2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
217 FAULT_AND_HALT, /* Debug only */
219 FAULT_AND_CONTINUE /* Unsupported */
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
229 #define WA_TAIL_DWORDS 2
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242 * @dev_priv: i915 device private
243 * @enable_execlists: value of i915.enable_execlists module parameter.
245 * Only certain platforms support Execlists (the prerequisites being
246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
248 * Return: 1 if Execlists is supported and has to be enabled.
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
258 if (INTEL_GEN(dev_priv) >= 9)
261 if (enable_execlists == 0)
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
275 struct drm_i915_private *dev_priv = engine->i915;
277 engine->disable_lite_restore_wa =
278 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
279 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
280 (engine->id == VCS || engine->id == VCS2);
282 engine->ctx_desc_template = GEN8_CTX_VALID;
283 if (IS_GEN8(dev_priv))
284 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
285 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 /* TODO: WaDisableLiteRestore when we start using semaphore
288 * signalling between Command Streamers */
289 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
292 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293 if (engine->disable_lite_restore_wa)
294 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
299 * descriptor for a pinned context
300 * @ctx: Context to work on
301 * @engine: Engine the descriptor will be used with
303 * The context descriptor encodes various attributes of a context,
304 * including its GTT address and some flags. Because it's fairly
305 * expensive to calculate, we'll just do it once and cache the result,
306 * which remains valid until the context is unpinned.
308 * This is what a descriptor looks like, from LSB to MSB::
310 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
311 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
312 * bits 32-52: ctx ID, a globally unique tag
313 * bits 53-54: mbz, reserved for use by hardware
314 * bits 55-63: group ID, currently unused and set to 0
317 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
318 struct intel_engine_cs *engine)
320 struct intel_context *ce = &ctx->engine[engine->id];
323 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
325 desc = ctx->desc_template; /* bits 3-4 */
326 desc |= engine->ctx_desc_template; /* bits 0-11 */
327 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
329 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
334 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
335 struct intel_engine_cs *engine)
337 return ctx->engine[engine->id].lrc_desc;
341 execlists_context_status_change(struct drm_i915_gem_request *rq,
342 unsigned long status)
345 * Only used when GVT-g is enabled now. When GVT-g is disabled,
346 * The compiler should eliminate this function as dead-code.
348 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
351 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
355 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
360 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
363 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
365 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
366 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
367 u32 *reg_state = ce->lrc_reg_state;
369 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
371 /* True 32b PPGTT with dynamic page allocation: update PDP
372 * registers and point the unallocated PDPs to scratch page.
373 * PML4 is allocated during ppgtt init, so this is not needed
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
377 execlists_update_context_pdps(ppgtt, reg_state);
382 static void execlists_submit_ports(struct intel_engine_cs *engine)
384 struct drm_i915_private *dev_priv = engine->i915;
385 struct execlist_port *port = engine->execlist_port;
387 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
391 execlists_context_status_change(port[0].request,
392 INTEL_CONTEXT_SCHEDULE_IN);
393 desc[0] = execlists_update_context(port[0].request);
394 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
396 if (port[1].request) {
397 GEM_BUG_ON(port[1].count);
398 execlists_context_status_change(port[1].request,
399 INTEL_CONTEXT_SCHEDULE_IN);
400 desc[1] = execlists_update_context(port[1].request);
405 GEM_BUG_ON(desc[0] == desc[1]);
407 /* You must always write both descriptors in the order below. */
408 writel(upper_32_bits(desc[1]), elsp);
409 writel(lower_32_bits(desc[1]), elsp);
411 writel(upper_32_bits(desc[0]), elsp);
412 /* The context is automatically loaded after the following */
413 writel(lower_32_bits(desc[0]), elsp);
416 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
418 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419 ctx->execlists_force_single_submission);
422 static bool can_merge_ctx(const struct i915_gem_context *prev,
423 const struct i915_gem_context *next)
428 if (ctx_single_port_submission(prev))
434 static void execlists_dequeue(struct intel_engine_cs *engine)
436 struct drm_i915_gem_request *cursor, *last;
437 struct execlist_port *port = engine->execlist_port;
440 last = port->request;
442 /* WaIdleLiteRestore:bdw,skl
443 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
444 * as we resubmit the request. See gen8_emit_request()
445 * for where we prepare the padding after the end of the
448 last->tail = last->wa_tail;
450 GEM_BUG_ON(port[1].request);
452 /* Hardware submission is through 2 ports. Conceptually each port
453 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
454 * static for a context, and unique to each, so we only execute
455 * requests belonging to a single context from each ring. RING_HEAD
456 * is maintained by the CS in the context image, it marks the place
457 * where it got up to last time, and through RING_TAIL we tell the CS
458 * where we want to execute up to this time.
