Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "display/intel_atomic.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_fbc.h"
39 #include "display/intel_sprite.h"
40
41 #include "i915_drv.h"
42 #include "i915_irq.h"
43 #include "i915_trace.h"
44 #include "intel_pm.h"
45 #include "intel_sideband.h"
46 #include "../../../platform/x86/intel_ips.h"
47
48 /**
49  * DOC: RC6
50  *
51  * RC6 is a special power stage which allows the GPU to enter an very
52  * low-voltage mode when idle, using down to 0V while at this stage.  This
53  * stage is entered automatically when the GPU is idle when RC6 support is
54  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
55  *
56  * There are different RC6 modes available in Intel GPU, which differentiate
57  * among each other with the latency required to enter and leave RC6 and
58  * voltage consumed by the GPU in different states.
59  *
60  * The combination of the following flags define which states GPU is allowed
61  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
62  * RC6pp is deepest RC6. Their support by hardware varies according to the
63  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
64  * which brings the most power savings; deeper states save more power, but
65  * require higher latency to switch to and wake up.
66  */
67
68 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
69 {
70         if (HAS_LLC(dev_priv)) {
71                 /*
72                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
73                  * Display WA #0390: skl,kbl
74                  *
75                  * Must match Sampler, Pixel Back End, and Media. See
76                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
77                  */
78                 I915_WRITE(CHICKEN_PAR1_1,
79                            I915_READ(CHICKEN_PAR1_1) |
80                            SKL_DE_COMPRESSED_HASH_MODE);
81         }
82
83         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
84         I915_WRITE(CHICKEN_PAR1_1,
85                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
86
87         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
88         I915_WRITE(GEN8_CHICKEN_DCPR_1,
89                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
90
91         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
92         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
93         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
94                    DISP_FBC_WM_DIS |
95                    DISP_FBC_MEMORY_WAKE);
96
97         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
98         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
99                    ILK_DPFC_DISABLE_DUMMY0);
100
101         if (IS_SKYLAKE(dev_priv)) {
102                 /* WaDisableDopClockGating */
103                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
104                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
105         }
106 }
107
108 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
109 {
110         gen9_init_clock_gating(dev_priv);
111
112         /* WaDisableSDEUnitClockGating:bxt */
113         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
115
116         /*
117          * FIXME:
118          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
119          */
120         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
121                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
122
123         /*
124          * Wa: Backlight PWM may stop in the asserted state, causing backlight
125          * to stay fully on.
126          */
127         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
128                    PWM1_GATING_DIS | PWM2_GATING_DIS);
129
130         /*
131          * Lower the display internal timeout.
132          * This is needed to avoid any hard hangs when DSI port PLL
133          * is off and a MMIO access is attempted by any privilege
134          * application, using batch buffers or any other means.
135          */
136         I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
137 }
138
139 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
140 {
141         gen9_init_clock_gating(dev_priv);
142
143         /*
144          * WaDisablePWMClockGating:glk
145          * Backlight PWM may stop in the asserted state, causing backlight
146          * to stay fully on.
147          */
148         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
149                    PWM1_GATING_DIS | PWM2_GATING_DIS);
150
151         /* WaDDIIOTimeout:glk */
152         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
153                 u32 val = I915_READ(CHICKEN_MISC_2);
154                 val &= ~(GLK_CL0_PWR_DOWN |
155                          GLK_CL1_PWR_DOWN |
156                          GLK_CL2_PWR_DOWN);
157                 I915_WRITE(CHICKEN_MISC_2, val);
158         }
159
160 }
161
162 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
163 {
164         u32 tmp;
165
166         tmp = I915_READ(CLKCFG);
167
168         switch (tmp & CLKCFG_FSB_MASK) {
169         case CLKCFG_FSB_533:
170                 dev_priv->fsb_freq = 533; /* 133*4 */
171                 break;
172         case CLKCFG_FSB_800:
173                 dev_priv->fsb_freq = 800; /* 200*4 */
174                 break;
175         case CLKCFG_FSB_667:
176                 dev_priv->fsb_freq =  667; /* 167*4 */
177                 break;
178         case CLKCFG_FSB_400:
179                 dev_priv->fsb_freq = 400; /* 100*4 */
180                 break;
181         }
182
183         switch (tmp & CLKCFG_MEM_MASK) {
184         case CLKCFG_MEM_533:
185                 dev_priv->mem_freq = 533;
186                 break;
187         case CLKCFG_MEM_667:
188                 dev_priv->mem_freq = 667;
189                 break;
190         case CLKCFG_MEM_800:
191                 dev_priv->mem_freq = 800;
192                 break;
193         }
194
195         /* detect pineview DDR3 setting */
196         tmp = I915_READ(CSHRDDR3CTL);
197         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
198 }
199
200 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
201 {
202         u16 ddrpll, csipll;
203
204         ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
205         csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
206
207         switch (ddrpll & 0xff) {
208         case 0xc:
209                 dev_priv->mem_freq = 800;
210                 break;
211         case 0x10:
212                 dev_priv->mem_freq = 1066;
213                 break;
214         case 0x14:
215                 dev_priv->mem_freq = 1333;
216                 break;
217         case 0x18:
218                 dev_priv->mem_freq = 1600;
219                 break;
220         default:
221                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
222                                  ddrpll & 0xff);
223                 dev_priv->mem_freq = 0;
224                 break;
225         }
226
227         dev_priv->ips.r_t = dev_priv->mem_freq;
228
229         switch (csipll & 0x3ff) {
230         case 0x00c:
231                 dev_priv->fsb_freq = 3200;
232                 break;
233         case 0x00e:
234                 dev_priv->fsb_freq = 3733;
235                 break;
236         case 0x010:
237                 dev_priv->fsb_freq = 4266;
238                 break;
239         case 0x012:
240                 dev_priv->fsb_freq = 4800;
241                 break;
242         case 0x014:
243                 dev_priv->fsb_freq = 5333;
244                 break;
245         case 0x016:
246                 dev_priv->fsb_freq = 5866;
247                 break;
248         case 0x018:
249                 dev_priv->fsb_freq = 6400;
250                 break;
251         default:
252                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
253                                  csipll & 0x3ff);
254                 dev_priv->fsb_freq = 0;
255                 break;
256         }
257
258         if (dev_priv->fsb_freq == 3200) {
259                 dev_priv->ips.c_m = 0;
260         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
261                 dev_priv->ips.c_m = 1;
262         } else {
263                 dev_priv->ips.c_m = 2;
264         }
265 }
266
267 static const struct cxsr_latency cxsr_latency_table[] = {
268         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
269         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
270         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
271         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
272         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
273
274         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
275         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
276         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
277         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
278         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
279
280         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
281         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
282         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
283         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
284         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
285
286         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
287         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
288         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
289         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
290         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
291
292         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
293         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
294         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
295         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
296         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
297
298         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
299         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
300         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
301         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
302         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
303 };
304
305 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
306                                                          bool is_ddr3,
307                                                          int fsb,
308                                                          int mem)
309 {
310         const struct cxsr_latency *latency;
311         int i;
312
313         if (fsb == 0 || mem == 0)
314                 return NULL;
315
316         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
317                 latency = &cxsr_latency_table[i];
318                 if (is_desktop == latency->is_desktop &&
319                     is_ddr3 == latency->is_ddr3 &&
320                     fsb == latency->fsb_freq && mem == latency->mem_freq)
321                         return latency;
322         }
323
324         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
325
326         return NULL;
327 }
328
329 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
330 {
331         u32 val;
332
333         vlv_punit_get(dev_priv);
334
335         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
336         if (enable)
337                 val &= ~FORCE_DDR_HIGH_FREQ;
338         else
339                 val |= FORCE_DDR_HIGH_FREQ;
340         val &= ~FORCE_DDR_LOW_FREQ;
341         val |= FORCE_DDR_FREQ_REQ_ACK;
342         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
343
344         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
345                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
346                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
347
348         vlv_punit_put(dev_priv);
349 }
350
351 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
352 {
353         u32 val;
354
355         vlv_punit_get(dev_priv);
356
357         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
358         if (enable)
359                 val |= DSP_MAXFIFO_PM5_ENABLE;
360         else
361                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
362         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
363
364         vlv_punit_put(dev_priv);
365 }
366
367 #define FW_WM(value, plane) \
368         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
369
370 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
371 {
372         bool was_enabled;
373         u32 val;
374
375         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
376                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
377                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
378                 POSTING_READ(FW_BLC_SELF_VLV);
379         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
380                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
382                 POSTING_READ(FW_BLC_SELF);
383         } else if (IS_PINEVIEW(dev_priv)) {
384                 val = I915_READ(DSPFW3);
385                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
386                 if (enable)
387                         val |= PINEVIEW_SELF_REFRESH_EN;
388                 else
389                         val &= ~PINEVIEW_SELF_REFRESH_EN;
390                 I915_WRITE(DSPFW3, val);
391                 POSTING_READ(DSPFW3);
392         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
393                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
394                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
395                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
396                 I915_WRITE(FW_BLC_SELF, val);
397                 POSTING_READ(FW_BLC_SELF);
398         } else if (IS_I915GM(dev_priv)) {
399                 /*
400                  * FIXME can't find a bit like this for 915G, and
401                  * and yet it does have the related watermark in
402                  * FW_BLC_SELF. What's going on?
403                  */
404                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
405                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
406                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
407                 I915_WRITE(INSTPM, val);
408                 POSTING_READ(INSTPM);
409         } else {
410                 return false;
411         }
412
413         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
414
415         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
416                       enableddisabled(enable),
417                       enableddisabled(was_enabled));
418
419         return was_enabled;
420 }
421
422 /**
423  * intel_set_memory_cxsr - Configure CxSR state
424  * @dev_priv: i915 device
425  * @enable: Allow vs. disallow CxSR
426  *
427  * Allow or disallow the system to enter a special CxSR
428  * (C-state self refresh) state. What typically happens in CxSR mode
429  * is that several display FIFOs may get combined into a single larger
430  * FIFO for a particular plane (so called max FIFO mode) to allow the
431  * system to defer memory fetches longer, and the memory will enter
432  * self refresh.
433  *
434  * Note that enabling CxSR does not guarantee that the system enter
435  * this special mode, nor does it guarantee that the system stays
436  * in that mode once entered. So this just allows/disallows the system
437  * to autonomously utilize the CxSR mode. Other factors such as core
438  * C-states will affect when/if the system actually enters/exits the
439  * CxSR mode.
440  *
441  * Note that on VLV/CHV this actually only controls the max FIFO mode,
442  * and the system is free to enter/exit memory self refresh at any time
443  * even when the use of CxSR has been disallowed.
444  *
445  * While the system is actually in the CxSR/max FIFO mode, some plane
446  * control registers will not get latched on vblank. Thus in order to
447  * guarantee the system will respond to changes in the plane registers
448  * we must always disallow CxSR prior to making changes to those registers.
449  * Unfortunately the system will re-evaluate the CxSR conditions at
450  * frame start which happens after vblank start (which is when the plane
451  * registers would get latched), so we can't proceed with the plane update
452  * during the same frame where we disallowed CxSR.
453  *
454  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
455  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
456  * the hardware w.r.t. HPLL SR when writing to plane registers.
457  * Disallowing just CxSR is sufficient.
458  */
459 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
460 {
461         bool ret;
462
463         mutex_lock(&dev_priv->wm.wm_mutex);
464         ret = _intel_set_memory_cxsr(dev_priv, enable);
465         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
466                 dev_priv->wm.vlv.cxsr = enable;
467         else if (IS_G4X(dev_priv))
468                 dev_priv->wm.g4x.cxsr = enable;
469         mutex_unlock(&dev_priv->wm.wm_mutex);
470
471         return ret;
472 }
473
474 /*
475  * Latency for FIFO fetches is dependent on several factors:
476  *   - memory configuration (speed, channels)
477  *   - chipset
478  *   - current MCH state
479  * It can be fairly high in some situations, so here we assume a fairly
480  * pessimal value.  It's a tradeoff between extra memory fetches (if we
481  * set this value too high, the FIFO will fetch frequently to stay full)
482  * and power consumption (set it too low to save power and we might see
483  * FIFO underruns and display "flicker").
484  *
485  * A value of 5us seems to be a good balance; safe for very low end
486  * platforms but not overly aggressive on lower latency configs.
487  */
488 static const int pessimal_latency_ns = 5000;
489
490 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
491         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
492
493 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
494 {
495         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
496         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
497         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
498         enum pipe pipe = crtc->pipe;
499         int sprite0_start, sprite1_start;
500
501         switch (pipe) {
502                 u32 dsparb, dsparb2, dsparb3;
503         case PIPE_A:
504                 dsparb = I915_READ(DSPARB);
505                 dsparb2 = I915_READ(DSPARB2);
506                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
507                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
508                 break;
509         case PIPE_B:
510                 dsparb = I915_READ(DSPARB);
511                 dsparb2 = I915_READ(DSPARB2);
512                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
513                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
514                 break;
515         case PIPE_C:
516                 dsparb2 = I915_READ(DSPARB2);
517                 dsparb3 = I915_READ(DSPARB3);
518                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
519                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
520                 break;
521         default:
522                 MISSING_CASE(pipe);
523                 return;
524         }
525
526         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
527         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
528         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
529         fifo_state->plane[PLANE_CURSOR] = 63;
530 }
531
532 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
533                               enum i9xx_plane_id i9xx_plane)
534 {
535         u32 dsparb = I915_READ(DSPARB);
536         int size;
537
538         size = dsparb & 0x7f;
539         if (i9xx_plane == PLANE_B)
540                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
541
542         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
543                       dsparb, plane_name(i9xx_plane), size);
544
545         return size;
546 }
547
548 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
549                               enum i9xx_plane_id i9xx_plane)
550 {
551         u32 dsparb = I915_READ(DSPARB);
552         int size;
553
554         size = dsparb & 0x1ff;
555         if (i9xx_plane == PLANE_B)
556                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
557         size >>= 1; /* Convert to cachelines */
558
559         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
560                       dsparb, plane_name(i9xx_plane), size);
561
562         return size;
563 }
564
565 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
566                               enum i9xx_plane_id i9xx_plane)
567 {
568         u32 dsparb = I915_READ(DSPARB);
569         int size;
570
571         size = dsparb & 0x7f;
572         size >>= 2; /* Convert to cachelines */
573
574         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
575                       dsparb, plane_name(i9xx_plane), size);
576
577         return size;
578 }
579
580 /* Pineview has different values for various configs */
581 static const struct intel_watermark_params pineview_display_wm = {
582         .fifo_size = PINEVIEW_DISPLAY_FIFO,
583         .max_wm = PINEVIEW_MAX_WM,
584         .default_wm = PINEVIEW_DFT_WM,
585         .guard_size = PINEVIEW_GUARD_WM,
586         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params pineview_display_hplloff_wm = {
589         .fifo_size = PINEVIEW_DISPLAY_FIFO,
590         .max_wm = PINEVIEW_MAX_WM,
591         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
592         .guard_size = PINEVIEW_GUARD_WM,
593         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params pineview_cursor_wm = {
596         .fifo_size = PINEVIEW_CURSOR_FIFO,
597         .max_wm = PINEVIEW_CURSOR_MAX_WM,
598         .default_wm = PINEVIEW_CURSOR_DFT_WM,
599         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
600         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
603         .fifo_size = PINEVIEW_CURSOR_FIFO,
604         .max_wm = PINEVIEW_CURSOR_MAX_WM,
605         .default_wm = PINEVIEW_CURSOR_DFT_WM,
606         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
607         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i965_cursor_wm_info = {
610         .fifo_size = I965_CURSOR_FIFO,
611         .max_wm = I965_CURSOR_MAX_WM,
612         .default_wm = I965_CURSOR_DFT_WM,
613         .guard_size = 2,
614         .cacheline_size = I915_FIFO_LINE_SIZE,
615 };
616 static const struct intel_watermark_params i945_wm_info = {
617         .fifo_size = I945_FIFO_SIZE,
618         .max_wm = I915_MAX_WM,
619         .default_wm = 1,
620         .guard_size = 2,
621         .cacheline_size = I915_FIFO_LINE_SIZE,
622 };
623 static const struct intel_watermark_params i915_wm_info = {
624         .fifo_size = I915_FIFO_SIZE,
625         .max_wm = I915_MAX_WM,
626         .default_wm = 1,
627         .guard_size = 2,
628         .cacheline_size = I915_FIFO_LINE_SIZE,
629 };
630 static const struct intel_watermark_params i830_a_wm_info = {
631         .fifo_size = I855GM_FIFO_SIZE,
632         .max_wm = I915_MAX_WM,
633         .default_wm = 1,
634         .guard_size = 2,
635         .cacheline_size = I830_FIFO_LINE_SIZE,
636 };
637 static const struct intel_watermark_params i830_bc_wm_info = {
638         .fifo_size = I855GM_FIFO_SIZE,
639         .max_wm = I915_MAX_WM/2,
640         .default_wm = 1,
641         .guard_size = 2,
642         .cacheline_size = I830_FIFO_LINE_SIZE,
643 };
644 static const struct intel_watermark_params i845_wm_info = {
645         .fifo_size = I830_FIFO_SIZE,
646         .max_wm = I915_MAX_WM,
647         .default_wm = 1,
648         .guard_size = 2,
649         .cacheline_size = I830_FIFO_LINE_SIZE,
650 };
651
652 /**
653  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
654  * @pixel_rate: Pipe pixel rate in kHz
655  * @cpp: Plane bytes per pixel
656  * @latency: Memory wakeup latency in 0.1us units
657  *
658  * Compute the watermark using the method 1 or "small buffer"
659  * formula. The caller may additonally add extra cachelines
660  * to account for TLB misses and clock crossings.
661  *
662  * This method is concerned with the short term drain rate
663  * of the FIFO, ie. it does not account for blanking periods
664  * which would effectively reduce the average drain rate across
665  * a longer period. The name "small" refers to the fact the
666  * FIFO is relatively small compared to the amount of data
667  * fetched.
668  *
669  * The FIFO level vs. time graph might look something like:
670  *
671  *   |\   |\
672  *   | \  | \
673  * __---__---__ (- plane active, _ blanking)
674  * -> time
675  *
676  * or perhaps like this:
677  *
678  *   |\|\  |\|\
679  * __----__----__ (- plane active, _ blanking)
680  * -> time
681  *
682  * Returns:
683  * The watermark in bytes
684  */
685 static unsigned int intel_wm_method1(unsigned int pixel_rate,
686                                      unsigned int cpp,
687                                      unsigned int latency)
688 {
689         u64 ret;
690
691         ret = mul_u32_u32(pixel_rate, cpp * latency);
692         ret = DIV_ROUND_UP_ULL(ret, 10000);
693
694         return ret;
695 }
696
697 /**
698  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
699  * @pixel_rate: Pipe pixel rate in kHz
700  * @htotal: Pipe horizontal total
701  * @width: Plane width in pixels
702  * @cpp: Plane bytes per pixel
703  * @latency: Memory wakeup latency in 0.1us units
704  *
705  * Compute the watermark using the method 2 or "large buffer"
706  * formula. The caller may additonally add extra cachelines
707  * to account for TLB misses and clock crossings.
708  *
709  * This method is concerned with the long term drain rate
710  * of the FIFO, ie. it does account for blanking periods
711  * which effectively reduce the average drain rate across
712  * a longer period. The name "large" refers to the fact the
713  * FIFO is relatively large compared to the amount of data
714  * fetched.
715  *
716  * The FIFO level vs. time graph might look something like:
717  *
718  *    |\___       |\___
719  *    |    \___   |    \___
720  *    |        \  |        \
721  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
722  * -> time
723  *
724  * Returns:
725  * The watermark in bytes
726  */
727 static unsigned int intel_wm_method2(unsigned int pixel_rate,
728                                      unsigned int htotal,
729                                      unsigned int width,
730                                      unsigned int cpp,
731                                      unsigned int latency)
732 {
733         unsigned int ret;
734
735         /*
736          * FIXME remove once all users are computing
737          * watermarks in the correct place.
738          */
739         if (WARN_ON_ONCE(htotal == 0))
740                 htotal = 1;
741
742         ret = (latency * pixel_rate) / (htotal * 10000);
743         ret = (ret + 1) * width * cpp;
744
745         return ret;
746 }
747
748 /**
749  * intel_calculate_wm - calculate watermark level
750  * @pixel_rate: pixel clock
751  * @wm: chip FIFO params
752  * @fifo_size: size of the FIFO buffer
753  * @cpp: bytes per pixel
754  * @latency_ns: memory latency for the platform
755  *
756  * Calculate the watermark level (the level at which the display plane will
757  * start fetching from memory again).  Each chip has a different display
758  * FIFO size and allocation, so the caller needs to figure that out and pass
759  * in the correct intel_watermark_params structure.
760  *
761  * As the pixel clock runs, the FIFO will be drained at a rate that depends
762  * on the pixel size.  When it reaches the watermark level, it'll start
763  * fetching FIFO line sized based chunks from memory until the FIFO fills
764  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
765  * will occur, and a display engine hang could result.
766  */
767 static unsigned int intel_calculate_wm(int pixel_rate,
768                                        const struct intel_watermark_params *wm,
769                                        int fifo_size, int cpp,
770                                        unsigned int latency_ns)
771 {
772         int entries, wm_size;
773
774         /*
775          * Note: we need to make sure we don't overflow for various clock &
776          * latency values.
777          * clocks go from a few thousand to several hundred thousand.
778          * latency is usually a few thousand
779          */
780         entries = intel_wm_method1(pixel_rate, cpp,
781                                    latency_ns / 100);
782         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
783                 wm->guard_size;
784         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
785
786         wm_size = fifo_size - entries;
787         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
788
789         /* Don't promote wm_size to unsigned... */
790         if (wm_size > wm->max_wm)
791                 wm_size = wm->max_wm;
792         if (wm_size <= 0)
793                 wm_size = wm->default_wm;
794
795         /*
796          * Bspec seems to indicate that the value shouldn't be lower than
797          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
798          * Lets go for 8 which is the burst size since certain platforms
799          * already use a hardcoded 8 (which is what the spec says should be
800          * done).
801          */
802         if (wm_size <= 8)
803                 wm_size = 8;
804
805         return wm_size;
806 }
807
808 static bool is_disabling(int old, int new, int threshold)
809 {
810         return old >= threshold && new < threshold;
811 }
812
813 static bool is_enabling(int old, int new, int threshold)
814 {
815         return old < threshold && new >= threshold;
816 }
817
818 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
819 {
820         return dev_priv->wm.max_level + 1;
821 }
822
823 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
824                                    const struct intel_plane_state *plane_state)
825 {
826         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
827
828         /* FIXME check the 'enable' instead */
829         if (!crtc_state->base.active)
830                 return false;
831
832         /*
833          * Treat cursor with fb as always visible since cursor updates
834          * can happen faster than the vrefresh rate, and the current
835          * watermark code doesn't handle that correctly. Cursor updates
836          * which set/clear the fb or change the cursor size are going
837          * to get throttled by intel_legacy_cursor_update() to work
838          * around this problem with the watermark code.
839          */
840         if (plane->id == PLANE_CURSOR)
841                 return plane_state->base.fb != NULL;
842         else
843                 return plane_state->base.visible;
844 }
845
846 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
847 {
848         struct intel_crtc *crtc, *enabled = NULL;
849
850         for_each_intel_crtc(&dev_priv->drm, crtc) {
851                 if (intel_crtc_active(crtc)) {
852                         if (enabled)
853                                 return NULL;
854                         enabled = crtc;
855                 }
856         }
857
858         return enabled;
859 }
860
861 static void pineview_update_wm(struct intel_crtc *unused_crtc)
862 {
863         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
864         struct intel_crtc *crtc;
865         const struct cxsr_latency *latency;
866         u32 reg;
867         unsigned int wm;
868
869         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
870                                          dev_priv->is_ddr3,
871                                          dev_priv->fsb_freq,
872                                          dev_priv->mem_freq);
873         if (!latency) {
874                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
875                 intel_set_memory_cxsr(dev_priv, false);
876                 return;
877         }
878
879         crtc = single_enabled_crtc(dev_priv);
880         if (crtc) {
881                 const struct drm_display_mode *adjusted_mode =
882                         &crtc->config->base.adjusted_mode;
883                 const struct drm_framebuffer *fb =
884                         crtc->base.primary->state->fb;
885                 int cpp = fb->format->cpp[0];
886                 int clock = adjusted_mode->crtc_clock;
887
888                 /* Display SR */
889                 wm = intel_calculate_wm(clock, &pineview_display_wm,
890                                         pineview_display_wm.fifo_size,
891                                         cpp, latency->display_sr);
892                 reg = I915_READ(DSPFW1);
893                 reg &= ~DSPFW_SR_MASK;
894                 reg |= FW_WM(wm, SR);
895                 I915_WRITE(DSPFW1, reg);
896                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
897
898                 /* cursor SR */
899                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
900                                         pineview_display_wm.fifo_size,
901                                         4, latency->cursor_sr);
902                 reg = I915_READ(DSPFW3);
903                 reg &= ~DSPFW_CURSOR_SR_MASK;
904                 reg |= FW_WM(wm, CURSOR_SR);
905                 I915_WRITE(DSPFW3, reg);
906
907                 /* Display HPLL off SR */
908                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
909                                         pineview_display_hplloff_wm.fifo_size,
910                                         cpp, latency->display_hpll_disable);
911                 reg = I915_READ(DSPFW3);
912                 reg &= ~DSPFW_HPLL_SR_MASK;
913                 reg |= FW_WM(wm, HPLL_SR);
914                 I915_WRITE(DSPFW3, reg);
915
916                 /* cursor HPLL off SR */
917                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
918                                         pineview_display_hplloff_wm.fifo_size,
919                                         4, latency->cursor_hpll_disable);
920                 reg = I915_READ(DSPFW3);
921                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
922                 reg |= FW_WM(wm, HPLL_CURSOR);
923                 I915_WRITE(DSPFW3, reg);
924                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
925
926                 intel_set_memory_cxsr(dev_priv, true);
927         } else {
928                 intel_set_memory_cxsr(dev_priv, false);
929         }
930 }
931
932 /*
933  * Documentation says:
934  * "If the line size is small, the TLB fetches can get in the way of the
935  *  data fetches, causing some lag in the pixel data return which is not
936  *  accounted for in the above formulas. The following adjustment only
937  *  needs to be applied if eight whole lines fit in the buffer at once.
938  *  The WM is adjusted upwards by the difference between the FIFO size
939  *  and the size of 8 whole lines. This adjustment is always performed
940  *  in the actual pixel depth regardless of whether FBC is enabled or not."
941  */
942 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
943 {
944         int tlb_miss = fifo_size * 64 - width * cpp * 8;
945
946         return max(0, tlb_miss);
947 }
948
949 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
950                                 const struct g4x_wm_values *wm)
951 {
952         enum pipe pipe;
953
954         for_each_pipe(dev_priv, pipe)
955                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
956
957         I915_WRITE(DSPFW1,
958                    FW_WM(wm->sr.plane, SR) |
959                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
960                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
961                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
962         I915_WRITE(DSPFW2,
963                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
964                    FW_WM(wm->sr.fbc, FBC_SR) |
965                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
966                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
967                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
968                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
969         I915_WRITE(DSPFW3,
970                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
971                    FW_WM(wm->sr.cursor, CURSOR_SR) |
972                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
973                    FW_WM(wm->hpll.plane, HPLL_SR));
974
975         POSTING_READ(DSPFW1);
976 }
977
978 #define FW_WM_VLV(value, plane) \
979         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
980
981 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
982                                 const struct vlv_wm_values *wm)
983 {
984         enum pipe pipe;
985
986         for_each_pipe(dev_priv, pipe) {
987                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
988
989                 I915_WRITE(VLV_DDL(pipe),
990                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
991                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
992                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
993                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
994         }
995
996         /*
997          * Zero the (unused) WM1 watermarks, and also clear all the
998          * high order bits so that there are no out of bounds values
999          * present in the registers during the reprogramming.
1000          */
1001         I915_WRITE(DSPHOWM, 0);
1002         I915_WRITE(DSPHOWM1, 0);
1003         I915_WRITE(DSPFW4, 0);
1004         I915_WRITE(DSPFW5, 0);
1005         I915_WRITE(DSPFW6, 0);
1006
1007         I915_WRITE(DSPFW1,
1008                    FW_WM(wm->sr.plane, SR) |
1009                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1010                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1011                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1012         I915_WRITE(DSPFW2,
1013                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1014                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1015                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1016         I915_WRITE(DSPFW3,
1017                    FW_WM(wm->sr.cursor, CURSOR_SR));
1018
1019         if (IS_CHERRYVIEW(dev_priv)) {
1020                 I915_WRITE(DSPFW7_CHV,
1021                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1022                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1023                 I915_WRITE(DSPFW8_CHV,
1024                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1025                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1026                 I915_WRITE(DSPFW9_CHV,
1027                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1028                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1029                 I915_WRITE(DSPHOWM,
1030                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1031                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1032                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1033                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1034                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1035                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1036                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1037                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1038                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1039                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1040         } else {
1041                 I915_WRITE(DSPFW7,
1042                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1043                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044                 I915_WRITE(DSPHOWM,
1045                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1046                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1047                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1048                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1049                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1050                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1051                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1052         }
1053
1054         POSTING_READ(DSPFW1);
1055 }
1056
1057 #undef FW_WM_VLV
1058
1059 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1060 {
1061         /* all latencies in usec */
1062         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1063         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1064         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1065
1066         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1067 }
1068
1069 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1070 {
1071         /*
1072          * DSPCNTR[13] supposedly controls whether the
1073          * primary plane can use the FIFO space otherwise
1074          * reserved for the sprite plane. It's not 100% clear
1075          * what the actual FIFO size is, but it looks like we
1076          * can happily set both primary and sprite watermarks
1077          * up to 127 cachelines. So that would seem to mean
1078          * that either DSPCNTR[13] doesn't do anything, or that
1079          * the total FIFO is >= 256 cachelines in size. Either
1080          * way, we don't seem to have to worry about this
1081          * repartitioning as the maximum watermark value the
1082          * register can hold for each plane is lower than the
1083          * minimum FIFO size.
1084          */
1085         switch (plane_id) {
1086         case PLANE_CURSOR:
1087                 return 63;
1088         case PLANE_PRIMARY:
1089                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1090         case PLANE_SPRITE0:
1091                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1092         default:
1093                 MISSING_CASE(plane_id);
1094                 return 0;
1095         }
1096 }
1097
1098 static int g4x_fbc_fifo_size(int level)
1099 {
1100         switch (level) {
1101         case G4X_WM_LEVEL_SR:
1102                 return 7;
1103         case G4X_WM_LEVEL_HPLL:
1104                 return 15;
1105         default:
1106                 MISSING_CASE(level);
1107                 return 0;
1108         }
1109 }
1110
1111 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1112                           const struct intel_plane_state *plane_state,
1113                           int level)
1114 {
1115         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1116         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1117         const struct drm_display_mode *adjusted_mode =
1118                 &crtc_state->base.adjusted_mode;
1119         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1120         unsigned int clock, htotal, cpp, width, wm;
1121
1122         if (latency == 0)
1123                 return USHRT_MAX;
1124
1125         if (!intel_wm_plane_visible(crtc_state, plane_state))
1126                 return 0;
1127
1128         cpp = plane_state->base.fb->format->cpp[0];
1129
1130         /*
1131          * Not 100% sure which way ELK should go here as the
1132          * spec only says CL/CTG should assume 32bpp and BW
1133          * doesn't need to. But as these things followed the
1134          * mobile vs. desktop lines on gen3 as well, let's
1135          * assume ELK doesn't need this.
1136          *
1137          * The spec also fails to list such a restriction for
1138          * the HPLL watermark, which seems a little strange.
1139          * Let's use 32bpp for the HPLL watermark as well.
1140          */
1141         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1142             level != G4X_WM_LEVEL_NORMAL)
1143                 cpp = max(cpp, 4u);
1144
1145         clock = adjusted_mode->crtc_clock;
1146         htotal = adjusted_mode->crtc_htotal;
1147
1148         if (plane->id == PLANE_CURSOR)
1149                 width = plane_state->base.crtc_w;
1150         else
1151                 width = drm_rect_width(&plane_state->base.dst);
1152
1153         if (plane->id == PLANE_CURSOR) {
1154                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1155         } else if (plane->id == PLANE_PRIMARY &&
1156                    level == G4X_WM_LEVEL_NORMAL) {
1157                 wm = intel_wm_method1(clock, cpp, latency);
1158         } else {
1159                 unsigned int small, large;
1160
1161                 small = intel_wm_method1(clock, cpp, latency);
1162                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1163
1164                 wm = min(small, large);
1165         }
1166
1167         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1168                               width, cpp);
1169
1170         wm = DIV_ROUND_UP(wm, 64) + 2;
1171
1172         return min_t(unsigned int, wm, USHRT_MAX);
1173 }
1174
1175 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1176                                  int level, enum plane_id plane_id, u16 value)
1177 {
1178         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1179         bool dirty = false;
1180
1181         for (; level < intel_wm_num_levels(dev_priv); level++) {
1182                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183
1184                 dirty |= raw->plane[plane_id] != value;
1185                 raw->plane[plane_id] = value;
1186         }
1187
1188         return dirty;
1189 }
1190
1191 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1192                                int level, u16 value)
1193 {
1194         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1195         bool dirty = false;
1196
1197         /* NORMAL level doesn't have an FBC watermark */
1198         level = max(level, G4X_WM_LEVEL_SR);
1199
1200         for (; level < intel_wm_num_levels(dev_priv); level++) {
1201                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1202
1203                 dirty |= raw->fbc != value;
1204                 raw->fbc = value;
1205         }
1206
1207         return dirty;
1208 }
1209
1210 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1211                               const struct intel_plane_state *plane_state,
1212                               u32 pri_val);
1213
1214 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1215                                      const struct intel_plane_state *plane_state)
1216 {
1217         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1218         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1219         enum plane_id plane_id = plane->id;
1220         bool dirty = false;
1221         int level;
1222
1223         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1224                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1225                 if (plane_id == PLANE_PRIMARY)
1226                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1227                 goto out;
1228         }
1229
1230         for (level = 0; level < num_levels; level++) {
1231                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1232                 int wm, max_wm;
1233
1234                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1235                 max_wm = g4x_plane_fifo_size(plane_id, level);
1236
1237                 if (wm > max_wm)
1238                         break;
1239
1240                 dirty |= raw->plane[plane_id] != wm;
1241                 raw->plane[plane_id] = wm;
1242
1243                 if (plane_id != PLANE_PRIMARY ||
1244                     level == G4X_WM_LEVEL_NORMAL)
1245                         continue;
1246
1247                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1248                                         raw->plane[plane_id]);
1249                 max_wm = g4x_fbc_fifo_size(level);
1250
1251                 /*
1252                  * FBC wm is not mandatory as we
1253                  * can always just disable its use.
