in->tile[tile_idx];
654                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
655
656                 in_tile->top = in_top;
657                 in_tile->height = in_height;
658
659                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
660                         out_tile->left = out_top;
661                         out_tile->width = out_height;
662                 } else {
663                         out_tile->top = out_top;
664                         out_tile->height = out_height;
665                 }
666         }
667 }
668
669 /*
670  * Find the best horizontal and vertical seam positions to split into tiles.
671  * Minimize the fractional part of the input sampling position for the
672  * top / left pixels of each tile.
673  */
674 static void find_seams(struct ipu_image_convert_ctx *ctx,
675                        struct ipu_image_convert_image *in,
676                        struct ipu_image_convert_image *out)
677 {
678         struct device *dev = ctx->chan->priv->ipu->dev;
679         unsigned int resized_width = out->base.rect.width;
680         unsigned int resized_height = out->base.rect.height;
681         unsigned int col;
682         unsigned int row;
683         unsigned int in_left_align = tile_left_align(in->fmt);
684         unsigned int in_top_align = tile_top_align(in->fmt);
685         unsigned int out_left_align = tile_left_align(out->fmt);
686         unsigned int out_top_align = tile_top_align(out->fmt);
687         unsigned int out_width_align = tile_width_align(out->type, out->fmt,
688                                                         ctx->rot_mode);
689         unsigned int out_height_align = tile_height_align(out->type, out->fmt,
690                                                           ctx->rot_mode);
691         unsigned int in_right = in->base.rect.width;
692         unsigned int in_bottom = in->base.rect.height;
693         unsigned int out_right = out->base.rect.width;
694         unsigned int out_bottom = out->base.rect.height;
695         unsigned int flipped_out_left;
696         unsigned int flipped_out_top;
697
698         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
699                 /* Switch width/height and align top left to IRT block size */
700                 resized_width = out->base.rect.height;
701                 resized_height = out->base.rect.width;
702                 out_left_align = out_height_align;
703                 out_top_align = out_width_align;
704                 out_width_align = out_left_align;
705                 out_height_align = out_top_align;
706                 out_right = out->base.rect.height;
707                 out_bottom = out->base.rect.width;
708         }
709
710         for (col = in->num_cols - 1; col > 0; col--) {
711                 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
712                                           !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
713                 bool allow_out_overshoot = (col < in->num_cols - 1) &&
714                                            !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
715                 unsigned int out_start;
716                 unsigned int out_end;
717                 unsigned int in_left;
718                 unsigned int out_left;
719
720                 /*
721                  * Align input width to burst length if the scaling step flips
722                  * horizontally.
723                  */
724
725                 /* Start within 1024 pixels of the right edge */
726                 out_start = max_t(int, 0, out_right - 1024);
727                 /* End before having to add more columns to the left */
728                 out_end = min_t(unsigned int, out_right, col * 1024);
729
730                 find_best_seam(ctx, out_start, out_end,
731                                in_right, out_right,
732                                in_left_align, out_left_align,
733                                allow_in_overshoot ? 1 : 8 /* burst length */,
734                                allow_out_overshoot ? 1 : out_width_align,
735                                ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
736                                &in_left, &out_left);
737
738                 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
739                         flipped_out_left = resized_width - out_right;
740                 else
741                         flipped_out_left = out_left;
742
743                 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
744                                  out, flipped_out_left, out_right - out_left);
745
746                 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
747                         in_left, in_right - in_left,
748                         flipped_out_left, out_right - out_left);
749
750                 in_right = in_left;
751                 out_right = out_left;
752         }
753
754         flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
755                            resized_width - out_right : 0;
756
757         fill_tile_column(ctx, 0, in, 0, in_right,
758                          out, flipped_out_left, out_right);
759
760         dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
761                 in_right, flipped_out_left, out_right);
762
763         for (row = in->num_rows - 1; row > 0; row--) {
764                 bool allow_overshoot = row < in->num_rows - 1;
765                 unsigned int out_start;
766                 unsigned int out_end;
767                 unsigned int in_top;
768                 unsigned int out_top;
769
770                 /* Start within 1024 lines of the bottom edge */
771                 out_start = max_t(int, 0, out_bottom - 1024);
772                 /* End before having to add more rows above */
773                 out_end = min_t(unsigned int, out_bottom, row * 1024);
774
775                 find_best_seam(ctx, out_start, out_end,
776                                in_bottom, out_bottom,
777                                in_top_align, out_top_align,
778                                1, allow_overshoot ? 1 : out_height_align,
779                                ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
780                                &in_top, &out_top);
781
782                 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
783                     ipu_rot_mode_is_irt(ctx->rot_mode))
784                         flipped_out_top = resized_height - out_bottom;
785                 else
786                         flipped_out_top = out_top;
787
788                 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
789                               out, flipped_out_top, out_bottom - out_top);
790
791                 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
792                         in_top, in_bottom - in_top,
793                         flipped_out_top, out_bottom - out_top);
794
795                 in_bottom = in_top;
796                 out_bottom = out_top;
797         }
798
799         if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
800             ipu_rot_mode_is_irt(ctx->rot_mode))
801                 flipped_out_top = resized_height - out_bottom;
802         else
803                 flipped_out_top = 0;
804
805         fill_tile_row(ctx, 0, in, 0, in_bottom,
806                       out, flipped_out_top, out_bottom);
807
808         dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
809                 in_bottom, flipped_out_top, out_bottom);
810 }
811
812 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
813                                  struct ipu_image_convert_image *image)
814 {
815         struct ipu_image_convert_chan *chan = ctx->chan;
816         struct ipu_image_convert_priv *priv = chan->priv;
817         unsigned int i;
818
819         for (i = 0; i < ctx->num_tiles; i++) {
820                 struct ipu_image_tile *tile;
821                 const unsigned int row = i / image->num_cols;
822                 const unsigned int col = i % image->num_cols;
823
824                 if (image->type == IMAGE_CONVERT_OUT)
825                         tile = &image->tile[ctx->out_tile_map[i]];
826                 else
827                         tile = &image->tile[i];
828
829                 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
830                         tile->width;
831
832                 if (image->fmt->planar) {
833                         tile->stride = tile->width;
834                         tile->rot_stride = tile->height;
835                 } else {
836                         tile->stride =
837                                 (image->fmt->bpp * tile->width) >> 3;
838                         tile->rot_stride =
839                                 (image->fmt->bpp * tile->height) >> 3;
840                 }
841
842                 dev_dbg(priv->ipu->dev,
843                         "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
844                         chan->ic_task, ctx,
845                         image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
846                         row, col,
847                         tile->width, tile->height, tile->left, tile->top);
848         }
849 }
850
851 /*
852  * Use the rotation transformation to find the tile coordinates
853  * (row, col) of a tile in the destination frame that corresponds
854  * to the given tile coordinates of a source frame. The destination
855  * coordinate is then converted to a tile index.