460 * In this list the requests are in order of execution. Consecutive
461 * requests from the same context are adjacent in the ringbuffer. We
462 * can combine these requests into a single RING_TAIL update:
464 * RING_HEAD...req1...req2
466 * since to execute req2 the CS must first execute req1.
468 * Our goal then is to point each port to the end of a consecutive
469 * sequence of requests as being the most optimal (fewest wake ups
470 * and context switches) submission.
473 spin_lock(&engine->execlist_lock);
474 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
475 /* Can we combine this request with the current port? It has to
476 * be the same context/ringbuffer and not have any exceptions
477 * (e.g. GVT saying never to combine contexts).
479 * If we can combine the requests, we can execute both by
480 * updating the RING_TAIL to point to the end of the second
481 * request, and so we never need to tell the hardware about
484 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
485 /* If we are on the second port and cannot combine
486 * this request with the last, then we are done.
488 if (port != engine->execlist_port)
491 /* If GVT overrides us we only ever submit port[0],
492 * leaving port[1] empty. Note that we also have
493 * to be careful that we don't queue the same
494 * context (even though a different request) to
497 if (ctx_single_port_submission(cursor->ctx))
500 GEM_BUG_ON(last->ctx == cursor->ctx);
502 i915_gem_request_assign(&port->request, last);
509 /* Decouple all the requests submitted from the queue */
510 engine->execlist_queue.next = &cursor->execlist_link;
511 cursor->execlist_link.prev = &engine->execlist_queue;
513 i915_gem_request_assign(&port->request, last);
515 spin_unlock(&engine->execlist_lock);
518 execlists_submit_ports(engine);
521 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
523 return !engine->execlist_port[0].request;
526 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
530 port = 1; /* wait for a free slot */
531 if (engine->disable_lite_restore_wa || engine->preempt_wa)
532 port = 0; /* wait for GPU to be idle before continuing */
534 return !engine->execlist_port[port].request;
538 * Check the unread Context Status Buffers and manage the submission of new
539 * contexts to the ELSP accordingly.
541 static void intel_lrc_irq_handler(unsigned long data)
543 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
544 struct execlist_port *port = engine->execlist_port;
545 struct drm_i915_private *dev_priv = engine->i915;
547 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
549 if (!execlists_elsp_idle(engine)) {
550 u32 __iomem *csb_mmio =
551 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
553 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
554 unsigned int csb, head, tail;
556 csb = readl(csb_mmio);
557 head = GEN8_CSB_READ_PTR(csb);
558 tail = GEN8_CSB_WRITE_PTR(csb);
560 tail += GEN8_CSB_ENTRIES;
561 while (head < tail) {
562 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
563 unsigned int status = readl(buf + 2 * idx);
565 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
568 GEM_BUG_ON(port[0].count == 0);
569 if (--port[0].count == 0) {
570 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
571 execlists_context_status_change(port[0].request,
572 INTEL_CONTEXT_SCHEDULE_OUT);
574 i915_gem_request_put(port[0].request);
576 memset(&port[1], 0, sizeof(port[1]));
578 engine->preempt_wa = false;
581 GEM_BUG_ON(port[0].count == 0 &&
582 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
585 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
586 GEN8_CSB_WRITE_PTR(csb) << 8),
590 if (execlists_elsp_ready(engine))
591 execlists_dequeue(engine);
593 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
596 static void execlists_submit_request(struct drm_i915_gem_request *request)
598 struct intel_engine_cs *engine = request->engine;
601 spin_lock_irqsave(&engine->execlist_lock, flags);
603 list_add_tail(&request->execlist_link, &engine->execlist_queue);
604 if (execlists_elsp_idle(engine))
605 tasklet_hi_schedule(&engine->irq_tasklet);
607 spin_unlock_irqrestore(&engine->execlist_lock, flags);
610 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
612 struct intel_engine_cs *engine = request->engine;
613 struct intel_context *ce = &request->ctx->engine[engine->id];
616 /* Flush enough space to reduce the likelihood of waiting after
617 * we start building the request - in which case we will just
618 * have to repeat work.