1254                  */
1255                 if (wm > max_wm)
1256                         wm = USHRT_MAX;
1257
1258                 dirty |= raw->fbc != wm;
1259                 raw->fbc = wm;
1260         }
1261
1262         /* mark watermarks as invalid */
1263         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1264
1265         if (plane_id == PLANE_PRIMARY)
1266                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1267
1268  out:
1269         if (dirty) {
1270                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1271                               plane->base.name,
1272                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1273                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1274                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1275
1276                 if (plane_id == PLANE_PRIMARY)
1277                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1278                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1279                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1280         }
1281
1282         return dirty;
1283 }
1284
1285 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1286                                       enum plane_id plane_id, int level)
1287 {
1288         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1289
1290         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1291 }
1292
1293 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1294                                      int level)
1295 {
1296         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1297
1298         if (level > dev_priv->wm.max_level)
1299                 return false;
1300
1301         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1302                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1303                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1304 }
1305
1306 /* mark all levels starting from 'level' as invalid */
1307 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1308                                struct g4x_wm_state *wm_state, int level)
1309 {
1310         if (level <= G4X_WM_LEVEL_NORMAL) {
1311                 enum plane_id plane_id;
1312
1313                 for_each_plane_id_on_crtc(crtc, plane_id)
1314                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1315         }
1316
1317         if (level <= G4X_WM_LEVEL_SR) {
1318                 wm_state->cxsr = false;
1319                 wm_state->sr.cursor = USHRT_MAX;
1320                 wm_state->sr.plane = USHRT_MAX;
1321                 wm_state->sr.fbc = USHRT_MAX;
1322         }
1323
1324         if (level <= G4X_WM_LEVEL_HPLL) {
1325                 wm_state->hpll_en = false;
1326                 wm_state->hpll.cursor = USHRT_MAX;
1327                 wm_state->hpll.plane = USHRT_MAX;
1328                 wm_state->hpll.fbc = USHRT_MAX;
1329         }
1330 }
1331
1332 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1333 {
1334         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1335         struct intel_atomic_state *state =
1336                 to_intel_atomic_state(crtc_state->base.state);
1337         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1338         int num_active_planes = hweight32(crtc_state->active_planes &
1339                                           ~BIT(PLANE_CURSOR));
1340         const struct g4x_pipe_wm *raw;
1341         const struct intel_plane_state *old_plane_state;
1342         const struct intel_plane_state *new_plane_state;
1343         struct intel_plane *plane;
1344         enum plane_id plane_id;
1345         int i, level;
1346         unsigned int dirty = 0;
1347
1348         for_each_oldnew_intel_plane_in_state(state, plane,
1349                                              old_plane_state,
1350                                              new_plane_state, i) {
1351                 if (new_plane_state->base.crtc != &crtc->base &&
1352                     old_plane_state->base.crtc != &crtc->base)
1353                         continue;
1354
1355                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1356                         dirty |= BIT(plane->id);
1357         }
1358
1359         if (!dirty)
1360                 return 0;
1361
1362         level = G4X_WM_LEVEL_NORMAL;
1363         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1364                 goto out;
1365
1366         raw = &crtc_state->wm.g4x.raw[level];
1367         for_each_plane_id_on_crtc(crtc, plane_id)
1368                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1369
1370         level = G4X_WM_LEVEL_SR;
1371
1372         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1373                 goto out;
1374
1375         raw = &crtc_state->wm.g4x.raw[level];
1376         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1377         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1378         wm_state->sr.fbc = raw->fbc;
1379
1380         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1381
1382         level = G4X_WM_LEVEL_HPLL;
1383
1384         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1385                 goto out;
1386
1387         raw = &crtc_state->wm.g4x.raw[level];
1388         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1389         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1390         wm_state->hpll.fbc = raw->fbc;
1391
1392         wm_state->hpll_en = wm_state->cxsr;
1393
1394         level++;
1395
1396  out:
1397         if (level == G4X_WM_LEVEL_NORMAL)
1398                 return -EINVAL;
1399
1400         /* invalidate the higher levels */
1401         g4x_invalidate_wms(crtc, wm_state, level);
1402
1403         /*
1404          * Determine if the FBC watermark(s) can be used. IF
1405          * this isn't the case we prefer to disable the FBC
1406          ( watermark(s) rather than disable the SR/HPLL
1407          * level(s) entirely.
1408          */
1409         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1410
1411         if (level >= G4X_WM_LEVEL_SR &&
1412             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1413                 wm_state->fbc_en = false;
1414         else if (level >= G4X_WM_LEVEL_HPLL &&
1415                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1416                 wm_state->fbc_en = false;
1417
1418         return 0;
1419 }
1420
1421 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1422 {
1423         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1424         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1425         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1426         struct intel_atomic_state *intel_state =
1427                 to_intel_atomic_state(new_crtc_state->base.state);
1428         const struct intel_crtc_state *old_crtc_state =
1429                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1430         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1431         enum plane_id plane_id;
1432
1433         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1434                 *intermediate = *optimal;
1435
1436                 intermediate->cxsr = false;
1437                 intermediate->hpll_en = false;
1438                 goto out;
1439         }
1440
1441         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1442                 !new_crtc_state->disable_cxsr;
1443         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1444                 !new_crtc_state->disable_cxsr;
1445         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1446
1447         for_each_plane_id_on_crtc(crtc, plane_id) {
1448                 intermediate->wm.plane[plane_id] =
1449                         max(optimal->wm.plane[plane_id],
1450                             active->wm.plane[plane_id]);
1451
1452                 WARN_ON(intermediate->wm.plane[plane_id] >
1453                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1454         }
1455
1456         intermediate->sr.plane = max(optimal->sr.plane,
1457                                      active->sr.plane);
1458         intermediate->sr.cursor = max(optimal->sr.cursor,
1459                                       active->sr.cursor);
1460         intermediate->sr.fbc = max(optimal->sr.fbc,
1461                                    active->sr.fbc);
1462
1463         intermediate->hpll.plane = max(optimal->hpll.plane,
1464                                        active->hpll.plane);
1465         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1466                                         active->hpll.cursor);
1467         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1468                                      active->hpll.fbc);
1469
1470         WARN_ON((intermediate->sr.plane >
1471                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1472                  intermediate->sr.cursor >
1473                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1474                 intermediate->cxsr);
1475         WARN_ON((intermediate->sr.plane >
1476                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1477                  intermediate->sr.cursor >
1478                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1479                 intermediate->hpll_en);
1480
1481         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1482                 intermediate->fbc_en && intermediate->cxsr);
1483         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1484                 intermediate->fbc_en && intermediate->hpll_en);
1485
1486 out:
1487         /*
1488          * If our intermediate WM are identical to the final WM, then we can
1489          * omit the post-vblank programming; only update if it's different.
1490          */
1491         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1492                 new_crtc_state->wm.need_postvbl_update = true;
1493
1494         return 0;
1495 }
1496
1497 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1498                          struct g4x_wm_values *wm)
1499 {
1500         struct intel_crtc *crtc;
1501         int num_active_crtcs = 0;
1502
1503         wm->cxsr = true;
1504         wm->hpll_en = true;
1505         wm->fbc_en = true;
1506
1507         for_each_intel_crtc(&dev_priv->drm, crtc) {
1508                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1509
1510                 if (!crtc->active)
1511                         continue;
1512
1513                 if (!wm_state->cxsr)
1514                         wm->cxsr = false;
1515                 if (!wm_state->hpll_en)
1516                         wm->hpll_en = false;
1517                 if (!wm_state->fbc_en)
1518                         wm->fbc_en = false;
1519
1520                 num_active_crtcs++;
1521         }
1522
1523         if (num_active_crtcs != 1) {
1524                 wm->cxsr = false;
1525                 wm->hpll_en = false;
1526                 wm->fbc_en = false;
1527         }
1528
1529         for_each_intel_crtc(&dev_priv->drm, crtc) {
1530                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1531                 enum pipe pipe = crtc->pipe;
1532
1533                 wm->pipe[pipe] = wm_state->wm;
1534                 if (crtc->active && wm->cxsr)
1535                         wm->sr = wm_state->sr;
1536                 if (crtc->active && wm->hpll_en)
1537                         wm->hpll = wm_state->hpll;
1538         }
1539 }
1540
1541 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1542 {
1543         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1544         struct g4x_wm_values new_wm = {};
1545
1546         g4x_merge_wm(dev_priv, &new_wm);
1547
1548         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1549                 return;
1550
1551         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1552                 _intel_set_memory_cxsr(dev_priv, false);
1553
1554         g4x_write_wm_values(dev_priv, &new_wm);
1555
1556         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1557                 _intel_set_memory_cxsr(dev_priv, true);
1558
1559         *old_wm = new_wm;
1560 }
1561
1562 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1563                                    struct intel_crtc_state *crtc_state)
1564 {
1565         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1566         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1567
1568         mutex_lock(&dev_priv->wm.wm_mutex);
1569         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1570         g4x_program_watermarks(dev_priv);
1571         mutex_unlock(&dev_priv->wm.wm_mutex);
1572 }
1573
1574 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1575                                     struct intel_crtc_state *crtc_state)
1576 {
1577         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1578         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1579
1580         if (!crtc_state->wm.need_postvbl_update)
1581                 return;
1582
1583         mutex_lock(&dev_priv->wm.wm_mutex);
1584         crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1585         g4x_program_watermarks(dev_priv);
1586         mutex_unlock(&dev_priv->wm.wm_mutex);
1587 }
1588
1589 /* latency must be in 0.1us units. */
1590 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1591                                    unsigned int htotal,
1592                                    unsigned int width,
1593                                    unsigned int cpp,
1594                                    unsigned int latency)
1595 {
1596         unsigned int ret;
1597
1598         ret = intel_wm_method2(pixel_rate, htotal,
1599                                width, cpp, latency);
1600         ret = DIV_ROUND_UP(ret, 64);
1601
1602         return ret;
1603 }
1604
1605 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1606 {
1607         /* all latencies in usec */
1608         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1609
1610         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1611
1612         if (IS_CHERRYVIEW(dev_priv)) {
1613                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1614                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1615
1616                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1617         }
1618 }
1619
1620 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1621                                 const struct intel_plane_state *plane_state,
1622                                 int level)
1623 {
1624         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1625         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1626         const struct drm_display_mode *adjusted_mode =
1627                 &crtc_state->base.adjusted_mode;
1628         unsigned int clock, htotal, cpp, width, wm;
1629
1630         if (dev_priv->wm.pri_latency[level] == 0)
1631                 return USHRT_MAX;
1632
1633         if (!intel_wm_plane_visible(crtc_state, plane_state))
1634                 return 0;
1635
1636         cpp = plane_state->base.fb->format->cpp[0];
1637         clock = adjusted_mode->crtc_clock;
1638         htotal = adjusted_mode->crtc_htotal;
1639         width = crtc_state->pipe_src_w;
1640
1641         if (plane->id == PLANE_CURSOR) {
1642                 /*
1643                  * FIXME the formula gives values that are
1644                  * too big for the cursor FIFO, and hence we
1645                  * would never be able to use cursors. For
1646                  * now just hardcode the watermark.
1647                  */
1648                 wm = 63;
1649         } else {
1650                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1651                                     dev_priv->wm.pri_latency[level] * 10);
1652         }
1653
1654         return min_t(unsigned int, wm, USHRT_MAX);
1655 }
1656
1657 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1658 {
1659         return (active_planes & (BIT(PLANE_SPRITE0) |
1660                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1661 }
1662
1663 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1664 {
1665         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1666         const struct g4x_pipe_wm *raw =
1667                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1668         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1669         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1670         int num_active_planes = hweight32(active_planes);
1671         const int fifo_size = 511;
1672         int fifo_extra, fifo_left = fifo_size;
1673         int sprite0_fifo_extra = 0;
1674         unsigned int total_rate;
1675         enum plane_id plane_id;
1676
1677         /*
1678          * When enabling sprite0 after sprite1 has already been enabled
1679          * we tend to get an underrun unless sprite0 already has some
1680          * FIFO space allcoated. Hence we always allocate at least one
1681          * cacheline for sprite0 whenever sprite1 is enabled.
1682          *
1683          * All other plane enable sequences appear immune to this problem.
1684          */
1685         if (vlv_need_sprite0_fifo_workaround(active_planes))
1686                 sprite0_fifo_extra = 1;
1687
1688         total_rate = raw->plane[PLANE_PRIMARY] +
1689                 raw->plane[PLANE_SPRITE0] +
1690                 raw->plane[PLANE_SPRITE1] +
1691                 sprite0_fifo_extra;
1692
1693         if (total_rate > fifo_size)
1694                 return -EINVAL;
1695
1696         if (total_rate == 0)
1697                 total_rate = 1;
1698
1699         for_each_plane_id_on_crtc(crtc, plane_id) {
1700                 unsigned int rate;
1701
1702                 if ((active_planes & BIT(plane_id)) == 0) {
1703                         fifo_state->plane[plane_id] = 0;
1704                         continue;
1705                 }
1706
1707                 rate = raw->plane[plane_id];
1708                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1709                 fifo_left -= fifo_state->plane[plane_id];
1710         }
1711
1712         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1713         fifo_left -= sprite0_fifo_extra;
1714
1715         fifo_state->plane[PLANE_CURSOR] = 63;
1716
1717         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1718
1719         /* spread the remainder evenly */
1720         for_each_plane_id_on_crtc(crtc, plane_id) {
1721                 int plane_extra;
1722
1723                 if (fifo_left == 0)
1724                         break;
1725
1726                 if ((active_planes & BIT(plane_id)) == 0)
1727                         continue;
1728
1729                 plane_extra = min(fifo_extra, fifo_left);
1730                 fifo_state->plane[plane_id] += plane_extra;
1731                 fifo_left -= plane_extra;
1732         }
1733
1734         WARN_ON(active_planes != 0 && fifo_left != 0);
1735
1736         /* give it all to the first plane if none are active */
1737         if (active_planes == 0) {
1738                 WARN_ON(fifo_left != fifo_size);
1739                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1740         }
1741
1742         return 0;
1743 }
1744
1745 /* mark all levels starting from 'level' as invalid */
1746 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1747                                struct vlv_wm_state *wm_state, int level)
1748 {
1749         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1750
1751         for (; level < intel_wm_num_levels(dev_priv); level++) {
1752                 enum plane_id plane_id;
1753
1754                 for_each_plane_id_on_crtc(crtc, plane_id)
1755                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1756
1757                 wm_state->sr[level].cursor = USHRT_MAX;
1758                 wm_state->sr[level].plane = USHRT_MAX;
1759         }
1760 }
1761
1762 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1763 {
1764         if (wm > fifo_size)
1765                 return USHRT_MAX;
1766         else
1767                 return fifo_size - wm;
1768 }
1769
1770 /*
1771  * Starting from 'level' set all higher
1772  * levels to 'value' in the "raw" watermarks.
1773  */
1774 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1775                                  int level, enum plane_id plane_id, u16 value)
1776 {
1777         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1778         int num_levels = intel_wm_num_levels(dev_priv);
1779         bool dirty = false;
1780
1781         for (; level < num_levels; level++) {
1782                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1783
1784                 dirty |= raw->plane[plane_id] != value;
1785                 raw->plane[plane_id] = value;
1786         }
1787
1788         return dirty;
1789 }
1790
1791 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1792                                      const struct intel_plane_state *plane_state)
1793 {
1794         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1795         enum plane_id plane_id = plane->id;
1796         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1797         int level;
1798         bool dirty = false;
1799
1800         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1801                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1802                 goto out;
1803         }
1804
1805         for (level = 0; level < num_levels; level++) {
1806                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1807                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1808                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1809
1810                 if (wm > max_wm)
1811                         break;
1812
1813                 dirty |= raw->plane[plane_id] != wm;
1814                 raw->plane[plane_id] = wm;
1815         }
1816
1817         /* mark all higher levels as invalid */
1818         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1819
1820 out:
1821         if (dirty)
1822                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1823                               plane->base.name,
1824                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1825                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1826                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1827
1828         return dirty;
1829 }
1830
1831 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1832                                       enum plane_id plane_id, int level)
1833 {
1834         const struct g4x_pipe_wm *raw =
1835                 &crtc_state->wm.vlv.raw[level];
1836         const struct vlv_fifo_state *fifo_state =
1837                 &crtc_state->wm.vlv.fifo_state;
1838
1839         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1840 }
1841
1842 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1843 {
1844         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1845                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1846                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1847                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1848 }
1849
1850 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1851 {
1852         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1853         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1854         struct intel_atomic_state *state =
1855                 to_intel_atomic_state(crtc_state->base.state);
1856         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1857         const struct vlv_fifo_state *fifo_state =
1858                 &crtc_state->wm.vlv.fifo_state;
1859         int num_active_planes = hweight32(crtc_state->active_planes &
1860                                           ~BIT(PLANE_CURSOR));
1861         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1862         const struct intel_plane_state *old_plane_state;
1863         const struct intel_plane_state *new_plane_state;
1864         struct intel_plane *plane;
1865         enum plane_id plane_id;
1866         int level, ret, i;
1867         unsigned int dirty = 0;
1868
1869         for_each_oldnew_intel_plane_in_state(state, plane,
1870                                              old_plane_state,
1871                                              new_plane_state, i) {
1872                 if (new_plane_state->base.crtc != &crtc->base &&
1873                     old_plane_state->base.crtc != &crtc->base)
1874                         continue;
1875
1876                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1877                         dirty |= BIT(plane->id);
1878         }
1879
1880         /*
1881          * DSPARB registers may have been reset due to the
1882          * power well being turned off. Make sure we restore
1883          * them to a consistent state even if no primary/sprite
1884          * planes are initially active.
1885          */
1886         if (needs_modeset)
1887                 crtc_state->fifo_changed = true;
1888
1889         if (!dirty)
1890                 return 0;
1891
1892         /* cursor changes don't warrant a FIFO recompute */
1893         if (dirty & ~BIT(PLANE_CURSOR)) {
1894                 const struct intel_crtc_state *old_crtc_state =
1895                         intel_atomic_get_old_crtc_state(state, crtc);
1896                 const struct vlv_fifo_state *old_fifo_state =
1897                         &old_crtc_state->wm.vlv.fifo_state;
1898
1899                 ret = vlv_compute_fifo(crtc_state);
1900                 if (ret)
1901                         return ret;
1902
1903                 if (needs_modeset ||
1904                     memcmp(old_fifo_state, fifo_state,
1905                            sizeof(*fifo_state)) != 0)
1906                         crtc_state->fifo_changed = true;
1907         }
1908
1909         /* initially allow all levels */
1910         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1911         /*
1912          * Note that enabling cxsr with no primary/sprite planes
1913          * enabled can wedge the pipe. Hence we only allow cxsr
1914          * with exactly one enabled primary/sprite plane.
1915          */
1916         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1917
1918         for (level = 0; level < wm_state->num_levels; level++) {
1919                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1920                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1921
1922                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1923                         break;
1924
1925                 for_each_plane_id_on_crtc(crtc, plane_id) {
1926                         wm_state->wm[level].plane[plane_id] =
1927                                 vlv_invert_wm_value(raw->plane[plane_id],
1928                                                     fifo_state->plane[plane_id]);
1929                 }
1930
1931                 wm_state->sr[level].plane =
1932                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1933                                                  raw->plane[PLANE_SPRITE0],
1934                                                  raw->plane[PLANE_SPRITE1]),
1935                                             sr_fifo_size);
1936
1937                 wm_state->sr[level].cursor =
1938                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1939                                             63);
1940         }
1941
1942         if (level == 0)
1943                 return -EINVAL;
1944
1945         /* limit to only levels we can actually handle */
1946         wm_state->num_levels = level;
1947
1948         /* invalidate the higher levels */
1949         vlv_invalidate_wms(crtc, wm_state, level);
1950
1951         return 0;
1952 }
1953
1954 #define VLV_FIFO(plane, value) \
1955         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1956
1957 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1958                                    struct intel_crtc_state *crtc_state)
1959 {
1960         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1961         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1962         struct intel_uncore *uncore = &dev_priv->uncore;
1963         const struct vlv_fifo_state *fifo_state =
1964                 &crtc_state->wm.vlv.fifo_state;
1965         int sprite0_start, sprite1_start, fifo_size;
1966
1967         if (!crtc_state->fifo_changed)
1968                 return;
1969
1970         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1971         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1972         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1973
1974         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1975         WARN_ON(fifo_size != 511);
1976
1977         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1978
1979         /*
1980          * uncore.lock serves a double purpose here. It allows us to
1981          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1982          * it protects the DSPARB registers from getting clobbered by
1983          * parallel updates from multiple pipes.
1984          *
1985          * intel_pipe_update_start() has already disabled interrupts
1986          * for us, so a plain spin_lock() is sufficient here.
1987          */
1988         spin_lock(&uncore->lock);
1989
1990         switch (crtc->pipe) {
1991                 u32 dsparb, dsparb2, dsparb3;
1992         case PIPE_A:
1993                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
1994                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1995
1996                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1997                             VLV_FIFO(SPRITEB, 0xff));
1998                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1999                            VLV_FIFO(SPRITEB, sprite1_start));
2000
2001                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2002                              VLV_FIFO(SPRITEB_HI, 0x1));
2003                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2004                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2005
2006                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2007                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2008                 break;
2009         case PIPE_B:
2010                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2011                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2012
2013                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2014                             VLV_FIFO(SPRITED, 0xff));
2015                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2016                            VLV_FIFO(SPRITED, sprite1_start));
2017
2018                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2019                              VLV_FIFO(SPRITED_HI, 0xff));
2020                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2021                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2022
2023                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2024                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2025                 break;
2026         case PIPE_C:
2027                 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2028                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2029
2030                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2031                              VLV_FIFO(SPRITEF, 0xff));
2032                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2033                             VLV_FIFO(SPRITEF, sprite1_start));
2034
2035                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2036                              VLV_FIFO(SPRITEF_HI, 0xff));
2037                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2038                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2039
2040                 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2041                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2042                 break;
2043         default:
2044                 break;
2045         }
2046
2047         intel_uncore_posting_read_fw(uncore, DSPARB);
2048
2049         spin_unlock(&uncore->lock);
2050 }
2051
2052 #undef VLV_FIFO
2053
2054 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2055 {
2056         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2057         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2058         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2059         struct intel_atomic_state *intel_state =
2060                 to_intel_atomic_state(new_crtc_state->base.state);
2061         const struct intel_crtc_state *old_crtc_state =
2062                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2063         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2064         int level;
2065
2066         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2067                 *intermediate = *optimal;
2068
2069                 intermediate->cxsr = false;
2070                 goto out;
2071         }
2072
2073         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2074         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2075                 !new_crtc_state->disable_cxsr;
2076
2077         for (level = 0; level < intermediate->num_levels; level++) {
2078                 enum plane_id plane_id;
2079
2080                 for_each_plane_id_on_crtc(crtc, plane_id) {
2081                         intermediate->wm[level].plane[plane_id] =
2082                                 min(optimal->wm[level].plane[plane_id],
2083                                     active->wm[level].plane[plane_id]);
2084                 }
2085
2086                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2087                                                     active->sr[level].plane);
2088                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2089                                                      active->sr[level].cursor);
2090         }
2091
2092         vlv_invalidate_wms(crtc, intermediate, level);
2093
2094 out:
2095         /*
2096          * If our intermediate WM are identical to the final WM, then we can
2097          * omit the post-vblank programming; only update if it's different.
2098          */
2099         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2100                 new_crtc_state->wm.need_postvbl_update = true;
2101
2102         return 0;
2103 }
2104
2105 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2106                          struct vlv_wm_values *wm)
2107 {
2108         struct intel_crtc *crtc;
2109         int num_active_crtcs = 0;
2110
2111         wm->level = dev_priv->wm.max_level;
2112         wm->cxsr = true;
2113
2114         for_each_intel_crtc(&dev_priv->drm, crtc) {
2115                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116
2117                 if (!crtc->active)
2118                         continue;
2119
2120                 if (!wm_state->cxsr)
2121                         wm->cxsr = false;
2122
2123                 num_active_crtcs++;
2124                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2125         }
2126
2127         if (num_active_crtcs != 1)
2128                 wm->cxsr = false;
2129
2130         if (num_active_crtcs > 1)
2131                 wm->level = VLV_WM_LEVEL_PM2;
2132
2133         for_each_intel_crtc(&dev_priv->drm, crtc) {
2134                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2135                 enum pipe pipe = crtc->pipe;
2136
2137                 wm->pipe[pipe] = wm_state->wm[wm->level];
2138                 if (crtc->active && wm->cxsr)
2139                         wm->sr = wm_state->sr[wm->level];
2140
2141                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2142                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2143                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2144                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2145         }
2146 }
2147
2148 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2149 {
2150         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2151         struct vlv_wm_values new_wm = {};
2152
2153         vlv_merge_wm(dev_priv, &new_wm);
2154
2155         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2156                 return;
2157
2158         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2159                 chv_set_memory_dvfs(dev_priv, false);
2160
2161         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162                 chv_set_memory_pm5(dev_priv, false);
2163
2164         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2165                 _intel_set_memory_cxsr(dev_priv, false);
2166
2167         vlv_write_wm_values(dev_priv, &new_wm);
2168
2169         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2170                 _intel_set_memory_cxsr(dev_priv, true);
2171
2172         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2173                 chv_set_memory_pm5(dev_priv, true);
2174
2175         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2176                 chv_set_memory_dvfs(dev_priv, true);
2177
2178         *old_wm = new_wm;
2179 }
2180
2181 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2182                                    struct intel_crtc_state *crtc_state)
2183 {
2184         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2185         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2186
2187         mutex_lock(&dev_priv->wm.wm_mutex);
2188         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2189         vlv_program_watermarks(dev_priv);
2190         mutex_unlock(&dev_priv->wm.wm_mutex);
2191 }
2192
2193 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2194                                     struct intel_crtc_state *crtc_state)
2195 {
2196         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2197         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2198
2199         if (!crtc_state->wm.need_postvbl_update)
2200                 return;
2201
2202         mutex_lock(&dev_priv->wm.wm_mutex);
2203         crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2204         vlv_program_watermarks(dev_priv);
2205         mutex_unlock(&dev_priv->wm.wm_mutex);
2206 }
2207
2208 static void i965_update_wm(struct intel_crtc *unused_crtc)
2209 {
2210         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2211         struct intel_crtc *crtc;
2212         int srwm = 1;
2213         int cursor_sr = 16;
2214         bool cxsr_enabled;
2215
2216         /* Calc sr entries for one plane configs */
2217         crtc = single_enabled_crtc(dev_priv);
2218         if (crtc) {
2219                 /* self-refresh has much higher latency */
2220                 static const int sr_latency_ns = 12000;
2221                 const struct drm_display_mode *adjusted_mode =
2222                         &crtc->config->base.adjusted_mode;
2223                 const struct drm_framebuffer *fb =
2224                         crtc->base.primary->state->fb;
2225                 int clock = adjusted_mode->crtc_clock;
2226                 int htotal = adjusted_mode->crtc_htotal;
2227                 int hdisplay = crtc->config->pipe_src_w;
2228                 int cpp = fb->format->cpp[0];
2229                 int entries;
2230
2231                 entries = intel_wm_method2(clock, htotal,
2232                                            hdisplay, cpp, sr_latency_ns / 100);
2233                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2234                 srwm = I965_FIFO_SIZE - entries;
2235                 if (srwm < 0)
2236                         srwm = 1;
2237                 srwm &= 0x1ff;
2238                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2239                               entries, srwm);
2240
2241                 entries = intel_wm_method2(clock, htotal,
2242                                            crtc->base.cursor->state->crtc_w, 4,
2243                                            sr_latency_ns / 100);
2244                 entries = DIV_ROUND_UP(entries,
2245                                        i965_cursor_wm_info.cacheline_size) +
2246                         i965_cursor_wm_info.guard_size;
2247
2248                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2249                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2250                         cursor_sr = i965_cursor_wm_info.max_wm;
2251
2252                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2253                               "cursor %d\n", srwm, cursor_sr);
2254
2255                 cxsr_enabled = true;
2256         } else {
2257                 cxsr_enabled = false;
2258                 /* Turn off self refresh if both pipes are enabled */
2259                 intel_set_memory_cxsr(dev_priv, false);
2260         }
2261
2262         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2263                       srwm);
2264
2265         /* 965 has limitations... */
2266         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2267                    FW_WM(8, CURSORB) |
2268                    FW_WM(8, PLANEB) |
2269                    FW_WM(8, PLANEA));
2270         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2271                    FW_WM(8, PLANEC_OLD));
2272         /* update cursor SR watermark */
2273         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2274
2275         if (cxsr_enabled)
2276                 intel_set_memory_cxsr(dev_priv, true);
2277 }
2278
2279 #undef FW_WM
2280
2281 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2282 {
2283         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2284         const struct intel_watermark_params *wm_info;
2285         u32 fwater_lo;
2286         u32 fwater_hi;
2287         int cwm, srwm = 1;
2288         int fifo_size;
2289         int planea_wm, planeb_wm;
2290         struct intel_crtc *crtc, *enabled = NULL;
2291
2292         if (IS_I945GM(dev_priv))
2293                 wm_info = &i945_wm_info;
2294         else if (!IS_GEN(dev_priv, 2))
2295                 wm_info = &i915_wm_info;
2296         else
2297                 wm_info = &i830_a_wm_info;
2298
2299         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2300         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2301         if (intel_crtc_active(crtc)) {
2302                 const struct drm_display_mode *adjusted_mode =
2303                         &crtc->config->base.adjusted_mode;
2304                 const struct drm_framebuffer *fb =
2305                         crtc->base.primary->state->fb;
2306                 int cpp;
2307
2308                 if (IS_GEN(dev_priv, 2))
2309                         cpp = 4;
2310                 else
2311                         cpp = fb->format->cpp[0];
2312
2313                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2314                                                wm_info, fifo_size, cpp,
2315                                                pessimal_latency_ns);
2316                 enabled = crtc;
2317         } else {
2318                 planea_wm = fifo_size - wm_info->guard_size;
2319                 if (planea_wm > (long)wm_info->max_wm)
2320                         planea_wm = wm_info->max_wm;
2321         }
2322
2323         if (IS_GEN(dev_priv, 2))
2324                 wm_info = &i830_bc_wm_info;
2325
2326         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2327         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2328         if (intel_crtc_active(crtc)) {
2329                 const struct drm_display_mode *adjusted_mode =
2330                         &crtc->config->base.adjusted_mode;
2331                 const struct drm_framebuffer *fb =
2332                         crtc->base.primary->state->fb;
2333                 int cpp;
2334
2335                 if (IS_GEN(dev_priv, 2))
2336                         cpp = 4;
2337                 else
2338                         cpp = fb->format->cpp[0];
2339
2340                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2341                                                wm_info, fifo_size, cpp,
2342                                                pessimal_latency_ns);
2343                 if (enabled == NULL)
2344                         enabled = crtc;
2345                 else
2346                         enabled = NULL;
2347         } else {
2348                 planeb_wm = fifo_size - wm_info->guard_size;
2349                 if (planeb_wm > (long)wm_info->max_wm)
2350                         planeb_wm = wm_info->max_wm;
2351         }
2352
2353         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2354
2355         if (IS_I915GM(dev_priv) && enabled) {
2356                 struct drm_i915_gem_object *obj;
2357
2358                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2359
2360                 /* self-refresh seems busted with untiled */
2361                 if (!i915_gem_object_is_tiled(obj))
2362                         enabled = NULL;
2363         }
2364
2365         /*
2366          * Overlay gets an aggressive default since video jitter is bad.
2367          */
2368         cwm = 2;
2369
2370         /* Play safe and disable self-refresh before adjusting watermarks. */
2371         intel_set_memory_cxsr(dev_priv, false);
2372
2373         /* Calc sr entries for one plane configs */
2374         if (HAS_FW_BLC(dev_priv) && enabled) {
2375                 /* self-refresh has much higher latency */
2376                 static const int sr_latency_ns = 6000;
2377                 const struct drm_display_mode *adjusted_mode =
2378                         &enabled->config->base.adjusted_mode;
2379                 const struct drm_framebuffer *fb =
2380                         enabled->base.primary->state->fb;
2381                 int clock = adjusted_mode->crtc_clock;
2382                 int htotal = adjusted_mode->crtc_htotal;
2383                 int hdisplay = enabled->config->pipe_src_w;
2384                 int cpp;
2385                 int entries;
2386
2387                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2388                         cpp = 4;
2389                 else
2390                         cpp = fb->format->cpp[0];
2391
2392                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2393                                            sr_latency_ns / 100);
2394                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2395                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2396                 srwm = wm_info->fifo_size - entries;
2397                 if (srwm < 0)
2398                         srwm = 1;
2399
2400                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2401                         I915_WRITE(FW_BLC_SELF,
2402                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2403                 else
2404                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2405         }
2406
2407         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2408                       planea_wm, planeb_wm, cwm, srwm);
2409
2410         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2411         fwater_hi = (cwm & 0x1f);
2412
2413         /* Set request length to 8 cachelines per fetch */
2414         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2415         fwater_hi = fwater_hi | (1 << 8);
2416
2417         I915_WRITE(FW_BLC, fwater_lo);
2418         I915_WRITE(FW_BLC2, fwater_hi);
2419
2420         if (enabled)
2421                 intel_set_memory_cxsr(dev_priv, true);
2422 }
2423
2424 static void i845_update_wm(struct intel_crtc *unused_crtc)
2425 {
2426         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2427         struct intel_crtc *crtc;
2428         const struct drm_display_mode *adjusted_mode;
2429         u32 fwater_lo;
2430         int planea_wm;
2431
2432         crtc = single_enabled_crtc(dev_priv);
2433         if (crtc == NULL)
2434                 return;
2435
2436         adjusted_mode = &crtc->config->base.adjusted_mode;
2437         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2438                                        &i845_wm_info,
2439                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2440                                        4, pessimal_latency_ns);
2441         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2442         fwater_lo |= (3<<8) | planea_wm;
2443
2444         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2445
2446         I915_WRITE(FW_BLC, fwater_lo);
2447 }
2448
2449 /* latency must be in 0.1us units. */
2450 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2451                                    unsigned int cpp,
2452                                    unsigned int latency)
2453 {
2454         unsigned int ret;
2455
2456         ret = intel_wm_method1(pixel_rate, cpp, latency);
2457         ret = DIV_ROUND_UP(ret, 64) + 2;
2458
2459         return ret;
2460 }
2461
2462 /* latency must be in 0.1us units. */
2463 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2464                                    unsigned int htotal,
2465                                    unsigned int width,
2466                                    unsigned int cpp,
2467                                    unsigned int latency)
2468 {
2469         unsigned int ret;
2470
2471         ret = intel_wm_method2(pixel_rate, htotal,
2472                                width, cpp, latency);
2473         ret = DIV_ROUND_UP(ret, 64) + 2;
2474
2475         return ret;
2476 }
2477
2478 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2479 {
2480         /*
2481          * Neither of these should be possible since this function shouldn't be
2482          * called if the CRTC is off or the plane is invisible.  But let's be
2483          * extra paranoid to avoid a potential divide-by-zero if we screw up
2484          * elsewhere in the driver.
2485          */
2486         if (WARN_ON(!cpp))
2487                 return 0;
2488         if (WARN_ON(!horiz_pixels))
2489                 return 0;
2490
2491         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2492 }
2493
2494 struct ilk_wm_maximums {
2495         u16 pri;
2496         u16 spr;
2497         u16 cur;
2498         u16 fbc;
2499 };
2500
2501 /*
2502  * For both WM_PIPE and WM_LP.
2503  * mem_value must be in 0.1us units.
2504  */
2505 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2506                               const struct intel_plane_state *plane_state,
2507                               u32 mem_value, bool is_lp)
2508 {
2509         u32 method1, method2;
2510         int cpp;
2511
2512         if (mem_value == 0)
2513                 return U32_MAX;
2514
2515         if (!intel_wm_plane_visible(crtc_state, plane_state))
2516                 return 0;
2517
2518         cpp = plane_state->base.fb->format->cpp[0];
2519
2520         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2521
2522         if (!is_lp)
2523                 return method1;
2524
2525         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2526                                  crtc_state->base.adjusted_mode.crtc_htotal,
2527                                  drm_rect_width(&plane_state->base.dst),
2528                                  cpp, mem_value);
2529
2530         return min(method1, method2);
2531 }
2532
2533 /*
2534  * For both WM_PIPE and WM_LP.
2535  * mem_value must be in 0.1us units.