856  */
857 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
858                                 int src_row, int src_col)
859 {
860         struct ipu_image_convert_chan *chan = ctx->chan;
861         struct ipu_image_convert_priv *priv = chan->priv;
862         struct ipu_image_convert_image *s_image = &ctx->in;
863         struct ipu_image_convert_image *d_image = &ctx->out;
864         int dst_row, dst_col;
865
866         /* with no rotation it's a 1:1 mapping */
867         if (ctx->rot_mode == IPU_ROTATE_NONE)
868                 return src_row * s_image->num_cols + src_col;
869
870         /*
871          * before doing the transform, first we have to translate
872          * source row,col for an origin in the center of s_image
873          */
874         src_row = src_row * 2 - (s_image->num_rows - 1);
875         src_col = src_col * 2 - (s_image->num_cols - 1);
876
877         /* do the rotation transform */
878         if (ctx->rot_mode & IPU_ROT_BIT_90) {
879                 dst_col = -src_row;
880                 dst_row = src_col;
881         } else {
882                 dst_col = src_col;
883                 dst_row = src_row;
884         }
885
886         /* apply flip */
887         if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
888                 dst_col = -dst_col;
889         if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
890                 dst_row = -dst_row;
891
892         dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
893                 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
894
895         /*
896          * finally translate dest row,col using an origin in upper
897          * left of d_image
898          */
899         dst_row += d_image->num_rows - 1;
900         dst_col += d_image->num_cols - 1;
901         dst_row /= 2;
902         dst_col /= 2;
903
904         return dst_row * d_image->num_cols + dst_col;
905 }
906
907 /*
908  * Fill the out_tile_map[] with transformed destination tile indeces.
909  */
910 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
911 {
912         struct ipu_image_convert_image *s_image = &ctx->in;
913         unsigned int row, col, tile = 0;
914
915         for (row = 0; row < s_image->num_rows; row++) {
916                 for (col = 0; col < s_image->num_cols; col++) {
917                         ctx->out_tile_map[tile] =
918                                 transform_tile_index(ctx, row, col);
919                         tile++;
920                 }
921         }
922 }
923
924 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
925                                     struct ipu_image_convert_image *image)
926 {
927         struct ipu_image_convert_chan *chan = ctx->chan;
928         struct ipu_image_convert_priv *priv = chan->priv;
929         const struct ipu_image_pixfmt *fmt = image->fmt;
930         unsigned int row, col, tile = 0;
931         u32 H, top, y_stride, uv_stride;
932         u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
933         u32 y_row_off, y_col_off, y_off;
934         u32 y_size, uv_size;
935
936         /* setup some convenience vars */
937         H = image->base.pix.height;
938
939         y_stride = image->stride;
940         uv_stride = y_stride / fmt->uv_width_dec;
941         if (fmt->uv_packed)
942                 uv_stride *= 2;
943
944         y_size = H * y_stride;
945         uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
946
947         for (row = 0; row < image->num_rows; row++) {
948                 top = image->tile[tile].top;
949                 y_row_off = top * y_stride;
950                 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
951
952                 for (col = 0; col < image->num_cols; col++) {
953                         y_col_off = image->tile[tile].left;
954                         uv_col_off = y_col_off / fmt->uv_width_dec;
955                         if (fmt->uv_packed)
956                                 uv_col_off *= 2;
957
958                         y_off = y_row_off + y_col_off;
959                         uv_off = uv_row_off + uv_col_off;
960
961                         u_off = y_size - y_off + uv_off;
962                         v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
963                         if (fmt->uv_swapped) {
964                                 tmp = u_off;
965                                 u_off = v_off;
966                                 v_off = tmp;
967                         }
968
969                         image->tile[tile].offset = y_off;
970                         image->tile[tile].u_off = u_off;
971                         image->tile[tile++].v_off = v_off;
972
973                         if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
974                                 dev_err(priv->ipu->dev,
975                                         "task %u: ctx %p: %s@[%d,%d]: "
976                                         "y_off %08x, u_off %08x, v_off %08x\n",
977                                         chan->ic_task, ctx,
978                                         image->type == IMAGE_CONVERT_IN ?
979                                         "Input" : "Output", row, col,
980                                         y_off, u_off, v_off);
981                                 return -EINVAL;
982                         }
983                 }
984         }
985
986         return 0;
987 }
988
989 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
990                                     struct ipu_image_convert_image *image)
991 {
992         struct ipu_image_convert_chan *chan = ctx->chan;
993         struct ipu_image_convert_priv *priv = chan->priv;
994         const struct ipu_image_pixfmt *fmt = image->fmt;
995         unsigned int row, col, tile = 0;
996         u32 bpp, stride, offset;
997         u32 row_off, col_off;
998
999         /* setup some convenience vars */
1000         stride = image->stride;
1001         bpp = fmt->bpp;
1002
1003         for (row = 0; row < image->num_rows; row++) {
1004                 row_off = image->tile[tile].top * stride;
1005
1006                 for (col = 0; col < image->num_cols; col++) {
1007                         col_off = (image->tile[tile].left * bpp) >> 3;
1008
1009                         offset = row_off + col_off;
1010
1011                         image->tile[tile].offset = offset;
1012                         image->tile[tile].u_off = 0;
1013                         image->tile[tile++].v_off = 0;
1014
1015                         if (offset & 0x7) {
1016                                 dev_err(priv->ipu->dev,
1017                                         "task %u: ctx %p: %s@[%d,%d]: "
1018                                         "phys %08x\n",
1019                                         chan->ic_task, ctx,
1020                                         image->type == IMAGE_CONVERT_IN ?
1021                                         "Input" : "Output", row, col,
1022                                         row_off + col_off);
1023                                 return -EINVAL;
1024                         }
1025                 }
1026         }
1027
1028         return 0;
1029 }
1030
1031 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1032                               struct ipu_image_convert_image *image)
1033 {
1034         if (image->fmt->planar)
1035                 return calc_tile_offsets_planar(ctx, image);
1036
1037         return calc_tile_offsets_packed(ctx, image);
1038 }
1039
1040 /*
1041  * Calculate the resizing ratio for the IC main processing section given input
1042  * size, fixed downsizing coefficient, and output size.
1043  * Either round to closest for the next tile's first pixel to minimize seams
1044  * and distortion (for all but right column / bottom row), or round down to
1045  * avoid sampling beyond the edges of the input image for this tile's last
1046  * pixel.
1047  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1048  */
1049 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1050                              u32 output_size, bool allow_overshoot)
1051 {
1052         u32 downsized = input_size >> downsize_coeff;
1053
1054         if (allow_overshoot)
1055                 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1056         else
1057                 return 8192 * (downsized - 1) / (output_size - 1);
1058 }
1059
1060 /*
1061  * Slightly modify resize coefficients per tile to hide the bilinear
1062  * interpolator reset at tile borders, shifting the right / bottom edge
1063  * by up to a half input pixel. This removes noticeable seams between
1064  * tiles at higher upscaling factors.
1065  */
1066 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1067 {
1068         struct ipu_image_convert_chan *chan = ctx->chan;
1069         struct ipu_image_convert_priv *priv = chan->priv;
1070         struct ipu_image_tile *in_tile, *out_tile;
1071         unsigned int col, row, tile_idx;
1072         unsigned int last_output;
1073
1074         for (col = 0; col < ctx->in.num_cols; col++) {
1075                 bool closest = (col < ctx->in.num_cols - 1) &&
1076                                !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1077                 u32 resized_width;
1078                 u32 resize_coeff_h;
1079
1080                 tile_idx = col;
1081                 in_tile = &ctx->in.tile[tile_idx];
1082                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1083
1084                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1085                         resized_width = out_tile->height;
1086                 else
1087                         resized_width = out_tile->width;
1088
1089                 resize_coeff_h = calc_resize_coeff(in_tile->width,
1090                                                    ctx->downsize_coeff_h,
1091                                                    resized_width, closest);
1092
1093                 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1094                         __func__, col, resize_coeff_h);
1095
1096
1097                 for (row = 0; row < ctx->in.num_rows; row++) {
1098                         tile_idx = row * ctx->in.num_cols + col;
1099                         in_tile = &ctx->in.tile[tile_idx];
1100                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1101
1102                         /*
1103                          * With the horizontal scaling factor known, round up
1104                          * resized width (output width or height) to burst size.