620 request->reserved_space += EXECLISTS_REQUEST_SIZE;
623 ret = execlists_context_deferred_alloc(request->ctx, engine);
628 request->ring = ce->ring;
630 ret = intel_lr_context_pin(request->ctx, engine);
634 if (i915.enable_guc_submission) {
636 * Check that the GuC has space for the request before
637 * going any further, as the i915_add_request() call
638 * later on mustn't fail ...
640 ret = i915_guc_wq_reserve(request);
645 ret = intel_ring_begin(request, 0);
649 if (!ce->initialised) {
650 ret = engine->init_context(request);
654 ce->initialised = true;
657 /* Note that after this point, we have committed to using
658 * this request as it is being used to both track the
659 * state of engine initialisation and liveness of the
660 * golden renderstate above. Think twice before you try
661 * to cancel/unwind this request now.
664 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
668 if (i915.enable_guc_submission)
669 i915_guc_wq_unreserve(request);
671 intel_lr_context_unpin(request->ctx, engine);
676 * intel_logical_ring_advance() - advance the tail and prepare for submission
677 * @request: Request to advance the logical ringbuffer of.
679 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
680 * really happens during submission is that the context and current tail will be placed
681 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
682 * point, the tail *inside* the context is updated and the ELSP written to.
685 intel_logical_ring_advance(struct drm_i915_gem_request *request)
687 struct intel_ring *ring = request->ring;
688 struct intel_engine_cs *engine = request->engine;
690 intel_ring_advance(ring);
691 request->tail = ring->tail;
694 * Here we add two extra NOOPs as padding to avoid
695 * lite restore of a context with HEAD==TAIL.
697 * Caller must reserve WA_TAIL_DWORDS for us!
699 intel_ring_emit(ring, MI_NOOP);
700 intel_ring_emit(ring, MI_NOOP);
701 intel_ring_advance(ring);
702 request->wa_tail = ring->tail;
704 /* We keep the previous context alive until we retire the following
705 * request. This ensures that any the context object is still pinned
706 * for any residual writes the HW makes into it on the context switch
707 * into the next object following the breadcrumb. Otherwise, we may
708 * retire the context too early.
710 request->previous_context = engine->last_context;
711 engine->last_context = request->ctx;
715 static int intel_lr_context_pin(struct i915_gem_context *ctx,
716 struct intel_engine_cs *engine)
718 struct intel_context *ce = &ctx->engine[engine->id];
722 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
727 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
728 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
732 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
734 ret = PTR_ERR(vaddr);
738 ret = intel_ring_pin(ce->ring);
742 intel_lr_context_descriptor_update(ctx, engine);
744 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
745 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
746 i915_ggtt_offset(ce->ring->vma);
748 ce->state->obj->dirty = true;
750 /* Invalidate GuC TLB. */
751 if (i915.enable_guc_submission) {
752 struct drm_i915_private *dev_priv = ctx->i915;
753 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
756 i915_gem_context_get(ctx);
760 i915_gem_object_unpin_map(ce->state->obj);
762 __i915_vma_unpin(ce->state);
768 void intel_lr_context_unpin(struct i915_gem_context *ctx,
769 struct intel_engine_cs *engine)
771 struct intel_context *ce = &ctx->engine[engine->id];
773 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
774 GEM_BUG_ON(ce->pin_count == 0);
779 intel_ring_unpin(ce->ring);
781 i915_gem_object_unpin_map(ce->state->obj);
782 i915_vma_unpin(ce->state);
784 i915_gem_context_put(ctx);
787 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
790 struct intel_ring *ring = req->ring;
791 struct i915_workarounds *w = &req->i915->workarounds;
796 ret = req->engine->emit_flush(req, EMIT_BARRIER);
800 ret = intel_ring_begin(req, w->count * 2 + 2);
804 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
805 for (i = 0; i < w->count; i++) {
806 intel_ring_emit_reg(ring, w->reg[i].addr);
807 intel_ring_emit(ring, w->reg[i].value);
809 intel_ring_emit(ring, MI_NOOP);
811 intel_ring_advance(ring);
813 ret = req->engine->emit_flush(req, EMIT_BARRIER);
820 #define wa_ctx_emit(batch, index, cmd) \
822 int __index = (index)++; \
823 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
826 batch[__index] = (cmd); \
829 #define wa_ctx_emit_reg(batch, index, reg) \
830 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
833 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
834 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
835 * but there is a slight complication as this is applied in WA batch where the
836 * values are only initialized once so we cannot take register value at the
837 * beginning and reuse it further; hence we save its value to memory, upload a
838 * constant value with bit21 set and then we restore it back with the saved value.