2536  */
2537 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2538                               const struct intel_plane_state *plane_state,
2539                               u32 mem_value)
2540 {
2541         u32 method1, method2;
2542         int cpp;
2543
2544         if (mem_value == 0)
2545                 return U32_MAX;
2546
2547         if (!intel_wm_plane_visible(crtc_state, plane_state))
2548                 return 0;
2549
2550         cpp = plane_state->base.fb->format->cpp[0];
2551
2552         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2553         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2554                                  crtc_state->base.adjusted_mode.crtc_htotal,
2555                                  drm_rect_width(&plane_state->base.dst),
2556                                  cpp, mem_value);
2557         return min(method1, method2);
2558 }
2559
2560 /*
2561  * For both WM_PIPE and WM_LP.
2562  * mem_value must be in 0.1us units.
2563  */
2564 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2565                               const struct intel_plane_state *plane_state,
2566                               u32 mem_value)
2567 {
2568         int cpp;
2569
2570         if (mem_value == 0)
2571                 return U32_MAX;
2572
2573         if (!intel_wm_plane_visible(crtc_state, plane_state))
2574                 return 0;
2575
2576         cpp = plane_state->base.fb->format->cpp[0];
2577
2578         return ilk_wm_method2(crtc_state->pixel_rate,
2579                               crtc_state->base.adjusted_mode.crtc_htotal,
2580                               plane_state->base.crtc_w, cpp, mem_value);
2581 }
2582
2583 /* Only for WM_LP. */
2584 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2585                               const struct intel_plane_state *plane_state,
2586                               u32 pri_val)
2587 {
2588         int cpp;
2589
2590         if (!intel_wm_plane_visible(crtc_state, plane_state))
2591                 return 0;
2592
2593         cpp = plane_state->base.fb->format->cpp[0];
2594
2595         return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2596 }
2597
2598 static unsigned int
2599 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2600 {
2601         if (INTEL_GEN(dev_priv) >= 8)
2602                 return 3072;
2603         else if (INTEL_GEN(dev_priv) >= 7)
2604                 return 768;
2605         else
2606                 return 512;
2607 }
2608
2609 static unsigned int
2610 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2611                      int level, bool is_sprite)
2612 {
2613         if (INTEL_GEN(dev_priv) >= 8)
2614                 /* BDW primary/sprite plane watermarks */
2615                 return level == 0 ? 255 : 2047;
2616         else if (INTEL_GEN(dev_priv) >= 7)
2617                 /* IVB/HSW primary/sprite plane watermarks */
2618                 return level == 0 ? 127 : 1023;
2619         else if (!is_sprite)
2620                 /* ILK/SNB primary plane watermarks */
2621                 return level == 0 ? 127 : 511;
2622         else
2623                 /* ILK/SNB sprite plane watermarks */
2624                 return level == 0 ? 63 : 255;
2625 }
2626
2627 static unsigned int
2628 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2629 {
2630         if (INTEL_GEN(dev_priv) >= 7)
2631                 return level == 0 ? 63 : 255;
2632         else
2633                 return level == 0 ? 31 : 63;
2634 }
2635
2636 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2637 {
2638         if (INTEL_GEN(dev_priv) >= 8)
2639                 return 31;
2640         else
2641                 return 15;
2642 }
2643
2644 /* Calculate the maximum primary/sprite plane watermark */
2645 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2646                                      int level,
2647                                      const struct intel_wm_config *config,
2648                                      enum intel_ddb_partitioning ddb_partitioning,
2649                                      bool is_sprite)
2650 {
2651         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2652
2653         /* if sprites aren't enabled, sprites get nothing */
2654         if (is_sprite && !config->sprites_enabled)
2655                 return 0;
2656
2657         /* HSW allows LP1+ watermarks even with multiple pipes */
2658         if (level == 0 || config->num_pipes_active > 1) {
2659                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2660
2661                 /*
2662                  * For some reason the non self refresh
2663                  * FIFO size is only half of the self
2664                  * refresh FIFO size on ILK/SNB.
2665                  */
2666                 if (INTEL_GEN(dev_priv) <= 6)
2667                         fifo_size /= 2;
2668         }
2669
2670         if (config->sprites_enabled) {
2671                 /* level 0 is always calculated with 1:1 split */
2672                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2673                         if (is_sprite)
2674                                 fifo_size *= 5;
2675                         fifo_size /= 6;
2676                 } else {
2677                         fifo_size /= 2;
2678                 }
2679         }
2680
2681         /* clamp to max that the registers can hold */
2682         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2683 }
2684
2685 /* Calculate the maximum cursor plane watermark */
2686 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2687                                       int level,
2688                                       const struct intel_wm_config *config)
2689 {
2690         /* HSW LP1+ watermarks w/ multiple pipes */
2691         if (level > 0 && config->num_pipes_active > 1)
2692                 return 64;
2693
2694         /* otherwise just report max that registers can hold */
2695         return ilk_cursor_wm_reg_max(dev_priv, level);
2696 }
2697
2698 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2699                                     int level,
2700                                     const struct intel_wm_config *config,
2701                                     enum intel_ddb_partitioning ddb_partitioning,
2702                                     struct ilk_wm_maximums *max)
2703 {
2704         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2705         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2706         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2707         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2708 }
2709
2710 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2711                                         int level,
2712                                         struct ilk_wm_maximums *max)
2713 {
2714         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2715         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2716         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2717         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2718 }
2719
2720 static bool ilk_validate_wm_level(int level,
2721                                   const struct ilk_wm_maximums *max,
2722                                   struct intel_wm_level *result)
2723 {
2724         bool ret;
2725
2726         /* already determined to be invalid? */
2727         if (!result->enable)
2728                 return false;
2729
2730         result->enable = result->pri_val <= max->pri &&
2731                          result->spr_val <= max->spr &&
2732                          result->cur_val <= max->cur;
2733
2734         ret = result->enable;
2735
2736         /*
2737          * HACK until we can pre-compute everything,
2738          * and thus fail gracefully if LP0 watermarks
2739          * are exceeded...
2740          */
2741         if (level == 0 && !result->enable) {
2742                 if (result->pri_val > max->pri)
2743                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2744                                       level, result->pri_val, max->pri);
2745                 if (result->spr_val > max->spr)
2746                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2747                                       level, result->spr_val, max->spr);
2748                 if (result->cur_val > max->cur)
2749                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2750                                       level, result->cur_val, max->cur);
2751
2752                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2753                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2754                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2755                 result->enable = true;
2756         }
2757
2758         return ret;
2759 }
2760
2761 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2762                                  const struct intel_crtc *intel_crtc,
2763                                  int level,
2764                                  struct intel_crtc_state *crtc_state,
2765                                  const struct intel_plane_state *pristate,
2766                                  const struct intel_plane_state *sprstate,
2767                                  const struct intel_plane_state *curstate,
2768                                  struct intel_wm_level *result)
2769 {
2770         u16 pri_latency = dev_priv->wm.pri_latency[level];
2771         u16 spr_latency = dev_priv->wm.spr_latency[level];
2772         u16 cur_latency = dev_priv->wm.cur_latency[level];
2773
2774         /* WM1+ latency values stored in 0.5us units */
2775         if (level > 0) {
2776                 pri_latency *= 5;
2777                 spr_latency *= 5;
2778                 cur_latency *= 5;
2779         }
2780
2781         if (pristate) {
2782                 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2783                                                      pri_latency, level);
2784                 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2785         }
2786
2787         if (sprstate)
2788                 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2789
2790         if (curstate)
2791                 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2792
2793         result->enable = true;
2794 }
2795
2796 static u32
2797 hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2798 {
2799         const struct intel_atomic_state *intel_state =
2800                 to_intel_atomic_state(crtc_state->base.state);
2801         const struct drm_display_mode *adjusted_mode =
2802                 &crtc_state->base.adjusted_mode;
2803         u32 linetime, ips_linetime;
2804
2805         if (!crtc_state->base.active)
2806                 return 0;
2807         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2808                 return 0;
2809         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2810                 return 0;
2811
2812         /* The WM are computed with base on how long it takes to fill a single
2813          * row at the given clock rate, multiplied by 8.
2814          * */
2815         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2816                                      adjusted_mode->crtc_clock);
2817         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2818                                          intel_state->cdclk.logical.cdclk);
2819
2820         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2821                PIPE_WM_LINETIME_TIME(linetime);
2822 }
2823
2824 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2825                                   u16 wm[8])
2826 {
2827         struct intel_uncore *uncore = &dev_priv->uncore;
2828
2829         if (INTEL_GEN(dev_priv) >= 9) {
2830                 u32 val;
2831                 int ret, i;
2832                 int level, max_level = ilk_wm_max_level(dev_priv);
2833
2834                 /* read the first set of memory latencies[0:3] */
2835                 val = 0; /* data0 to be programmed to 0 for first set */
2836                 ret = sandybridge_pcode_read(dev_priv,
2837                                              GEN9_PCODE_READ_MEM_LATENCY,
2838                                              &val, NULL);
2839
2840                 if (ret) {
2841                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2842                         return;
2843                 }
2844
2845                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2846                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2847                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2848                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2849                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2850                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2851                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2852
2853                 /* read the second set of memory latencies[4:7] */
2854                 val = 1; /* data0 to be programmed to 1 for second set */
2855                 ret = sandybridge_pcode_read(dev_priv,
2856                                              GEN9_PCODE_READ_MEM_LATENCY,
2857                                              &val, NULL);
2858                 if (ret) {
2859                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2860                         return;
2861                 }
2862
2863                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2864                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2865                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2866                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2867                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2868                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2869                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2870
2871                 /*
2872                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2873                  * need to be disabled. We make sure to sanitize the values out
2874                  * of the punit to satisfy this requirement.
2875                  */
2876                 for (level = 1; level <= max_level; level++) {
2877                         if (wm[level] == 0) {
2878                                 for (i = level + 1; i <= max_level; i++)
2879                                         wm[i] = 0;
2880                                 break;
2881                         }
2882                 }
2883
2884                 /*
2885                  * WaWmMemoryReadLatency:skl+,glk
2886                  *
2887                  * punit doesn't take into account the read latency so we need
2888                  * to add 2us to the various latency levels we retrieve from the
2889                  * punit when level 0 response data us 0us.
2890                  */
2891                 if (wm[0] == 0) {
2892                         wm[0] += 2;
2893                         for (level = 1; level <= max_level; level++) {
2894                                 if (wm[level] == 0)
2895                                         break;
2896                                 wm[level] += 2;
2897                         }
2898                 }
2899
2900                 /*
2901                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2902                  * If we could not get dimm info enable this WA to prevent from
2903                  * any underrun. If not able to get Dimm info assume 16GB dimm
2904                  * to avoid any underrun.
2905                  */
2906                 if (dev_priv->dram_info.is_16gb_dimm)
2907                         wm[0] += 1;
2908
2909         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2910                 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2911
2912                 wm[0] = (sskpd >> 56) & 0xFF;
2913                 if (wm[0] == 0)
2914                         wm[0] = sskpd & 0xF;
2915                 wm[1] = (sskpd >> 4) & 0xFF;
2916                 wm[2] = (sskpd >> 12) & 0xFF;
2917                 wm[3] = (sskpd >> 20) & 0x1FF;
2918                 wm[4] = (sskpd >> 32) & 0x1FF;
2919         } else if (INTEL_GEN(dev_priv) >= 6) {
2920                 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2921
2922                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2923                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2924                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2925                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2926         } else if (INTEL_GEN(dev_priv) >= 5) {
2927                 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2928
2929                 /* ILK primary LP0 latency is 700 ns */
2930                 wm[0] = 7;
2931                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2932                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2933         } else {
2934                 MISSING_CASE(INTEL_DEVID(dev_priv));
2935         }
2936 }
2937
2938 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2939                                        u16 wm[5])
2940 {
2941         /* ILK sprite LP0 latency is 1300 ns */
2942         if (IS_GEN(dev_priv, 5))
2943                 wm[0] = 13;
2944 }
2945
2946 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2947                                        u16 wm[5])
2948 {
2949         /* ILK cursor LP0 latency is 1300 ns */
2950         if (IS_GEN(dev_priv, 5))
2951                 wm[0] = 13;
2952 }
2953
2954 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2955 {
2956         /* how many WM levels are we expecting */
2957         if (INTEL_GEN(dev_priv) >= 9)
2958                 return 7;
2959         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2960                 return 4;
2961         else if (INTEL_GEN(dev_priv) >= 6)
2962                 return 3;
2963         else
2964                 return 2;
2965 }
2966
2967 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2968                                    const char *name,
2969                                    const u16 wm[8])
2970 {
2971         int level, max_level = ilk_wm_max_level(dev_priv);
2972
2973         for (level = 0; level <= max_level; level++) {
2974                 unsigned int latency = wm[level];
2975
2976                 if (latency == 0) {
2977                         DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2978                                       name, level);
2979                         continue;
2980                 }
2981
2982                 /*
2983                  * - latencies are in us on gen9.
2984                  * - before then, WM1+ latency values are in 0.5us units
2985                  */
2986                 if (INTEL_GEN(dev_priv) >= 9)
2987                         latency *= 10;
2988                 else if (level > 0)
2989                         latency *= 5;
2990
2991                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2992                               name, level, wm[level],
2993                               latency / 10, latency % 10);
2994         }
2995 }
2996
2997 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2998                                     u16 wm[5], u16 min)
2999 {
3000         int level, max_level = ilk_wm_max_level(dev_priv);
3001
3002         if (wm[0] >= min)
3003                 return false;
3004
3005         wm[0] = max(wm[0], min);
3006         for (level = 1; level <= max_level; level++)
3007                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3008
3009         return true;
3010 }
3011
3012 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3013 {
3014         bool changed;
3015
3016         /*
3017          * The BIOS provided WM memory latency values are often
3018          * inadequate for high resolution displays. Adjust them.
3019          */
3020         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3021                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3022                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3023
3024         if (!changed)
3025                 return;
3026
3027         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3028         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3029         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3030         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3031 }
3032
3033 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3034 {
3035         /*
3036          * On some SNB machines (Thinkpad X220 Tablet at least)
3037          * LP3 usage can cause vblank interrupts to be lost.
3038          * The DEIIR bit will go high but it looks like the CPU
3039          * never gets interrupted.
3040          *
3041          * It's not clear whether other interrupt source could
3042          * be affected or if this is somehow limited to vblank
3043          * interrupts only. To play it safe we disable LP3
3044          * watermarks entirely.
3045          */
3046         if (dev_priv->wm.pri_latency[3] == 0 &&
3047             dev_priv->wm.spr_latency[3] == 0 &&
3048             dev_priv->wm.cur_latency[3] == 0)
3049                 return;
3050
3051         dev_priv->wm.pri_latency[3] = 0;
3052         dev_priv->wm.spr_latency[3] = 0;
3053         dev_priv->wm.cur_latency[3] = 0;
3054
3055         DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3056         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3057         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3058         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 }
3060
3061 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3062 {
3063         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3064
3065         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3066                sizeof(dev_priv->wm.pri_latency));
3067         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3068                sizeof(dev_priv->wm.pri_latency));
3069
3070         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3071         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3072
3073         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076
3077         if (IS_GEN(dev_priv, 6)) {
3078                 snb_wm_latency_quirk(dev_priv);
3079                 snb_wm_lp3_irq_quirk(dev_priv);
3080         }
3081 }
3082
3083 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3084 {
3085         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3086         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3087 }
3088
3089 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3090                                  struct intel_pipe_wm *pipe_wm)
3091 {
3092         /* LP0 watermark maximums depend on this pipe alone */
3093         const struct intel_wm_config config = {
3094                 .num_pipes_active = 1,
3095                 .sprites_enabled = pipe_wm->sprites_enabled,
3096                 .sprites_scaled = pipe_wm->sprites_scaled,
3097         };
3098         struct ilk_wm_maximums max;
3099
3100         /* LP0 watermarks always use 1/2 DDB partitioning */
3101         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3102
3103         /* At least LP0 must be valid */
3104         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3105                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3106                 return false;
3107         }
3108
3109         return true;
3110 }
3111
3112 /* Compute new watermarks for the pipe */
3113 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3114 {
3115         struct drm_atomic_state *state = crtc_state->base.state;
3116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3117         struct intel_pipe_wm *pipe_wm;
3118         struct drm_device *dev = state->dev;
3119         const struct drm_i915_private *dev_priv = to_i915(dev);
3120         struct drm_plane *plane;
3121         const struct drm_plane_state *plane_state;
3122         const struct intel_plane_state *pristate = NULL;
3123         const struct intel_plane_state *sprstate = NULL;
3124         const struct intel_plane_state *curstate = NULL;
3125         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3126         struct ilk_wm_maximums max;
3127
3128         pipe_wm = &crtc_state->wm.ilk.optimal;
3129
3130         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
3131                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3132
3133                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3134                         pristate = ps;
3135                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3136                         sprstate = ps;
3137                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3138                         curstate = ps;
3139         }
3140
3141         pipe_wm->pipe_enabled = crtc_state->base.active;
3142         if (sprstate) {
3143                 pipe_wm->sprites_enabled = sprstate->base.visible;
3144                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3145                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3146                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3147         }
3148
3149         usable_level = max_level;
3150
3151         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3152         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3153                 usable_level = 1;
3154
3155         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3156         if (pipe_wm->sprites_scaled)
3157                 usable_level = 0;
3158
3159         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3160         ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3161                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3162
3163         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3164                 pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3165
3166         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3167                 return -EINVAL;
3168
3169         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3170
3171         for (level = 1; level <= usable_level; level++) {
3172                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3173
3174                 ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3175                                      pristate, sprstate, curstate, wm);
3176
3177                 /*
3178                  * Disable any watermark level that exceeds the
3179                  * register maximums since such watermarks are
3180                  * always invalid.
3181                  */
3182                 if (!ilk_validate_wm_level(level, &max, wm)) {
3183                         memset(wm, 0, sizeof(*wm));
3184                         break;
3185                 }
3186         }
3187
3188         return 0;
3189 }
3190
3191 /*
3192  * Build a set of 'intermediate' watermark values that satisfy both the old
3193  * state and the new state.  These can be programmed to the hardware
3194  * immediately.
3195  */
3196 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3197 {
3198         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3199         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3200         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3201         struct intel_atomic_state *intel_state =
3202                 to_intel_atomic_state(newstate->base.state);
3203         const struct intel_crtc_state *oldstate =
3204                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3205         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3206         int level, max_level = ilk_wm_max_level(dev_priv);
3207
3208         /*
3209          * Start with the final, target watermarks, then combine with the
3210          * currently active watermarks to get values that are safe both before
3211          * and after the vblank.
3212          */
3213         *a = newstate->wm.ilk.optimal;
3214         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3215             intel_state->skip_intermediate_wm)
3216                 return 0;
3217
3218         a->pipe_enabled |= b->pipe_enabled;
3219         a->sprites_enabled |= b->sprites_enabled;
3220         a->sprites_scaled |= b->sprites_scaled;
3221
3222         for (level = 0; level <= max_level; level++) {
3223                 struct intel_wm_level *a_wm = &a->wm[level];
3224                 const struct intel_wm_level *b_wm = &b->wm[level];
3225
3226                 a_wm->enable &= b_wm->enable;
3227                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3228                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3229                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3230                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3231         }
3232
3233         /*
3234          * We need to make sure that these merged watermark values are
3235          * actually a valid configuration themselves.  If they're not,
3236          * there's no safe way to transition from the old state to
3237          * the new state, so we need to fail the atomic transaction.
3238          */
3239         if (!ilk_validate_pipe_wm(dev_priv, a))
3240                 return -EINVAL;
3241
3242         /*
3243          * If our intermediate WM are identical to the final WM, then we can
3244          * omit the post-vblank programming; only update if it's different.
3245          */
3246         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3247                 newstate->wm.need_postvbl_update = true;
3248
3249         return 0;
3250 }
3251
3252 /*
3253  * Merge the watermarks from all active pipes for a specific level.
3254  */
3255 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3256                                int level,
3257                                struct intel_wm_level *ret_wm)
3258 {
3259         const struct intel_crtc *intel_crtc;
3260
3261         ret_wm->enable = true;
3262
3263         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3264                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3265                 const struct intel_wm_level *wm = &active->wm[level];
3266
3267                 if (!active->pipe_enabled)
3268                         continue;
3269
3270                 /*
3271                  * The watermark values may have been used in the past,
3272                  * so we must maintain them in the registers for some
3273                  * time even if the level is now disabled.
3274                  */
3275                 if (!wm->enable)
3276                         ret_wm->enable = false;
3277
3278                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3279                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3280                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3281                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3282         }
3283 }
3284
3285 /*
3286  * Merge all low power watermarks for all active pipes.
3287  */
3288 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3289                          const struct intel_wm_config *config,
3290                          const struct ilk_wm_maximums *max,
3291                          struct intel_pipe_wm *merged)
3292 {
3293         int level, max_level = ilk_wm_max_level(dev_priv);
3294         int last_enabled_level = max_level;
3295
3296         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3297         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3298             config->num_pipes_active > 1)
3299                 last_enabled_level = 0;
3300
3301         /* ILK: FBC WM must be disabled always */
3302         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3303
3304         /* merge each WM1+ level */
3305         for (level = 1; level <= max_level; level++) {
3306                 struct intel_wm_level *wm = &merged->wm[level];
3307
3308                 ilk_merge_wm_level(dev_priv, level, wm);
3309
3310                 if (level > last_enabled_level)
3311                         wm->enable = false;
3312                 else if (!ilk_validate_wm_level(level, max, wm))
3313                         /* make sure all following levels get disabled */
3314                         last_enabled_level = level - 1;
3315
3316                 /*
3317                  * The spec says it is preferred to disable
3318                  * FBC WMs instead of disabling a WM level.
3319                  */
3320                 if (wm->fbc_val > max->fbc) {
3321                         if (wm->enable)
3322                                 merged->fbc_wm_enabled = false;
3323                         wm->fbc_val = 0;
3324                 }
3325         }
3326
3327         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3328         /*
3329          * FIXME this is racy. FBC might get enabled later.
3330          * What we should check here is whether FBC can be
3331          * enabled sometime later.
3332          */
3333         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3334             intel_fbc_is_active(dev_priv)) {
3335                 for (level = 2; level <= max_level; level++) {
3336                         struct intel_wm_level *wm = &merged->wm[level];
3337
3338                         wm->enable = false;
3339                 }
3340         }
3341 }
3342
3343 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3344 {
3345         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3346         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3347 }
3348
3349 /* The value we need to program into the WM_LPx latency field */
3350 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3351                                       int level)
3352 {
3353         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3354                 return 2 * level;
3355         else
3356                 return dev_priv->wm.pri_latency[level];
3357 }
3358
3359 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3360                                    const struct intel_pipe_wm *merged,
3361                                    enum intel_ddb_partitioning partitioning,
3362                                    struct ilk_wm_values *results)
3363 {
3364         struct intel_crtc *intel_crtc;
3365         int level, wm_lp;
3366
3367         results->enable_fbc_wm = merged->fbc_wm_enabled;
3368         results->partitioning = partitioning;
3369
3370         /* LP1+ register values */
3371         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3372                 const struct intel_wm_level *r;
3373
3374                 level = ilk_wm_lp_to_level(wm_lp, merged);
3375
3376                 r = &merged->wm[level];
3377
3378                 /*
3379                  * Maintain the watermark values even if the level is
3380                  * disabled. Doing otherwise could cause underruns.
3381                  */
3382                 results->wm_lp[wm_lp - 1] =
3383                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3384                         (r->pri_val << WM1_LP_SR_SHIFT) |
3385                         r->cur_val;
3386
3387                 if (r->enable)
3388                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3389
3390                 if (INTEL_GEN(dev_priv) >= 8)
3391                         results->wm_lp[wm_lp - 1] |=
3392                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3393                 else
3394                         results->wm_lp[wm_lp - 1] |=
3395                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3396
3397                 /*
3398                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3399                  * level is disabled. Doing otherwise could cause underruns.
3400                  */
3401                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3402                         WARN_ON(wm_lp != 1);
3403                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3404                 } else
3405                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3406         }
3407
3408         /* LP0 register values */
3409         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3410                 enum pipe pipe = intel_crtc->pipe;
3411                 const struct intel_wm_level *r =
3412                         &intel_crtc->wm.active.ilk.wm[0];
3413
3414                 if (WARN_ON(!r->enable))
3415                         continue;
3416
3417                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3418
3419                 results->wm_pipe[pipe] =
3420                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3421                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3422                         r->cur_val;
3423         }
3424 }
3425
3426 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3427  * case both are at the same level. Prefer r1 in case they're the same. */
3428 static struct intel_pipe_wm *
3429 ilk_find_best_result(struct drm_i915_private *dev_priv,
3430                      struct intel_pipe_wm *r1,
3431                      struct intel_pipe_wm *r2)
3432 {
3433         int level, max_level = ilk_wm_max_level(dev_priv);
3434         int level1 = 0, level2 = 0;
3435
3436         for (level = 1; level <= max_level; level++) {
3437                 if (r1->wm[level].enable)
3438                         level1 = level;
3439                 if (r2->wm[level].enable)
3440                         level2 = level;
3441         }
3442
3443         if (level1 == level2) {
3444                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445                         return r2;
3446                 else
3447                         return r1;
3448         } else if (level1 > level2) {
3449                 return r1;
3450         } else {
3451                 return r2;
3452         }
3453 }
3454
3455 /* dirty bits used to track which watermarks need changes */
3456 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3457 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3458 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3459 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3460 #define WM_DIRTY_FBC (1 << 24)
3461 #define WM_DIRTY_DDB (1 << 25)
3462
3463 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3464                                          const struct ilk_wm_values *old,
3465                                          const struct ilk_wm_values *new)
3466 {
3467         unsigned int dirty = 0;
3468         enum pipe pipe;
3469         int wm_lp;
3470
3471         for_each_pipe(dev_priv, pipe) {
3472                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3473                         dirty |= WM_DIRTY_LINETIME(pipe);
3474                         /* Must disable LP1+ watermarks too */
3475                         dirty |= WM_DIRTY_LP_ALL;
3476                 }
3477
3478                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3479                         dirty |= WM_DIRTY_PIPE(pipe);
3480                         /* Must disable LP1+ watermarks too */
3481                         dirty |= WM_DIRTY_LP_ALL;
3482                 }
3483         }
3484
3485         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3486                 dirty |= WM_DIRTY_FBC;
3487                 /* Must disable LP1+ watermarks too */
3488                 dirty |= WM_DIRTY_LP_ALL;
3489         }
3490
3491         if (old->partitioning != new->partitioning) {
3492                 dirty |= WM_DIRTY_DDB;
3493                 /* Must disable LP1+ watermarks too */
3494                 dirty |= WM_DIRTY_LP_ALL;
3495         }
3496
3497         /* LP1+ watermarks already deemed dirty, no need to continue */
3498         if (dirty & WM_DIRTY_LP_ALL)
3499                 return dirty;
3500
3501         /* Find the lowest numbered LP1+ watermark in need of an update... */
3502         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3503                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3504                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3505                         break;
3506         }
3507
3508         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3509         for (; wm_lp <= 3; wm_lp++)
3510                 dirty |= WM_DIRTY_LP(wm_lp);
3511
3512         return dirty;
3513 }
3514
3515 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3516                                unsigned int dirty)
3517 {
3518         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3519         bool changed = false;
3520
3521         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3522                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3523                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3524                 changed = true;
3525         }
3526         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3527                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3528                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3529                 changed = true;
3530         }
3531         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3532                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3533                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3534                 changed = true;
3535         }
3536
3537         /*
3538          * Don't touch WM1S_LP_EN here.
3539          * Doing so could cause underruns.
3540          */
3541
3542         return changed;
3543 }
3544
3545 /*
3546  * The spec says we shouldn't write when we don't need, because every write
3547  * causes WMs to be re-evaluated, expending some power.
3548  */
3549 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3550                                 struct ilk_wm_values *results)
3551 {
3552         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3553         unsigned int dirty;
3554         u32 val;
3555
3556         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3557         if (!dirty)
3558                 return;
3559
3560         _ilk_disable_lp_wm(dev_priv, dirty);
3561
3562         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3563                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3564         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3565                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3566         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3567                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3568
3569         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3570                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3571         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3572                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3573         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3574                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3575
3576         if (dirty & WM_DIRTY_DDB) {
3577                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3578                         val = I915_READ(WM_MISC);
3579                         if (results->partitioning == INTEL_DDB_PART_1_2)
3580                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3581                         else
3582                                 val |= WM_MISC_DATA_PARTITION_5_6;
3583                         I915_WRITE(WM_MISC, val);
3584                 } else {
3585                         val = I915_READ(DISP_ARB_CTL2);
3586                         if (results->partitioning == INTEL_DDB_PART_1_2)
3587                                 val &= ~DISP_DATA_PARTITION_5_6;
3588                         else
3589                                 val |= DISP_DATA_PARTITION_5_6;
3590                         I915_WRITE(DISP_ARB_CTL2, val);
3591                 }
3592         }
3593
3594         if (dirty & WM_DIRTY_FBC) {
3595                 val = I915_READ(DISP_ARB_CTL);
3596                 if (results->enable_fbc_wm)
3597                         val &= ~DISP_FBC_WM_DIS;
3598                 else
3599                         val |= DISP_FBC_WM_DIS;
3600                 I915_WRITE(DISP_ARB_CTL, val);
3601         }
3602
3603         if (dirty & WM_DIRTY_LP(1) &&
3604             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3605                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3606
3607         if (INTEL_GEN(dev_priv) >= 7) {
3608                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3609                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3610                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3611                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3612         }
3613
3614         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3615                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3616         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3617                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3618         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3619                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3620
3621         dev_priv->wm.hw = *results;
3622 }
3623
3624 bool ilk_disable_lp_wm(struct drm_device *dev)
3625 {
3626         struct drm_i915_private *dev_priv = to_i915(dev);
3627
3628         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3629 }
3630
3631 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3632 {
3633         u8 enabled_slices;
3634
3635         /* Slice 1 will always be enabled */
3636         enabled_slices = 1;
3637
3638         /* Gen prior to GEN11 have only one DBuf slice */
3639         if (INTEL_GEN(dev_priv) < 11)
3640                 return enabled_slices;
3641
3642         /*
3643          * FIXME: for now we'll only ever use 1 slice; pretend that we have
3644          * only that 1 slice enabled until we have a proper way for on-demand
3645          * toggling of the second slice.
3646          */
3647         if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3648                 enabled_slices++;
3649
3650         return enabled_slices;
3651 }
3652
3653 /*
3654  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3655  * so assume we'll always need it in order to avoid underruns.
3656  */
3657 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3658 {
3659         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3660 }
3661
3662 static bool
3663 intel_has_sagv(struct drm_i915_private *dev_priv)
3664 {
3665         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3666                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3667 }
3668
3669 /*
3670  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3671  * depending on power and performance requirements. The display engine access
3672  * to system memory is blocked during the adjustment time. Because of the
3673  * blocking time, having this enabled can cause full system hangs and/or pipe
3674  * underruns if we don't meet all of the following requirements:
3675  *
3676  *  - <= 1 pipe enabled
3677  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3678  *  - We're not using an interlaced display configuration
3679  */
3680 int
3681 intel_enable_sagv(struct drm_i915_private *dev_priv)
3682 {
3683         int ret;
3684
3685         if (!intel_has_sagv(dev_priv))
3686                 return 0;
3687
3688         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3689                 return 0;
3690
3691         DRM_DEBUG_KMS("Enabling SAGV\n");
3692         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3693                                       GEN9_SAGV_ENABLE);
3694
3695         /* We don't need to wait for SAGV when enabling */
3696
3697         /*
3698          * Some skl systems, pre-release machines in particular,
3699          * don't actually have SAGV.
3700          */
3701         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3702                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3703                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3704                 return 0;
3705         } else if (ret < 0) {
3706                 DRM_ERROR("Failed to enable SAGV\n");
3707                 return ret;
3708         }
3709
3710         dev_priv->sagv_status = I915_SAGV_ENABLED;
3711         return 0;
3712 }
3713
3714 int
3715 intel_disable_sagv(struct drm_i915_private *dev_priv)
3716 {
3717         int ret;
3718
3719         if (!intel_has_sagv(dev_priv))
3720                 return 0;
3721
3722         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3723                 return 0;
3724
3725         DRM_DEBUG_KMS("Disabling SAGV\n");
3726         /* bspec says to keep retrying for at least 1 ms */
3727         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3728                                 GEN9_SAGV_DISABLE,
3729                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3730                                 1);
3731         /*
3732          * Some skl systems, pre-release machines in particular,
3733          * don't actually have SAGV.
3734          */
3735         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3736                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3737                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3738                 return 0;
3739         } else if (ret < 0) {
3740                 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3741                 return ret;
3742         }
3743
3744         dev_priv->sagv_status = I915_SAGV_DISABLED;
3745         return 0;
3746 }
3747
3748 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3749 {
3750         struct drm_device *dev = state->base.dev;
3751         struct drm_i915_private *dev_priv = to_i915(dev);
3752         struct intel_crtc *crtc;
3753         struct intel_plane *plane;
3754         struct intel_crtc_state *crtc_state;
3755         enum pipe pipe;
3756         int level, latency;
3757         int sagv_block_time_us;
3758
3759         if (!intel_has_sagv(dev_priv))
3760                 return false;
3761
3762         if (IS_GEN(dev_priv, 9))
3763                 sagv_block_time_us = 30;
3764         else if (IS_GEN(dev_priv, 10))
3765                 sagv_block_time_us = 20;
3766         else
3767                 sagv_block_time_us = 10;
3768
3769         /*
3770          * If there are no active CRTCs, no additional checks need be performed
3771          */
3772         if (hweight32(state->active_crtcs) == 0)
3773                 return true;
3774
3775         /*
3776          * SKL+ workaround: bspec recommends we disable SAGV when we have
3777          * more then one pipe enabled
3778          */
3779         if (hweight32(state->active_crtcs) > 1)
3780                 return false;
3781
3782         /* Since we're now guaranteed to only have one active CRTC... */
3783         pipe = ffs(state->active_crtcs) - 1;
3784         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3785         crtc_state = to_intel_crtc_state(crtc->base.state);
3786
3787         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3788                 return false;
3789
3790         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3791                 struct skl_plane_wm *wm =
3792                         &crtc_state->wm.skl.optimal.planes[plane->id];
3793
3794                 /* Skip this plane if it's not enabled */
3795                 if (!wm->wm[0].plane_en)
3796                         continue;
3797
3798                 /* Find the highest enabled wm level for this plane */
3799                 for (level = ilk_wm_max_level(dev_priv);
3800                      !wm->wm[level].plane_en; --level)
3801                      { }
3802
3803                 latency = dev_priv->wm.skl_latency[level];
3804
3805                 if (skl_needs_memory_bw_wa(dev_priv) &&
3806                     plane->base.state->fb->modifier ==
3807                     I915_FORMAT_MOD_X_TILED)
3808                         latency += 15;
3809
3810                 /*
3811                  * If any of the planes on this pipe don't enable wm levels that
3812                  * incur memory latencies higher than sagv_block_time_us we
3813                  * can't enable SAGV.
3814                  */
3815                 if (latency < sagv_block_time_us)
3816                         return false;
3817         }
3818
3819         return true;
3820 }
3821
3822 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3823                               const struct intel_crtc_state *crtc_state,
3824                               const u64 total_data_rate,
3825                               const int num_active,
3826                               struct skl_ddb_allocation *ddb)
3827 {
3828         const struct drm_display_mode *adjusted_mode;
3829         u64 total_data_bw;
3830         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3831
3832         WARN_ON(ddb_size == 0);
3833
3834         if (INTEL_GEN(dev_priv) < 11)
3835                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3836
3837         adjusted_mode = &crtc_state->base.adjusted_mode;
3838         total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3839
3840         /*
3841          * 12GB/s is maximum BW supported by single DBuf slice.