1105                          */
1106                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1107                                 out_tile->height = round_up(resized_width, 8);
1108                         else
1109                                 out_tile->width = round_up(resized_width, 8);
1110
1111                         /*
1112                          * Calculate input width from the last accessed input
1113                          * pixel given resized width and scaling coefficients.
1114                          * Round up to burst size.
1115                          */
1116                         last_output = round_up(resized_width, 8) - 1;
1117                         if (closest)
1118                                 last_output++;
1119                         in_tile->width = round_up(
1120                                 (DIV_ROUND_UP(last_output * resize_coeff_h,
1121                                               8192) + 1)
1122                                 << ctx->downsize_coeff_h, 8);
1123                 }
1124
1125                 ctx->resize_coeffs_h[col] = resize_coeff_h;
1126         }
1127
1128         for (row = 0; row < ctx->in.num_rows; row++) {
1129                 bool closest = (row < ctx->in.num_rows - 1) &&
1130                                !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1131                 u32 resized_height;
1132                 u32 resize_coeff_v;
1133
1134                 tile_idx = row * ctx->in.num_cols;
1135                 in_tile = &ctx->in.tile[tile_idx];
1136                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1137
1138                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1139                         resized_height = out_tile->width;
1140                 else
1141                         resized_height = out_tile->height;
1142
1143                 resize_coeff_v = calc_resize_coeff(in_tile->height,
1144                                                    ctx->downsize_coeff_v,
1145                                                    resized_height, closest);
1146
1147                 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1148                         __func__, row, resize_coeff_v);
1149
1150                 for (col = 0; col < ctx->in.num_cols; col++) {
1151                         tile_idx = row * ctx->in.num_cols + col;
1152                         in_tile = &ctx->in.tile[tile_idx];
1153                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1154
1155                         /*
1156                          * With the vertical scaling factor known, round up
1157                          * resized height (output width or height) to IDMAC
1158                          * limitations.
1159                          */
1160                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1161                                 out_tile->width = round_up(resized_height, 2);
1162                         else
1163                                 out_tile->height = round_up(resized_height, 2);
1164
1165                         /*
1166                          * Calculate input width from the last accessed input
1167                          * pixel given resized height and scaling coefficients.
1168                          * Align to IDMAC restrictions.
1169                          */
1170                         last_output = round_up(resized_height, 2) - 1;
1171                         if (closest)
1172                                 last_output++;
1173                         in_tile->height = round_up(
1174                                 (DIV_ROUND_UP(last_output * resize_coeff_v,
1175                                               8192) + 1)
1176                                 << ctx->downsize_coeff_v, 2);
1177                 }
1178
1179                 ctx->resize_coeffs_v[row] = resize_coeff_v;
1180         }
1181 }
1182
1183 /*
1184  * return the number of runs in given queue (pending_q or done_q)
1185  * for this context. hold irqlock when calling.
1186  */
1187 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1188                          struct list_head *q)
1189 {
1190         struct ipu_image_convert_run *run;
1191         int count = 0;
1192
1193         lockdep_assert_held(&ctx->chan->irqlock);
1194
1195         list_for_each_entry(run, q, list) {
1196                 if (run->ctx == ctx)
1197                         count++;
1198         }
1199
1200         return count;
1201 }
1202
1203 static void convert_stop(struct ipu_image_convert_run *run)
1204 {
1205         struct ipu_image_convert_ctx *ctx = run->ctx;
1206         struct ipu_image_convert_chan *chan = ctx->chan;
1207         struct ipu_image_convert_priv *priv = chan->priv;
1208
1209         dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1210                 __func__, chan->ic_task, ctx, run);
1211
1212         /* disable IC tasks and the channels */
1213         ipu_ic_task_disable(chan->ic);
1214         ipu_idmac_disable_channel(chan->in_chan);
1215         ipu_idmac_disable_channel(chan->out_chan);
1216
1217         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1218                 ipu_idmac_disable_channel(chan->rotation_in_chan);
1219                 ipu_idmac_disable_channel(chan->rotation_out_chan);
1220                 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1221         }
1222
1223         ipu_ic_disable(chan->ic);
1224 }
1225
1226 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1227                                struct ipuv3_channel *channel,
1228                                struct ipu_image_convert_image *image,
1229                                enum ipu_rotate_mode rot_mode,
1230                                bool rot_swap_width_height,
1231                                unsigned int tile)
1232 {
1233         struct ipu_image_convert_chan *chan = ctx->chan;
1234         unsigned int burst_size;
1235         u32 width, height, stride;
1236         dma_addr_t addr0, addr1 = 0;
1237         struct ipu_image tile_image;
1238         unsigned int tile_idx[2];
1239
1240         if (image->type == IMAGE_CONVERT_OUT) {
1241                 tile_idx[0] = ctx->out_tile_map[tile];
1242                 tile_idx[1] = ctx->out_tile_map[1];
1243         } else {
1244                 tile_idx[0] = tile;
1245                 tile_idx[1] = 1;
1246         }
1247
1248         if (rot_swap_width_height) {
1249                 width = image->tile[tile_idx[0]].height;
1250                 height = image->tile[tile_idx[0]].width;
1251                 stride = image->tile[tile_idx[0]].rot_stride;
1252                 addr0 = ctx->rot_intermediate[0].phys;
1253                 if (ctx->double_buffering)
1254                         addr1 = ctx->rot_intermediate[1].phys;
1255         } else {
1256                 width = image->tile[tile_idx[0]].width;
1257                 height = image->tile[tile_idx[0]].height;
1258                 stride = image->stride;
1259                 addr0 = image->base.phys0 +
1260                         image->tile[tile_idx[0]].offset;
1261                 if (ctx->double_buffering)
1262                         addr1 = image->base.phys0 +
1263                                 image->tile[tile_idx[1]].offset;
1264         }
1265
1266         ipu_cpmem_zero(channel);
1267
1268         memset(&tile_image, 0, sizeof(tile_image));
1269         tile_image.pix.width = tile_image.rect.width = width;
1270         tile_image.pix.height = tile_image.rect.height = height;
1271         tile_image.pix.bytesperline = stride;
1272         tile_image.pix.pixelformat =  image->fmt->fourcc;
1273         tile_image.phys0 = addr0;
1274         tile_image.phys1 = addr1;
1275         if (image->fmt->planar && !rot_swap_width_height) {
1276                 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1277                 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1278         }
1279
1280         ipu_cpmem_set_image(channel, &tile_image);
1281
1282         if (rot_mode)
1283                 ipu_cpmem_set_rotation(channel, rot_mode);
1284
1285         /*
1286          * Skip writing U and V components to odd rows in the output
1287          * channels for planar 4:2:0.