839 * To simplify the WA, a constant value is formed by using the default value
840 * of this register. This shouldn't be a problem because we are only modifying
841 * it for a short period and this batch in non-premptible. We can ofcourse
842 * use additional instructions that read the actual value of the register
843 * at that time and set our bit of interest but it makes the WA complicated.
845 * This WA is also required for Gen9 so extracting as a function avoids
848 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
852 struct drm_i915_private *dev_priv = engine->i915;
853 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
856 * WaDisableLSQCROPERFforOCL:skl,kbl
857 * This WA is implemented in skl_init_clock_gating() but since
858 * this batch updates GEN8_L3SQCREG4 with default value we need to
859 * set this bit here to retain the WA during flush.
861 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
862 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
864 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
865 MI_SRM_LRM_GLOBAL_GTT));
866 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
867 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
868 wa_ctx_emit(batch, index, 0);
870 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
871 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
872 wa_ctx_emit(batch, index, l3sqc4_flush);
874 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
875 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
876 PIPE_CONTROL_DC_FLUSH_ENABLE));
877 wa_ctx_emit(batch, index, 0);
878 wa_ctx_emit(batch, index, 0);
879 wa_ctx_emit(batch, index, 0);
880 wa_ctx_emit(batch, index, 0);
882 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
883 MI_SRM_LRM_GLOBAL_GTT));
884 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
885 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
886 wa_ctx_emit(batch, index, 0);
891 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
893 uint32_t start_alignment)
895 return wa_ctx->offset = ALIGN(offset, start_alignment);
898 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
900 uint32_t size_alignment)
902 wa_ctx->size = offset - wa_ctx->offset;
904 WARN(wa_ctx->size % size_alignment,
905 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
906 wa_ctx->size, size_alignment);
911 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
912 * initialized at the beginning and shared across all contexts but this field
913 * helps us to have multiple batches at different offsets and select them based
914 * on a criteria. At the moment this batch always start at the beginning of the page
915 * and at this point we don't have multiple wa_ctx batch buffers.
917 * The number of WA applied are not known at the beginning; we use this field
918 * to return the no of DWORDS written.
920 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
921 * so it adds NOOPs as padding to make it cacheline aligned.
922 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
923 * makes a complete batch buffer.
925 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
926 struct i915_wa_ctx_bb *wa_ctx,
930 uint32_t scratch_addr;
931 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
933 /* WaDisableCtxRestoreArbitration:bdw,chv */
934 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
936 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
937 if (IS_BROADWELL(engine->i915)) {
938 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
944 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
945 /* Actual scratch location is at 128 bytes offset */
946 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
948 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
949 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
950 PIPE_CONTROL_GLOBAL_GTT_IVB |
951 PIPE_CONTROL_CS_STALL |
952 PIPE_CONTROL_QW_WRITE));
953 wa_ctx_emit(batch, index, scratch_addr);
954 wa_ctx_emit(batch, index, 0);
955 wa_ctx_emit(batch, index, 0);
956 wa_ctx_emit(batch, index, 0);
958 /* Pad to end of cacheline */
959 while (index % CACHELINE_DWORDS)
960 wa_ctx_emit(batch, index, MI_NOOP);
963 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
964 * execution depends on the length specified in terms of cache lines
965 * in the register CTX_RCS_INDIRECT_CTX
968 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
972 * This batch is started immediately after indirect_ctx batch. Since we ensure
973 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
975 * The number of DWORDS written are returned using this field.