3842          *
3843          * FIXME dbuf slice code is broken:
3844          * - must wait for planes to stop using the slice before powering it off
3845          * - plane straddling both slices is illegal in multi-pipe scenarios
3846          * - should validate we stay within the hw bandwidth limits
3847          */
3848         if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3849                 ddb->enabled_slices = 2;
3850         } else {
3851                 ddb->enabled_slices = 1;
3852                 ddb_size /= 2;
3853         }
3854
3855         return ddb_size;
3856 }
3857
3858 static void
3859 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3860                                    const struct intel_crtc_state *crtc_state,
3861                                    const u64 total_data_rate,
3862                                    struct skl_ddb_allocation *ddb,
3863                                    struct skl_ddb_entry *alloc, /* out */
3864                                    int *num_active /* out */)
3865 {
3866         struct drm_atomic_state *state = crtc_state->base.state;
3867         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3868         struct drm_crtc *for_crtc = crtc_state->base.crtc;
3869         const struct intel_crtc *crtc;
3870         u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3871         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3872         u16 ddb_size;
3873         u32 i;
3874
3875         if (WARN_ON(!state) || !crtc_state->base.active) {
3876                 alloc->start = 0;
3877                 alloc->end = 0;
3878                 *num_active = hweight32(dev_priv->active_crtcs);
3879                 return;
3880         }
3881
3882         if (intel_state->active_pipe_changes)
3883                 *num_active = hweight32(intel_state->active_crtcs);
3884         else
3885                 *num_active = hweight32(dev_priv->active_crtcs);
3886
3887         ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3888                                       *num_active, ddb);
3889
3890         /*
3891          * If the state doesn't change the active CRTC's or there is no
3892          * modeset request, then there's no need to recalculate;
3893          * the existing pipe allocation limits should remain unchanged.
3894          * Note that we're safe from racing commits since any racing commit
3895          * that changes the active CRTC list or do modeset would need to
3896          * grab _all_ crtc locks, including the one we currently hold.
3897          */
3898         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3899                 /*
3900                  * alloc may be cleared by clear_intel_crtc_state,
3901                  * copy from old state to be sure
3902                  */
3903                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3904                 return;
3905         }
3906
3907         /*
3908          * Watermark/ddb requirement highly depends upon width of the
3909          * framebuffer, So instead of allocating DDB equally among pipes
3910          * distribute DDB based on resolution/width of the display.
3911          */
3912         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3913                 const struct drm_display_mode *adjusted_mode =
3914                         &crtc_state->base.adjusted_mode;
3915                 enum pipe pipe = crtc->pipe;
3916                 int hdisplay, vdisplay;
3917
3918                 if (!crtc_state->base.enable)
3919                         continue;
3920
3921                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3922                 total_width += hdisplay;
3923
3924                 if (pipe < for_pipe)
3925                         width_before_pipe += hdisplay;
3926                 else if (pipe == for_pipe)
3927                         pipe_width = hdisplay;
3928         }
3929
3930         alloc->start = ddb_size * width_before_pipe / total_width;
3931         alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3932 }
3933
3934 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3935                                  int width, const struct drm_format_info *format,
3936                                  u64 modifier, unsigned int rotation,
3937                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
3938                                  int color_plane);
3939 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3940                                  int level,
3941                                  const struct skl_wm_params *wp,
3942                                  const struct skl_wm_level *result_prev,
3943                                  struct skl_wm_level *result /* out */);
3944
3945 static unsigned int
3946 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3947                       int num_active)
3948 {
3949         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3950         int level, max_level = ilk_wm_max_level(dev_priv);
3951         struct skl_wm_level wm = {};
3952         int ret, min_ddb_alloc = 0;
3953         struct skl_wm_params wp;
3954
3955         ret = skl_compute_wm_params(crtc_state, 256,
3956                                     drm_format_info(DRM_FORMAT_ARGB8888),
3957                                     DRM_FORMAT_MOD_LINEAR,
3958                                     DRM_MODE_ROTATE_0,
3959                                     crtc_state->pixel_rate, &wp, 0);
3960         WARN_ON(ret);
3961
3962         for (level = 0; level <= max_level; level++) {
3963                 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3964                 if (wm.min_ddb_alloc == U16_MAX)
3965                         break;
3966
3967                 min_ddb_alloc = wm.min_ddb_alloc;
3968         }
3969
3970         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3971 }
3972
3973 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3974                                        struct skl_ddb_entry *entry, u32 reg)
3975 {
3976
3977         entry->start = reg & DDB_ENTRY_MASK;
3978         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3979
3980         if (entry->end)
3981                 entry->end += 1;
3982 }
3983
3984 static void
3985 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3986                            const enum pipe pipe,
3987                            const enum plane_id plane_id,
3988                            struct skl_ddb_entry *ddb_y,
3989                            struct skl_ddb_entry *ddb_uv)
3990 {
3991         u32 val, val2;
3992         u32 fourcc = 0;
3993
3994         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3995         if (plane_id == PLANE_CURSOR) {
3996                 val = I915_READ(CUR_BUF_CFG(pipe));
3997                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3998                 return;
3999         }
4000
4001         val = I915_READ(PLANE_CTL(pipe, plane_id));
4002
4003         /* No DDB allocated for disabled planes */
4004         if (val & PLANE_CTL_ENABLE)
4005                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4006                                               val & PLANE_CTL_ORDER_RGBX,
4007                                               val & PLANE_CTL_ALPHA_MASK);
4008
4009         if (INTEL_GEN(dev_priv) >= 11) {
4010                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4011                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4012         } else {
4013                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4014                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4015
4016                 if (is_planar_yuv_format(fourcc))
4017                         swap(val, val2);
4018
4019                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4020                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4021         }
4022 }
4023
4024 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4025                                struct skl_ddb_entry *ddb_y,
4026                                struct skl_ddb_entry *ddb_uv)
4027 {
4028         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4029         enum intel_display_power_domain power_domain;
4030         enum pipe pipe = crtc->pipe;
4031         intel_wakeref_t wakeref;
4032         enum plane_id plane_id;
4033
4034         power_domain = POWER_DOMAIN_PIPE(pipe);
4035         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4036         if (!wakeref)
4037                 return;
4038
4039         for_each_plane_id_on_crtc(crtc, plane_id)
4040                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4041                                            plane_id,
4042                                            &ddb_y[plane_id],
4043                                            &ddb_uv[plane_id]);
4044
4045         intel_display_power_put(dev_priv, power_domain, wakeref);
4046 }
4047
4048 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4049                           struct skl_ddb_allocation *ddb /* out */)
4050 {
4051         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4052 }
4053
4054 /*
4055  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4056  * The bspec defines downscale amount as:
4057  *
4058  * """
4059  * Horizontal down scale amount = maximum[1, Horizontal source size /
4060  *                                           Horizontal destination size]
4061  * Vertical down scale amount = maximum[1, Vertical source size /
4062  *                                         Vertical destination size]
4063  * Total down scale amount = Horizontal down scale amount *
4064  *                           Vertical down scale amount
4065  * """
4066  *
4067  * Return value is provided in 16.16 fixed point form to retain fractional part.
4068  * Caller should take care of dividing & rounding off the value.
4069  */
4070 static uint_fixed_16_16_t
4071 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4072                            const struct intel_plane_state *plane_state)
4073 {
4074         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4075         u32 src_w, src_h, dst_w, dst_h;
4076         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4077         uint_fixed_16_16_t downscale_h, downscale_w;
4078
4079         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4080                 return u32_to_fixed16(0);
4081
4082         /* n.b., src is 16.16 fixed point, dst is whole integer */
4083         if (plane->id == PLANE_CURSOR) {
4084                 /*
4085                  * Cursors only support 0/180 degree rotation,
4086                  * hence no need to account for rotation here.
4087                  */
4088                 src_w = plane_state->base.src_w >> 16;
4089                 src_h = plane_state->base.src_h >> 16;
4090                 dst_w = plane_state->base.crtc_w;
4091                 dst_h = plane_state->base.crtc_h;
4092         } else {
4093                 /*
4094                  * Src coordinates are already rotated by 270 degrees for
4095                  * the 90/270 degree plane rotation cases (to match the
4096                  * GTT mapping), hence no need to account for rotation here.
4097                  */
4098                 src_w = drm_rect_width(&plane_state->base.src) >> 16;
4099                 src_h = drm_rect_height(&plane_state->base.src) >> 16;
4100                 dst_w = drm_rect_width(&plane_state->base.dst);
4101                 dst_h = drm_rect_height(&plane_state->base.dst);
4102         }
4103
4104         fp_w_ratio = div_fixed16(src_w, dst_w);
4105         fp_h_ratio = div_fixed16(src_h, dst_h);
4106         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4107         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4108
4109         return mul_fixed16(downscale_w, downscale_h);
4110 }
4111
4112 static uint_fixed_16_16_t
4113 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4114 {
4115         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4116
4117         if (!crtc_state->base.enable)
4118                 return pipe_downscale;
4119
4120         if (crtc_state->pch_pfit.enabled) {
4121                 u32 src_w, src_h, dst_w, dst_h;
4122                 u32 pfit_size = crtc_state->pch_pfit.size;
4123                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4124                 uint_fixed_16_16_t downscale_h, downscale_w;
4125
4126                 src_w = crtc_state->pipe_src_w;
4127                 src_h = crtc_state->pipe_src_h;
4128                 dst_w = pfit_size >> 16;
4129                 dst_h = pfit_size & 0xffff;
4130
4131                 if (!dst_w || !dst_h)
4132                         return pipe_downscale;
4133
4134                 fp_w_ratio = div_fixed16(src_w, dst_w);
4135                 fp_h_ratio = div_fixed16(src_h, dst_h);
4136                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4137                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4138
4139                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4140         }
4141
4142         return pipe_downscale;
4143 }
4144
4145 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4146                                   struct intel_crtc_state *crtc_state)
4147 {
4148         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4149         struct drm_atomic_state *state = crtc_state->base.state;
4150         struct drm_plane *plane;
4151         const struct drm_plane_state *drm_plane_state;
4152         int crtc_clock, dotclk;
4153         u32 pipe_max_pixel_rate;
4154         uint_fixed_16_16_t pipe_downscale;
4155         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4156
4157         if (!crtc_state->base.enable)
4158                 return 0;
4159
4160         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4161                 uint_fixed_16_16_t plane_downscale;
4162                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4163                 int bpp;
4164                 const struct intel_plane_state *plane_state =
4165                         to_intel_plane_state(drm_plane_state);
4166
4167                 if (!intel_wm_plane_visible(crtc_state, plane_state))
4168                         continue;
4169
4170                 if (WARN_ON(!plane_state->base.fb))
4171                         return -EINVAL;
4172
4173                 plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
4174                 bpp = plane_state->base.fb->format->cpp[0] * 8;
4175                 if (bpp == 64)
4176                         plane_downscale = mul_fixed16(plane_downscale,
4177                                                       fp_9_div_8);
4178
4179                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4180         }
4181         pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4182
4183         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4184
4185         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4186         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4187
4188         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4189                 dotclk *= 2;
4190
4191         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4192
4193         if (pipe_max_pixel_rate < crtc_clock) {
4194                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4195                 return -EINVAL;
4196         }
4197
4198         return 0;
4199 }
4200
4201 static u64
4202 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4203                              const struct intel_plane_state *plane_state,
4204                              const int plane)
4205 {
4206         struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane);
4207         u32 data_rate;
4208         u32 width = 0, height = 0;
4209         struct drm_framebuffer *fb;
4210         u32 format;
4211         uint_fixed_16_16_t down_scale_amount;
4212         u64 rate;
4213
4214         if (!plane_state->base.visible)
4215                 return 0;
4216
4217         fb = plane_state->base.fb;
4218         format = fb->format->format;
4219
4220         if (intel_plane->id == PLANE_CURSOR)
4221                 return 0;
4222         if (plane == 1 && !is_planar_yuv_format(format))
4223                 return 0;
4224
4225         /*
4226          * Src coordinates are already rotated by 270 degrees for
4227          * the 90/270 degree plane rotation cases (to match the
4228          * GTT mapping), hence no need to account for rotation here.
4229          */
4230         width = drm_rect_width(&plane_state->base.src) >> 16;
4231         height = drm_rect_height(&plane_state->base.src) >> 16;
4232
4233         /* UV plane does 1/2 pixel sub-sampling */
4234         if (plane == 1 && is_planar_yuv_format(format)) {
4235                 width /= 2;
4236                 height /= 2;
4237         }
4238
4239         data_rate = width * height;
4240
4241         down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4242
4243         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4244
4245         rate *= fb->format->cpp[plane];
4246         return rate;
4247 }
4248
4249 static u64
4250 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4251                                  u64 *plane_data_rate,
4252                                  u64 *uv_plane_data_rate)
4253 {
4254         struct drm_atomic_state *state = crtc_state->base.state;
4255         struct drm_plane *plane;
4256         const struct drm_plane_state *drm_plane_state;
4257         u64 total_data_rate = 0;
4258
4259         if (WARN_ON(!state))
4260                 return 0;
4261
4262         /* Calculate and cache data rate for each plane */
4263         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4264                 enum plane_id plane_id = to_intel_plane(plane)->id;
4265                 const struct intel_plane_state *plane_state =
4266                         to_intel_plane_state(drm_plane_state);
4267                 u64 rate;
4268
4269                 /* packed/y */
4270                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4271                 plane_data_rate[plane_id] = rate;
4272                 total_data_rate += rate;
4273
4274                 /* uv-plane */
4275                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4276                 uv_plane_data_rate[plane_id] = rate;
4277                 total_data_rate += rate;
4278         }
4279
4280         return total_data_rate;
4281 }
4282
4283 static u64
4284 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4285                                  u64 *plane_data_rate)
4286 {
4287         struct drm_plane *plane;
4288         const struct drm_plane_state *drm_plane_state;
4289         u64 total_data_rate = 0;
4290
4291         if (WARN_ON(!crtc_state->base.state))
4292                 return 0;
4293
4294         /* Calculate and cache data rate for each plane */
4295         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4296                 const struct intel_plane_state *plane_state =
4297                         to_intel_plane_state(drm_plane_state);
4298                 enum plane_id plane_id = to_intel_plane(plane)->id;
4299                 u64 rate;
4300
4301                 if (!plane_state->linked_plane) {
4302                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4303                         plane_data_rate[plane_id] = rate;
4304                         total_data_rate += rate;
4305                 } else {
4306                         enum plane_id y_plane_id;
4307
4308                         /*
4309                          * The slave plane might not iterate in
4310                          * drm_atomic_crtc_state_for_each_plane_state(),
4311                          * and needs the master plane state which may be
4312                          * NULL if we try get_new_plane_state(), so we
4313                          * always calculate from the master.
4314                          */
4315                         if (plane_state->slave)
4316                                 continue;
4317
4318                         /* Y plane rate is calculated on the slave */
4319                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4320                         y_plane_id = plane_state->linked_plane->id;
4321                         plane_data_rate[y_plane_id] = rate;
4322                         total_data_rate += rate;
4323
4324                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4325                         plane_data_rate[plane_id] = rate;
4326                         total_data_rate += rate;
4327                 }
4328         }
4329
4330         return total_data_rate;
4331 }
4332
4333 static int
4334 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4335                       struct skl_ddb_allocation *ddb /* out */)
4336 {
4337         struct drm_atomic_state *state = crtc_state->base.state;
4338         struct drm_crtc *crtc = crtc_state->base.crtc;
4339         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341         struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4342         u16 alloc_size, start = 0;
4343         u16 total[I915_MAX_PLANES] = {};
4344         u16 uv_total[I915_MAX_PLANES] = {};
4345         u64 total_data_rate;
4346         enum plane_id plane_id;
4347         int num_active;
4348         u64 plane_data_rate[I915_MAX_PLANES] = {};
4349         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4350         u32 blocks;
4351         int level;
4352
4353         /* Clear the partitioning for disabled planes. */
4354         memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4355         memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4356
4357         if (WARN_ON(!state))
4358                 return 0;
4359
4360         if (!crtc_state->base.active) {
4361                 alloc->start = alloc->end = 0;
4362                 return 0;
4363         }
4364
4365         if (INTEL_GEN(dev_priv) >= 11)
4366                 total_data_rate =
4367                         icl_get_total_relative_data_rate(crtc_state,
4368                                                          plane_data_rate);
4369         else
4370                 total_data_rate =
4371                         skl_get_total_relative_data_rate(crtc_state,
4372                                                          plane_data_rate,
4373                                                          uv_plane_data_rate);
4374
4375
4376         skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4377                                            ddb, alloc, &num_active);
4378         alloc_size = skl_ddb_entry_size(alloc);
4379         if (alloc_size == 0)
4380                 return 0;
4381
4382         /* Allocate fixed number of blocks for cursor. */
4383         total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4384         alloc_size -= total[PLANE_CURSOR];
4385         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4386                 alloc->end - total[PLANE_CURSOR];
4387         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4388
4389         if (total_data_rate == 0)
4390                 return 0;
4391
4392         /*
4393          * Find the highest watermark level for which we can satisfy the block
4394          * requirement of active planes.
4395          */
4396         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4397                 blocks = 0;
4398                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4399                         const struct skl_plane_wm *wm =
4400                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4401
4402                         if (plane_id == PLANE_CURSOR) {
4403                                 if (WARN_ON(wm->wm[level].min_ddb_alloc >
4404                                             total[PLANE_CURSOR])) {
4405                                         blocks = U32_MAX;
4406                                         break;
4407                                 }
4408                                 continue;
4409                         }
4410
4411                         blocks += wm->wm[level].min_ddb_alloc;
4412                         blocks += wm->uv_wm[level].min_ddb_alloc;
4413                 }
4414
4415                 if (blocks <= alloc_size) {
4416                         alloc_size -= blocks;
4417                         break;
4418                 }
4419         }
4420
4421         if (level < 0) {
4422                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4423                 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4424                               alloc_size);
4425                 return -EINVAL;
4426         }
4427
4428         /*
4429          * Grant each plane the blocks it requires at the highest achievable
4430          * watermark level, plus an extra share of the leftover blocks
4431          * proportional to its relative data rate.
4432          */
4433         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4434                 const struct skl_plane_wm *wm =
4435                         &crtc_state->wm.skl.optimal.planes[plane_id];
4436                 u64 rate;
4437                 u16 extra;
4438
4439                 if (plane_id == PLANE_CURSOR)
4440                         continue;
4441
4442                 /*
4443                  * We've accounted for all active planes; remaining planes are
4444                  * all disabled.
4445                  */
4446                 if (total_data_rate == 0)
4447                         break;
4448
4449                 rate = plane_data_rate[plane_id];
4450                 extra = min_t(u16, alloc_size,
4451                               DIV64_U64_ROUND_UP(alloc_size * rate,
4452                                                  total_data_rate));
4453                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4454                 alloc_size -= extra;
4455                 total_data_rate -= rate;
4456
4457                 if (total_data_rate == 0)
4458                         break;
4459
4460                 rate = uv_plane_data_rate[plane_id];
4461                 extra = min_t(u16, alloc_size,
4462                               DIV64_U64_ROUND_UP(alloc_size * rate,
4463                                                  total_data_rate));
4464                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4465                 alloc_size -= extra;
4466                 total_data_rate -= rate;
4467         }
4468         WARN_ON(alloc_size != 0 || total_data_rate != 0);
4469
4470         /* Set the actual DDB start/end points for each plane */
4471         start = alloc->start;
4472         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4473                 struct skl_ddb_entry *plane_alloc =
4474                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
4475                 struct skl_ddb_entry *uv_plane_alloc =
4476                         &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4477
4478                 if (plane_id == PLANE_CURSOR)
4479                         continue;
4480
4481                 /* Gen11+ uses a separate plane for UV watermarks */
4482                 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4483
4484                 /* Leave disabled planes at (0,0) */
4485                 if (total[plane_id]) {
4486                         plane_alloc->start = start;
4487                         start += total[plane_id];
4488                         plane_alloc->end = start;
4489                 }
4490
4491                 if (uv_total[plane_id]) {
4492                         uv_plane_alloc->start = start;
4493                         start += uv_total[plane_id];
4494                         uv_plane_alloc->end = start;
4495                 }
4496         }
4497
4498         /*
4499          * When we calculated watermark values we didn't know how high
4500          * of a level we'd actually be able to hit, so we just marked
4501          * all levels as "enabled."  Go back now and disable the ones
4502          * that aren't actually possible.
4503          */
4504         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4505                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4506                         struct skl_plane_wm *wm =
4507                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4508
4509                         /*
4510                          * We only disable the watermarks for each plane if
4511                          * they exceed the ddb allocation of said plane. This
4512                          * is done so that we don't end up touching cursor
4513                          * watermarks needlessly when some other plane reduces
4514                          * our max possible watermark level.
4515                          *
4516                          * Bspec has this to say about the PLANE_WM enable bit:
4517                          * "All the watermarks at this level for all enabled
4518                          *  planes must be enabled before the level will be used."
4519                          * So this is actually safe to do.
4520                          */
4521                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4522                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4523                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4524
4525                         /*
4526                          * Wa_1408961008:icl, ehl
4527                          * Underruns with WM1+ disabled
4528                          */
4529                         if (IS_GEN(dev_priv, 11) &&
4530                             level == 1 && wm->wm[0].plane_en) {
4531                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4532                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4533                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4534                         }
4535                 }
4536         }
4537
4538         /*
4539          * Go back and disable the transition watermark if it turns out we
4540          * don't have enough DDB blocks for it.
4541          */
4542         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4543                 struct skl_plane_wm *wm =
4544                         &crtc_state->wm.skl.optimal.planes[plane_id];
4545
4546                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4547                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4548         }
4549
4550         return 0;
4551 }
4552
4553 /*
4554  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4555  * for the read latency) and cpp should always be <= 8, so that
4556  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4557  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4558 */
4559 static uint_fixed_16_16_t
4560 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4561                u8 cpp, u32 latency, u32 dbuf_block_size)
4562 {
4563         u32 wm_intermediate_val;
4564         uint_fixed_16_16_t ret;
4565
4566         if (latency == 0)
4567                 return FP_16_16_MAX;
4568
4569         wm_intermediate_val = latency * pixel_rate * cpp;
4570         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4571
4572         if (INTEL_GEN(dev_priv) >= 10)
4573                 ret = add_fixed16_u32(ret, 1);
4574
4575         return ret;
4576 }
4577
4578 static uint_fixed_16_16_t
4579 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4580                uint_fixed_16_16_t plane_blocks_per_line)
4581 {
4582         u32 wm_intermediate_val;
4583         uint_fixed_16_16_t ret;
4584
4585         if (latency == 0)
4586                 return FP_16_16_MAX;
4587
4588         wm_intermediate_val = latency * pixel_rate;
4589         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4590                                            pipe_htotal * 1000);
4591         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4592         return ret;
4593 }
4594
4595 static uint_fixed_16_16_t
4596 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4597 {
4598         u32 pixel_rate;
4599         u32 crtc_htotal;
4600         uint_fixed_16_16_t linetime_us;
4601
4602         if (!crtc_state->base.active)
4603                 return u32_to_fixed16(0);
4604
4605         pixel_rate = crtc_state->pixel_rate;
4606
4607         if (WARN_ON(pixel_rate == 0))
4608                 return u32_to_fixed16(0);
4609
4610         crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4611         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4612
4613         return linetime_us;
4614 }
4615
4616 static u32
4617 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4618                               const struct intel_plane_state *plane_state)
4619 {
4620         u64 adjusted_pixel_rate;
4621         uint_fixed_16_16_t downscale_amount;
4622
4623         /* Shouldn't reach here on disabled planes... */
4624         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4625                 return 0;
4626
4627         /*
4628          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4629          * with additional adjustments for plane-specific scaling.
4630          */
4631         adjusted_pixel_rate = crtc_state->pixel_rate;
4632         downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4633
4634         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4635                                             downscale_amount);
4636 }
4637
4638 static int
4639 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4640                       int width, const struct drm_format_info *format,
4641                       u64 modifier, unsigned int rotation,
4642                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4643                       int color_plane)
4644 {
4645         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4646         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4647         u32 interm_pbpl;
4648
4649         /* only planar format has two planes */
4650         if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4651                 DRM_DEBUG_KMS("Non planar format have single plane\n");
4652                 return -EINVAL;
4653         }
4654
4655         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4656                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4657                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4658                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4659         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4660         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4661                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4662         wp->is_planar = is_planar_yuv_format(format->format);
4663
4664         wp->width = width;
4665         if (color_plane == 1 && wp->is_planar)
4666                 wp->width /= 2;
4667
4668         wp->cpp = format->cpp[color_plane];
4669         wp->plane_pixel_rate = plane_pixel_rate;
4670
4671         if (INTEL_GEN(dev_priv) >= 11 &&
4672             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4673                 wp->dbuf_block_size = 256;
4674         else
4675                 wp->dbuf_block_size = 512;
4676
4677         if (drm_rotation_90_or_270(rotation)) {
4678                 switch (wp->cpp) {
4679                 case 1:
4680                         wp->y_min_scanlines = 16;
4681                         break;
4682                 case 2:
4683                         wp->y_min_scanlines = 8;
4684                         break;
4685                 case 4:
4686                         wp->y_min_scanlines = 4;
4687                         break;
4688                 default:
4689                         MISSING_CASE(wp->cpp);
4690                         return -EINVAL;
4691                 }
4692         } else {
4693                 wp->y_min_scanlines = 4;
4694         }
4695
4696         if (skl_needs_memory_bw_wa(dev_priv))
4697                 wp->y_min_scanlines *= 2;
4698
4699         wp->plane_bytes_per_line = wp->width * wp->cpp;
4700         if (wp->y_tiled) {
4701                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4702                                            wp->y_min_scanlines,
4703                                            wp->dbuf_block_size);
4704
4705                 if (INTEL_GEN(dev_priv) >= 10)
4706                         interm_pbpl++;
4707
4708                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4709                                                         wp->y_min_scanlines);
4710         } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4711                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4712                                            wp->dbuf_block_size);
4713                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4714         } else {
4715                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4716                                            wp->dbuf_block_size) + 1;
4717                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4718         }
4719
4720         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4721                                              wp->plane_blocks_per_line);
4722
4723         wp->linetime_us = fixed16_to_u32_round_up(
4724                                         intel_get_linetime_us(crtc_state));
4725
4726         return 0;
4727 }
4728
4729 static int
4730 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4731                             const struct intel_plane_state *plane_state,
4732                             struct skl_wm_params *wp, int color_plane)
4733 {
4734         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4735         const struct drm_framebuffer *fb = plane_state->base.fb;
4736         int width;
4737
4738         if (plane->id == PLANE_CURSOR) {
4739                 width = plane_state->base.crtc_w;
4740         } else {
4741                 /*
4742                  * Src coordinates are already rotated by 270 degrees for
4743                  * the 90/270 degree plane rotation cases (to match the
4744                  * GTT mapping), hence no need to account for rotation here.
4745                  */
4746                 width = drm_rect_width(&plane_state->base.src) >> 16;
4747         }
4748
4749         return skl_compute_wm_params(crtc_state, width,
4750                                      fb->format, fb->modifier,
4751                                      plane_state->base.rotation,
4752                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4753                                      wp, color_plane);
4754 }
4755
4756 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4757 {
4758         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4759                 return true;
4760
4761         /* The number of lines are ignored for the level 0 watermark. */
4762         return level > 0;
4763 }
4764
4765 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4766                                  int level,
4767                                  const struct skl_wm_params *wp,
4768                                  const struct skl_wm_level *result_prev,
4769                                  struct skl_wm_level *result /* out */)
4770 {
4771         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4772         u32 latency = dev_priv->wm.skl_latency[level];
4773         uint_fixed_16_16_t method1, method2;
4774         uint_fixed_16_16_t selected_result;
4775         u32 res_blocks, res_lines, min_ddb_alloc = 0;
4776
4777         if (latency == 0) {
4778                 /* reject it */
4779                 result->min_ddb_alloc = U16_MAX;
4780                 return;
4781         }
4782
4783         /*
4784          * WaIncreaseLatencyIPCEnabled: kbl,cfl
4785          * Display WA #1141: kbl,cfl
4786          */
4787         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4788             dev_priv->ipc_enabled)
4789                 latency += 4;
4790
4791         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4792                 latency += 15;
4793
4794         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4795                                  wp->cpp, latency, wp->dbuf_block_size);
4796         method2 = skl_wm_method2(wp->plane_pixel_rate,
4797                                  crtc_state->base.adjusted_mode.crtc_htotal,
4798                                  latency,
4799                                  wp->plane_blocks_per_line);
4800
4801         if (wp->y_tiled) {
4802                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4803         } else {
4804                 if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4805                      wp->dbuf_block_size < 1) &&
4806                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4807                         selected_result = method2;
4808                 } else if (latency >= wp->linetime_us) {
4809                         if (IS_GEN(dev_priv, 9) &&
4810                             !IS_GEMINILAKE(dev_priv))
4811                                 selected_result = min_fixed16(method1, method2);
4812                         else
4813                                 selected_result = method2;
4814                 } else {
4815                         selected_result = method1;
4816                 }
4817         }
4818
4819         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4820         res_lines = div_round_up_fixed16(selected_result,
4821                                          wp->plane_blocks_per_line);
4822
4823         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4824                 /* Display WA #1125: skl,bxt,kbl */
4825                 if (level == 0 && wp->rc_surface)
4826                         res_blocks +=
4827                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
4828
4829                 /* Display WA #1126: skl,bxt,kbl */
4830                 if (level >= 1 && level <= 7) {
4831                         if (wp->y_tiled) {
4832                                 res_blocks +=
4833                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
4834                                 res_lines += wp->y_min_scanlines;
4835                         } else {
4836                                 res_blocks++;
4837                         }
4838
4839                         /*
4840                          * Make sure result blocks for higher latency levels are
4841                          * atleast as high as level below the current level.
4842                          * Assumption in DDB algorithm optimization for special
4843                          * cases. Also covers Display WA #1125 for RC.
4844                          */
4845                         if (result_prev->plane_res_b > res_blocks)
4846                                 res_blocks = result_prev->plane_res_b;
4847                 }
4848         }
4849
4850         if (INTEL_GEN(dev_priv) >= 11) {
4851                 if (wp->y_tiled) {
4852                         int extra_lines;
4853
4854                         if (res_lines % wp->y_min_scanlines == 0)
4855                                 extra_lines = wp->y_min_scanlines;
4856                         else
4857                                 extra_lines = wp->y_min_scanlines * 2 -
4858                                         res_lines % wp->y_min_scanlines;
4859
4860                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4861                                                                  wp->plane_blocks_per_line);
4862                 } else {
4863                         min_ddb_alloc = res_blocks +
4864                                 DIV_ROUND_UP(res_blocks, 10);
4865                 }
4866         }
4867
4868         if (!skl_wm_has_lines(dev_priv, level))
4869                 res_lines = 0;
4870
4871         if (res_lines > 31) {
4872                 /* reject it */
4873                 result->min_ddb_alloc = U16_MAX;
4874                 return;
4875         }
4876
4877         /*
4878          * If res_lines is valid, assume we can use this watermark level
4879          * for now.  We'll come back and disable it after we calculate the
4880          * DDB allocation if it turns out we don't actually have enough
4881          * blocks to satisfy it.
4882          */
4883         result->plane_res_b = res_blocks;
4884         result->plane_res_l = res_lines;
4885         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4886         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4887         result->plane_en = true;
4888 }
4889
4890 static void
4891 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4892                       const struct skl_wm_params *wm_params,
4893                       struct skl_wm_level *levels)
4894 {
4895         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4896         int level, max_level = ilk_wm_max_level(dev_priv);
4897         struct skl_wm_level *result_prev = &levels[0];
4898
4899         for (level = 0; level <= max_level; level++) {
4900                 struct skl_wm_level *result = &levels[level];
4901
4902                 skl_compute_plane_wm(crtc_state, level, wm_params,
4903                                      result_prev, result);
4904
4905                 result_prev = result;
4906         }
4907 }
4908
4909 static u32
4910 skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4911 {
4912         struct drm_atomic_state *state = crtc_state->base.state;
4913         struct drm_i915_private *dev_priv = to_i915(state->dev);
4914         uint_fixed_16_16_t linetime_us;
4915         u32 linetime_wm;
4916
4917         linetime_us = intel_get_linetime_us(crtc_state);
4918         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4919
4920         /* Display WA #1135: BXT:ALL GLK:ALL */
4921         if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4922                 linetime_wm /= 2;
4923
4924         return linetime_wm;
4925 }
4926
4927 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4928                                       const struct skl_wm_params *wp,
4929                                       struct skl_plane_wm *wm)
4930 {
4931         struct drm_device *dev = crtc_state->base.crtc->dev;
4932         const struct drm_i915_private *dev_priv = to_i915(dev);
4933         u16 trans_min, trans_y_tile_min;
4934         const u16 trans_amount = 10; /* This is configurable amount */
4935         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4936
4937         /* Transition WM are not recommended by HW team for GEN9 */
4938         if (INTEL_GEN(dev_priv) <= 9)
4939                 return;
4940
4941         /* Transition WM don't make any sense if ipc is disabled */
4942         if (!dev_priv->ipc_enabled)
4943                 return;
4944
4945         trans_min = 14;
4946         if (INTEL_GEN(dev_priv) >= 11)
4947                 trans_min = 4;
4948
4949         trans_offset_b = trans_min + trans_amount;
4950
4951         /*
4952          * The spec asks for Selected Result Blocks for wm0 (the real value),
4953          * not Result Blocks (the integer value). Pay attention to the capital
4954          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4955          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4956          * and since we later will have to get the ceiling of the sum in the
4957          * transition watermarks calculation, we can just pretend Selected
4958          * Result Blocks is Result Blocks minus 1 and it should work for the
4959          * current platforms.
4960          */
4961         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4962
4963         if (wp->y_tiled) {
4964                 trans_y_tile_min =
4965                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4966                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4967                                 trans_offset_b;
4968         } else {
4969                 res_blocks = wm0_sel_res_b + trans_offset_b;
4970
4971                 /* WA BUG:1938466 add one block for non y-tile planes */
4972                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4973                         res_blocks += 1;
4974
4975         }
4976
4977         /*
4978          * Just assume we can enable the transition watermark.  After
4979          * computing the DDB we'll come back and disable it if that
4980          * assumption turns out to be false.
4981          */
4982         wm->trans_wm.plane_res_b = res_blocks + 1;
4983         wm->trans_wm.plane_en = true;
4984 }
4985
4986 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4987                                      const struct intel_plane_state *plane_state,
4988                                      enum plane_id plane_id, int color_plane)
4989 {
4990         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4991         struct skl_wm_params wm_params;
4992         int ret;
4993
4994         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4995                                           &wm_params, color_plane);
4996         if (ret)
4997                 return ret;
4998
4999         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5000         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5001
5002         return 0;
5003 }
5004
5005 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5006                                  const struct intel_plane_state *plane_state,
5007                                  enum plane_id plane_id)
5008 {
5009         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5010         struct skl_wm_params wm_params;
5011         int ret;
5012
5013         wm->is_planar = true;
5014
5015         /* uv plane watermarks must also be validated for NV12/Planar */
5016         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5017                                           &wm_params, 1);
5018         if (ret)
5019                 return ret;
5020
5021         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5022
5023         return 0;
5024 }
5025
5026 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5027                               const struct intel_plane_state *plane_state)
5028 {
5029         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5030         const struct drm_framebuffer *fb = plane_state->base.fb;
5031         enum plane_id plane_id = plane->id;
5032         int ret;
5033
5034         if (!intel_wm_plane_visible(crtc_state, plane_state))
5035                 return 0;
5036
5037         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5038                                         plane_id, 0);
5039         if (ret)
5040                 return ret;
5041
5042         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5043                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5044                                             plane_id);
5045                 if (ret)
5046                         return ret;
5047         }
5048
5049         return 0;
5050 }
5051
5052 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5053                               const struct intel_plane_state *plane_state)
5054 {
5055         enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5056         int ret;
5057
5058         /* Watermarks calculated in master */
5059         if (plane_state->slave)
5060                 return 0;
5061
5062         if (plane_state->linked_plane) {
5063                 const struct drm_framebuffer *fb = plane_state->base.fb;
5064                 enum plane_id y_plane_id = plane_state->linked_plane->id;
5065
5066                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5067                 WARN_ON(!fb->format->is_yuv ||
5068                         fb->format->num_planes == 1);
5069
5070                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5071                                                 y_plane_id, 0);
5072                 if (ret)
5073                         return ret;
5074
5075                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076                                                 plane_id, 1);
5077                 if (ret)
5078                         return ret;
5079         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5080                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081                                                 plane_id, 0);
5082                 if (ret)
5083                         return ret;
5084         }
5085
5086         return 0;
5087 }
5088
5089 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5090 {
5091         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5092         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5093         struct drm_plane *plane;
5094         const struct drm_plane_state *drm_plane_state;
5095         int ret;
5096
5097         /*
5098          * We'll only calculate watermarks for planes that are actually
5099          * enabled, so make sure all other planes are set as disabled.