1288          */
1289         if ((channel == chan->out_chan ||
1290              channel == chan->rotation_out_chan) &&
1291             image->fmt->planar && image->fmt->uv_height_dec == 2)
1292                 ipu_cpmem_skip_odd_chroma_rows(channel);
1293
1294         if (channel == chan->rotation_in_chan ||
1295             channel == chan->rotation_out_chan) {
1296                 burst_size = 8;
1297                 ipu_cpmem_set_block_mode(channel);
1298         } else
1299                 burst_size = (width % 16) ? 8 : 16;
1300
1301         ipu_cpmem_set_burstsize(channel, burst_size);
1302
1303         ipu_ic_task_idma_init(chan->ic, channel, width, height,
1304                               burst_size, rot_mode);
1305
1306         /*
1307          * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1308          * only do this when there is no PRG present.
1309          */
1310         if (!channel->ipu->prg_priv)
1311                 ipu_cpmem_set_axi_id(channel, 1);
1312
1313         ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1314 }
1315
1316 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1317 {
1318         struct ipu_image_convert_ctx *ctx = run->ctx;
1319         struct ipu_image_convert_chan *chan = ctx->chan;
1320         struct ipu_image_convert_priv *priv = chan->priv;
1321         struct ipu_image_convert_image *s_image = &ctx->in;
1322         struct ipu_image_convert_image *d_image = &ctx->out;
1323         unsigned int dst_tile = ctx->out_tile_map[tile];
1324         unsigned int dest_width, dest_height;
1325         unsigned int col, row;
1326         u32 rsc;
1327         int ret;
1328
1329         dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1330                 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1331
1332         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1333                 /* swap width/height for resizer */
1334                 dest_width = d_image->tile[dst_tile].height;
1335                 dest_height = d_image->tile[dst_tile].width;
1336         } else {
1337                 dest_width = d_image->tile[dst_tile].width;
1338                 dest_height = d_image->tile[dst_tile].height;
1339         }
1340
1341         row = tile / s_image->num_cols;
1342         col = tile % s_image->num_cols;
1343
1344         rsc =  (ctx->downsize_coeff_v << 30) |
1345                (ctx->resize_coeffs_v[row] << 16) |
1346                (ctx->downsize_coeff_h << 14) |
1347                (ctx->resize_coeffs_h[col]);
1348
1349         dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1350                 __func__, s_image->tile[tile].width,
1351                 s_image->tile[tile].height, dest_width, dest_height, rsc);
1352
1353         /* setup the IC resizer and CSC */
1354         ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1355                                    s_image->tile[tile].width,
1356                                    s_image->tile[tile].height,
1357                                    dest_width,
1358                                    dest_height,
1359                                    rsc);
1360         if (ret) {
1361                 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1362                 return ret;
1363         }
1364
1365         /* init the source MEM-->IC PP IDMAC channel */
1366         init_idmac_channel(ctx, chan->in_chan, s_image,
1367                            IPU_ROTATE_NONE, false, tile);
1368
1369         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1370                 /* init the IC PP-->MEM IDMAC channel */
1371                 init_idmac_channel(ctx, chan->out_chan, d_image,
1372                                    IPU_ROTATE_NONE, true, tile);
1373
1374                 /* init the MEM-->IC PP ROT IDMAC channel */
1375                 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1376                                    ctx->rot_mode, true, tile);
1377
1378                 /* init the destination IC PP ROT-->MEM IDMAC channel */
1379                 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1380                                    IPU_ROTATE_NONE, false, tile);
1381
1382                 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1383                 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1384         } else {
1385                 /* init the destination IC PP-->MEM IDMAC channel */
1386                 init_idmac_channel(ctx, chan->out_chan, d_image,
1387                                    ctx->rot_mode, false, tile);
1388         }
1389
1390         /* enable the IC */
1391         ipu_ic_enable(chan->ic);
1392
1393         /* set buffers ready */
1394         ipu_idmac_select_buffer(chan->in_chan, 0);
1395         ipu_idmac_select_buffer(chan->out_chan, 0);
1396         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1397                 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1398         if (ctx->double_buffering) {
1399                 ipu_idmac_select_buffer(chan->in_chan, 1);
1400                 ipu_idmac_select_buffer(chan->out_chan, 1);
1401                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1402                         ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1403         }
1404
1405         /* enable the channels! */
1406         ipu_idmac_enable_channel(chan->in_chan);
1407         ipu_idmac_enable_channel(chan->out_chan);
1408         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1409                 ipu_idmac_enable_channel(chan->rotation_in_chan);
1410                 ipu_idmac_enable_channel(chan->rotation_out_chan);
1411         }
1412
1413         ipu_ic_task_enable(chan->ic);
1414
1415         ipu_cpmem_dump(chan->in_chan);
1416         ipu_cpmem_dump(chan->out_chan);
1417         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1418                 ipu_cpmem_dump(chan->rotation_in_chan);
1419                 ipu_cpmem_dump(chan->rotation_out_chan);
1420         }
1421
1422         ipu_dump(priv->ipu);
1423
1424         return 0;
1425 }
1426
1427 /* hold irqlock when calling */
1428 static int do_run(struct ipu_image_convert_run *run)
1429 {
1430         struct ipu_image_convert_ctx *ctx = run->ctx;
1431         struct ipu_image_convert_chan *chan = ctx->chan;
1432
1433         lockdep_assert_held(&chan->irqlock);
1434
1435         ctx->in.base.phys0 = run->in_phys;
1436         ctx->out.base.phys0 = run->out_phys;
1437
1438         ctx->cur_buf_num = 0;
1439         ctx->next_tile = 1;
1440
1441         /* remove run from pending_q and set as current */
1442         list_del(&run->list);
1443         chan->current_run = run;
1444
1445         return convert_start(run, 0);
1446 }
1447
1448 /* hold irqlock when calling */
1449 static void run_next(struct ipu_image_convert_chan *chan)
1450 {
1451         struct ipu_image_convert_priv *priv = chan->priv;
1452         struct ipu_image_convert_run *run, *tmp;
1453         int ret;
1454
1455         lockdep_assert_held(&chan->irqlock);
1456
1457         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1458                 /* skip contexts that are aborting */
1459                 if (run->ctx->aborting) {
1460                         dev_dbg(priv->ipu->dev,
1461                                 "%s: task %u: skipping aborting ctx %p run %p\n",
1462                                 __func__, chan->ic_task, run->ctx, run);
1463                         continue;
1464                 }
1465
1466                 ret = do_run(run);
1467                 if (!ret)
1468                         break;
1469
1470                 /*
1471                  * something went wrong with start, add the run
1472                  * to done q and continue to the next run in the
1473                  * pending q.
1474                  */
1475                 run->status = ret;
1476                 list_add_tail(&run->list, &chan->done_q);
1477                 chan->current_run = NULL;
1478         }
1479 }
1480
1481 static void empty_done_q(struct ipu_image_convert_chan *chan)
1482 {
1483         struct ipu_image_convert_priv *priv = chan->priv;
1484         struct ipu_image_convert_run *run;
1485         unsigned long flags;
1486
1487         spin_lock_irqsave(&chan->irqlock, flags);
1488
1489         while (!list_empty(&chan->done_q)) {
1490                 run = list_entry(chan->done_q.next,
1491                                  struct ipu_image_convert_run,
1492                                  list);
1493
1494                 list_del(&run->list);
1495
1496                 dev_dbg(priv->ipu->dev,
1497                         "%s: task %u: completing ctx %p run %p with %d\n",
1498                         __func__, chan->ic_task, run->ctx, run, run->status);
1499
1500                 /* call the completion callback and free the run */
1501                 spin_unlock_irqrestore(&chan->irqlock, flags);
1502                 run->ctx->complete(run, run->ctx->complete_context);
1503                 spin_lock_irqsave(&chan->irqlock, flags);
1504         }
1505
1506         spin_unlock_irqrestore(&chan->irqlock, flags);
1507 }
1508
1509 /*
1510  * the bottom half thread clears out the done_q, calling the
1511  * completion handler for each.