977 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
978 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
980 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
981 struct i915_wa_ctx_bb *wa_ctx,
985 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
987 /* WaDisableCtxRestoreArbitration:bdw,chv */
988 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
990 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
992 return wa_ctx_end(wa_ctx, *offset = index, 1);
995 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
996 struct i915_wa_ctx_bb *wa_ctx,
1001 struct drm_i915_private *dev_priv = engine->i915;
1002 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1004 /* WaDisableCtxRestoreArbitration:skl,bxt */
1005 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1006 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1007 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1009 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1010 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1015 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1016 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1017 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1018 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1019 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1020 wa_ctx_emit(batch, index, MI_NOOP);
1022 /* WaClearSlmSpaceAtContextSwitch:kbl */
1023 /* Actual scratch location is at 128 bytes offset */
1024 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1026 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1028 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1029 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1030 PIPE_CONTROL_GLOBAL_GTT_IVB |
1031 PIPE_CONTROL_CS_STALL |
1032 PIPE_CONTROL_QW_WRITE));
1033 wa_ctx_emit(batch, index, scratch_addr);
1034 wa_ctx_emit(batch, index, 0);
1035 wa_ctx_emit(batch, index, 0);
1036 wa_ctx_emit(batch, index, 0);
1039 /* WaMediaPoolStateCmdInWABB:bxt */
1040 if (HAS_POOLED_EU(engine->i915)) {
1042 * EU pool configuration is setup along with golden context
1043 * during context initialization. This value depends on
1044 * device type (2x6 or 3x6) and needs to be updated based
1045 * on which subslice is disabled especially for 2x6
1046 * devices, however it is safe to load default
1047 * configuration of 3x6 device instead of masking off
1048 * corresponding bits because HW ignores bits of a disabled
1049 * subslice and drops down to appropriate config. Please
1050 * see render_state_setup() in i915_gem_render_state.c for
1051 * possible configurations, to avoid duplication they are
1052 * not shown here again.
1054 u32 eu_pool_config = 0x00777000;
1055 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1056 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1057 wa_ctx_emit(batch, index, eu_pool_config);
1058 wa_ctx_emit(batch, index, 0);
1059 wa_ctx_emit(batch, index, 0);
1060 wa_ctx_emit(batch, index, 0);
1063 /* Pad to end of cacheline */
1064 while (index % CACHELINE_DWORDS)
1065 wa_ctx_emit(batch, index, MI_NOOP);
1067 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1070 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1071 struct i915_wa_ctx_bb *wa_ctx,
1075 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1077 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1078 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1079 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1080 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1081 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1082 wa_ctx_emit(batch, index,
1083 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1084 wa_ctx_emit(batch, index, MI_NOOP);
1087 /* WaClearTdlStateAckDirtyBits:bxt */
1088 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1089 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1091 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1092 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1094 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1095 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1097 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1098 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1100 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1101 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1102 wa_ctx_emit(batch, index, 0x0);
1103 wa_ctx_emit(batch, index, MI_NOOP);
1106 /* WaDisableCtxRestoreArbitration:skl,bxt */
1107 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1108 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1109 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1111 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1113 return wa_ctx_end(wa_ctx, *offset = index, 1);
1116 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1118 struct drm_i915_gem_object *obj;
1119 struct i915_vma *vma;
1122 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1124 return PTR_ERR(obj);
1126 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1132 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1136 engine->wa_ctx.vma = vma;
1140 i915_gem_object_put(obj);
1144 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1146 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1149 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1151 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1157 WARN_ON(engine->id != RCS);