5100          */
5101         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5102
5103         drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
5104                                                    &crtc_state->base) {
5105                 const struct intel_plane_state *plane_state =
5106                         to_intel_plane_state(drm_plane_state);
5107
5108                 if (INTEL_GEN(dev_priv) >= 11)
5109                         ret = icl_build_plane_wm(crtc_state, plane_state);
5110                 else
5111                         ret = skl_build_plane_wm(crtc_state, plane_state);
5112                 if (ret)
5113                         return ret;
5114         }
5115
5116         pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5117
5118         return 0;
5119 }
5120
5121 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5122                                 i915_reg_t reg,
5123                                 const struct skl_ddb_entry *entry)
5124 {
5125         if (entry->end)
5126                 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5127         else
5128                 I915_WRITE_FW(reg, 0);
5129 }
5130
5131 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5132                                i915_reg_t reg,
5133                                const struct skl_wm_level *level)
5134 {
5135         u32 val = 0;
5136
5137         if (level->plane_en)
5138                 val |= PLANE_WM_EN;
5139         if (level->ignore_lines)
5140                 val |= PLANE_WM_IGNORE_LINES;
5141         val |= level->plane_res_b;
5142         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5143
5144         I915_WRITE_FW(reg, val);
5145 }
5146
5147 void skl_write_plane_wm(struct intel_plane *plane,
5148                         const struct intel_crtc_state *crtc_state)
5149 {
5150         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5151         int level, max_level = ilk_wm_max_level(dev_priv);
5152         enum plane_id plane_id = plane->id;
5153         enum pipe pipe = plane->pipe;
5154         const struct skl_plane_wm *wm =
5155                 &crtc_state->wm.skl.optimal.planes[plane_id];
5156         const struct skl_ddb_entry *ddb_y =
5157                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5158         const struct skl_ddb_entry *ddb_uv =
5159                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5160
5161         for (level = 0; level <= max_level; level++) {
5162                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5163                                    &wm->wm[level]);
5164         }
5165         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5166                            &wm->trans_wm);
5167
5168         if (INTEL_GEN(dev_priv) >= 11) {
5169                 skl_ddb_entry_write(dev_priv,
5170                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5171                 return;
5172         }
5173
5174         if (wm->is_planar)
5175                 swap(ddb_y, ddb_uv);
5176
5177         skl_ddb_entry_write(dev_priv,
5178                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5179         skl_ddb_entry_write(dev_priv,
5180                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5181 }
5182
5183 void skl_write_cursor_wm(struct intel_plane *plane,
5184                          const struct intel_crtc_state *crtc_state)
5185 {
5186         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5187         int level, max_level = ilk_wm_max_level(dev_priv);
5188         enum plane_id plane_id = plane->id;
5189         enum pipe pipe = plane->pipe;
5190         const struct skl_plane_wm *wm =
5191                 &crtc_state->wm.skl.optimal.planes[plane_id];
5192         const struct skl_ddb_entry *ddb =
5193                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5194
5195         for (level = 0; level <= max_level; level++) {
5196                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5197                                    &wm->wm[level]);
5198         }
5199         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5200
5201         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5202 }
5203
5204 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5205                          const struct skl_wm_level *l2)
5206 {
5207         return l1->plane_en == l2->plane_en &&
5208                 l1->ignore_lines == l2->ignore_lines &&
5209                 l1->plane_res_l == l2->plane_res_l &&
5210                 l1->plane_res_b == l2->plane_res_b;
5211 }
5212
5213 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5214                                 const struct skl_plane_wm *wm1,
5215                                 const struct skl_plane_wm *wm2)
5216 {
5217         int level, max_level = ilk_wm_max_level(dev_priv);
5218
5219         for (level = 0; level <= max_level; level++) {
5220                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5221                     !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5222                         return false;
5223         }
5224
5225         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5226 }
5227
5228 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5229                                const struct skl_pipe_wm *wm1,
5230                                const struct skl_pipe_wm *wm2)
5231 {
5232         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5233         enum plane_id plane_id;
5234
5235         for_each_plane_id_on_crtc(crtc, plane_id) {
5236                 if (!skl_plane_wm_equals(dev_priv,
5237                                          &wm1->planes[plane_id],
5238                                          &wm2->planes[plane_id]))
5239                         return false;
5240         }
5241
5242         return wm1->linetime == wm2->linetime;
5243 }
5244
5245 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5246                                            const struct skl_ddb_entry *b)
5247 {
5248         return a->start < b->end && b->start < a->end;
5249 }
5250
5251 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5252                                  const struct skl_ddb_entry *entries,
5253                                  int num_entries, int ignore_idx)
5254 {
5255         int i;
5256
5257         for (i = 0; i < num_entries; i++) {
5258                 if (i != ignore_idx &&
5259                     skl_ddb_entries_overlap(ddb, &entries[i]))
5260                         return true;
5261         }
5262
5263         return false;
5264 }
5265
5266 static u32
5267 pipes_modified(struct intel_atomic_state *state)
5268 {
5269         struct intel_crtc *crtc;
5270         struct intel_crtc_state *crtc_state;
5271         u32 i, ret = 0;
5272
5273         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5274                 ret |= drm_crtc_mask(&crtc->base);
5275
5276         return ret;
5277 }
5278
5279 static int
5280 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5281                             struct intel_crtc_state *new_crtc_state)
5282 {
5283         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5284         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5285         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5286         struct intel_plane *plane;
5287
5288         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5289                 struct intel_plane_state *plane_state;
5290                 enum plane_id plane_id = plane->id;
5291
5292                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5293                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5294                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5295                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5296                         continue;
5297
5298                 plane_state = intel_atomic_get_plane_state(state, plane);
5299                 if (IS_ERR(plane_state))
5300                         return PTR_ERR(plane_state);
5301
5302                 new_crtc_state->update_planes |= BIT(plane_id);
5303         }
5304
5305         return 0;
5306 }
5307
5308 static int
5309 skl_compute_ddb(struct intel_atomic_state *state)
5310 {
5311         const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5312         struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5313         struct intel_crtc_state *old_crtc_state;
5314         struct intel_crtc_state *new_crtc_state;
5315         struct intel_crtc *crtc;
5316         int ret, i;
5317
5318         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5319
5320         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5321                                             new_crtc_state, i) {
5322                 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5323                 if (ret)
5324                         return ret;
5325
5326                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5327                                                   new_crtc_state);
5328                 if (ret)
5329                         return ret;
5330         }
5331
5332         return 0;
5333 }
5334
5335 static char enast(bool enable)
5336 {
5337         return enable ? '*' : ' ';
5338 }
5339
5340 static void
5341 skl_print_wm_changes(struct intel_atomic_state *state)
5342 {
5343         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5344         const struct intel_crtc_state *old_crtc_state;
5345         const struct intel_crtc_state *new_crtc_state;
5346         struct intel_plane *plane;
5347         struct intel_crtc *crtc;
5348         int i;
5349
5350         if ((drm_debug & DRM_UT_KMS) == 0)
5351                 return;
5352
5353         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5354                                             new_crtc_state, i) {
5355                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5356
5357                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5358                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5359
5360                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5361                         enum plane_id plane_id = plane->id;
5362                         const struct skl_ddb_entry *old, *new;
5363
5364                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5365                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5366
5367                         if (skl_ddb_entry_equal(old, new))
5368                                 continue;
5369
5370                         DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5371                                       plane->base.base.id, plane->base.name,
5372                                       old->start, old->end, new->start, new->end,
5373                                       skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5374                 }
5375
5376                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5377                         enum plane_id plane_id = plane->id;
5378                         const struct skl_plane_wm *old_wm, *new_wm;
5379
5380                         old_wm = &old_pipe_wm->planes[plane_id];
5381                         new_wm = &new_pipe_wm->planes[plane_id];
5382
5383                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5384                                 continue;
5385
5386                         DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5387                                       " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5388                                       plane->base.base.id, plane->base.name,
5389                                       enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5390                                       enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5391                                       enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5392                                       enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5393                                       enast(old_wm->trans_wm.plane_en),
5394                                       enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5395                                       enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5396                                       enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5397                                       enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5398                                       enast(new_wm->trans_wm.plane_en));
5399
5400                         DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5401                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5402                                       plane->base.base.id, plane->base.name,
5403                                       enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5404                                       enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5405                                       enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5406                                       enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5407                                       enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5408                                       enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5409                                       enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5410                                       enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5411                                       enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5412
5413                                       enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5414                                       enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5415                                       enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5416                                       enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5417                                       enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5418                                       enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5419                                       enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5420                                       enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5421                                       enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5422
5423                         DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5424                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5425                                       plane->base.base.id, plane->base.name,
5426                                       old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5427                                       old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5428                                       old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5429                                       old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5430                                       old_wm->trans_wm.plane_res_b,
5431                                       new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5432                                       new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5433                                       new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5434                                       new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5435                                       new_wm->trans_wm.plane_res_b);
5436
5437                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5438                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5439                                       plane->base.base.id, plane->base.name,
5440                                       old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5441                                       old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5442                                       old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5443                                       old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5444                                       old_wm->trans_wm.min_ddb_alloc,
5445                                       new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5446                                       new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5447                                       new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5448                                       new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5449                                       new_wm->trans_wm.min_ddb_alloc);
5450                 }
5451         }
5452 }
5453
5454 static int
5455 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5456 {
5457         struct drm_device *dev = state->base.dev;
5458         const struct drm_i915_private *dev_priv = to_i915(dev);
5459         struct intel_crtc *crtc;
5460         struct intel_crtc_state *crtc_state;
5461         u32 realloc_pipes = pipes_modified(state);
5462         int ret, i;
5463
5464         /*
5465          * When we distrust bios wm we always need to recompute to set the
5466          * expected DDB allocations for each CRTC.
5467          */
5468         if (dev_priv->wm.distrust_bios_wm)
5469                 (*changed) = true;
5470
5471         /*
5472          * If this transaction isn't actually touching any CRTC's, don't
5473          * bother with watermark calculation.  Note that if we pass this
5474          * test, we're guaranteed to hold at least one CRTC state mutex,
5475          * which means we can safely use values like dev_priv->active_crtcs
5476          * since any racing commits that want to update them would need to
5477          * hold _all_ CRTC state mutexes.
5478          */
5479         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5480                 (*changed) = true;
5481
5482         if (!*changed)
5483                 return 0;
5484
5485         /*
5486          * If this is our first atomic update following hardware readout,
5487          * we can't trust the DDB that the BIOS programmed for us.  Let's
5488          * pretend that all pipes switched active status so that we'll
5489          * ensure a full DDB recompute.
5490          */
5491         if (dev_priv->wm.distrust_bios_wm) {
5492                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5493                                        state->base.acquire_ctx);
5494                 if (ret)
5495                         return ret;
5496
5497                 state->active_pipe_changes = ~0;
5498
5499                 /*
5500                  * We usually only initialize state->active_crtcs if we
5501                  * we're doing a modeset; make sure this field is always
5502                  * initialized during the sanitization process that happens
5503                  * on the first commit too.
5504                  */
5505                 if (!state->modeset)
5506                         state->active_crtcs = dev_priv->active_crtcs;
5507         }
5508
5509         /*
5510          * If the modeset changes which CRTC's are active, we need to
5511          * recompute the DDB allocation for *all* active pipes, even
5512          * those that weren't otherwise being modified in any way by this
5513          * atomic commit.  Due to the shrinking of the per-pipe allocations
5514          * when new active CRTC's are added, it's possible for a pipe that
5515          * we were already using and aren't changing at all here to suddenly
5516          * become invalid if its DDB needs exceeds its new allocation.
5517          *
5518          * Note that if we wind up doing a full DDB recompute, we can't let
5519          * any other display updates race with this transaction, so we need
5520          * to grab the lock on *all* CRTC's.
5521          */
5522         if (state->active_pipe_changes || state->modeset) {
5523                 realloc_pipes = ~0;
5524                 state->wm_results.dirty_pipes = ~0;
5525         }
5526
5527         /*
5528          * We're not recomputing for the pipes not included in the commit, so
5529          * make sure we start with the current state.
5530          */
5531         for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5532                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5533                 if (IS_ERR(crtc_state))
5534                         return PTR_ERR(crtc_state);
5535         }
5536
5537         return 0;
5538 }
5539
5540 /*
5541  * To make sure the cursor watermark registers are always consistent
5542  * with our computed state the following scenario needs special
5543  * treatment:
5544  *
5545  * 1. enable cursor
5546  * 2. move cursor entirely offscreen
5547  * 3. disable cursor
5548  *
5549  * Step 2. does call .disable_plane() but does not zero the watermarks
5550  * (since we consider an offscreen cursor still active for the purposes
5551  * of watermarks). Step 3. would not normally call .disable_plane()
5552  * because the actual plane visibility isn't changing, and we don't
5553  * deallocate the cursor ddb until the pipe gets disabled. So we must
5554  * force step 3. to call .disable_plane() to update the watermark
5555  * registers properly.
5556  *
5557  * Other planes do not suffer from this issues as their watermarks are
5558  * calculated based on the actual plane visibility. The only time this
5559  * can trigger for the other planes is during the initial readout as the
5560  * default value of the watermarks registers is not zero.
5561  */
5562 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5563                                       struct intel_crtc *crtc)
5564 {
5565         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5566         const struct intel_crtc_state *old_crtc_state =
5567                 intel_atomic_get_old_crtc_state(state, crtc);
5568         struct intel_crtc_state *new_crtc_state =
5569                 intel_atomic_get_new_crtc_state(state, crtc);
5570         struct intel_plane *plane;
5571
5572         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5573                 struct intel_plane_state *plane_state;
5574                 enum plane_id plane_id = plane->id;
5575
5576                 /*
5577                  * Force a full wm update for every plane on modeset.
5578                  * Required because the reset value of the wm registers
5579                  * is non-zero, whereas we want all disabled planes to
5580                  * have zero watermarks. So if we turn off the relevant
5581                  * power well the hardware state will go out of sync
5582                  * with the software state.
5583                  */
5584                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5585                     skl_plane_wm_equals(dev_priv,
5586                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5587                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5588                         continue;
5589
5590                 plane_state = intel_atomic_get_plane_state(state, plane);
5591                 if (IS_ERR(plane_state))
5592                         return PTR_ERR(plane_state);
5593
5594                 new_crtc_state->update_planes |= BIT(plane_id);
5595         }
5596
5597         return 0;
5598 }
5599
5600 static int
5601 skl_compute_wm(struct intel_atomic_state *state)
5602 {
5603         struct intel_crtc *crtc;
5604         struct intel_crtc_state *new_crtc_state;
5605         struct intel_crtc_state *old_crtc_state;
5606         struct skl_ddb_values *results = &state->wm_results;
5607         bool changed = false;
5608         int ret, i;
5609
5610         /* Clear all dirty flags */
5611         results->dirty_pipes = 0;
5612
5613         ret = skl_ddb_add_affected_pipes(state, &changed);
5614         if (ret || !changed)
5615                 return ret;
5616
5617         /*
5618          * Calculate WM's for all pipes that are part of this transaction.
5619          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5620          * weren't otherwise being modified (and set bits in dirty_pipes) if
5621          * pipe allocations had to change.
5622          */
5623         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5624                                             new_crtc_state, i) {
5625                 ret = skl_build_pipe_wm(new_crtc_state);
5626                 if (ret)
5627                         return ret;
5628
5629                 ret = skl_wm_add_affected_planes(state, crtc);
5630                 if (ret)
5631                         return ret;
5632
5633                 if (!skl_pipe_wm_equals(crtc,
5634                                         &old_crtc_state->wm.skl.optimal,
5635                                         &new_crtc_state->wm.skl.optimal))
5636                         results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5637         }
5638
5639         ret = skl_compute_ddb(state);
5640         if (ret)
5641                 return ret;
5642
5643         skl_print_wm_changes(state);
5644
5645         return 0;
5646 }
5647
5648 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5649                                       struct intel_crtc_state *crtc_state)
5650 {
5651         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5652         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5653         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5654         enum pipe pipe = crtc->pipe;
5655
5656         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5657                 return;
5658
5659         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5660 }
5661
5662 static void skl_initial_wm(struct intel_atomic_state *state,
5663                            struct intel_crtc_state *crtc_state)
5664 {
5665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5666         struct drm_device *dev = intel_crtc->base.dev;
5667         struct drm_i915_private *dev_priv = to_i915(dev);
5668         struct skl_ddb_values *results = &state->wm_results;
5669
5670         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5671                 return;
5672
5673         mutex_lock(&dev_priv->wm.wm_mutex);
5674
5675         if (crtc_state->base.active_changed)
5676                 skl_atomic_update_crtc_wm(state, crtc_state);
5677
5678         mutex_unlock(&dev_priv->wm.wm_mutex);
5679 }
5680
5681 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5682                                   struct intel_wm_config *config)
5683 {
5684         struct intel_crtc *crtc;
5685
5686         /* Compute the currently _active_ config */
5687         for_each_intel_crtc(&dev_priv->drm, crtc) {
5688                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5689
5690                 if (!wm->pipe_enabled)
5691                         continue;
5692
5693                 config->sprites_enabled |= wm->sprites_enabled;
5694                 config->sprites_scaled |= wm->sprites_scaled;
5695                 config->num_pipes_active++;
5696         }
5697 }
5698
5699 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5700 {
5701         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5702         struct ilk_wm_maximums max;
5703         struct intel_wm_config config = {};
5704         struct ilk_wm_values results = {};
5705         enum intel_ddb_partitioning partitioning;
5706
5707         ilk_compute_wm_config(dev_priv, &config);
5708
5709         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5710         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5711
5712         /* 5/6 split only in single pipe config on IVB+ */
5713         if (INTEL_GEN(dev_priv) >= 7 &&
5714             config.num_pipes_active == 1 && config.sprites_enabled) {
5715                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5716                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5717
5718                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5719         } else {
5720                 best_lp_wm = &lp_wm_1_2;
5721         }
5722
5723         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5724                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5725
5726         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5727
5728         ilk_write_wm_values(dev_priv, &results);
5729 }
5730
5731 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5732                                    struct intel_crtc_state *crtc_state)
5733 {
5734         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5735         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5736
5737         mutex_lock(&dev_priv->wm.wm_mutex);
5738         crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5739         ilk_program_watermarks(dev_priv);
5740         mutex_unlock(&dev_priv->wm.wm_mutex);
5741 }
5742
5743 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5744                                     struct intel_crtc_state *crtc_state)
5745 {
5746         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5747         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5748
5749         if (!crtc_state->wm.need_postvbl_update)
5750                 return;
5751
5752         mutex_lock(&dev_priv->wm.wm_mutex);
5753         crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5754         ilk_program_watermarks(dev_priv);
5755         mutex_unlock(&dev_priv->wm.wm_mutex);
5756 }
5757
5758 static inline void skl_wm_level_from_reg_val(u32 val,
5759                                              struct skl_wm_level *level)
5760 {
5761         level->plane_en = val & PLANE_WM_EN;
5762         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5763         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5764         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5765                 PLANE_WM_LINES_MASK;
5766 }
5767
5768 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5769                               struct skl_pipe_wm *out)
5770 {
5771         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5772         enum pipe pipe = crtc->pipe;
5773         int level, max_level;
5774         enum plane_id plane_id;
5775         u32 val;
5776
5777         max_level = ilk_wm_max_level(dev_priv);
5778
5779         for_each_plane_id_on_crtc(crtc, plane_id) {
5780                 struct skl_plane_wm *wm = &out->planes[plane_id];
5781
5782                 for (level = 0; level <= max_level; level++) {
5783                         if (plane_id != PLANE_CURSOR)
5784                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5785                         else
5786                                 val = I915_READ(CUR_WM(pipe, level));
5787
5788                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5789                 }
5790
5791                 if (plane_id != PLANE_CURSOR)
5792                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5793                 else
5794                         val = I915_READ(CUR_WM_TRANS(pipe));
5795
5796                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5797         }
5798
5799         if (!crtc->active)
5800                 return;
5801
5802         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5803 }
5804
5805 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5806 {
5807         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5808         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5809         struct intel_crtc *crtc;
5810         struct intel_crtc_state *crtc_state;
5811
5812         skl_ddb_get_hw_state(dev_priv, ddb);
5813         for_each_intel_crtc(&dev_priv->drm, crtc) {
5814                 crtc_state = to_intel_crtc_state(crtc->base.state);
5815
5816                 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5817
5818                 if (crtc->active)
5819                         hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5820         }
5821
5822         if (dev_priv->active_crtcs) {
5823                 /* Fully recompute DDB on first atomic commit */
5824                 dev_priv->wm.distrust_bios_wm = true;
5825         }
5826 }
5827
5828 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5829 {
5830         struct drm_device *dev = crtc->base.dev;
5831         struct drm_i915_private *dev_priv = to_i915(dev);
5832         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5833         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5834         struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5835         enum pipe pipe = crtc->pipe;
5836         static const i915_reg_t wm0_pipe_reg[] = {
5837                 [PIPE_A] = WM0_PIPEA_ILK,
5838                 [PIPE_B] = WM0_PIPEB_ILK,
5839                 [PIPE_C] = WM0_PIPEC_IVB,
5840         };
5841
5842         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5843         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5844                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5845
5846         memset(active, 0, sizeof(*active));
5847
5848         active->pipe_enabled = crtc->active;
5849
5850         if (active->pipe_enabled) {
5851                 u32 tmp = hw->wm_pipe[pipe];
5852
5853                 /*
5854                  * For active pipes LP0 watermark is marked as
5855                  * enabled, and LP1+ watermaks as disabled since
5856                  * we can't really reverse compute them in case
5857                  * multiple pipes are active.
5858                  */
5859                 active->wm[0].enable = true;
5860                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5861                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5862                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5863                 active->linetime = hw->wm_linetime[pipe];
5864         } else {
5865                 int level, max_level = ilk_wm_max_level(dev_priv);
5866
5867                 /*
5868                  * For inactive pipes, all watermark levels
5869                  * should be marked as enabled but zeroed,
5870                  * which is what we'd compute them to.
5871                  */
5872                 for (level = 0; level <= max_level; level++)
5873                         active->wm[level].enable = true;
5874         }
5875
5876         crtc->wm.active.ilk = *active;
5877 }
5878
5879 #define _FW_WM(value, plane) \
5880         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5881 #define _FW_WM_VLV(value, plane) \
5882         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5883
5884 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5885                                struct g4x_wm_values *wm)
5886 {
5887         u32 tmp;
5888
5889         tmp = I915_READ(DSPFW1);
5890         wm->sr.plane = _FW_WM(tmp, SR);
5891         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5892         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5893         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5894
5895         tmp = I915_READ(DSPFW2);
5896         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5897         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5898         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5899         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5900         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5901         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5902
5903         tmp = I915_READ(DSPFW3);
5904         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5905         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5906         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5907         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5908 }
5909
5910 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5911                                struct vlv_wm_values *wm)
5912 {
5913         enum pipe pipe;
5914         u32 tmp;
5915
5916         for_each_pipe(dev_priv, pipe) {
5917                 tmp = I915_READ(VLV_DDL(pipe));
5918
5919                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5920                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5921                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5922                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5923                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5924                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5925                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5926                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5927         }
5928
5929         tmp = I915_READ(DSPFW1);
5930         wm->sr.plane = _FW_WM(tmp, SR);
5931         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5932         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5933         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5934
5935         tmp = I915_READ(DSPFW2);
5936         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5937         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5938         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5939
5940         tmp = I915_READ(DSPFW3);
5941         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5942
5943         if (IS_CHERRYVIEW(dev_priv)) {
5944                 tmp = I915_READ(DSPFW7_CHV);
5945                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5946                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5947
5948                 tmp = I915_READ(DSPFW8_CHV);
5949                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5950                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5951
5952                 tmp = I915_READ(DSPFW9_CHV);
5953                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5954                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5955
5956                 tmp = I915_READ(DSPHOWM);
5957                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5958                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5959                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5960                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5961                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5962                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5963                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5964                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5965                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5966                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5967         } else {
5968                 tmp = I915_READ(DSPFW7);
5969                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5970                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5971
5972                 tmp = I915_READ(DSPHOWM);
5973                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5974                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5975                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5976                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5977                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5978                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5979                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5980         }
5981 }
5982
5983 #undef _FW_WM
5984 #undef _FW_WM_VLV
5985
5986 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5987 {
5988         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5989         struct intel_crtc *crtc;
5990
5991         g4x_read_wm_values(dev_priv, wm);
5992
5993         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5994
5995         for_each_intel_crtc(&dev_priv->drm, crtc) {
5996                 struct intel_crtc_state *crtc_state =
5997                         to_intel_crtc_state(crtc->base.state);
5998                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5999                 struct g4x_pipe_wm *raw;
6000                 enum pipe pipe = crtc->pipe;
6001                 enum plane_id plane_id;
6002                 int level, max_level;
6003
6004                 active->cxsr = wm->cxsr;
6005                 active->hpll_en = wm->hpll_en;
6006                 active->fbc_en = wm->fbc_en;
6007
6008                 active->sr = wm->sr;
6009                 active->hpll = wm->hpll;
6010
6011                 for_each_plane_id_on_crtc(crtc, plane_id) {
6012                         active->wm.plane[plane_id] =
6013                                 wm->pipe[pipe].plane[plane_id];
6014                 }
6015
6016                 if (wm->cxsr && wm->hpll_en)
6017                         max_level = G4X_WM_LEVEL_HPLL;
6018                 else if (wm->cxsr)
6019                         max_level = G4X_WM_LEVEL_SR;
6020                 else
6021                         max_level = G4X_WM_LEVEL_NORMAL;
6022
6023                 level = G4X_WM_LEVEL_NORMAL;
6024                 raw = &crtc_state->wm.g4x.raw[level];
6025                 for_each_plane_id_on_crtc(crtc, plane_id)
6026                         raw->plane[plane_id] = active->wm.plane[plane_id];
6027
6028                 if (++level > max_level)
6029                         goto out;
6030
6031                 raw = &crtc_state->wm.g4x.raw[level];
6032                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6033                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6034                 raw->plane[PLANE_SPRITE0] = 0;
6035                 raw->fbc = active->sr.fbc;
6036
6037                 if (++level > max_level)
6038                         goto out;
6039
6040                 raw = &crtc_state->wm.g4x.raw[level];
6041                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6042                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6043                 raw->plane[PLANE_SPRITE0] = 0;
6044                 raw->fbc = active->hpll.fbc;
6045
6046         out:
6047                 for_each_plane_id_on_crtc(crtc, plane_id)
6048                         g4x_raw_plane_wm_set(crtc_state, level,
6049                                              plane_id, USHRT_MAX);
6050                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6051
6052                 crtc_state->wm.g4x.optimal = *active;
6053                 crtc_state->wm.g4x.intermediate = *active;
6054
6055                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6056                               pipe_name(pipe),
6057                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6058                               wm->pipe[pipe].plane[PLANE_CURSOR],
6059                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
6060         }
6061
6062         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6063                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6064         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6065                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6066         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6067                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6068 }
6069
6070 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6071 {
6072         struct intel_plane *plane;
6073         struct intel_crtc *crtc;
6074
6075         mutex_lock(&dev_priv->wm.wm_mutex);
6076
6077         for_each_intel_plane(&dev_priv->drm, plane) {
6078                 struct intel_crtc *crtc =
6079                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6080                 struct intel_crtc_state *crtc_state =
6081                         to_intel_crtc_state(crtc->base.state);
6082                 struct intel_plane_state *plane_state =
6083                         to_intel_plane_state(plane->base.state);
6084                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6085                 enum plane_id plane_id = plane->id;
6086                 int level;
6087
6088                 if (plane_state->base.visible)
6089                         continue;
6090
6091                 for (level = 0; level < 3; level++) {
6092                         struct g4x_pipe_wm *raw =
6093                                 &crtc_state->wm.g4x.raw[level];
6094
6095                         raw->plane[plane_id] = 0;
6096                         wm_state->wm.plane[plane_id] = 0;
6097                 }
6098
6099                 if (plane_id == PLANE_PRIMARY) {
6100                         for (level = 0; level < 3; level++) {
6101                                 struct g4x_pipe_wm *raw =
6102                                         &crtc_state->wm.g4x.raw[level];
6103                                 raw->fbc = 0;
6104                         }
6105
6106                         wm_state->sr.fbc = 0;
6107                         wm_state->hpll.fbc = 0;
6108                         wm_state->fbc_en = false;
6109                 }
6110         }
6111
6112         for_each_intel_crtc(&dev_priv->drm, crtc) {
6113                 struct intel_crtc_state *crtc_state =
6114                         to_intel_crtc_state(crtc->base.state);
6115
6116                 crtc_state->wm.g4x.intermediate =
6117                         crtc_state->wm.g4x.optimal;
6118                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6119         }
6120
6121         g4x_program_watermarks(dev_priv);
6122
6123         mutex_unlock(&dev_priv->wm.wm_mutex);
6124 }
6125
6126 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6127 {
6128         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6129         struct intel_crtc *crtc;
6130         u32 val;
6131
6132         vlv_read_wm_values(dev_priv, wm);
6133
6134         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6135         wm->level = VLV_WM_LEVEL_PM2;
6136
6137         if (IS_CHERRYVIEW(dev_priv)) {
6138                 vlv_punit_get(dev_priv);
6139
6140                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6141                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6142                         wm->level = VLV_WM_LEVEL_PM5;
6143
6144                 /*
6145                  * If DDR DVFS is disabled in the BIOS, Punit
6146                  * will never ack the request. So if that happens
6147                  * assume we don't have to enable/disable DDR DVFS
6148                  * dynamically. To test that just set the REQ_ACK
6149                  * bit to poke the Punit, but don't change the
6150                  * HIGH/LOW bits so that we don't actually change
6151                  * the current state.
6152                  */
6153                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6154                 val |= FORCE_DDR_FREQ_REQ_ACK;
6155                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6156
6157                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6158                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6159                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6160                                       "assuming DDR DVFS is disabled\n");
6161                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6162                 } else {
6163                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6164                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6165                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6166                 }
6167
6168                 vlv_punit_put(dev_priv);
6169         }
6170
6171         for_each_intel_crtc(&dev_priv->drm, crtc) {
6172                 struct intel_crtc_state *crtc_state =
6173                         to_intel_crtc_state(crtc->base.state);
6174                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6175                 const struct vlv_fifo_state *fifo_state =
6176                         &crtc_state->wm.vlv.fifo_state;
6177                 enum pipe pipe = crtc->pipe;
6178                 enum plane_id plane_id;
6179                 int level;
6180
6181                 vlv_get_fifo_size(crtc_state);
6182
6183                 active->num_levels = wm->level + 1;
6184                 active->cxsr = wm->cxsr;
6185
6186                 for (level = 0; level < active->num_levels; level++) {
6187                         struct g4x_pipe_wm *raw =
6188                                 &crtc_state->wm.vlv.raw[level];
6189
6190                         active->sr[level].plane = wm->sr.plane;
6191                         active->sr[level].cursor = wm->sr.cursor;
6192
6193                         for_each_plane_id_on_crtc(crtc, plane_id) {
6194                                 active->wm[level].plane[plane_id] =
6195                                         wm->pipe[pipe].plane[plane_id];
6196
6197                                 raw->plane[plane_id] =
6198                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6199                                                             fifo_state->plane[plane_id]);
6200                         }
6201                 }
6202
6203                 for_each_plane_id_on_crtc(crtc, plane_id)
6204                         vlv_raw_plane_wm_set(crtc_state, level,
6205                                              plane_id, USHRT_MAX);
6206                 vlv_invalidate_wms(crtc, active, level);
6207
6208                 crtc_state->wm.vlv.optimal = *active;
6209                 crtc_state->wm.vlv.intermediate = *active;
6210
6211                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6212                               pipe_name(pipe),
6213                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6214                               wm->pipe[pipe].plane[PLANE_CURSOR],
6215                               wm->pipe[pipe].plane[PLANE_SPRITE0],
6216                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
6217         }
6218
6219         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6220                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6221 }
6222
6223 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6224 {
6225         struct intel_plane *plane;
6226         struct intel_crtc *crtc;
6227
6228         mutex_lock(&dev_priv->wm.wm_mutex);
6229
6230         for_each_intel_plane(&dev_priv->drm, plane) {
6231                 struct intel_crtc *crtc =
6232                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6233                 struct intel_crtc_state *crtc_state =
6234                         to_intel_crtc_state(crtc->base.state);
6235                 struct intel_plane_state *plane_state =
6236                         to_intel_plane_state(plane->base.state);
6237                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6238                 const struct vlv_fifo_state *fifo_state =
6239                         &crtc_state->wm.vlv.fifo_state;
6240                 enum plane_id plane_id = plane->id;
6241                 int level;
6242
6243                 if (plane_state->base.visible)
6244                         continue;
6245
6246                 for (level = 0; level < wm_state->num_levels; level++) {
6247                         struct g4x_pipe_wm *raw =
6248                                 &crtc_state->wm.vlv.raw[level];
6249
6250                         raw->plane[plane_id] = 0;
6251
6252                         wm_state->wm[level].plane[plane_id] =
6253                                 vlv_invert_wm_value(raw->plane[plane_id],
6254                                                     fifo_state->plane[plane_id]);
6255                 }
6256         }
6257
6258         for_each_intel_crtc(&dev_priv->drm, crtc) {
6259                 struct intel_crtc_state *crtc_state =
6260                         to_intel_crtc_state(crtc->base.state);
6261
6262                 crtc_state->wm.vlv.intermediate =
6263                         crtc_state->wm.vlv.optimal;
6264                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6265         }
6266
6267         vlv_program_watermarks(dev_priv);
6268
6269         mutex_unlock(&dev_priv->wm.wm_mutex);
6270 }
6271
6272 /*
6273  * FIXME should probably kill this and improve
6274  * the real watermark readout/sanitation instead
6275  */
6276 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6277 {
6278         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6279         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6280         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6281
6282         /*
6283          * Don't touch WM1S_LP_EN here.
6284          * Doing so could cause underruns.
6285          */
6286 }
6287
6288 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6289 {
6290         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6291         struct intel_crtc *crtc;
6292
6293         ilk_init_lp_watermarks(dev_priv);
6294
6295         for_each_intel_crtc(&dev_priv->drm, crtc)
6296                 ilk_pipe_wm_get_hw_state(crtc);
6297
6298         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6299         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6300         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6301
6302         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6303         if (INTEL_GEN(dev_priv) >= 7) {
6304                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6305                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6306         }
6307
6308         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6309                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6310                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6311         else if (IS_IVYBRIDGE(dev_priv))
6312                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6313                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6314
6315         hw->enable_fbc_wm =
6316                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6317 }
6318
6319 /**
6320  * intel_update_watermarks - update FIFO watermark values based on current modes
6321  * @crtc: the #intel_crtc on which to compute the WM
6322  *
6323  * Calculate watermark values for the various WM regs based on current mode
6324  * and plane configuration.