1512  */
1513 static irqreturn_t do_bh(int irq, void *dev_id)
1514 {
1515         struct ipu_image_convert_chan *chan = dev_id;
1516         struct ipu_image_convert_priv *priv = chan->priv;
1517         struct ipu_image_convert_ctx *ctx;
1518         unsigned long flags;
1519
1520         dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1521                 chan->ic_task);
1522
1523         empty_done_q(chan);
1524
1525         spin_lock_irqsave(&chan->irqlock, flags);
1526
1527         /*
1528          * the done_q is cleared out, signal any contexts
1529          * that are aborting that abort can complete.
1530          */
1531         list_for_each_entry(ctx, &chan->ctx_list, list) {
1532                 if (ctx->aborting) {
1533                         dev_dbg(priv->ipu->dev,
1534                                 "%s: task %u: signaling abort for ctx %p\n",
1535                                 __func__, chan->ic_task, ctx);
1536                         complete_all(&ctx->aborted);
1537                 }
1538         }
1539
1540         spin_unlock_irqrestore(&chan->irqlock, flags);
1541
1542         dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1543                 chan->ic_task);
1544
1545         return IRQ_HANDLED;
1546 }
1547
1548 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1549 {
1550         unsigned int cur_tile = ctx->next_tile - 1;
1551         unsigned int next_tile = ctx->next_tile;
1552
1553         if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1554             ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1555             ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1556             ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1557             ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1558             ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1559             ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1560             ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1561                 return true;
1562
1563         return false;
1564 }
1565
1566 /* hold irqlock when calling */
1567 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1568 {
1569         struct ipu_image_convert_ctx *ctx = run->ctx;
1570         struct ipu_image_convert_chan *chan = ctx->chan;
1571         struct ipu_image_tile *src_tile, *dst_tile;
1572         struct ipu_image_convert_image *s_image = &ctx->in;
1573         struct ipu_image_convert_image *d_image = &ctx->out;
1574         struct ipuv3_channel *outch;
1575         unsigned int dst_idx;
1576
1577         lockdep_assert_held(&chan->irqlock);
1578
1579         outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1580                 chan->rotation_out_chan : chan->out_chan;
1581
1582         /*
1583          * It is difficult to stop the channel DMA before the channels
1584          * enter the paused state. Without double-buffering the channels
1585          * are always in a paused state when the EOF irq occurs, so it
1586          * is safe to stop the channels now. For double-buffering we
1587          * just ignore the abort until the operation completes, when it
1588          * is safe to shut down.
1589          */
1590         if (ctx->aborting && !ctx->double_buffering) {
1591                 convert_stop(run);
1592                 run->status = -EIO;
1593                 goto done;
1594         }
1595
1596         if (ctx->next_tile == ctx->num_tiles) {
1597                 /*
1598                  * the conversion is complete
1599                  */
1600                 convert_stop(run);
1601                 run->status = 0;
1602                 goto done;
1603         }
1604
1605         /*
1606          * not done, place the next tile buffers.
1607          */
1608         if (!ctx->double_buffering) {
1609                 if (ic_settings_changed(ctx)) {
1610                         convert_stop(run);
1611                         convert_start(run, ctx->next_tile);
1612                 } else {
1613                         src_tile = &s_image->tile[ctx->next_tile];
1614                         dst_idx = ctx->out_tile_map[ctx->next_tile];
1615                         dst_tile = &d_image->tile[dst_idx];
1616
1617                         ipu_cpmem_set_buffer(chan->in_chan, 0,
1618                                              s_image->base.phys0 +
1619                                              src_tile->offset);
1620                         ipu_cpmem_set_buffer(outch, 0,
1621                                              d_image->base.phys0 +
1622                                              dst_tile->offset);
1623                         if (s_image->fmt->planar)
1624                                 ipu_cpmem_set_uv_offset(chan->in_chan,
1625                                                         src_tile->u_off,
1626                                                         src_tile->v_off);
1627                         if (d_image->fmt->planar)
1628                                 ipu_cpmem_set_uv_offset(outch,
1629                                                         dst_tile->u_off,
1630                                                         dst_tile->v_off);
1631
1632                         ipu_idmac_select_buffer(chan->in_chan, 0);
1633                         ipu_idmac_select_buffer(outch, 0);
1634                 }
1635         } else if (ctx->next_tile < ctx->num_tiles - 1) {
1636
1637                 src_tile = &s_image->tile[ctx->next_tile + 1];
1638                 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1639                 dst_tile = &d_image->tile[dst_idx];
1640
1641                 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1642                                      s_image->base.phys0 + src_tile->offset);
1643                 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1644                                      d_image->base.phys0 + dst_tile->offset);
1645
1646                 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1647                 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1648
1649                 ctx->cur_buf_num ^= 1;
1650         }
1651
1652         ctx->next_tile++;
1653         return IRQ_HANDLED;
1654 done:
1655         list_add_tail(&run->list, &chan->done_q);
1656         chan->current_run = NULL;
1657         run_next(chan);
1658         return IRQ_WAKE_THREAD;
1659 }
1660
1661 static irqreturn_t norotate_irq(int irq, void *data)
1662 {
1663         struct ipu_image_convert_chan *chan = data;
1664         struct ipu_image_convert_ctx *ctx;
1665         struct ipu_image_convert_run *run;
1666         unsigned long flags;
1667         irqreturn_t ret;
1668
1669         spin_lock_irqsave(&chan->irqlock, flags);
1670
1671         /* get current run and its context */
1672         run = chan->current_run;
1673         if (!run) {
1674                 ret = IRQ_NONE;
1675                 goto out;
1676         }
1677
1678         ctx = run->ctx;
1679
1680         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1681                 /* this is a rotation operation, just ignore */
1682                 spin_unlock_irqrestore(&chan->irqlock, flags);
1683                 return IRQ_HANDLED;
1684         }
1685
1686         ret = do_irq(run);
1687 out:
1688         spin_unlock_irqrestore(&chan->irqlock, flags);
1689         return ret;
1690 }
1691
1692 static irqreturn_t rotate_irq(int irq, void *data)
1693 {
1694         struct ipu_image_convert_chan *chan = data;
1695         struct ipu_image_convert_priv *priv = chan->priv;
1696         struct ipu_image_convert_ctx *ctx;
1697         struct ipu_image_convert_run *run;
1698         unsigned long flags;
1699         irqreturn_t ret;
1700
1701         spin_lock_irqsave(&chan->irqlock, flags);
1702
1703         /* get current run and its context */
1704         run = chan->current_run;
1705         if (!run) {
1706                 ret = IRQ_NONE;
1707                 goto out;
1708         }
1709
1710         ctx = run->ctx;
1711
1712         if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1713                 /* this was NOT a rotation operation, shouldn't happen */
1714                 dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1715                 spin_unlock_irqrestore(&chan->irqlock, flags);
1716                 return IRQ_HANDLED;
1717         }
1718
1719         ret = do_irq(run);
1720 out:
1721         spin_unlock_irqrestore(&chan->irqlock, flags);
1722         return ret;
1723 }
1724
1725 /*
1726  * try to force the completion of runs for this ctx. Called when
1727  * abort wait times out in ipu_image_convert_abort().