1159 /* update this when WA for higher Gen are added */
1160 if (INTEL_GEN(engine->i915) > 9) {
1161 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1162 INTEL_GEN(engine->i915));
1166 /* some WA perform writes to scratch page, ensure it is valid */
1167 if (!engine->scratch) {
1168 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1172 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1174 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1178 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1179 batch = kmap_atomic(page);
1182 if (IS_GEN8(engine->i915)) {
1183 ret = gen8_init_indirectctx_bb(engine,
1184 &wa_ctx->indirect_ctx,
1190 ret = gen8_init_perctx_bb(engine,
1196 } else if (IS_GEN9(engine->i915)) {
1197 ret = gen9_init_indirectctx_bb(engine,
1198 &wa_ctx->indirect_ctx,
1204 ret = gen9_init_perctx_bb(engine,
1213 kunmap_atomic(batch);
1215 lrc_destroy_wa_ctx_obj(engine);
1220 static void lrc_init_hws(struct intel_engine_cs *engine)
1222 struct drm_i915_private *dev_priv = engine->i915;
1224 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1225 engine->status_page.ggtt_offset);
1226 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1229 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1231 struct drm_i915_private *dev_priv = engine->i915;
1234 ret = intel_mocs_init_engine(engine);
1238 lrc_init_hws(engine);
1240 intel_engine_reset_breadcrumbs(engine);
1242 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1244 I915_WRITE(RING_MODE_GEN7(engine),
1245 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1246 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1248 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1250 intel_engine_init_hangcheck(engine);
1252 if (!execlists_elsp_idle(engine))
1253 execlists_submit_ports(engine);
1258 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1260 struct drm_i915_private *dev_priv = engine->i915;
1263 ret = gen8_init_common_ring(engine);
1267 /* We need to disable the AsyncFlip performance optimisations in order
1268 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1269 * programmed to '1' on all products.
1271 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1273 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1275 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1277 return init_workarounds_ring(engine);
1280 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1284 ret = gen8_init_common_ring(engine);
1288 return init_workarounds_ring(engine);
1291 static void reset_common_ring(struct intel_engine_cs *engine,
1292 struct drm_i915_gem_request *request)
1294 struct drm_i915_private *dev_priv = engine->i915;
1295 struct execlist_port *port = engine->execlist_port;
1296 struct intel_context *ce = &request->ctx->engine[engine->id];
1298 /* We want a simple context + ring to execute the breadcrumb update.
1299 * We cannot rely on the context being intact across the GPU hang,
1300 * so clear it and rebuild just what we need for the breadcrumb.
1301 * All pending requests for this context will be zapped, and any
1302 * future request will be after userspace has had the opportunity
1303 * to recreate its own state.
1305 execlists_init_reg_state(ce->lrc_reg_state,
1306 request->ctx, engine, ce->ring);
1308 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1309 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1310 i915_ggtt_offset(ce->ring->vma);
1311 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1313 request->ring->head = request->postfix;
1314 request->ring->last_retired_head = -1;
1315 intel_ring_update_space(request->ring);
1317 if (i915.enable_guc_submission)
1320 /* Catch up with any missed context-switch interrupts */
1321 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1322 if (request->ctx != port[0].request->ctx) {
1323 i915_gem_request_put(port[0].request);
1325 memset(&port[1], 0, sizeof(port[1]));
1328 /* CS is stopped, and we will resubmit both ports on resume */
1329 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1333 /* Reset WaIdleLiteRestore:bdw,skl as well */
1334 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1337 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1339 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1340 struct intel_ring *ring = req->ring;
1341 struct intel_engine_cs *engine = req->engine;
1342 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1345 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1349 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1350 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1351 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1353 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1354 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1355 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1356 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1359 intel_ring_emit(ring, MI_NOOP);
1360 intel_ring_advance(ring);
1365 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1366 u64 offset, u32 len,
1367 unsigned int dispatch_flags)
1369 struct intel_ring *ring = req->ring;
1370 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1373 /* Don't rely in hw updating PDPs, specially in lite-restore.