6325  *
6326  * There are several cases to deal with here:
6327  *   - normal (i.e. non-self-refresh)
6328  *   - self-refresh (SR) mode
6329  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6330  *   - lines are small relative to FIFO size (buffer can hold more than 2
6331  *     lines), so need to account for TLB latency
6332  *
6333  *   The normal calculation is:
6334  *     watermark = dotclock * bytes per pixel * latency
6335  *   where latency is platform & configuration dependent (we assume pessimal
6336  *   values here).
6337  *
6338  *   The SR calculation is:
6339  *     watermark = (trunc(latency/line time)+1) * surface width *
6340  *       bytes per pixel
6341  *   where
6342  *     line time = htotal / dotclock
6343  *     surface width = hdisplay for normal plane and 64 for cursor
6344  *   and latency is assumed to be high, as above.
6345  *
6346  * The final value programmed to the register should always be rounded up,
6347  * and include an extra 2 entries to account for clock crossings.
6348  *
6349  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6350  * to set the non-SR watermarks to 8.
6351  */
6352 void intel_update_watermarks(struct intel_crtc *crtc)
6353 {
6354         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6355
6356         if (dev_priv->display.update_wm)
6357                 dev_priv->display.update_wm(crtc);
6358 }
6359
6360 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6361 {
6362         u32 val;
6363
6364         if (!HAS_IPC(dev_priv))
6365                 return;
6366
6367         val = I915_READ(DISP_ARB_CTL2);
6368
6369         if (dev_priv->ipc_enabled)
6370                 val |= DISP_IPC_ENABLE;
6371         else
6372                 val &= ~DISP_IPC_ENABLE;
6373
6374         I915_WRITE(DISP_ARB_CTL2, val);
6375 }
6376
6377 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6378 {
6379         /* Display WA #0477 WaDisableIPC: skl */
6380         if (IS_SKYLAKE(dev_priv))
6381                 return false;
6382
6383         /* Display WA #1141: SKL:all KBL:all CFL */
6384         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6385                 return dev_priv->dram_info.symmetric_memory;
6386
6387         return true;
6388 }
6389
6390 void intel_init_ipc(struct drm_i915_private *dev_priv)
6391 {
6392         if (!HAS_IPC(dev_priv))
6393                 return;
6394
6395         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6396
6397         intel_enable_ipc(dev_priv);
6398 }
6399
6400 /*
6401  * Lock protecting IPS related data structures
6402  */
6403 DEFINE_SPINLOCK(mchdev_lock);
6404
6405 bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6406 {
6407         struct intel_uncore *uncore = &i915->uncore;
6408         u16 rgvswctl;
6409
6410         lockdep_assert_held(&mchdev_lock);
6411
6412         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6413         if (rgvswctl & MEMCTL_CMD_STS) {
6414                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6415                 return false; /* still busy with another command */
6416         }
6417
6418         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6419                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6420         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6421         intel_uncore_posting_read16(uncore, MEMSWCTL);
6422
6423         rgvswctl |= MEMCTL_CMD_STS;
6424         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6425
6426         return true;
6427 }
6428
6429 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6430 {
6431         struct intel_uncore *uncore = &dev_priv->uncore;
6432         u32 rgvmodectl;
6433         u8 fmax, fmin, fstart, vstart;
6434
6435         spin_lock_irq(&mchdev_lock);
6436
6437         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6438
6439         /* Enable temp reporting */
6440         intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6441         intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6442
6443         /* 100ms RC evaluation intervals */
6444         intel_uncore_write(uncore, RCUPEI, 100000);
6445         intel_uncore_write(uncore, RCDNEI, 100000);
6446
6447         /* Set max/min thresholds to 90ms and 80ms respectively */
6448         intel_uncore_write(uncore, RCBMAXAVG, 90000);
6449         intel_uncore_write(uncore, RCBMINAVG, 80000);
6450
6451         intel_uncore_write(uncore, MEMIHYST, 1);
6452
6453         /* Set up min, max, and cur for interrupt handling */
6454         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6455         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6456         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6457                 MEMMODE_FSTART_SHIFT;
6458
6459         vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
6460                   PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6461
6462         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6463         dev_priv->ips.fstart = fstart;
6464
6465         dev_priv->ips.max_delay = fstart;
6466         dev_priv->ips.min_delay = fmin;
6467         dev_priv->ips.cur_delay = fstart;
6468
6469         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6470                          fmax, fmin, fstart);
6471
6472         intel_uncore_write(uncore,
6473                            MEMINTREN,
6474                            MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6475
6476         /*
6477          * Interrupts will be enabled in ironlake_irq_postinstall
6478          */
6479
6480         intel_uncore_write(uncore, VIDSTART, vstart);
6481         intel_uncore_posting_read(uncore, VIDSTART);
6482
6483         rgvmodectl |= MEMMODE_SWMODE_EN;
6484         intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6485
6486         if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
6487                              MEMCTL_CMD_STS) == 0, 10))
6488                 DRM_ERROR("stuck trying to change perf mode\n");
6489         mdelay(1);
6490
6491         ironlake_set_drps(dev_priv, fstart);
6492
6493         dev_priv->ips.last_count1 =
6494                 intel_uncore_read(uncore, DMIEC) +
6495                 intel_uncore_read(uncore, DDREC) +
6496                 intel_uncore_read(uncore, CSIEC);
6497         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6498         dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6499         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6500
6501         spin_unlock_irq(&mchdev_lock);
6502 }
6503
6504 static void ironlake_disable_drps(struct drm_i915_private *i915)
6505 {
6506         struct intel_uncore *uncore = &i915->uncore;
6507         u16 rgvswctl;
6508
6509         spin_lock_irq(&mchdev_lock);
6510
6511         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6512
6513         /* Ack interrupts, disable EFC interrupt */
6514         intel_uncore_write(uncore,
6515                            MEMINTREN,
6516                            intel_uncore_read(uncore, MEMINTREN) &
6517                            ~MEMINT_EVAL_CHG_EN);
6518         intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
6519         intel_uncore_write(uncore,
6520                            DEIER,
6521                            intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
6522         intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
6523         intel_uncore_write(uncore,
6524                            DEIMR,
6525                            intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6526
6527         /* Go back to the starting frequency */
6528         ironlake_set_drps(i915, i915->ips.fstart);
6529         mdelay(1);
6530         rgvswctl |= MEMCTL_CMD_STS;
6531         intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6532         mdelay(1);
6533
6534         spin_unlock_irq(&mchdev_lock);
6535 }
6536
6537 /* There's a funny hw issue where the hw returns all 0 when reading from
6538  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6539  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6540  * all limits and the gpu stuck at whatever frequency it is at atm).
6541  */
6542 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6543 {
6544         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6545         u32 limits;
6546
6547         /* Only set the down limit when we've reached the lowest level to avoid
6548          * getting more interrupts, otherwise leave this clear. This prevents a
6549          * race in the hw when coming out of rc6: There's a tiny window where
6550          * the hw runs at the minimal clock before selecting the desired
6551          * frequency, if the down threshold expires in that window we will not
6552          * receive a down interrupt. */
6553         if (INTEL_GEN(dev_priv) >= 9) {
6554                 limits = (rps->max_freq_softlimit) << 23;
6555                 if (val <= rps->min_freq_softlimit)
6556                         limits |= (rps->min_freq_softlimit) << 14;
6557         } else {
6558                 limits = rps->max_freq_softlimit << 24;
6559                 if (val <= rps->min_freq_softlimit)
6560                         limits |= rps->min_freq_softlimit << 16;
6561         }
6562
6563         return limits;
6564 }
6565
6566 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6567 {
6568         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6569         u32 threshold_up = 0, threshold_down = 0; /* in % */
6570         u32 ei_up = 0, ei_down = 0;
6571
6572         lockdep_assert_held(&rps->power.mutex);
6573
6574         if (new_power == rps->power.mode)
6575                 return;
6576
6577         /* Note the units here are not exactly 1us, but 1280ns. */
6578         switch (new_power) {
6579         case LOW_POWER:
6580                 /* Upclock if more than 95% busy over 16ms */
6581                 ei_up = 16000;
6582                 threshold_up = 95;
6583
6584                 /* Downclock if less than 85% busy over 32ms */
6585                 ei_down = 32000;
6586                 threshold_down = 85;
6587                 break;
6588
6589         case BETWEEN:
6590                 /* Upclock if more than 90% busy over 13ms */
6591                 ei_up = 13000;
6592                 threshold_up = 90;
6593
6594                 /* Downclock if less than 75% busy over 32ms */
6595                 ei_down = 32000;
6596                 threshold_down = 75;
6597                 break;
6598
6599         case HIGH_POWER:
6600                 /* Upclock if more than 85% busy over 10ms */
6601                 ei_up = 10000;
6602                 threshold_up = 85;
6603
6604                 /* Downclock if less than 60% busy over 32ms */
6605                 ei_down = 32000;
6606                 threshold_down = 60;
6607                 break;
6608         }
6609
6610         /* When byt can survive without system hang with dynamic
6611          * sw freq adjustments, this restriction can be lifted.
6612          */
6613         if (IS_VALLEYVIEW(dev_priv))
6614                 goto skip_hw_write;
6615
6616         I915_WRITE(GEN6_RP_UP_EI,
6617                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6618         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6619                    GT_INTERVAL_FROM_US(dev_priv,
6620                                        ei_up * threshold_up / 100));
6621
6622         I915_WRITE(GEN6_RP_DOWN_EI,
6623                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6624         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6625                    GT_INTERVAL_FROM_US(dev_priv,
6626                                        ei_down * threshold_down / 100));
6627
6628         I915_WRITE(GEN6_RP_CONTROL,
6629                    (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6630                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6631                    GEN6_RP_MEDIA_IS_GFX |
6632                    GEN6_RP_ENABLE |
6633                    GEN6_RP_UP_BUSY_AVG |
6634                    GEN6_RP_DOWN_IDLE_AVG);
6635
6636 skip_hw_write:
6637         rps->power.mode = new_power;
6638         rps->power.up_threshold = threshold_up;
6639         rps->power.down_threshold = threshold_down;
6640 }
6641
6642 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6643 {
6644         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6645         int new_power;
6646
6647         new_power = rps->power.mode;
6648         switch (rps->power.mode) {
6649         case LOW_POWER:
6650                 if (val > rps->efficient_freq + 1 &&
6651                     val > rps->cur_freq)
6652                         new_power = BETWEEN;
6653                 break;
6654
6655         case BETWEEN:
6656                 if (val <= rps->efficient_freq &&
6657                     val < rps->cur_freq)
6658                         new_power = LOW_POWER;
6659                 else if (val >= rps->rp0_freq &&
6660                          val > rps->cur_freq)
6661                         new_power = HIGH_POWER;
6662                 break;
6663
6664         case HIGH_POWER:
6665                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6666                     val < rps->cur_freq)
6667                         new_power = BETWEEN;
6668                 break;
6669         }
6670         /* Max/min bins are special */
6671         if (val <= rps->min_freq_softlimit)
6672                 new_power = LOW_POWER;
6673         if (val >= rps->max_freq_softlimit)
6674                 new_power = HIGH_POWER;
6675
6676         mutex_lock(&rps->power.mutex);
6677         if (rps->power.interactive)
6678                 new_power = HIGH_POWER;
6679         rps_set_power(dev_priv, new_power);
6680         mutex_unlock(&rps->power.mutex);
6681 }
6682
6683 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6684 {
6685         struct intel_rps *rps = &i915->gt_pm.rps;
6686
6687         if (INTEL_GEN(i915) < 6)
6688                 return;
6689
6690         mutex_lock(&rps->power.mutex);
6691         if (interactive) {
6692                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6693                         rps_set_power(i915, HIGH_POWER);
6694         } else {
6695                 GEM_BUG_ON(!rps->power.interactive);
6696                 rps->power.interactive--;
6697         }
6698         mutex_unlock(&rps->power.mutex);
6699 }
6700
6701 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6702 {
6703         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6704         u32 mask = 0;
6705
6706         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6707         if (val > rps->min_freq_softlimit)
6708                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6709         if (val < rps->max_freq_softlimit)
6710                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6711
6712         mask &= dev_priv->pm_rps_events;
6713
6714         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6715 }
6716
6717 /* gen6_set_rps is called to update the frequency request, but should also be
6718  * called when the range (min_delay and max_delay) is modified so that we can
6719  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6720 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6721 {
6722         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6723
6724         /* min/max delay may still have been modified so be sure to
6725          * write the limits value.
6726          */
6727         if (val != rps->cur_freq) {
6728                 gen6_set_rps_thresholds(dev_priv, val);
6729
6730                 if (INTEL_GEN(dev_priv) >= 9)
6731                         I915_WRITE(GEN6_RPNSWREQ,
6732                                    GEN9_FREQUENCY(val));
6733                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6734                         I915_WRITE(GEN6_RPNSWREQ,
6735                                    HSW_FREQUENCY(val));
6736                 else
6737                         I915_WRITE(GEN6_RPNSWREQ,
6738                                    GEN6_FREQUENCY(val) |
6739                                    GEN6_OFFSET(0) |
6740                                    GEN6_AGGRESSIVE_TURBO);
6741         }
6742
6743         /* Make sure we continue to get interrupts
6744          * until we hit the minimum or maximum frequencies.
6745          */
6746         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6747         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6748
6749         rps->cur_freq = val;
6750         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6751
6752         return 0;
6753 }
6754
6755 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6756 {
6757         int err;
6758
6759         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6760                       "Odd GPU freq value\n"))
6761                 val &= ~1;
6762
6763         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6764
6765         if (val != dev_priv->gt_pm.rps.cur_freq) {
6766                 vlv_punit_get(dev_priv);
6767                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6768                 vlv_punit_put(dev_priv);
6769                 if (err)
6770                         return err;
6771
6772                 gen6_set_rps_thresholds(dev_priv, val);
6773         }
6774
6775         dev_priv->gt_pm.rps.cur_freq = val;
6776         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6777
6778         return 0;
6779 }
6780
6781 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6782  *
6783  * * If Gfx is Idle, then
6784  * 1. Forcewake Media well.
6785  * 2. Request idle freq.
6786  * 3. Release Forcewake of Media well.
6787 */
6788 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6789 {
6790         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6791         u32 val = rps->idle_freq;
6792         int err;
6793
6794         if (rps->cur_freq <= val)
6795                 return;
6796
6797         /* The punit delays the write of the frequency and voltage until it
6798          * determines the GPU is awake. During normal usage we don't want to
6799          * waste power changing the frequency if the GPU is sleeping (rc6).
6800          * However, the GPU and driver is now idle and we do not want to delay
6801          * switching to minimum voltage (reducing power whilst idle) as we do
6802          * not expect to be woken in the near future and so must flush the
6803          * change by waking the device.
6804          *
6805          * We choose to take the media powerwell (either would do to trick the
6806          * punit into committing the voltage change) as that takes a lot less
6807          * power than the render powerwell.
6808          */
6809         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6810         err = valleyview_set_rps(dev_priv, val);
6811         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6812
6813         if (err)
6814                 DRM_ERROR("Failed to set RPS for idle\n");
6815 }
6816
6817 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6818 {
6819         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6820
6821         mutex_lock(&rps->lock);
6822         if (rps->enabled) {
6823                 u8 freq;
6824
6825                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6826                         gen6_rps_reset_ei(dev_priv);
6827                 I915_WRITE(GEN6_PMINTRMSK,
6828                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6829
6830                 gen6_enable_rps_interrupts(dev_priv);
6831
6832                 /* Use the user's desired frequency as a guide, but for better
6833                  * performance, jump directly to RPe as our starting frequency.
6834                  */
6835                 freq = max(rps->cur_freq,
6836                            rps->efficient_freq);
6837
6838                 if (intel_set_rps(dev_priv,
6839                                   clamp(freq,
6840                                         rps->min_freq_softlimit,
6841                                         rps->max_freq_softlimit)))
6842                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6843         }
6844         mutex_unlock(&rps->lock);
6845 }
6846
6847 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6848 {
6849         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6850
6851         /* Flush our bottom-half so that it does not race with us
6852          * setting the idle frequency and so that it is bounded by
6853          * our rpm wakeref. And then disable the interrupts to stop any
6854          * futher RPS reclocking whilst we are asleep.
6855          */
6856         gen6_disable_rps_interrupts(dev_priv);
6857
6858         mutex_lock(&rps->lock);
6859         if (rps->enabled) {
6860                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6861                         vlv_set_rps_idle(dev_priv);
6862                 else
6863                         gen6_set_rps(dev_priv, rps->idle_freq);
6864                 rps->last_adj = 0;
6865                 I915_WRITE(GEN6_PMINTRMSK,
6866                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6867         }
6868         mutex_unlock(&rps->lock);
6869 }
6870
6871 void gen6_rps_boost(struct i915_request *rq)
6872 {
6873         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6874         unsigned long flags;
6875         bool boost;
6876
6877         /* This is intentionally racy! We peek at the state here, then
6878          * validate inside the RPS worker.
6879          */
6880         if (!rps->enabled)
6881                 return;
6882
6883         if (i915_request_signaled(rq))
6884                 return;
6885
6886         /* Serializes with i915_request_retire() */
6887         boost = false;
6888         spin_lock_irqsave(&rq->lock, flags);
6889         if (!i915_request_has_waitboost(rq) &&
6890             !dma_fence_is_signaled_locked(&rq->fence)) {
6891                 boost = !atomic_fetch_inc(&rps->num_waiters);
6892                 rq->flags |= I915_REQUEST_WAITBOOST;
6893         }
6894         spin_unlock_irqrestore(&rq->lock, flags);
6895         if (!boost)
6896                 return;
6897
6898         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6899                 schedule_work(&rps->work);
6900
6901         atomic_inc(&rps->boosts);
6902 }
6903
6904 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6905 {
6906         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6907         int err;
6908
6909         lockdep_assert_held(&rps->lock);
6910         GEM_BUG_ON(val > rps->max_freq);
6911         GEM_BUG_ON(val < rps->min_freq);
6912
6913         if (!rps->enabled) {
6914                 rps->cur_freq = val;
6915                 return 0;
6916         }
6917
6918         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6919                 err = valleyview_set_rps(dev_priv, val);
6920         else
6921                 err = gen6_set_rps(dev_priv, val);
6922
6923         return err;
6924 }
6925
6926 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6927 {
6928         I915_WRITE(GEN6_RC_CONTROL, 0);
6929         I915_WRITE(GEN9_PG_ENABLE, 0);
6930 }
6931
6932 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6933 {
6934         I915_WRITE(GEN6_RP_CONTROL, 0);
6935 }
6936
6937 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939         I915_WRITE(GEN6_RC_CONTROL, 0);
6940 }
6941
6942 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6943 {
6944         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6945         I915_WRITE(GEN6_RP_CONTROL, 0);
6946 }
6947
6948 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6949 {
6950         I915_WRITE(GEN6_RC_CONTROL, 0);
6951 }
6952
6953 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6954 {
6955         I915_WRITE(GEN6_RP_CONTROL, 0);
6956 }
6957
6958 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6959 {
6960         /* We're doing forcewake before Disabling RC6,
6961          * This what the BIOS expects when going into suspend */
6962         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6963
6964         I915_WRITE(GEN6_RC_CONTROL, 0);
6965
6966         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6967 }
6968
6969 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6970 {
6971         I915_WRITE(GEN6_RP_CONTROL, 0);
6972 }
6973
6974 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6975 {
6976         bool enable_rc6 = true;
6977         unsigned long rc6_ctx_base;
6978         u32 rc_ctl;
6979         int rc_sw_target;
6980
6981         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6982         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6983                        RC_SW_TARGET_STATE_SHIFT;
6984         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6985                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6986                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6987                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6988                          rc_sw_target);
6989
6990         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6991                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6992                 enable_rc6 = false;
6993         }
6994
6995         /*
6996          * The exact context size is not known for BXT, so assume a page size
6997          * for this check.
6998          */
6999         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
7000         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
7001               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
7002                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
7003                 enable_rc6 = false;
7004         }
7005
7006         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
7007               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
7008               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
7009               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
7010                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
7011                 enable_rc6 = false;
7012         }
7013
7014         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
7015             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
7016             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
7017                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
7018                 enable_rc6 = false;
7019         }
7020
7021         if (!I915_READ(GEN6_GFXPAUSE)) {
7022                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7023                 enable_rc6 = false;
7024         }
7025
7026         if (!I915_READ(GEN8_MISC_CTRL0)) {
7027                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7028                 enable_rc6 = false;
7029         }
7030
7031         return enable_rc6;
7032 }
7033
7034 static bool sanitize_rc6(struct drm_i915_private *i915)
7035 {
7036         struct intel_device_info *info = mkwrite_device_info(i915);
7037
7038         /* Powersaving is controlled by the host when inside a VM */
7039         if (intel_vgpu_active(i915)) {
7040                 info->has_rc6 = 0;
7041                 info->has_rps = false;
7042         }
7043
7044         if (info->has_rc6 &&
7045             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7046                 DRM_INFO("RC6 disabled by BIOS\n");
7047                 info->has_rc6 = 0;
7048         }
7049
7050         /*
7051          * We assume that we do not have any deep rc6 levels if we don't have
7052          * have the previous rc6 level supported, i.e. we use HAS_RC6()
7053          * as the initial coarse check for rc6 in general, moving on to
7054          * progressively finer/deeper levels.
7055          */
7056         if (!info->has_rc6 && info->has_rc6p)
7057                 info->has_rc6p = 0;
7058
7059         return info->has_rc6;
7060 }
7061
7062 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7063 {
7064         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7065
7066         /* All of these values are in units of 50MHz */
7067
7068         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
7069         if (IS_GEN9_LP(dev_priv)) {
7070                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7071                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7072                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7073                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
7074         } else {
7075                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7076                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
7077                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7078                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7079         }
7080         /* hw_max = RP0 until we check for overclocking */
7081         rps->max_freq = rps->rp0_freq;
7082
7083         rps->efficient_freq = rps->rp1_freq;
7084         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7085             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7086                 u32 ddcc_status = 0;
7087
7088                 if (sandybridge_pcode_read(dev_priv,
7089                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7090                                            &ddcc_status, NULL) == 0)
7091                         rps->efficient_freq =
7092                                 clamp_t(u8,
7093                                         ((ddcc_status >> 8) & 0xff),
7094                                         rps->min_freq,
7095                                         rps->max_freq);
7096         }
7097
7098         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7099                 /* Store the frequency values in 16.66 MHZ units, which is
7100                  * the natural hardware unit for SKL
7101                  */
7102                 rps->rp0_freq *= GEN9_FREQ_SCALER;
7103                 rps->rp1_freq *= GEN9_FREQ_SCALER;
7104                 rps->min_freq *= GEN9_FREQ_SCALER;
7105                 rps->max_freq *= GEN9_FREQ_SCALER;
7106                 rps->efficient_freq *= GEN9_FREQ_SCALER;
7107         }
7108 }
7109
7110 static void reset_rps(struct drm_i915_private *dev_priv,
7111                       int (*set)(struct drm_i915_private *, u8))
7112 {
7113         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7114         u8 freq = rps->cur_freq;
7115
7116         /* force a reset */
7117         rps->power.mode = -1;
7118         rps->cur_freq = -1;
7119
7120         if (set(dev_priv, freq))
7121                 DRM_ERROR("Failed to reset RPS to initial values\n");
7122 }
7123
7124 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
7125 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7126 {
7127         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7128
7129         /* Program defaults and thresholds for RPS */
7130         if (IS_GEN(dev_priv, 9))
7131                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7132                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7133
7134         /* 1 second timeout*/
7135         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7136                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7137
7138         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7139
7140         /* Leaning on the below call to gen6_set_rps to program/setup the
7141          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7142          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7143         reset_rps(dev_priv, gen6_set_rps);
7144
7145         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7146 }
7147
7148 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7149 {
7150         struct intel_engine_cs *engine;
7151         enum intel_engine_id id;
7152
7153         /* 1a: Software RC state - RC0 */
7154         I915_WRITE(GEN6_RC_STATE, 0);
7155
7156         /*
7157          * 1b: Get forcewake during program sequence. Although the driver
7158          * hasn't enabled a state yet where we need forcewake, BIOS may have.
7159          */
7160         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7161
7162         /* 2a: Disable RC states. */
7163         I915_WRITE(GEN6_RC_CONTROL, 0);
7164
7165         /* 2b: Program RC6 thresholds.*/
7166         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7167         I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7168
7169         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7170         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7171         for_each_engine(engine, dev_priv, id)
7172                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7173
7174         if (HAS_GT_UC(dev_priv))
7175                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7176
7177         I915_WRITE(GEN6_RC_SLEEP, 0);
7178
7179         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7180
7181         /*
7182          * 2c: Program Coarse Power Gating Policies.
7183          *
7184          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7185          * use instead is a more conservative estimate for the maximum time
7186          * it takes us to service a CS interrupt and submit a new ELSP - that
7187          * is the time which the GPU is idle waiting for the CPU to select the
7188          * next request to execute. If the idle hysteresis is less than that
7189          * interrupt service latency, the hardware will automatically gate
7190          * the power well and we will then incur the wake up cost on top of
7191          * the service latency. A similar guide from plane_state is that we
7192          * do not want the enable hysteresis to less than the wakeup latency.
7193          *
7194          * igt/gem_exec_nop/sequential provides a rough estimate for the
7195          * service latency, and puts it around 10us for Broadwell (and other
7196          * big core) and around 40us for Broxton (and other low power cores).
7197          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7198          * However, the wakeup latency on Broxton is closer to 100us. To be
7199          * conservative, we have to factor in a context switch on top (due
7200          * to ksoftirqd).
7201          */
7202         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7203         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7204
7205         /* 3a: Enable RC6 */
7206         I915_WRITE(GEN6_RC_CONTROL,
7207                    GEN6_RC_CTL_HW_ENABLE |
7208                    GEN6_RC_CTL_RC6_ENABLE |
7209                    GEN6_RC_CTL_EI_MODE(1));
7210
7211         /* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7212         I915_WRITE(GEN9_PG_ENABLE,
7213                    GEN9_RENDER_PG_ENABLE |
7214                    GEN9_MEDIA_PG_ENABLE |
7215                    GEN11_MEDIA_SAMPLER_PG_ENABLE);
7216
7217         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7218 }
7219
7220 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7221 {
7222         struct intel_engine_cs *engine;
7223         enum intel_engine_id id;
7224         u32 rc6_mode;
7225
7226         /* 1a: Software RC state - RC0 */
7227         I915_WRITE(GEN6_RC_STATE, 0);
7228
7229         /* 1b: Get forcewake during program sequence. Although the driver
7230          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7231         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7232
7233         /* 2a: Disable RC states. */
7234         I915_WRITE(GEN6_RC_CONTROL, 0);
7235
7236         /* 2b: Program RC6 thresholds.*/
7237         if (INTEL_GEN(dev_priv) >= 10) {
7238                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7239                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7240         } else if (IS_SKYLAKE(dev_priv)) {
7241                 /*
7242                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7243                  * when CPG is enabled
7244                  */
7245                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7246         } else {
7247                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7248         }
7249
7250         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7251         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7252         for_each_engine(engine, dev_priv, id)
7253                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7254
7255         if (HAS_GT_UC(dev_priv))
7256                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7257
7258         I915_WRITE(GEN6_RC_SLEEP, 0);
7259
7260         /*
7261          * 2c: Program Coarse Power Gating Policies.
7262          *
7263          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7264          * use instead is a more conservative estimate for the maximum time
7265          * it takes us to service a CS interrupt and submit a new ELSP - that
7266          * is the time which the GPU is idle waiting for the CPU to select the
7267          * next request to execute. If the idle hysteresis is less than that
7268          * interrupt service latency, the hardware will automatically gate
7269          * the power well and we will then incur the wake up cost on top of
7270          * the service latency. A similar guide from plane_state is that we
7271          * do not want the enable hysteresis to less than the wakeup latency.
7272          *
7273          * igt/gem_exec_nop/sequential provides a rough estimate for the
7274          * service latency, and puts it around 10us for Broadwell (and other
7275          * big core) and around 40us for Broxton (and other low power cores).
7276          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7277          * However, the wakeup latency on Broxton is closer to 100us. To be
7278          * conservative, we have to factor in a context switch on top (due
7279          * to ksoftirqd).
7280          */
7281         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7282         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7283
7284         /* 3a: Enable RC6 */
7285         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7286
7287         /* WaRsUseTimeoutMode:cnl (pre-prod) */
7288         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7289                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7290         else
7291                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7292
7293         I915_WRITE(GEN6_RC_CONTROL,
7294                    GEN6_RC_CTL_HW_ENABLE |
7295                    GEN6_RC_CTL_RC6_ENABLE |
7296                    rc6_mode);
7297
7298         /*
7299          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7300          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7301          */
7302         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7303                 I915_WRITE(GEN9_PG_ENABLE, 0);
7304         else
7305                 I915_WRITE(GEN9_PG_ENABLE,
7306                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7307
7308         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7309 }
7310
7311 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7312 {
7313         struct intel_engine_cs *engine;
7314         enum intel_engine_id id;
7315
7316         /* 1a: Software RC state - RC0 */
7317         I915_WRITE(GEN6_RC_STATE, 0);
7318
7319         /* 1b: Get forcewake during program sequence. Although the driver
7320          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7321         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7322
7323         /* 2a: Disable RC states. */
7324         I915_WRITE(GEN6_RC_CONTROL, 0);
7325
7326         /* 2b: Program RC6 thresholds.*/
7327         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7328         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7329         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7330         for_each_engine(engine, dev_priv, id)
7331                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7332         I915_WRITE(GEN6_RC_SLEEP, 0);
7333         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7334
7335         /* 3: Enable RC6 */
7336
7337         I915_WRITE(GEN6_RC_CONTROL,
7338                    GEN6_RC_CTL_HW_ENABLE |
7339                    GEN7_RC_CTL_TO_MODE |
7340                    GEN6_RC_CTL_RC6_ENABLE);
7341
7342         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7343 }
7344
7345 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7346 {
7347         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7348
7349         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7350
7351         /* 1 Program defaults and thresholds for RPS*/
7352         I915_WRITE(GEN6_RPNSWREQ,
7353                    HSW_FREQUENCY(rps->rp1_freq));
7354         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7355                    HSW_FREQUENCY(rps->rp1_freq));
7356         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7357         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7358
7359         /* Docs recommend 900MHz, and 300 MHz respectively */
7360         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7361                    rps->max_freq_softlimit << 24 |
7362                    rps->min_freq_softlimit << 16);
7363
7364         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7365         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7366         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7367         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7368
7369         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7370
7371         /* 2: Enable RPS */
7372         I915_WRITE(GEN6_RP_CONTROL,
7373                    GEN6_RP_MEDIA_TURBO |
7374                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7375                    GEN6_RP_MEDIA_IS_GFX |
7376                    GEN6_RP_ENABLE |
7377                    GEN6_RP_UP_BUSY_AVG |
7378                    GEN6_RP_DOWN_IDLE_AVG);
7379
7380         reset_rps(dev_priv, gen6_set_rps);
7381
7382         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7383 }
7384
7385 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7386 {
7387         struct intel_engine_cs *engine;
7388         enum intel_engine_id id;
7389         u32 rc6vids, rc6_mask;
7390         u32 gtfifodbg;
7391         int ret;
7392
7393         I915_WRITE(GEN6_RC_STATE, 0);
7394
7395         /* Clear the DBG now so we don't confuse earlier errors */
7396         gtfifodbg = I915_READ(GTFIFODBG);
7397         if (gtfifodbg) {
7398                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7399                 I915_WRITE(GTFIFODBG, gtfifodbg);
7400         }
7401
7402         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7403
7404         /* disable the counters and set deterministic thresholds */
7405         I915_WRITE(GEN6_RC_CONTROL, 0);
7406
7407         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7408         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7409         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7410         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7411         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7412
7413         for_each_engine(engine, dev_priv, id)
7414                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7415
7416         I915_WRITE(GEN6_RC_SLEEP, 0);
7417         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7418         if (IS_IVYBRIDGE(dev_priv))
7419                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7420         else
7421                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7422         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7423         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7424
7425         /* We don't use those on Haswell */
7426         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7427         if (HAS_RC6p(dev_priv))
7428                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7429         if (HAS_RC6pp(dev_priv))
7430                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7431         I915_WRITE(GEN6_RC_CONTROL,
7432                    rc6_mask |
7433                    GEN6_RC_CTL_EI_MODE(1) |
7434                    GEN6_RC_CTL_HW_ENABLE);
7435
7436         rc6vids = 0;
7437         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
7438                                      &rc6vids, NULL);
7439         if (IS_GEN(dev_priv, 6) && ret) {
7440                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7441         } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7442                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7443                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7444                 rc6vids &= 0xffff00;
7445                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7446                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7447                 if (ret)
7448                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7449         }
7450
7451         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7452 }
7453
7454 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7455 {
7456         /* Here begins a magic sequence of register writes to enable
7457          * auto-downclocking.
7458          *
7459          * Perhaps there might be some value in exposing these to
7460          * userspace...
7461          */
7462         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7463
7464         /* Power down if completely idle for over 50ms */
7465         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7466         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7467
7468         reset_rps(dev_priv, gen6_set_rps);
7469
7470         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7471 }
7472
7473 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7474 {
7475         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7476         const int min_freq = 15;
7477         const int scaling_factor = 180;
7478         unsigned int gpu_freq;
7479         unsigned int max_ia_freq, min_ring_freq;
7480         unsigned int max_gpu_freq, min_gpu_freq;
7481         struct cpufreq_policy *policy;
7482
7483         lockdep_assert_held(&rps->lock);
7484
7485         if (rps->max_freq <= rps->min_freq)
7486                 return;
7487
7488         policy = cpufreq_cpu_get(0);
7489         if (policy) {
7490                 max_ia_freq = policy->cpuinfo.max_freq;
7491                 cpufreq_cpu_put(policy);
7492         } else {
7493                 /*
7494                  * Default to measured freq if none found, PCU will ensure we
7495                  * don't go over
7496                  */
7497                 max_ia_freq = tsc_khz;
7498         }
7499
7500         /* Convert from kHz to MHz */
7501         max_ia_freq /= 1000;
7502
7503         min_ring_freq = I915_READ(DCLK) & 0xf;
7504         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7505         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7506
7507         min_gpu_freq = rps->min_freq;
7508         max_gpu_freq = rps->max_freq;
7509         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7510                 /* Convert GT frequency to 50 HZ units */
7511                 min_gpu_freq /= GEN9_FREQ_SCALER;
7512                 max_gpu_freq /= GEN9_FREQ_SCALER;
7513         }
7514
7515         /*
7516          * For each potential GPU frequency, load a ring frequency we'd like
7517          * to use for memory access.  We do this by specifying the IA frequency
7518          * the PCU should use as a reference to determine the ring frequency.
7519          */
7520         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7521                 const int diff = max_gpu_freq - gpu_freq;
7522                 unsigned int ia_freq = 0, ring_freq = 0;
7523
7524                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7525                         /*
7526                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7527                          * No floor required for ring frequency on SKL.
7528                          */
7529                         ring_freq = gpu_freq;
7530                 } else if (INTEL_GEN(dev_priv) >= 8) {
7531                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7532                         ring_freq = max(min_ring_freq, gpu_freq);
7533                 } else if (IS_HASWELL(dev_priv)) {
7534                         ring_freq = mult_frac(gpu_freq, 5, 4);
7535                         ring_freq = max(min_ring_freq, ring_freq);
7536                         /* leave ia_freq as the default, chosen by cpufreq */
7537                 } else {
7538                         /* On older processors, there is no separate ring
7539                          * clock domain, so in order to boost the bandwidth
7540                          * of the ring, we need to upclock the CPU (ia_freq).