1728  */
1729 static void force_abort(struct ipu_image_convert_ctx *ctx)
1730 {
1731         struct ipu_image_convert_chan *chan = ctx->chan;
1732         struct ipu_image_convert_run *run;
1733         unsigned long flags;
1734
1735         spin_lock_irqsave(&chan->irqlock, flags);
1736
1737         run = chan->current_run;
1738         if (run && run->ctx == ctx) {
1739                 convert_stop(run);
1740                 run->status = -EIO;
1741                 list_add_tail(&run->list, &chan->done_q);
1742                 chan->current_run = NULL;
1743                 run_next(chan);
1744         }
1745
1746         spin_unlock_irqrestore(&chan->irqlock, flags);
1747
1748         empty_done_q(chan);
1749 }
1750
1751 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1752 {
1753         if (chan->out_eof_irq >= 0)
1754                 free_irq(chan->out_eof_irq, chan);
1755         if (chan->rot_out_eof_irq >= 0)
1756                 free_irq(chan->rot_out_eof_irq, chan);
1757
1758         if (!IS_ERR_OR_NULL(chan->in_chan))
1759                 ipu_idmac_put(chan->in_chan);
1760         if (!IS_ERR_OR_NULL(chan->out_chan))
1761                 ipu_idmac_put(chan->out_chan);
1762         if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1763                 ipu_idmac_put(chan->rotation_in_chan);
1764         if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1765                 ipu_idmac_put(chan->rotation_out_chan);
1766         if (!IS_ERR_OR_NULL(chan->ic))
1767                 ipu_ic_put(chan->ic);
1768
1769         chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1770                 chan->rotation_out_chan = NULL;
1771         chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1772 }
1773
1774 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1775 {
1776         const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1777         struct ipu_image_convert_priv *priv = chan->priv;
1778         int ret;
1779
1780         /* get IC */
1781         chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1782         if (IS_ERR(chan->ic)) {
1783                 dev_err(priv->ipu->dev, "could not acquire IC\n");
1784                 ret = PTR_ERR(chan->ic);
1785                 goto err;
1786         }
1787
1788         /* get IDMAC channels */
1789         chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1790         chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1791         if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1792                 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1793                 ret = -EBUSY;
1794                 goto err;
1795         }
1796
1797         chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1798         chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1799         if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1800                 dev_err(priv->ipu->dev,
1801                         "could not acquire idmac rotation channels\n");
1802                 ret = -EBUSY;
1803                 goto err;
1804         }
1805
1806         /* acquire the EOF interrupts */
1807         chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1808                                                   chan->out_chan,
1809                                                   IPU_IRQ_EOF);
1810
1811         ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1812                                    0, "ipu-ic", chan);
1813         if (ret < 0) {
1814                 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1815                          chan->out_eof_irq);
1816                 chan->out_eof_irq = -1;
1817                 goto err;
1818         }
1819
1820         chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1821                                                      chan->rotation_out_chan,
1822                                                      IPU_IRQ_EOF);
1823
1824         ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1825                                    0, "ipu-ic", chan);
1826         if (ret < 0) {
1827                 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1828                         chan->rot_out_eof_irq);
1829                 chan->rot_out_eof_irq = -1;
1830                 goto err;
1831         }
1832
1833         return 0;
1834 err:
1835         release_ipu_resources(chan);
1836         return ret;
1837 }
1838
1839 static int fill_image(struct ipu_image_convert_ctx *ctx,
1840                       struct ipu_image_convert_image *ic_image,
1841                       struct ipu_image *image,
1842                       enum ipu_image_convert_type type)
1843 {
1844         struct ipu_image_convert_priv *priv = ctx->chan->priv;
1845
1846         ic_image->base = *image;
1847         ic_image->type = type;
1848
1849         ic_image->fmt = get_format(image->pix.pixelformat);
1850         if (!ic_image->fmt) {
1851                 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1852                         type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1853                 return -EINVAL;
1854         }
1855
1856         if (ic_image->fmt->planar)
1857                 ic_image->stride = ic_image->base.pix.width;
1858         else
1859                 ic_image->stride  = ic_image->base.pix.bytesperline;
1860
1861         return 0;
1862 }
1863
1864 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1865 static unsigned int clamp_align(unsigned int x, unsigned int min,
1866                                 unsigned int max, unsigned int align)
1867 {
1868         /* Bits that must be zero to be aligned */
1869         unsigned int mask = ~((1 << align) - 1);
1870
1871         /* Clamp to aligned min and max */
1872         x = clamp(x, (min + ~mask) & mask, max & mask);
1873
1874         /* Round to nearest aligned value */
1875         if (align)
1876                 x = (x + (1 << (align - 1))) & mask;
1877
1878         return x;
1879 }
1880
1881 /* Adjusts input/output images to IPU restrictions */
1882 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1883                               enum ipu_rotate_mode rot_mode)
1884 {
1885         const struct ipu_image_pixfmt *infmt, *outfmt;
1886         u32 w_align_out, h_align_out;
1887         u32 w_align_in, h_align_in;
1888
1889         infmt = get_format(in->pix.pixelformat);
1890         outfmt = get_format(out->pix.pixelformat);
1891
1892         /* set some default pixel formats if needed */
1893         if (!infmt) {
1894                 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1895                 infmt = get_format(V4L2_PIX_FMT_RGB24);
1896         }
1897         if (!outfmt) {
1898                 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1899                 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1900         }
1901
1902         /* image converter does not handle fields */
1903         in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1904
1905         /* resizer cannot downsize more than 4:1 */
1906         if (ipu_rot_mode_is_irt(rot_mode)) {
1907                 out->pix.height = max_t(__u32, out->pix.height,
1908                                         in->pix.width / 4);
1909                 out->pix.width = max_t(__u32, out->pix.width,
1910                                        in->pix.height / 4);
1911         } else {
1912                 out->pix.width = max_t(__u32, out->pix.width,
1913                                        in->pix.width / 4);
1914                 out->pix.height = max_t(__u32, out->pix.height,
1915                                         in->pix.height / 4);
1916         }
1917
1918         /* align input width/height */
1919         w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1920                                             rot_mode));
1921         h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1922                                              rot_mode));
1923         in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1924                                     w_align_in);
1925         in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1926                                      h_align_in);
1927
1928         /* align output width/height */
1929         w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1930                                              rot_mode));
1931         h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1932                                               rot_mode));
1933         out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1934                                      w_align_out);
1935         out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1936                                       h_align_out);
1937
1938         /* set input/output strides and image sizes */
1939         in->pix.bytesperline = infmt->planar ?
1940                 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1941                             w_align_in) :
1942                 clamp_align((in->pix.width * infmt->bpp) >> 3,
1943                             ((2 << w_align_in) * infmt->bpp) >> 3,
1944                             (MAX_W * infmt->bpp) >> 3,
1945                             w_align_in);
1946         in->pix.sizeimage = infmt->planar ?
1947                 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1948                 in->pix.height * in->pix.bytesperline;
1949         out->pix.bytesperline = outfmt->planar ? out->pix.width :
1950                 (out->pix.width * outfmt->bpp) >> 3;
1951         out->pix.sizeimage = outfmt->planar ?
1952                 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1953                 out->pix.height * out->pix.bytesperline;
1954 }
1955 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1956
1957 /*
1958  * this is used by ipu_image_convert_prepare() to verify set input and
1959  * output images are valid before starting the conversion. Clients can
1960  * also call it before calling ipu_image_convert_prepare().
1961  */
1962 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1963                              enum ipu_rotate_mode rot_mode)
1964 {
1965         struct ipu_image testin, testout;
1966
1967         testin = *in;
1968         testout = *out;
1969
1970         ipu_image_convert_adjust(&testin, &testout, rot_mode);
1971
1972         if (testin.pix.width != in->pix.width ||
1973             testin.pix.height != in->pix.height ||
1974             testout.pix.width != out->pix.width ||
1975             testout.pix.height != out->pix.height)
1976                 return -EINVAL;
1977
1978         return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1981
1982 /*
1983  * Call ipu_image_convert_prepare() to prepare for the conversion of
1984  * given images and rotation mode. Returns a new conversion context.
1985  */
1986 struct ipu_image_convert_ctx *
1987 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1988                           struct ipu_image *in, struct ipu_image *out,
1989                           enum ipu_rotate_mode rot_mode,
1990                           ipu_image_convert_cb_t complete,
1991                           void *complete_context)
1992 {
1993         struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1994         struct ipu_image_convert_image *s_image, *d_image;
1995         struct ipu_image_convert_chan *chan;
1996         struct ipu_image_convert_ctx *ctx;
1997         unsigned long flags;
1998         unsigned int i;
1999         bool get_res;
2000         int ret;
2001
2002         if (!in || !out || !complete ||
2003             (ic_task != IC_TASK_VIEWFINDER &&
2004              ic_task != IC_TASK_POST_PROCESSOR))
2005                 return ERR_PTR(-EINVAL);
2006
2007         /* verify the in/out images before continuing */
2008         ret = ipu_image_convert_verify(in, out, rot_mode);
2009         if (ret) {
2010                 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2011                         __func__);
2012                 return ERR_PTR(ret);
2013         }
2014
2015         chan = &priv->chan[ic_task];
2016
2017         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2018         if (!ctx)
2019                 return ERR_PTR(-ENOMEM);
2020
2021         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2022                 chan->ic_task, ctx);
2023
2024         ctx->chan = chan;
2025         init_completion(&ctx->aborted);
2026
2027         s_image = &ctx->in;
2028         d_image = &ctx->out;
2029
2030         /* set tiling and rotation */
2031         d_image->num_rows = num_stripes(out->pix.height);
2032         d_image->num_cols = num_stripes(out->pix.width);
2033         if (ipu_rot_mode_is_irt(rot_mode)) {
2034                 s_image->num_rows = d_image->num_cols;
2035                 s_image->num_cols = d_image->num_rows;
2036         } else {
2037                 s_image->num_rows = d_image->num_rows;
2038                 s_image->num_cols = d_image->num_cols;
2039         }
2040
2041         ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2042         ctx->rot_mode = rot_mode;
2043
2044         ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2045         if (ret)
2046                 goto out_free;
2047         ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2048         if (ret)
2049                 goto out_free;
2050
2051         ret = calc_image_resize_coefficients(ctx, in, out);
2052         if (ret)
2053                 goto out_free;
2054
2055         calc_out_tile_map(ctx);
2056
2057         find_seams(ctx, s_image, d_image);
2058
2059         calc_tile_dimensions(ctx, s_image);
2060         ret = calc_tile_offsets(ctx, s_image);
2061         if (ret)
2062                 goto out_free;
2063
2064         calc_tile_dimensions(ctx, d_image);
2065         ret = calc_tile_offsets(ctx, d_image);
2066         if (ret)
2067                 goto out_free;
2068
2069         calc_tile_resize_coefficients(ctx);
2070
2071         ret = ipu_ic_calc_csc(&ctx->csc,
2072                         s_image->base.pix.ycbcr_enc,
2073                         s_image->base.pix.quantization,
2074                         ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2075                         d_image->base.pix.ycbcr_enc,
2076                         d_image->base.pix.quantization,
2077                         ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2078         if (ret)
2079                 goto out_free;
2080
2081         dump_format(ctx, s_image);
2082         dump_format(ctx, d_image);
2083
2084         ctx->complete = complete;
2085         ctx->complete_context = complete_context;
2086
2087         /*
2088          * Can we use double-buffering for this operation? If there is
2089          * only one tile (the whole image can be converted in a single
2090          * operation) there's no point in using double-buffering. Also,
2091          * the IPU's IDMAC channels allow only a single U and V plane
2092          * offset shared between both buffers, but these offsets change
2093          * for every tile, and therefore would have to be updated for
2094          * each buffer which is not possible. So double-buffering is
2095          * impossible when either the source or destination images are
2096          * a planar format (YUV420, YUV422P, etc.). Further, differently
2097          * sized tiles or different resizing coefficients per tile
2098          * prevent double-buffering as well.
2099          */
2100         ctx->double_buffering = (ctx->num_tiles > 1 &&
2101                                  !s_image->fmt->planar &&
2102                                  !d_image->fmt->planar);
2103         for (i = 1; i < ctx->num_tiles; i++) {
2104                 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2105                     ctx->in.tile[i].height != ctx->in.tile[0].height ||
2106                     ctx->out.tile[i].width != ctx->out.tile[0].width ||
2107                     ctx->out.tile[i].height != ctx->out.tile[0].height) {
2108                         ctx->double_buffering = false;
2109                         break;
2110                 }
2111         }
2112         for (i = 1; i < ctx->in.num_cols; i++) {
2113                 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2114                         ctx->double_buffering = false;
2115                         break;
2116                 }
2117         }
2118         for (i = 1; i < ctx->in.num_rows; i++) {
2119                 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2120                         ctx->double_buffering = false;
2121                         break;
2122                 }
2123         }
2124
2125         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2126                 unsigned long intermediate_size = d_image->tile[0].size;
2127
2128                 for (i = 1; i < ctx->num_tiles; i++) {
2129                         if (d_image->tile[i].size > intermediate_size)
2130                                 intermediate_size = d_image->tile[i].size;
2131                 }
2132
2133                 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2134                                     intermediate_size);
2135                 if (ret)
2136                         goto out_free;
2137                 if (ctx->double_buffering) {
2138                         ret = alloc_dma_buf(priv,
2139                                             &ctx->rot_intermediate[1],
2140                                             intermediate_size);
2141                         if (ret)
2142                                 goto out_free_dmabuf0;
2143                 }
2144         }
2145
2146         spin_lock_irqsave(&chan->irqlock, flags);
2147
2148         get_res = list_empty(&chan->ctx_list);
2149
2150         list_add_tail(&ctx->list, &chan->ctx_list);
2151
2152         spin_unlock_irqrestore(&chan->irqlock, flags);
2153
2154         if (get_res) {
2155                 ret = get_ipu_resources(chan);
2156                 if (ret)
2157                         goto out_free_dmabuf1;
2158         }
2159
2160         return ctx;
2161
2162 out_free_dmabuf1:
2163         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2164         spin_lock_irqsave(&chan->irqlock, flags);
2165         list_del(&ctx->list);
2166         spin_unlock_irqrestore(&chan->irqlock, flags);
2167 out_free_dmabuf0:
2168         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2169 out_free:
2170         kfree(ctx);
2171         return ERR_PTR(ret);
2172 }
2173 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2174
2175 /*
2176  * Carry out a single image conversion run. Only the physaddr's of the input
2177  * and output image buffers are needed. The conversion context must have
2178  * been created previously with ipu_image_convert_prepare().