7541                          *
7542                          * For GPU frequencies less than 750MHz,
7543                          * just use the lowest ring freq.
7544                          */
7545                         if (gpu_freq < min_freq)
7546                                 ia_freq = 800;
7547                         else
7548                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7549                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7550                 }
7551
7552                 sandybridge_pcode_write(dev_priv,
7553                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7554                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7555                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7556                                         gpu_freq);
7557         }
7558 }
7559
7560 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7561 {
7562         u32 val, rp0;
7563
7564         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7565
7566         switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7567         case 8:
7568                 /* (2 * 4) config */
7569                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7570                 break;
7571         case 12:
7572                 /* (2 * 6) config */
7573                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7574                 break;
7575         case 16:
7576                 /* (2 * 8) config */
7577         default:
7578                 /* Setting (2 * 8) Min RP0 for any other combination */
7579                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7580                 break;
7581         }
7582
7583         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7584
7585         return rp0;
7586 }
7587
7588 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7589 {
7590         u32 val, rpe;
7591
7592         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7593         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7594
7595         return rpe;
7596 }
7597
7598 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7599 {
7600         u32 val, rp1;
7601
7602         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7603         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7604
7605         return rp1;
7606 }
7607
7608 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7609 {
7610         u32 val, rpn;
7611
7612         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7613         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7614                        FB_GFX_FREQ_FUSE_MASK);
7615
7616         return rpn;
7617 }
7618
7619 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7620 {
7621         u32 val, rp1;
7622
7623         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7624
7625         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7626
7627         return rp1;
7628 }
7629
7630 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7631 {
7632         u32 val, rp0;
7633
7634         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7635
7636         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7637         /* Clamp to max */
7638         rp0 = min_t(u32, rp0, 0xea);
7639
7640         return rp0;
7641 }
7642
7643 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7644 {
7645         u32 val, rpe;
7646
7647         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7648         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7649         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7650         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7651
7652         return rpe;
7653 }
7654
7655 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7656 {
7657         u32 val;
7658
7659         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7660         /*
7661          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7662          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7663          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7664          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7665          * to make sure it matches what Punit accepts.
7666          */
7667         return max_t(u32, val, 0xc0);
7668 }
7669
7670 /* Check that the pctx buffer wasn't move under us. */
7671 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7672 {
7673         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7674
7675         WARN_ON(pctx_addr != dev_priv->dsm.start +
7676                              dev_priv->vlv_pctx->stolen->start);
7677 }
7678
7679
7680 /* Check that the pcbr address is not empty. */
7681 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7682 {
7683         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7684
7685         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7686 }
7687
7688 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7689 {
7690         resource_size_t pctx_paddr, paddr;
7691         resource_size_t pctx_size = 32*1024;
7692         u32 pcbr;
7693
7694         pcbr = I915_READ(VLV_PCBR);
7695         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7696                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7697                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7698                 GEM_BUG_ON(paddr > U32_MAX);
7699
7700                 pctx_paddr = (paddr & (~4095));
7701                 I915_WRITE(VLV_PCBR, pctx_paddr);
7702         }
7703
7704         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7705 }
7706
7707 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7708 {
7709         struct drm_i915_gem_object *pctx;
7710         resource_size_t pctx_paddr;
7711         resource_size_t pctx_size = 24*1024;
7712         u32 pcbr;
7713
7714         pcbr = I915_READ(VLV_PCBR);
7715         if (pcbr) {
7716                 /* BIOS set it up already, grab the pre-alloc'd space */
7717                 resource_size_t pcbr_offset;
7718
7719                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7720                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7721                                                                       pcbr_offset,
7722                                                                       I915_GTT_OFFSET_NONE,
7723                                                                       pctx_size);
7724                 goto out;
7725         }
7726
7727         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7728
7729         /*
7730          * From the Gunit register HAS:
7731          * The Gfx driver is expected to program this register and ensure
7732          * proper allocation within Gfx stolen memory.  For example, this
7733          * register should be programmed such than the PCBR range does not
7734          * overlap with other ranges, such as the frame buffer, protected
7735          * memory, or any other relevant ranges.
7736          */
7737         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7738         if (!pctx) {
7739                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7740                 goto out;
7741         }
7742
7743         GEM_BUG_ON(range_overflows_t(u64,
7744                                      dev_priv->dsm.start,
7745                                      pctx->stolen->start,
7746                                      U32_MAX));
7747         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7748         I915_WRITE(VLV_PCBR, pctx_paddr);
7749
7750 out:
7751         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7752         dev_priv->vlv_pctx = pctx;
7753 }
7754
7755 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7756 {
7757         struct drm_i915_gem_object *pctx;
7758
7759         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7760         if (pctx)
7761                 i915_gem_object_put(pctx);
7762 }
7763
7764 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7765 {
7766         dev_priv->gt_pm.rps.gpll_ref_freq =
7767                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7768                                   CCK_GPLL_CLOCK_CONTROL,
7769                                   dev_priv->czclk_freq);
7770
7771         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7772                          dev_priv->gt_pm.rps.gpll_ref_freq);
7773 }
7774
7775 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7776 {
7777         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7778         u32 val;
7779
7780         valleyview_setup_pctx(dev_priv);
7781
7782         vlv_iosf_sb_get(dev_priv,
7783                         BIT(VLV_IOSF_SB_PUNIT) |
7784                         BIT(VLV_IOSF_SB_NC) |
7785                         BIT(VLV_IOSF_SB_CCK));
7786
7787         vlv_init_gpll_ref_freq(dev_priv);
7788
7789         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7790         switch ((val >> 6) & 3) {
7791         case 0:
7792         case 1:
7793                 dev_priv->mem_freq = 800;
7794                 break;
7795         case 2:
7796                 dev_priv->mem_freq = 1066;
7797                 break;
7798         case 3:
7799                 dev_priv->mem_freq = 1333;
7800                 break;
7801         }
7802         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7803
7804         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7805         rps->rp0_freq = rps->max_freq;
7806         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7807                          intel_gpu_freq(dev_priv, rps->max_freq),
7808                          rps->max_freq);
7809
7810         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7811         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7812                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7813                          rps->efficient_freq);
7814
7815         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7816         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7817                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7818                          rps->rp1_freq);
7819
7820         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7821         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7822                          intel_gpu_freq(dev_priv, rps->min_freq),
7823                          rps->min_freq);
7824
7825         vlv_iosf_sb_put(dev_priv,
7826                         BIT(VLV_IOSF_SB_PUNIT) |
7827                         BIT(VLV_IOSF_SB_NC) |
7828                         BIT(VLV_IOSF_SB_CCK));
7829 }
7830
7831 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7832 {
7833         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7834         u32 val;
7835
7836         cherryview_setup_pctx(dev_priv);
7837
7838         vlv_iosf_sb_get(dev_priv,
7839                         BIT(VLV_IOSF_SB_PUNIT) |
7840                         BIT(VLV_IOSF_SB_NC) |
7841                         BIT(VLV_IOSF_SB_CCK));
7842
7843         vlv_init_gpll_ref_freq(dev_priv);
7844
7845         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7846
7847         switch ((val >> 2) & 0x7) {
7848         case 3:
7849                 dev_priv->mem_freq = 2000;
7850                 break;
7851         default:
7852                 dev_priv->mem_freq = 1600;
7853                 break;
7854         }
7855         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7856
7857         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7858         rps->rp0_freq = rps->max_freq;
7859         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7860                          intel_gpu_freq(dev_priv, rps->max_freq),
7861                          rps->max_freq);
7862
7863         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7864         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7865                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7866                          rps->efficient_freq);
7867
7868         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7869         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7870                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7871                          rps->rp1_freq);
7872
7873         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7874         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7875                          intel_gpu_freq(dev_priv, rps->min_freq),
7876                          rps->min_freq);
7877
7878         vlv_iosf_sb_put(dev_priv,
7879                         BIT(VLV_IOSF_SB_PUNIT) |
7880                         BIT(VLV_IOSF_SB_NC) |
7881                         BIT(VLV_IOSF_SB_CCK));
7882
7883         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7884                    rps->min_freq) & 1,
7885                   "Odd GPU freq values\n");
7886 }
7887
7888 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7889 {
7890         valleyview_cleanup_pctx(dev_priv);
7891 }
7892
7893 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7894 {
7895         struct intel_engine_cs *engine;
7896         enum intel_engine_id id;
7897         u32 gtfifodbg, rc6_mode, pcbr;
7898
7899         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7900                                              GT_FIFO_FREE_ENTRIES_CHV);
7901         if (gtfifodbg) {
7902                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7903                                  gtfifodbg);
7904                 I915_WRITE(GTFIFODBG, gtfifodbg);
7905         }
7906
7907         cherryview_check_pctx(dev_priv);
7908
7909         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7910          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7911         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7912
7913         /*  Disable RC states. */
7914         I915_WRITE(GEN6_RC_CONTROL, 0);
7915
7916         /* 2a: Program RC6 thresholds.*/
7917         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7918         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7919         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7920
7921         for_each_engine(engine, dev_priv, id)
7922                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7923         I915_WRITE(GEN6_RC_SLEEP, 0);
7924
7925         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7926         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7927
7928         /* Allows RC6 residency counter to work */
7929         I915_WRITE(VLV_COUNTER_CONTROL,
7930                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7931                                       VLV_MEDIA_RC6_COUNT_EN |
7932                                       VLV_RENDER_RC6_COUNT_EN));
7933
7934         /* For now we assume BIOS is allocating and populating the PCBR  */
7935         pcbr = I915_READ(VLV_PCBR);
7936
7937         /* 3: Enable RC6 */
7938         rc6_mode = 0;
7939         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7940                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7941         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7942
7943         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7944 }
7945
7946 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7947 {
7948         u32 val;
7949
7950         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7951
7952         /* 1: Program defaults and thresholds for RPS*/
7953         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7954         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7955         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7956         I915_WRITE(GEN6_RP_UP_EI, 66000);
7957         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7958
7959         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7960
7961         /* 2: Enable RPS */
7962         I915_WRITE(GEN6_RP_CONTROL,
7963                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7964                    GEN6_RP_MEDIA_IS_GFX |
7965                    GEN6_RP_ENABLE |
7966                    GEN6_RP_UP_BUSY_AVG |
7967                    GEN6_RP_DOWN_IDLE_AVG);
7968
7969         /* Setting Fixed Bias */
7970         vlv_punit_get(dev_priv);
7971
7972         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
7973         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7974
7975         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7976
7977         vlv_punit_put(dev_priv);
7978
7979         /* RPS code assumes GPLL is used */
7980         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7981
7982         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7983         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7984
7985         reset_rps(dev_priv, valleyview_set_rps);
7986
7987         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7988 }
7989
7990 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7991 {
7992         struct intel_engine_cs *engine;
7993         enum intel_engine_id id;
7994         u32 gtfifodbg;
7995
7996         valleyview_check_pctx(dev_priv);
7997
7998         gtfifodbg = I915_READ(GTFIFODBG);
7999         if (gtfifodbg) {
8000                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
8001                                  gtfifodbg);
8002                 I915_WRITE(GTFIFODBG, gtfifodbg);
8003         }
8004
8005         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8006
8007         /*  Disable RC states. */
8008         I915_WRITE(GEN6_RC_CONTROL, 0);
8009
8010         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
8011         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8012         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8013
8014         for_each_engine(engine, dev_priv, id)
8015                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8016
8017         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8018
8019         /* Allows RC6 residency counter to work */
8020         I915_WRITE(VLV_COUNTER_CONTROL,
8021                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
8022                                       VLV_MEDIA_RC0_COUNT_EN |
8023                                       VLV_RENDER_RC0_COUNT_EN |
8024                                       VLV_MEDIA_RC6_COUNT_EN |
8025                                       VLV_RENDER_RC6_COUNT_EN));
8026
8027         I915_WRITE(GEN6_RC_CONTROL,
8028                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8029
8030         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8031 }
8032
8033 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
8034 {
8035         u32 val;
8036
8037         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8038
8039         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8040         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
8041         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
8042         I915_WRITE(GEN6_RP_UP_EI, 66000);
8043         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
8044
8045         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8046
8047         I915_WRITE(GEN6_RP_CONTROL,
8048                    GEN6_RP_MEDIA_TURBO |
8049                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
8050                    GEN6_RP_MEDIA_IS_GFX |
8051                    GEN6_RP_ENABLE |
8052                    GEN6_RP_UP_BUSY_AVG |
8053                    GEN6_RP_DOWN_IDLE_CONT);
8054
8055         vlv_punit_get(dev_priv);
8056
8057         /* Setting Fixed Bias */
8058         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
8059         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8060
8061         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8062
8063         vlv_punit_put(dev_priv);
8064
8065         /* RPS code assumes GPLL is used */
8066         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8067
8068         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8069         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8070
8071         reset_rps(dev_priv, valleyview_set_rps);
8072
8073         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8074 }
8075
8076 static unsigned long intel_pxfreq(u32 vidfreq)
8077 {
8078         unsigned long freq;
8079         int div = (vidfreq & 0x3f0000) >> 16;
8080         int post = (vidfreq & 0x3000) >> 12;
8081         int pre = (vidfreq & 0x7);
8082
8083         if (!pre)
8084                 return 0;
8085
8086         freq = ((div * 133333) / ((1<<post) * pre));
8087
8088         return freq;
8089 }
8090
8091 static const struct cparams {
8092         u16 i;
8093         u16 t;
8094         u16 m;
8095         u16 c;
8096 } cparams[] = {
8097         { 1, 1333, 301, 28664 },
8098         { 1, 1066, 294, 24460 },
8099         { 1, 800, 294, 25192 },
8100         { 0, 1333, 276, 27605 },
8101         { 0, 1066, 276, 27605 },
8102         { 0, 800, 231, 23784 },
8103 };
8104
8105 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8106 {
8107         u64 total_count, diff, ret;
8108         u32 count1, count2, count3, m = 0, c = 0;
8109         unsigned long now = jiffies_to_msecs(jiffies), diff1;
8110         int i;
8111
8112         lockdep_assert_held(&mchdev_lock);
8113
8114         diff1 = now - dev_priv->ips.last_time1;
8115
8116         /* Prevent division-by-zero if we are asking too fast.
8117          * Also, we don't get interesting results if we are polling
8118          * faster than once in 10ms, so just return the saved value
8119          * in such cases.
8120          */
8121         if (diff1 <= 10)
8122                 return dev_priv->ips.chipset_power;
8123
8124         count1 = I915_READ(DMIEC);
8125         count2 = I915_READ(DDREC);
8126         count3 = I915_READ(CSIEC);
8127
8128         total_count = count1 + count2 + count3;
8129
8130         /* FIXME: handle per-counter overflow */
8131         if (total_count < dev_priv->ips.last_count1) {
8132                 diff = ~0UL - dev_priv->ips.last_count1;
8133                 diff += total_count;
8134         } else {
8135                 diff = total_count - dev_priv->ips.last_count1;
8136         }
8137
8138         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8139                 if (cparams[i].i == dev_priv->ips.c_m &&
8140                     cparams[i].t == dev_priv->ips.r_t) {
8141                         m = cparams[i].m;
8142                         c = cparams[i].c;
8143                         break;
8144                 }
8145         }
8146
8147         diff = div_u64(diff, diff1);
8148         ret = ((m * diff) + c);
8149         ret = div_u64(ret, 10);
8150
8151         dev_priv->ips.last_count1 = total_count;
8152         dev_priv->ips.last_time1 = now;
8153
8154         dev_priv->ips.chipset_power = ret;
8155
8156         return ret;
8157 }
8158
8159 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8160 {
8161         intel_wakeref_t wakeref;
8162         unsigned long val = 0;
8163
8164         if (!IS_GEN(dev_priv, 5))
8165                 return 0;
8166
8167         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8168                 spin_lock_irq(&mchdev_lock);
8169                 val = __i915_chipset_val(dev_priv);
8170                 spin_unlock_irq(&mchdev_lock);
8171         }
8172
8173         return val;
8174 }
8175
8176 unsigned long i915_mch_val(struct drm_i915_private *i915)
8177 {
8178         unsigned long m, x, b;
8179         u32 tsfs;
8180
8181         tsfs = intel_uncore_read(&i915->uncore, TSFS);
8182
8183         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8184         x = intel_uncore_read8(&i915->uncore, TR1);
8185
8186         b = tsfs & TSFS_INTR_MASK;
8187
8188         return ((m * x) / 127) - b;
8189 }
8190
8191 static int _pxvid_to_vd(u8 pxvid)
8192 {
8193         if (pxvid == 0)
8194                 return 0;
8195
8196         if (pxvid >= 8 && pxvid < 31)
8197                 pxvid = 31;
8198
8199         return (pxvid + 2) * 125;
8200 }
8201
8202 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8203 {
8204         const int vd = _pxvid_to_vd(pxvid);
8205         const int vm = vd - 1125;
8206
8207         if (INTEL_INFO(dev_priv)->is_mobile)
8208                 return vm > 0 ? vm : 0;
8209
8210         return vd;
8211 }
8212
8213 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8214 {
8215         u64 now, diff, diffms;
8216         u32 count;
8217
8218         lockdep_assert_held(&mchdev_lock);
8219
8220         now = ktime_get_raw_ns();
8221         diffms = now - dev_priv->ips.last_time2;
8222         do_div(diffms, NSEC_PER_MSEC);
8223
8224         /* Don't divide by 0 */
8225         if (!diffms)
8226                 return;
8227
8228         count = I915_READ(GFXEC);
8229
8230         if (count < dev_priv->ips.last_count2) {
8231                 diff = ~0UL - dev_priv->ips.last_count2;
8232                 diff += count;
8233         } else {
8234                 diff = count - dev_priv->ips.last_count2;
8235         }
8236
8237         dev_priv->ips.last_count2 = count;
8238         dev_priv->ips.last_time2 = now;
8239
8240         /* More magic constants... */
8241         diff = diff * 1181;
8242         diff = div_u64(diff, diffms * 10);
8243         dev_priv->ips.gfx_power = diff;
8244 }
8245
8246 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8247 {
8248         intel_wakeref_t wakeref;
8249
8250         if (!IS_GEN(dev_priv, 5))
8251                 return;
8252
8253         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8254                 spin_lock_irq(&mchdev_lock);
8255                 __i915_update_gfx_val(dev_priv);
8256                 spin_unlock_irq(&mchdev_lock);
8257         }
8258 }
8259
8260 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8261 {
8262         unsigned long t, corr, state1, corr2, state2;
8263         u32 pxvid, ext_v;
8264
8265         lockdep_assert_held(&mchdev_lock);
8266
8267         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8268         pxvid = (pxvid >> 24) & 0x7f;
8269         ext_v = pvid_to_extvid(dev_priv, pxvid);
8270
8271         state1 = ext_v;
8272
8273         t = i915_mch_val(dev_priv);
8274
8275         /* Revel in the empirically derived constants */
8276
8277         /* Correction factor in 1/100000 units */
8278         if (t > 80)
8279                 corr = ((t * 2349) + 135940);
8280         else if (t >= 50)
8281                 corr = ((t * 964) + 29317);
8282         else /* < 50 */
8283                 corr = ((t * 301) + 1004);
8284
8285         corr = corr * ((150142 * state1) / 10000 - 78642);
8286         corr /= 100000;
8287         corr2 = (corr * dev_priv->ips.corr);
8288
8289         state2 = (corr2 * state1) / 10000;
8290         state2 /= 100; /* convert to mW */
8291
8292         __i915_update_gfx_val(dev_priv);
8293
8294         return dev_priv->ips.gfx_power + state2;
8295 }
8296
8297 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8298 {
8299         intel_wakeref_t wakeref;
8300         unsigned long val = 0;
8301
8302         if (!IS_GEN(dev_priv, 5))
8303                 return 0;
8304
8305         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8306                 spin_lock_irq(&mchdev_lock);
8307                 val = __i915_gfx_val(dev_priv);
8308                 spin_unlock_irq(&mchdev_lock);
8309         }
8310
8311         return val;
8312 }
8313
8314 static struct drm_i915_private __rcu *i915_mch_dev;
8315
8316 static struct drm_i915_private *mchdev_get(void)
8317 {
8318         struct drm_i915_private *i915;
8319
8320         rcu_read_lock();
8321         i915 = rcu_dereference(i915_mch_dev);
8322         if (!kref_get_unless_zero(&i915->drm.ref))
8323                 i915 = NULL;
8324         rcu_read_unlock();
8325
8326         return i915;
8327 }
8328
8329 /**
8330  * i915_read_mch_val - return value for IPS use
8331  *
8332  * Calculate and return a value for the IPS driver to use when deciding whether
8333  * we have thermal and power headroom to increase CPU or GPU power budget.
8334  */
8335 unsigned long i915_read_mch_val(void)
8336 {
8337         struct drm_i915_private *i915;
8338         unsigned long chipset_val = 0;
8339         unsigned long graphics_val = 0;
8340         intel_wakeref_t wakeref;
8341
8342         i915 = mchdev_get();
8343         if (!i915)
8344                 return 0;
8345
8346         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
8347                 spin_lock_irq(&mchdev_lock);
8348                 chipset_val = __i915_chipset_val(i915);
8349                 graphics_val = __i915_gfx_val(i915);
8350                 spin_unlock_irq(&mchdev_lock);
8351         }
8352
8353         drm_dev_put(&i915->drm);
8354         return chipset_val + graphics_val;
8355 }
8356 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8357
8358 /**
8359  * i915_gpu_raise - raise GPU frequency limit
8360  *
8361  * Raise the limit; IPS indicates we have thermal headroom.
8362  */
8363 bool i915_gpu_raise(void)
8364 {
8365         struct drm_i915_private *i915;
8366
8367         i915 = mchdev_get();
8368         if (!i915)
8369                 return false;
8370
8371         spin_lock_irq(&mchdev_lock);
8372         if (i915->ips.max_delay > i915->ips.fmax)
8373                 i915->ips.max_delay--;
8374         spin_unlock_irq(&mchdev_lock);
8375
8376         drm_dev_put(&i915->drm);
8377         return true;
8378 }
8379 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8380
8381 /**
8382  * i915_gpu_lower - lower GPU frequency limit
8383  *
8384  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8385  * frequency maximum.
8386  */
8387 bool i915_gpu_lower(void)
8388 {
8389         struct drm_i915_private *i915;
8390
8391         i915 = mchdev_get();
8392         if (!i915)
8393                 return false;
8394
8395         spin_lock_irq(&mchdev_lock);
8396         if (i915->ips.max_delay < i915->ips.min_delay)
8397                 i915->ips.max_delay++;
8398         spin_unlock_irq(&mchdev_lock);
8399
8400         drm_dev_put(&i915->drm);
8401         return true;
8402 }
8403 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8404
8405 /**
8406  * i915_gpu_busy - indicate GPU business to IPS
8407  *
8408  * Tell the IPS driver whether or not the GPU is busy.
8409  */
8410 bool i915_gpu_busy(void)
8411 {
8412         struct drm_i915_private *i915;
8413         bool ret;
8414
8415         i915 = mchdev_get();
8416         if (!i915)
8417                 return false;
8418
8419         ret = i915->gt.awake;
8420
8421         drm_dev_put(&i915->drm);
8422         return ret;
8423 }
8424 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8425
8426 /**
8427  * i915_gpu_turbo_disable - disable graphics turbo
8428  *
8429  * Disable graphics turbo by resetting the max frequency and setting the
8430  * current frequency to the default.
8431  */
8432 bool i915_gpu_turbo_disable(void)
8433 {
8434         struct drm_i915_private *i915;
8435         bool ret;
8436
8437         i915 = mchdev_get();
8438         if (!i915)
8439                 return false;
8440
8441         spin_lock_irq(&mchdev_lock);
8442         i915->ips.max_delay = i915->ips.fstart;
8443         ret = ironlake_set_drps(i915, i915->ips.fstart);
8444         spin_unlock_irq(&mchdev_lock);
8445
8446         drm_dev_put(&i915->drm);
8447         return ret;
8448 }
8449 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8450
8451 /**
8452  * Tells the intel_ips driver that the i915 driver is now loaded, if
8453  * IPS got loaded first.
8454  *
8455  * This awkward dance is so that neither module has to depend on the
8456  * other in order for IPS to do the appropriate communication of
8457  * GPU turbo limits to i915.
8458  */
8459 static void
8460 ips_ping_for_i915_load(void)
8461 {
8462         void (*link)(void);
8463
8464         link = symbol_get(ips_link_to_i915_driver);
8465         if (link) {
8466                 link();
8467                 symbol_put(ips_link_to_i915_driver);
8468         }
8469 }
8470
8471 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8472 {
8473         /* We only register the i915 ips part with intel-ips once everything is
8474          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8475         rcu_assign_pointer(i915_mch_dev, dev_priv);
8476
8477         ips_ping_for_i915_load();
8478 }
8479
8480 void intel_gpu_ips_teardown(void)
8481 {
8482         rcu_assign_pointer(i915_mch_dev, NULL);
8483 }
8484
8485 static void intel_init_emon(struct drm_i915_private *dev_priv)
8486 {
8487         u32 lcfuse;
8488         u8 pxw[16];
8489         int i;
8490
8491         /* Disable to program */
8492         I915_WRITE(ECR, 0);
8493         POSTING_READ(ECR);
8494
8495         /* Program energy weights for various events */
8496         I915_WRITE(SDEW, 0x15040d00);
8497         I915_WRITE(CSIEW0, 0x007f0000);
8498         I915_WRITE(CSIEW1, 0x1e220004);
8499         I915_WRITE(CSIEW2, 0x04000004);
8500
8501         for (i = 0; i < 5; i++)
8502                 I915_WRITE(PEW(i), 0);
8503         for (i = 0; i < 3; i++)
8504                 I915_WRITE(DEW(i), 0);
8505
8506         /* Program P-state weights to account for frequency power adjustment */
8507         for (i = 0; i < 16; i++) {
8508                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8509                 unsigned long freq = intel_pxfreq(pxvidfreq);
8510                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8511                         PXVFREQ_PX_SHIFT;
8512                 unsigned long val;
8513
8514                 val = vid * vid;
8515                 val *= (freq / 1000);
8516                 val *= 255;
8517                 val /= (127*127*900);
8518                 if (val > 0xff)
8519                         DRM_ERROR("bad pxval: %ld\n", val);
8520                 pxw[i] = val;
8521         }
8522         /* Render standby states get 0 weight */
8523         pxw[14] = 0;
8524         pxw[15] = 0;
8525
8526         for (i = 0; i < 4; i++) {
8527                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8528                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8529                 I915_WRITE(PXW(i), val);
8530         }
8531
8532         /* Adjust magic regs to magic values (more experimental results) */
8533         I915_WRITE(OGW0, 0);
8534         I915_WRITE(OGW1, 0);
8535         I915_WRITE(EG0, 0x00007f00);
8536         I915_WRITE(EG1, 0x0000000e);
8537         I915_WRITE(EG2, 0x000e0000);
8538         I915_WRITE(EG3, 0x68000300);
8539         I915_WRITE(EG4, 0x42000000);
8540         I915_WRITE(EG5, 0x00140031);
8541         I915_WRITE(EG6, 0);
8542         I915_WRITE(EG7, 0);
8543
8544         for (i = 0; i < 8; i++)
8545                 I915_WRITE(PXWL(i), 0);
8546
8547         /* Enable PMON + select events */
8548         I915_WRITE(ECR, 0x80000019);
8549
8550         lcfuse = I915_READ(LCFUSE02);
8551
8552         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8553 }
8554
8555 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
8556 {
8557         return !I915_READ(GEN8_RC6_CTX_INFO);
8558 }
8559
8560 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
8561 {
8562         if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8563                 return;
8564
8565         if (i915_rc6_ctx_corrupted(i915)) {
8566                 DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
8567                 i915->gt_pm.rc6.ctx_corrupted = true;
8568                 i915->gt_pm.rc6.ctx_corrupted_wakeref =
8569                         intel_runtime_pm_get(&i915->runtime_pm);
8570         }
8571 }
8572
8573 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
8574 {
8575         if (i915->gt_pm.rc6.ctx_corrupted) {
8576                 intel_runtime_pm_put(&i915->runtime_pm,
8577                                      i915->gt_pm.rc6.ctx_corrupted_wakeref);
8578                 i915->gt_pm.rc6.ctx_corrupted = false;
8579         }
8580 }
8581
8582 /**
8583  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
8584  * @i915: i915 device
8585  *
8586  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
8587  */
8588 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
8589 {
8590         if (i915->gt_pm.rc6.ctx_corrupted)
8591                 intel_runtime_pm_put(&i915->runtime_pm,
8592                                      i915->gt_pm.rc6.ctx_corrupted_wakeref);
8593 }
8594
8595 /**
8596  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
8597  * @i915: i915 device
8598  *
8599  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
8600  */
8601 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
8602 {
8603         if (!i915->gt_pm.rc6.ctx_corrupted)
8604                 return;
8605
8606         if (i915_rc6_ctx_corrupted(i915)) {
8607                 i915->gt_pm.rc6.ctx_corrupted_wakeref =
8608                         intel_runtime_pm_get(&i915->runtime_pm);
8609                 return;
8610         }
8611
8612         DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
8613         i915->gt_pm.rc6.ctx_corrupted = false;
8614 }
8615
8616 static void intel_disable_rc6(struct drm_i915_private *dev_priv);
8617
8618 /**
8619  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
8620  * @i915: i915 device
8621  *
8622  * Check if an RC6 CTX corruption has happened since the last check and if so
8623  * disable RC6 and runtime power management.
8624  *
8625  * Return false if no context corruption has happened since the last call of
8626  * this function, true otherwise.
8627 */
8628 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
8629 {
8630         if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8631                 return false;
8632
8633         if (i915->gt_pm.rc6.ctx_corrupted)
8634                 return false;
8635
8636         if (!i915_rc6_ctx_corrupted(i915))
8637                 return false;
8638
8639         DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
8640
8641         intel_disable_rc6(i915);
8642         i915->gt_pm.rc6.ctx_corrupted = true;
8643         i915->gt_pm.rc6.ctx_corrupted_wakeref =
8644                 intel_runtime_pm_get_noresume(&i915->runtime_pm);
8645
8646         return true;
8647 }
8648
8649 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8650 {
8651         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8652
8653         /*
8654          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8655          * requirement.
8656          */
8657         if (!sanitize_rc6(dev_priv)) {
8658                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8659                 pm_runtime_get(&dev_priv->drm.pdev->dev);
8660         }
8661
8662         i915_rc6_ctx_wa_init(dev_priv);
8663
8664         /* Initialize RPS limits (for userspace) */
8665         if (IS_CHERRYVIEW(dev_priv))
8666                 cherryview_init_gt_powersave(dev_priv);
8667         else if (IS_VALLEYVIEW(dev_priv))
8668                 valleyview_init_gt_powersave(dev_priv);
8669         else if (INTEL_GEN(dev_priv) >= 6)
8670                 gen6_init_rps_frequencies(dev_priv);
8671
8672         /* Derive initial user preferences/limits from the hardware limits */
8673         rps->max_freq_softlimit = rps->max_freq;
8674         rps->min_freq_softlimit = rps->min_freq;
8675
8676         /* After setting max-softlimit, find the overclock max freq */
8677         if (IS_GEN(dev_priv, 6) ||
8678             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8679                 u32 params = 0;
8680
8681                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
8682                                        &params, NULL);
8683                 if (params & BIT(31)) { /* OC supported */
8684                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8685                                          (rps->max_freq & 0xff) * 50,
8686                                          (params & 0xff) * 50);
8687                         rps->max_freq = params & 0xff;
8688                 }
8689         }
8690
8691         /* Finally allow us to boost to max by default */
8692         rps->boost_freq = rps->max_freq;
8693         rps->idle_freq = rps->min_freq;
8694         rps->cur_freq = rps->idle_freq;
8695 }
8696
8697 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8698 {
8699         if (IS_VALLEYVIEW(dev_priv))
8700                 valleyview_cleanup_gt_powersave(dev_priv);
8701
8702         i915_rc6_ctx_wa_cleanup(dev_priv);
8703
8704         if (!HAS_RC6(dev_priv))
8705                 pm_runtime_put(&dev_priv->drm.pdev->dev);
8706 }
8707
8708 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8709 {
8710         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8711         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8712         intel_disable_gt_powersave(dev_priv);
8713
8714         if (INTEL_GEN(dev_priv) >= 11)
8715                 gen11_reset_rps_interrupts(dev_priv);
8716         else if (INTEL_GEN(dev_priv) >= 6)
8717                 gen6_reset_rps_interrupts(dev_priv);
8718 }
8719
8720 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8721 {
8722         lockdep_assert_held(&i915->gt_pm.rps.lock);
8723
8724         if (!i915->gt_pm.llc_pstate.enabled)
8725                 return;
8726
8727         /* Currently there is no HW configuration to be done to disable. */
8728
8729         i915->gt_pm.llc_pstate.enabled = false;
8730 }
8731
8732 static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
8733 {
8734         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8735
8736         if (!dev_priv->gt_pm.rc6.enabled)
8737                 return;
8738
8739         if (INTEL_GEN(dev_priv) >= 9)
8740                 gen9_disable_rc6(dev_priv);
8741         else if (IS_CHERRYVIEW(dev_priv))
8742                 cherryview_disable_rc6(dev_priv);
8743         else if (IS_VALLEYVIEW(dev_priv))
8744                 valleyview_disable_rc6(dev_priv);
8745         else if (INTEL_GEN(dev_priv) >= 6)
8746                 gen6_disable_rc6(dev_priv);
8747
8748         dev_priv->gt_pm.rc6.enabled = false;
8749 }
8750
8751 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8752 {
8753         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8754
8755         mutex_lock(&rps->lock);
8756         __intel_disable_rc6(dev_priv);
8757         mutex_unlock(&rps->lock);
8758 }
8759
8760 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8761 {
8762         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8763
8764         if (!dev_priv->gt_pm.rps.enabled)
8765                 return;
8766
8767         if (INTEL_GEN(dev_priv) >= 9)
8768                 gen9_disable_rps(dev_priv);
8769         else if (IS_CHERRYVIEW(dev_priv))
8770                 cherryview_disable_rps(dev_priv);
8771         else if (IS_VALLEYVIEW(dev_priv))
8772                 valleyview_disable_rps(dev_priv);
8773         else if (INTEL_GEN(dev_priv) >= 6)
8774                 gen6_disable_rps(dev_priv);
8775         else if (IS_IRONLAKE_M(dev_priv))
8776                 ironlake_disable_drps(dev_priv);
8777
8778         dev_priv->gt_pm.rps.enabled = false;
8779 }
8780
8781 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8782 {
8783         mutex_lock(&dev_priv->gt_pm.rps.lock);
8784
8785         __intel_disable_rc6(dev_priv);
8786         intel_disable_rps(dev_priv);
8787         if (HAS_LLC(dev_priv))
8788                 intel_disable_llc_pstate(dev_priv);
8789
8790         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8791 }
8792
8793 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8794 {
8795         lockdep_assert_held(&i915->gt_pm.rps.lock);
8796
8797         if (i915->gt_pm.llc_pstate.enabled)
8798                 return;
8799
8800         gen6_update_ring_freq(i915);
8801
8802         i915->gt_pm.llc_pstate.enabled = true;
8803 }
8804
8805 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8806 {
8807         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8808
8809         if (dev_priv->gt_pm.rc6.enabled)
8810                 return;
8811
8812         if (dev_priv->gt_pm.rc6.ctx_corrupted)
8813                 return;
8814
8815         if (IS_CHERRYVIEW(dev_priv))
8816                 cherryview_enable_rc6(dev_priv);
8817         else if (IS_VALLEYVIEW(dev_priv))
8818                 valleyview_enable_rc6(dev_priv);
8819         else if (INTEL_GEN(dev_priv) >= 11)
8820                 gen11_enable_rc6(dev_priv);
8821         else if (INTEL_GEN(dev_priv) >= 9)
8822                 gen9_enable_rc6(dev_priv);
8823         else if (IS_BROADWELL(dev_priv))
8824                 gen8_enable_rc6(dev_priv);
8825         else if (INTEL_GEN(dev_priv) >= 6)
8826                 gen6_enable_rc6(dev_priv);
8827
8828         dev_priv->gt_pm.rc6.enabled = true;
8829 }
8830
8831 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8832 {
8833         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8834
8835         lockdep_assert_held(&rps->lock);
8836
8837         if (rps->enabled)
8838                 return;
8839
8840         if (IS_CHERRYVIEW(dev_priv)) {
8841                 cherryview_enable_rps(dev_priv);
8842         } else if (IS_VALLEYVIEW(dev_priv)) {
8843                 valleyview_enable_rps(dev_priv);
8844         } else if (INTEL_GEN(dev_priv) >= 9) {
8845                 gen9_enable_rps(dev_priv);
8846         } else if (IS_BROADWELL(dev_priv)) {
8847                 gen8_enable_rps(dev_priv);
8848         } else if (INTEL_GEN(dev_priv) >= 6) {
8849                 gen6_enable_rps(dev_priv);
8850         } else if (IS_IRONLAKE_M(dev_priv)) {
8851                 ironlake_enable_drps(dev_priv);
8852                 intel_init_emon(dev_priv);
8853         }
8854
8855         WARN_ON(rps->max_freq < rps->min_freq);
8856         WARN_ON(rps->idle_freq > rps->max_freq);
8857
8858         WARN_ON(rps->efficient_freq < rps->min_freq);
8859         WARN_ON(rps->efficient_freq > rps->max_freq);
8860
8861         rps->enabled = true;
8862 }
8863
8864 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8865 {
8866         /* Powersaving is controlled by the host when inside a VM */
8867         if (intel_vgpu_active(dev_priv))
8868                 return;
8869
8870         mutex_lock(&dev_priv->gt_pm.rps.lock);
8871
8872         if (HAS_RC6(dev_priv))
8873                 intel_enable_rc6(dev_priv);
8874         if (HAS_RPS(dev_priv))
8875                 intel_enable_rps(dev_priv);
8876         if (HAS_LLC(dev_priv))
8877                 intel_enable_llc_pstate(dev_priv);
8878
8879         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8880 }
8881
8882 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8883 {
8884         /*
8885          * On Ibex Peak and Cougar Point, we need to disable clock
8886          * gating for the panel power sequencer or it will fail to
8887          * start up when no ports are active.