2179  */
2180 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2181 {
2182         struct ipu_image_convert_chan *chan;
2183         struct ipu_image_convert_priv *priv;
2184         struct ipu_image_convert_ctx *ctx;
2185         unsigned long flags;
2186         int ret = 0;
2187
2188         if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2189                 return -EINVAL;
2190
2191         ctx = run->ctx;
2192         chan = ctx->chan;
2193         priv = chan->priv;
2194
2195         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2196                 chan->ic_task, ctx, run);
2197
2198         INIT_LIST_HEAD(&run->list);
2199
2200         spin_lock_irqsave(&chan->irqlock, flags);
2201
2202         if (ctx->aborting) {
2203                 ret = -EIO;
2204                 goto unlock;
2205         }
2206
2207         list_add_tail(&run->list, &chan->pending_q);
2208
2209         if (!chan->current_run) {
2210                 ret = do_run(run);
2211                 if (ret)
2212                         chan->current_run = NULL;
2213         }
2214 unlock:
2215         spin_unlock_irqrestore(&chan->irqlock, flags);
2216         return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2219
2220 /* Abort any active or pending conversions for this context */
2221 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2222 {
2223         struct ipu_image_convert_chan *chan = ctx->chan;
2224         struct ipu_image_convert_priv *priv = chan->priv;
2225         struct ipu_image_convert_run *run, *active_run, *tmp;
2226         unsigned long flags;
2227         int run_count, ret;
2228
2229         spin_lock_irqsave(&chan->irqlock, flags);
2230
2231         /* move all remaining pending runs in this context to done_q */
2232         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2233                 if (run->ctx != ctx)
2234                         continue;
2235                 run->status = -EIO;
2236                 list_move_tail(&run->list, &chan->done_q);
2237         }
2238
2239         run_count = get_run_count(ctx, &chan->done_q);
2240         active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2241                 chan->current_run : NULL;
2242
2243         if (active_run)
2244                 reinit_completion(&ctx->aborted);
2245
2246         ctx->aborting = true;
2247
2248         spin_unlock_irqrestore(&chan->irqlock, flags);
2249
2250         if (!run_count && !active_run) {
2251                 dev_dbg(priv->ipu->dev,
2252                         "%s: task %u: no abort needed for ctx %p\n",
2253                         __func__, chan->ic_task, ctx);
2254                 return;
2255         }
2256
2257         if (!active_run) {
2258                 empty_done_q(chan);
2259                 return;
2260         }
2261
2262         dev_dbg(priv->ipu->dev,
2263                 "%s: task %u: wait for completion: %d runs\n",
2264                 __func__, chan->ic_task, run_count);
2265
2266         ret = wait_for_completion_timeout(&ctx->aborted,
2267                                           msecs_to_jiffies(10000));
2268         if (ret == 0) {
2269                 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2270                 force_abort(ctx);
2271         }
2272 }
2273
2274 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2275 {
2276         __ipu_image_convert_abort(ctx);
2277         ctx->aborting = false;
2278 }
2279 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2280
2281 /* Unprepare image conversion context */
2282 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2283 {
2284         struct ipu_image_convert_chan *chan = ctx->chan;
2285         struct ipu_image_convert_priv *priv = chan->priv;
2286         unsigned long flags;
2287         bool put_res;
2288
2289         /* make sure no runs are hanging around */
2290         __ipu_image_convert_abort(ctx);
2291
2292         dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2293                 chan->ic_task, ctx);
2294
2295         spin_lock_irqsave(&chan->irqlock, flags);
2296
2297         list_del(&ctx->list);
2298
2299         put_res = list_empty(&chan->ctx_list);
2300
2301         spin_unlock_irqrestore(&chan->irqlock, flags);
2302
2303         if (put_res)
2304                 release_ipu_resources(chan);
2305
2306         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2307         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2308
2309         kfree(ctx);
2310 }
2311 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2312
2313 /*
2314  * "Canned" asynchronous single image conversion. Allocates and returns
2315  * a new conversion run.  On successful return the caller must free the
2316  * run and call ipu_image_convert_unprepare() after conversion completes.
2317  */
2318 struct ipu_image_convert_run *
2319 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2320                   struct ipu_image *in, struct ipu_image *out,
2321                   enum ipu_rotate_mode rot_mode,
2322                   ipu_image_convert_cb_t complete,
2323                   void *complete_context)
2324 {
2325         struct ipu_image_convert_ctx *ctx;
2326         struct ipu_image_convert_run *run;
2327         int ret;
2328
2329         ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2330                                         complete, complete_context);
2331         if (IS_ERR(ctx))
2332                 return ERR_CAST(ctx);
2333
2334         run = kzalloc(sizeof(*run), GFP_KERNEL);
2335         if (!run) {
2336                 ipu_image_convert_unprepare(ctx);
2337                 return ERR_PTR(-ENOMEM);
2338         }
2339
2340         run->ctx = ctx;
2341         run->in_phys = in->phys0;
2342         run->out_phys = out->phys0;
2343
2344         ret = ipu_image_convert_queue(run);
2345         if (ret) {
2346                 ipu_image_convert_unprepare(ctx);
2347                 kfree(run);
2348                 return ERR_PTR(ret);
2349         }
2350
2351         return run;
2352 }
2353 EXPORT_SYMBOL_GPL(ipu_image_convert);
2354
2355 /* "Canned" synchronous single image conversion */
2356 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2357                                         void *data)
2358 {
2359         struct completion *comp = data;
2360
2361         complete(comp);
2362 }
2363
2364 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2365                            struct ipu_image *in, struct ipu_image *out,
2366                            enum ipu_rotate_mode rot_mode)
2367 {
2368         struct ipu_image_convert_run *run;
2369         struct completion comp;
2370         int ret;
2371
2372         init_completion(&comp);
2373
2374         run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2375                                 image_convert_sync_complete, &comp);
2376         if (IS_ERR(run))
2377                 return PTR_ERR(run);
2378
2379         ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2380         ret = (ret == 0) ? -ETIMEDOUT : 0;
2381
2382         ipu_image_convert_unprepare(run->ctx);
2383         kfree(run);
2384
2385         return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2388
2389 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2390 {
2391         struct ipu_image_convert_priv *priv;
2392         int i;
2393
2394         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2395         if (!priv)
2396                 return -ENOMEM;
2397
2398         ipu->image_convert_priv = priv;
2399         priv->ipu = ipu;
2400
2401         for (i = 0; i < IC_NUM_TASKS; i++) {
2402                 struct ipu_image_convert_chan *chan = &priv->chan[i];
2403
2404                 chan->ic_task = i;
2405                 chan->priv = priv;
2406                 chan->dma_ch = &image_convert_dma_chan[i];
2407                 chan->out_eof_irq = -1;
2408                 chan->rot_out_eof_irq = -1;
2409
2410                 spin_lock_init(&chan->irqlock);
2411                 INIT_LIST_HEAD(&chan->ctx_list);
2412                 INIT_LIST_HEAD(&chan->pending_q);
2413                 INIT_LIST_HEAD(&chan->done_q);
2414         }
2415
2416         return 0;
2417 }
2418
2419 void ipu_image_convert_exit(struct ipu_soc *ipu)
2420 {
2421 }