8888          */
8889         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8890 }
8891
8892 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8893 {
8894         enum pipe pipe;
8895
8896         for_each_pipe(dev_priv, pipe) {
8897                 I915_WRITE(DSPCNTR(pipe),
8898                            I915_READ(DSPCNTR(pipe)) |
8899                            DISPPLANE_TRICKLE_FEED_DISABLE);
8900
8901                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8902                 POSTING_READ(DSPSURF(pipe));
8903         }
8904 }
8905
8906 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8907 {
8908         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8909
8910         /*
8911          * Required for FBC
8912          * WaFbcDisableDpfcClockGating:ilk
8913          */
8914         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8915                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8916                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8917
8918         I915_WRITE(PCH_3DCGDIS0,
8919                    MARIUNIT_CLOCK_GATE_DISABLE |
8920                    SVSMUNIT_CLOCK_GATE_DISABLE);
8921         I915_WRITE(PCH_3DCGDIS1,
8922                    VFMUNIT_CLOCK_GATE_DISABLE);
8923
8924         /*
8925          * According to the spec the following bits should be set in
8926          * order to enable memory self-refresh
8927          * The bit 22/21 of 0x42004
8928          * The bit 5 of 0x42020
8929          * The bit 15 of 0x45000
8930          */
8931         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8932                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8933                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8934         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8935         I915_WRITE(DISP_ARB_CTL,
8936                    (I915_READ(DISP_ARB_CTL) |
8937                     DISP_FBC_WM_DIS));
8938
8939         /*
8940          * Based on the document from hardware guys the following bits
8941          * should be set unconditionally in order to enable FBC.
8942          * The bit 22 of 0x42000
8943          * The bit 22 of 0x42004
8944          * The bit 7,8,9 of 0x42020.
8945          */
8946         if (IS_IRONLAKE_M(dev_priv)) {
8947                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8948                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8949                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8950                            ILK_FBCQ_DIS);
8951                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8952                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8953                            ILK_DPARB_GATE);
8954         }
8955
8956         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8957
8958         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8959                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8960                    ILK_ELPIN_409_SELECT);
8961         I915_WRITE(_3D_CHICKEN2,
8962                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8963                    _3D_CHICKEN2_WM_READ_PIPELINED);
8964
8965         /* WaDisableRenderCachePipelinedFlush:ilk */
8966         I915_WRITE(CACHE_MODE_0,
8967                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8968
8969         /* WaDisable_RenderCache_OperationalFlush:ilk */
8970         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8971
8972         g4x_disable_trickle_feed(dev_priv);
8973
8974         ibx_init_clock_gating(dev_priv);
8975 }
8976
8977 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8978 {
8979         int pipe;
8980         u32 val;
8981
8982         /*
8983          * On Ibex Peak and Cougar Point, we need to disable clock
8984          * gating for the panel power sequencer or it will fail to
8985          * start up when no ports are active.
8986          */
8987         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8988                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8989                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8990         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8991                    DPLS_EDP_PPS_FIX_DIS);
8992         /* The below fixes the weird display corruption, a few pixels shifted
8993          * downward, on (only) LVDS of some HP laptops with IVY.
8994          */
8995         for_each_pipe(dev_priv, pipe) {
8996                 val = I915_READ(TRANS_CHICKEN2(pipe));
8997                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8998                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8999                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
9000                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
9001                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
9002                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
9003                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
9004                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
9005         }
9006         /* WADP0ClockGatingDisable */
9007         for_each_pipe(dev_priv, pipe) {
9008                 I915_WRITE(TRANS_CHICKEN1(pipe),
9009                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9010         }
9011 }
9012
9013 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
9014 {
9015         u32 tmp;
9016
9017         tmp = I915_READ(MCH_SSKPD);
9018         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
9019                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
9020                               tmp);
9021 }
9022
9023 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
9024 {
9025         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
9026
9027         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
9028
9029         I915_WRITE(ILK_DISPLAY_CHICKEN2,
9030                    I915_READ(ILK_DISPLAY_CHICKEN2) |
9031                    ILK_ELPIN_409_SELECT);
9032
9033         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
9034         I915_WRITE(_3D_CHICKEN,
9035                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
9036
9037         /* WaDisable_RenderCache_OperationalFlush:snb */
9038         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9039
9040         /*
9041          * BSpec recoomends 8x4 when MSAA is used,
9042          * however in practice 16x4 seems fastest.
9043          *
9044          * Note that PS/WM thread counts depend on the WIZ hashing
9045          * disable bit, which we don't touch here, but it's good
9046          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9047          */
9048         I915_WRITE(GEN6_GT_MODE,
9049                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9050
9051         I915_WRITE(CACHE_MODE_0,
9052                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
9053
9054         I915_WRITE(GEN6_UCGCTL1,
9055                    I915_READ(GEN6_UCGCTL1) |
9056                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
9057                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9058
9059         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
9060          * gating disable must be set.  Failure to set it results in
9061          * flickering pixels due to Z write ordering failures after
9062          * some amount of runtime in the Mesa "fire" demo, and Unigine
9063          * Sanctuary and Tropics, and apparently anything else with
9064          * alpha test or pixel discard.
9065          *
9066          * According to the spec, bit 11 (RCCUNIT) must also be set,
9067          * but we didn't debug actual testcases to find it out.
9068          *
9069          * WaDisableRCCUnitClockGating:snb
9070          * WaDisableRCPBUnitClockGating:snb
9071          */
9072         I915_WRITE(GEN6_UCGCTL2,
9073                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
9074                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
9075
9076         /* WaStripsFansDisableFastClipPerformanceFix:snb */
9077         I915_WRITE(_3D_CHICKEN3,
9078                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
9079
9080         /*
9081          * Bspec says:
9082          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
9083          * 3DSTATE_SF number of SF output attributes is more than 16."
9084          */
9085         I915_WRITE(_3D_CHICKEN3,
9086                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
9087
9088         /*
9089          * According to the spec the following bits should be
9090          * set in order to enable memory self-refresh and fbc:
9091          * The bit21 and bit22 of 0x42000
9092          * The bit21 and bit22 of 0x42004
9093          * The bit5 and bit7 of 0x42020
9094          * The bit14 of 0x70180
9095          * The bit14 of 0x71180
9096          *
9097          * WaFbcAsynchFlipDisableFbcQueue:snb
9098          */
9099         I915_WRITE(ILK_DISPLAY_CHICKEN1,
9100                    I915_READ(ILK_DISPLAY_CHICKEN1) |
9101                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
9102         I915_WRITE(ILK_DISPLAY_CHICKEN2,
9103                    I915_READ(ILK_DISPLAY_CHICKEN2) |
9104                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
9105         I915_WRITE(ILK_DSPCLK_GATE_D,
9106                    I915_READ(ILK_DSPCLK_GATE_D) |
9107                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
9108                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
9109
9110         g4x_disable_trickle_feed(dev_priv);
9111
9112         cpt_init_clock_gating(dev_priv);
9113
9114         gen6_check_mch_setup(dev_priv);
9115 }
9116
9117 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
9118 {
9119         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
9120
9121         /*
9122          * WaVSThreadDispatchOverride:ivb,vlv
9123          *
9124          * This actually overrides the dispatch
9125          * mode for all thread types.
9126          */
9127         reg &= ~GEN7_FF_SCHED_MASK;
9128         reg |= GEN7_FF_TS_SCHED_HW;
9129         reg |= GEN7_FF_VS_SCHED_HW;
9130         reg |= GEN7_FF_DS_SCHED_HW;
9131
9132         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
9133 }
9134
9135 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9136 {
9137         /*
9138          * TODO: this bit should only be enabled when really needed, then
9139          * disabled when not needed anymore in order to save power.
9140          */
9141         if (HAS_PCH_LPT_LP(dev_priv))
9142                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
9143                            I915_READ(SOUTH_DSPCLK_GATE_D) |
9144                            PCH_LP_PARTITION_LEVEL_DISABLE);
9145
9146         /* WADPOClockGatingDisable:hsw */
9147         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
9148                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9149                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9150 }
9151
9152 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9153 {
9154         if (HAS_PCH_LPT_LP(dev_priv)) {
9155                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9156
9157                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9158                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9159         }
9160 }
9161
9162 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9163                                    int general_prio_credits,
9164                                    int high_prio_credits)
9165 {
9166         u32 misccpctl;
9167         u32 val;
9168
9169         /* WaTempDisableDOPClkGating:bdw */
9170         misccpctl = I915_READ(GEN7_MISCCPCTL);
9171         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9172
9173         val = I915_READ(GEN8_L3SQCREG1);
9174         val &= ~L3_PRIO_CREDITS_MASK;
9175         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9176         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9177         I915_WRITE(GEN8_L3SQCREG1, val);
9178
9179         /*
9180          * Wait at least 100 clocks before re-enabling clock gating.
9181          * See the definition of L3SQCREG1 in BSpec.
9182          */
9183         POSTING_READ(GEN8_L3SQCREG1);
9184         udelay(1);
9185         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9186 }
9187
9188 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9189 {
9190         /* This is not an Wa. Enable to reduce Sampler power */
9191         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9192                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9193
9194         /* WaEnable32PlaneMode:icl */
9195         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9196                    _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9197
9198         /*
9199          * Wa_1408615072:icl,ehl  (vsunit)
9200          * Wa_1407596294:icl,ehl  (hsunit)
9201          */
9202         intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE,
9203                          0, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
9204
9205         /* Wa_1407352427:icl,ehl */
9206         intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
9207                          0, PSDUNIT_CLKGATE_DIS);
9208 }
9209
9210 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9211 {
9212         if (!HAS_PCH_CNP(dev_priv))
9213                 return;
9214
9215         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9216         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9217                    CNP_PWM_CGE_GATING_DISABLE);
9218 }
9219
9220 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9221 {
9222         u32 val;
9223         cnp_init_clock_gating(dev_priv);
9224
9225         /* This is not an Wa. Enable for better image quality */
9226         I915_WRITE(_3D_CHICKEN3,
9227                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9228
9229         /* WaEnableChickenDCPR:cnl */
9230         I915_WRITE(GEN8_CHICKEN_DCPR_1,
9231                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9232
9233         /* WaFbcWakeMemOn:cnl */
9234         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9235                    DISP_FBC_MEMORY_WAKE);
9236
9237         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9238         /* ReadHitWriteOnlyDisable:cnl */
9239         val |= RCCUNIT_CLKGATE_DIS;
9240         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9241         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9242                 val |= SARBUNIT_CLKGATE_DIS;
9243         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9244
9245         /* Wa_2201832410:cnl */
9246         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9247         val |= GWUNIT_CLKGATE_DIS;
9248         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9249
9250         /* WaDisableVFclkgate:cnl */
9251         /* WaVFUnitClockGatingDisable:cnl */
9252         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9253         val |= VFUNIT_CLKGATE_DIS;
9254         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9255 }
9256
9257 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9258 {
9259         cnp_init_clock_gating(dev_priv);
9260         gen9_init_clock_gating(dev_priv);
9261
9262         /* WaFbcNukeOnHostModify:cfl */
9263         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9264                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9265 }
9266
9267 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9268 {
9269         gen9_init_clock_gating(dev_priv);
9270
9271         /* WaDisableSDEUnitClockGating:kbl */
9272         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9273                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9274                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9275
9276         /* WaDisableGamClockGating:kbl */
9277         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9278                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9279                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9280
9281         /* WaFbcNukeOnHostModify:kbl */
9282         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9283                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9284 }
9285
9286 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9287 {
9288         gen9_init_clock_gating(dev_priv);
9289
9290         /* WAC6entrylatency:skl */
9291         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9292                    FBC_LLC_FULLY_OPEN);
9293
9294         /* WaFbcNukeOnHostModify:skl */
9295         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9296                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9297 }
9298
9299 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9300 {
9301         enum pipe pipe;
9302
9303         /* WaSwitchSolVfFArbitrationPriority:bdw */
9304         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9305
9306         /* WaPsrDPAMaskVBlankInSRD:bdw */
9307         I915_WRITE(CHICKEN_PAR1_1,
9308                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9309
9310         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9311         for_each_pipe(dev_priv, pipe) {
9312                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9313                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
9314                            BDW_DPRS_MASK_VBLANK_SRD);
9315         }
9316
9317         /* WaVSRefCountFullforceMissDisable:bdw */
9318         /* WaDSRefCountFullforceMissDisable:bdw */
9319         I915_WRITE(GEN7_FF_THREAD_MODE,
9320                    I915_READ(GEN7_FF_THREAD_MODE) &
9321                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9322
9323         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9324                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9325
9326         /* WaDisableSDEUnitClockGating:bdw */
9327         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9328                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9329
9330         /* WaProgramL3SqcReg1Default:bdw */
9331         gen8_set_l3sqc_credits(dev_priv, 30, 2);
9332
9333         /* WaKVMNotificationOnConfigChange:bdw */
9334         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9335                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9336
9337         lpt_init_clock_gating(dev_priv);
9338
9339         /* WaDisableDopClockGating:bdw
9340          *
9341          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9342          * clock gating.
9343          */
9344         I915_WRITE(GEN6_UCGCTL1,
9345                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9346 }
9347
9348 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9349 {
9350         /* L3 caching of data atomics doesn't work -- disable it. */
9351         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9352         I915_WRITE(HSW_ROW_CHICKEN3,
9353                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9354
9355         /* This is required by WaCatErrorRejectionIssue:hsw */
9356         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9357                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9358                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9359
9360         /* WaVSRefCountFullforceMissDisable:hsw */
9361         I915_WRITE(GEN7_FF_THREAD_MODE,
9362                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9363
9364         /* WaDisable_RenderCache_OperationalFlush:hsw */
9365         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9366
9367         /* enable HiZ Raw Stall Optimization */
9368         I915_WRITE(CACHE_MODE_0_GEN7,
9369                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9370
9371         /* WaDisable4x2SubspanOptimization:hsw */
9372         I915_WRITE(CACHE_MODE_1,
9373                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9374
9375         /*
9376          * BSpec recommends 8x4 when MSAA is used,
9377          * however in practice 16x4 seems fastest.
9378          *
9379          * Note that PS/WM thread counts depend on the WIZ hashing
9380          * disable bit, which we don't touch here, but it's good
9381          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9382          */
9383         I915_WRITE(GEN7_GT_MODE,
9384                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9385
9386         /* WaSampleCChickenBitEnable:hsw */
9387         I915_WRITE(HALF_SLICE_CHICKEN3,
9388                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9389
9390         /* WaSwitchSolVfFArbitrationPriority:hsw */
9391         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9392
9393         lpt_init_clock_gating(dev_priv);
9394 }
9395
9396 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9397 {
9398         u32 snpcr;
9399
9400         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9401
9402         /* WaDisableEarlyCull:ivb */
9403         I915_WRITE(_3D_CHICKEN3,
9404                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9405
9406         /* WaDisableBackToBackFlipFix:ivb */
9407         I915_WRITE(IVB_CHICKEN3,
9408                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9409                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9410
9411         /* WaDisablePSDDualDispatchEnable:ivb */
9412         if (IS_IVB_GT1(dev_priv))
9413                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9414                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9415
9416         /* WaDisable_RenderCache_OperationalFlush:ivb */
9417         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9418
9419         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9420         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9421                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9422
9423         /* WaApplyL3ControlAndL3ChickenMode:ivb */
9424         I915_WRITE(GEN7_L3CNTLREG1,
9425                         GEN7_WA_FOR_GEN7_L3_CONTROL);
9426         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9427                    GEN7_WA_L3_CHICKEN_MODE);
9428         if (IS_IVB_GT1(dev_priv))
9429                 I915_WRITE(GEN7_ROW_CHICKEN2,
9430                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9431         else {
9432                 /* must write both registers */
9433                 I915_WRITE(GEN7_ROW_CHICKEN2,
9434                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9435                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9436                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9437         }
9438
9439         /* WaForceL3Serialization:ivb */
9440         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9441                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9442
9443         /*
9444          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9445          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9446          */
9447         I915_WRITE(GEN6_UCGCTL2,
9448                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9449
9450         /* This is required by WaCatErrorRejectionIssue:ivb */
9451         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9452                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9453                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9454
9455         g4x_disable_trickle_feed(dev_priv);
9456
9457         gen7_setup_fixed_func_scheduler(dev_priv);
9458
9459         if (0) { /* causes HiZ corruption on ivb:gt1 */
9460                 /* enable HiZ Raw Stall Optimization */
9461                 I915_WRITE(CACHE_MODE_0_GEN7,
9462                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9463         }
9464
9465         /* WaDisable4x2SubspanOptimization:ivb */
9466         I915_WRITE(CACHE_MODE_1,
9467                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9468
9469         /*
9470          * BSpec recommends 8x4 when MSAA is used,
9471          * however in practice 16x4 seems fastest.
9472          *
9473          * Note that PS/WM thread counts depend on the WIZ hashing
9474          * disable bit, which we don't touch here, but it's good
9475          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9476          */
9477         I915_WRITE(GEN7_GT_MODE,
9478                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9479
9480         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9481         snpcr &= ~GEN6_MBC_SNPCR_MASK;
9482         snpcr |= GEN6_MBC_SNPCR_MED;
9483         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9484
9485         if (!HAS_PCH_NOP(dev_priv))
9486                 cpt_init_clock_gating(dev_priv);
9487
9488         gen6_check_mch_setup(dev_priv);
9489 }
9490
9491 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9492 {
9493         /* WaDisableEarlyCull:vlv */
9494         I915_WRITE(_3D_CHICKEN3,
9495                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9496
9497         /* WaDisableBackToBackFlipFix:vlv */
9498         I915_WRITE(IVB_CHICKEN3,
9499                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9500                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9501
9502         /* WaPsdDispatchEnable:vlv */
9503         /* WaDisablePSDDualDispatchEnable:vlv */
9504         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9505                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9506                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9507
9508         /* WaDisable_RenderCache_OperationalFlush:vlv */
9509         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9510
9511         /* WaForceL3Serialization:vlv */
9512         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9513                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9514
9515         /* WaDisableDopClockGating:vlv */
9516         I915_WRITE(GEN7_ROW_CHICKEN2,
9517                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9518
9519         /* This is required by WaCatErrorRejectionIssue:vlv */
9520         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9521                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9522                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9523
9524         gen7_setup_fixed_func_scheduler(dev_priv);
9525
9526         /*
9527          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9528          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9529          */
9530         I915_WRITE(GEN6_UCGCTL2,
9531                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9532
9533         /* WaDisableL3Bank2xClockGate:vlv
9534          * Disabling L3 clock gating- MMIO 940c[25] = 1
9535          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9536         I915_WRITE(GEN7_UCGCTL4,
9537                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9538
9539         /*
9540          * BSpec says this must be set, even though
9541          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9542          */
9543         I915_WRITE(CACHE_MODE_1,
9544                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9545
9546         /*
9547          * BSpec recommends 8x4 when MSAA is used,
9548          * however in practice 16x4 seems fastest.
9549          *
9550          * Note that PS/WM thread counts depend on the WIZ hashing
9551          * disable bit, which we don't touch here, but it's good
9552          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9553          */
9554         I915_WRITE(GEN7_GT_MODE,
9555                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9556
9557         /*
9558          * WaIncreaseL3CreditsForVLVB0:vlv
9559          * This is the hardware default actually.
9560          */
9561         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9562
9563         /*
9564          * WaDisableVLVClockGating_VBIIssue:vlv
9565          * Disable clock gating on th GCFG unit to prevent a delay
9566          * in the reporting of vblank events.
9567          */
9568         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9569 }
9570
9571 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9572 {
9573         /* WaVSRefCountFullforceMissDisable:chv */
9574         /* WaDSRefCountFullforceMissDisable:chv */
9575         I915_WRITE(GEN7_FF_THREAD_MODE,
9576                    I915_READ(GEN7_FF_THREAD_MODE) &
9577                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9578
9579         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9580         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9581                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9582
9583         /* WaDisableCSUnitClockGating:chv */
9584         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9585                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9586
9587         /* WaDisableSDEUnitClockGating:chv */
9588         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9589                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9590
9591         /*
9592          * WaProgramL3SqcReg1Default:chv
9593          * See gfxspecs/Related Documents/Performance Guide/
9594          * LSQC Setting Recommendations.
9595          */
9596         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9597 }
9598
9599 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9600 {
9601         u32 dspclk_gate;
9602
9603         I915_WRITE(RENCLK_GATE_D1, 0);
9604         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9605                    GS_UNIT_CLOCK_GATE_DISABLE |
9606                    CL_UNIT_CLOCK_GATE_DISABLE);
9607         I915_WRITE(RAMCLK_GATE_D, 0);
9608         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9609                 OVRUNIT_CLOCK_GATE_DISABLE |
9610                 OVCUNIT_CLOCK_GATE_DISABLE;
9611         if (IS_GM45(dev_priv))
9612                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9613         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9614
9615         /* WaDisableRenderCachePipelinedFlush */
9616         I915_WRITE(CACHE_MODE_0,
9617                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9618
9619         /* WaDisable_RenderCache_OperationalFlush:g4x */
9620         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9621
9622         g4x_disable_trickle_feed(dev_priv);
9623 }
9624
9625 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9626 {
9627         struct intel_uncore *uncore = &dev_priv->uncore;
9628
9629         intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9630         intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
9631         intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
9632         intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
9633         intel_uncore_write16(uncore, DEUC, 0);
9634         intel_uncore_write(uncore,
9635                            MI_ARB_STATE,
9636                            _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9637
9638         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9639         intel_uncore_write(uncore,
9640                            CACHE_MODE_0,
9641                            _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9642 }
9643
9644 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9645 {
9646         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9647                    I965_RCC_CLOCK_GATE_DISABLE |
9648                    I965_RCPB_CLOCK_GATE_DISABLE |
9649                    I965_ISC_CLOCK_GATE_DISABLE |
9650                    I965_FBC_CLOCK_GATE_DISABLE);
9651         I915_WRITE(RENCLK_GATE_D2, 0);
9652         I915_WRITE(MI_ARB_STATE,
9653                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9654
9655         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9656         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9657 }
9658
9659 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9660 {
9661         u32 dstate = I915_READ(D_STATE);
9662
9663         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9664                 DSTATE_DOT_CLOCK_GATING;
9665         I915_WRITE(D_STATE, dstate);
9666
9667         if (IS_PINEVIEW(dev_priv))
9668                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9669
9670         /* IIR "flip pending" means done if this bit is set */
9671         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9672
9673         /* interrupts should cause a wake up from C3 */
9674         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9675
9676         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9677         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9678
9679         I915_WRITE(MI_ARB_STATE,
9680                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9681 }
9682
9683 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9684 {
9685         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9686
9687         /* interrupts should cause a wake up from C3 */
9688         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9689                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9690
9691         I915_WRITE(MEM_MODE,
9692                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9693 }
9694
9695 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9696 {
9697         I915_WRITE(MEM_MODE,
9698                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9699                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9700 }
9701
9702 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9703 {
9704         dev_priv->display.init_clock_gating(dev_priv);
9705 }
9706
9707 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9708 {
9709         if (HAS_PCH_LPT(dev_priv))
9710                 lpt_suspend_hw(dev_priv);
9711 }
9712
9713 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9714 {
9715         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9716 }
9717
9718 /**
9719  * intel_init_clock_gating_hooks - setup the clock gating hooks
9720  * @dev_priv: device private
9721  *
9722  * Setup the hooks that configure which clocks of a given platform can be
9723  * gated and also apply various GT and display specific workarounds for these
9724  * platforms. Note that some GT specific workarounds are applied separately
9725  * when GPU contexts or batchbuffers start their execution.
9726  */
9727 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9728 {
9729         if (IS_GEN(dev_priv, 12))
9730                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9731         else if (IS_GEN(dev_priv, 11))
9732                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9733         else if (IS_CANNONLAKE(dev_priv))
9734                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9735         else if (IS_COFFEELAKE(dev_priv))
9736                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9737         else if (IS_SKYLAKE(dev_priv))
9738                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9739         else if (IS_KABYLAKE(dev_priv))
9740                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9741         else if (IS_BROXTON(dev_priv))
9742                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9743         else if (IS_GEMINILAKE(dev_priv))
9744                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9745         else if (IS_BROADWELL(dev_priv))
9746                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9747         else if (IS_CHERRYVIEW(dev_priv))
9748                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9749         else if (IS_HASWELL(dev_priv))
9750                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9751         else if (IS_IVYBRIDGE(dev_priv))
9752                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9753         else if (IS_VALLEYVIEW(dev_priv))
9754                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9755         else if (IS_GEN(dev_priv, 6))
9756                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9757         else if (IS_GEN(dev_priv, 5))
9758                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9759         else if (IS_G4X(dev_priv))
9760                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9761         else if (IS_I965GM(dev_priv))
9762                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9763         else if (IS_I965G(dev_priv))
9764                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9765         else if (IS_GEN(dev_priv, 3))
9766                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9767         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9768                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9769         else if (IS_GEN(dev_priv, 2))
9770                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9771         else {
9772                 MISSING_CASE(INTEL_DEVID(dev_priv));
9773                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9774         }
9775 }
9776
9777 /* Set up chip specific power management-related functions */
9778 void intel_init_pm(struct drm_i915_private *dev_priv)
9779 {
9780         /* For cxsr */
9781         if (IS_PINEVIEW(dev_priv))
9782                 i915_pineview_get_mem_freq(dev_priv);
9783         else if (IS_GEN(dev_priv, 5))
9784                 i915_ironlake_get_mem_freq(dev_priv);
9785
9786         /* For FIFO watermark updates */
9787         if (INTEL_GEN(dev_priv) >= 9) {
9788                 skl_setup_wm_latency(dev_priv);
9789                 dev_priv->display.initial_watermarks = skl_initial_wm;
9790                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9791                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9792         } else if (HAS_PCH_SPLIT(dev_priv)) {
9793                 ilk_setup_wm_latency(dev_priv);
9794
9795                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9796                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9797                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9798                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9799                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9800                         dev_priv->display.compute_intermediate_wm =
9801                                 ilk_compute_intermediate_wm;
9802                         dev_priv->display.initial_watermarks =
9803                                 ilk_initial_watermarks;
9804                         dev_priv->display.optimize_watermarks =
9805                                 ilk_optimize_watermarks;
9806                 } else {
9807                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9808                                       "Disable CxSR\n");
9809                 }
9810         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9811                 vlv_setup_wm_latency(dev_priv);
9812                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9813                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9814                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9815                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9816                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9817         } else if (IS_G4X(dev_priv)) {
9818                 g4x_setup_wm_latency(dev_priv);
9819                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9820                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9821                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9822                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9823         } else if (IS_PINEVIEW(dev_priv)) {
9824                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9825                                             dev_priv->is_ddr3,
9826                                             dev_priv->fsb_freq,
9827                                             dev_priv->mem_freq)) {
9828                         DRM_INFO("failed to find known CxSR latency "
9829                                  "(found ddr%s fsb freq %d, mem freq %d), "
9830                                  "disabling CxSR\n",
9831                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9832                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9833                         /* Disable CxSR and never update its watermark again */
9834                         intel_set_memory_cxsr(dev_priv, false);
9835                         dev_priv->display.update_wm = NULL;
9836                 } else
9837                         dev_priv->display.update_wm = pineview_update_wm;
9838         } else if (IS_GEN(dev_priv, 4)) {
9839                 dev_priv->display.update_wm = i965_update_wm;
9840         } else if (IS_GEN(dev_priv, 3)) {
9841                 dev_priv->display.update_wm = i9xx_update_wm;
9842                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9843         } else if (IS_GEN(dev_priv, 2)) {
9844                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9845                         dev_priv->display.update_wm = i845_update_wm;
9846                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9847                 } else {
9848                         dev_priv->display.update_wm = i9xx_update_wm;
9849                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9850                 }
9851         } else {
9852                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9853         }
9854 }
9855
9856 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9857 {
9858         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9859
9860         /*
9861          * N = val - 0xb7
9862          * Slow = Fast = GPLL ref * N
9863          */
9864         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9865 }
9866
9867 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9868 {
9869         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9870
9871         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9872 }
9873
9874 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9875 {
9876         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9877
9878         /*
9879          * N = val / 2
9880          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9881          */
9882         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9883 }
9884
9885 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9886 {
9887         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9888
9889         /* CHV needs even values */
9890         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9891 }
9892
9893 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9894 {
9895         if (INTEL_GEN(dev_priv) >= 9)
9896                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9897                                          GEN9_FREQ_SCALER);
9898         else if (IS_CHERRYVIEW(dev_priv))
9899                 return chv_gpu_freq(dev_priv, val);
9900         else if (IS_VALLEYVIEW(dev_priv))
9901                 return byt_gpu_freq(dev_priv, val);
9902         else
9903                 return val * GT_FREQUENCY_MULTIPLIER;
9904 }
9905
9906 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9907 {
9908         if (INTEL_GEN(dev_priv) >= 9)
9909                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9910                                          GT_FREQUENCY_MULTIPLIER);
9911         else if (IS_CHERRYVIEW(dev_priv))
9912                 return chv_freq_opcode(dev_priv, val);
9913         else if (IS_VALLEYVIEW(dev_priv))
9914                 return byt_freq_opcode(dev_priv, val);
9915         else
9916                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9917 }
9918
9919 void intel_pm_setup(struct drm_i915_private *dev_priv)
9920 {
9921         mutex_init(&dev_priv->gt_pm.rps.lock);
9922         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9923
9924         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9925
9926         dev_priv->runtime_pm.suspended = false;
9927         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9928 }
9929
9930 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9931                              const i915_reg_t reg)
9932 {
9933         u32 lower, upper, tmp;
9934         int loop = 2;
9935
9936         /*
9937          * The register accessed do not need forcewake. We borrow
9938          * uncore lock to prevent concurrent access to range reg.
9939          */
9940         lockdep_assert_held(&dev_priv->uncore.lock);
9941
9942         /*
9943          * vlv and chv residency counters are 40 bits in width.
9944          * With a control bit, we can choose between upper or lower
9945          * 32bit window into this counter.
9946          *
9947          * Although we always use the counter in high-range mode elsewhere,
9948          * userspace may attempt to read the value before rc6 is initialised,
9949          * before we have set the default VLV_COUNTER_CONTROL value. So always
9950          * set the high bit to be safe.
9951          */
9952         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9953                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9954         upper = I915_READ_FW(reg);
9955         do {
9956                 tmp = upper;
9957
9958                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9959                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9960                 lower = I915_READ_FW(reg);
9961
9962                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9963                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9964                 upper = I915_READ_FW(reg);
9965         } while (upper != tmp && --loop);
9966
9967         /*
9968          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9969          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9970          * now.
9971          */
9972
9973         return lower | (u64)upper << 8;
9974 }
9975
9976 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9977                            const i915_reg_t reg)
9978 {
9979         struct intel_uncore *uncore = &dev_priv->uncore;
9980         u64 time_hw, prev_hw, overflow_hw;
9981         unsigned int fw_domains;
9982         unsigned long flags;
9983         unsigned int i;
9984         u32 mul, div;
9985
9986         if (!HAS_RC6(dev_priv))
9987                 return 0;
9988
9989         /*
9990          * Store previous hw counter values for counter wrap-around handling.
9991          *
9992          * There are only four interesting registers and they live next to each
9993          * other so we can use the relative address, compared to the smallest
9994          * one as the index into driver storage.
9995          */
9996         i = (i915_mmio_reg_offset(reg) -
9997              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9998         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9999                 return 0;
10000
10001         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
10002
10003         spin_lock_irqsave(&uncore->lock, flags);
10004         intel_uncore_forcewake_get__locked(uncore, fw_domains);
10005
10006         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
10007         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10008                 mul = 1000000;
10009                 div = dev_priv->czclk_freq;
10010                 overflow_hw = BIT_ULL(40);
10011                 time_hw = vlv_residency_raw(dev_priv, reg);
10012         } else {
10013                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
10014                 if (IS_GEN9_LP(dev_priv)) {
10015                         mul = 10000;
10016                         div = 12;
10017                 } else {
10018                         mul = 1280;
10019                         div = 1;
10020                 }
10021
10022                 overflow_hw = BIT_ULL(32);
10023                 time_hw = intel_uncore_read_fw(uncore, reg);
10024         }
10025
10026         /*
10027          * Counter wrap handling.
10028          *
10029          * But relying on a sufficient frequency of queries otherwise counters
10030          * can still wrap.
10031          */
10032         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
10033         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
10034
10035         /* RC6 delta from last sample. */
10036         if (time_hw >= prev_hw)
10037                 time_hw -= prev_hw;
10038         else
10039                 time_hw += overflow_hw - prev_hw;
10040
10041         /* Add delta to RC6 extended raw driver copy. */
10042         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
10043         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
10044
10045         intel_uncore_forcewake_put__locked(uncore, fw_domains);
10046         spin_unlock_irqrestore(&uncore->lock, flags);
10047
10048         return mul_u64_u32_div(time_hw, mul, div);
10049 }
10050
10051 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
10052                            i915_reg_t reg)
10053 {
10054         return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
10055 }
10056
10057 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
10058 {
10059         u32 cagf;
10060
10061         if (INTEL_GEN(dev_priv) >= 9)
10062                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
10063         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10064                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10065         else
10066                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
10067
10068         return  cagf;
10069 }