1374 * Ideally, we should set Force PD Restore in ctx descriptor,
1375 * but we can't. Force Restore would be a second option, but
1376 * it is unsafe in case of lite-restore (because the ctx is
1377 * not idle). PML4 is allocated during ppgtt init so this is
1378 * not needed in 48-bit.*/
1379 if (req->ctx->ppgtt &&
1380 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1381 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1382 !intel_vgpu_active(req->i915)) {
1383 ret = intel_logical_ring_emit_pdps(req);
1388 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1391 ret = intel_ring_begin(req, 4);
1395 /* FIXME(BDW): Address space and security selectors. */
1396 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1398 (dispatch_flags & I915_DISPATCH_RS ?
1399 MI_BATCH_RESOURCE_STREAMER : 0));
1400 intel_ring_emit(ring, lower_32_bits(offset));
1401 intel_ring_emit(ring, upper_32_bits(offset));
1402 intel_ring_emit(ring, MI_NOOP);
1403 intel_ring_advance(ring);
1408 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1410 struct drm_i915_private *dev_priv = engine->i915;
1411 I915_WRITE_IMR(engine,
1412 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1413 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1416 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1418 struct drm_i915_private *dev_priv = engine->i915;
1419 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1422 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1424 struct intel_ring *ring = request->ring;
1428 ret = intel_ring_begin(request, 4);
1432 cmd = MI_FLUSH_DW + 1;
1434 /* We always require a command barrier so that subsequent
1435 * commands, such as breadcrumb interrupts, are strictly ordered
1436 * wrt the contents of the write cache being flushed to memory
1437 * (and thus being coherent from the CPU).
1439 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1441 if (mode & EMIT_INVALIDATE) {
1442 cmd |= MI_INVALIDATE_TLB;
1443 if (request->engine->id == VCS)
1444 cmd |= MI_INVALIDATE_BSD;
1447 intel_ring_emit(ring, cmd);
1448 intel_ring_emit(ring,
1449 I915_GEM_HWS_SCRATCH_ADDR |
1450 MI_FLUSH_DW_USE_GTT);
1451 intel_ring_emit(ring, 0); /* upper addr */
1452 intel_ring_emit(ring, 0); /* value */
1453 intel_ring_advance(ring);
1458 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1461 struct intel_ring *ring = request->ring;
1462 struct intel_engine_cs *engine = request->engine;
1464 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1465 bool vf_flush_wa = false, dc_flush_wa = false;
1470 flags |= PIPE_CONTROL_CS_STALL;
1472 if (mode & EMIT_FLUSH) {
1473 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1474 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1475 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1476 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1479 if (mode & EMIT_INVALIDATE) {
1480 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1481 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1482 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1483 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1484 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1485 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1486 flags |= PIPE_CONTROL_QW_WRITE;
1487 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1490 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1493 if (IS_GEN9(request->i915))
1496 /* WaForGAMHang:kbl */
1497 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1509 ret = intel_ring_begin(request, len);
1514 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1515 intel_ring_emit(ring, 0);
1516 intel_ring_emit(ring, 0);
1517 intel_ring_emit(ring, 0);
1518 intel_ring_emit(ring, 0);
1519 intel_ring_emit(ring, 0);
1523 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1524 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1525 intel_ring_emit(ring, 0);
1526 intel_ring_emit(ring, 0);
1527 intel_ring_emit(ring, 0);
1528 intel_ring_emit(ring, 0);
1531 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1532 intel_ring_emit(ring, flags);
1533 intel_ring_emit(ring, scratch_addr);
1534 intel_ring_emit(ring, 0);
1535 intel_ring_emit(ring, 0);
1536 intel_ring_emit(ring, 0);
1539 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1540 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1541 intel_ring_emit(ring, 0);
1542 intel_ring_emit(ring, 0);
1543 intel_ring_emit(ring, 0);
1544 intel_ring_emit(ring, 0);
1547 intel_ring_advance(ring);
1552 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1555 * On BXT A steppings there is a HW coherency issue whereby the
1556 * MI_STORE_DATA_IMM storing the completed request's seqno
1557 * occasionally doesn't invalidate the CPU cache. Work around this by
1558 * clflushing the corresponding cacheline whenever the caller wants
1559 * the coherency to be guaranteed. Note that this cacheline is known
1560 * to be clean at this point, since we only write it in
1561 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1562 * this clflush in practice becomes an invalidate operation.
1564 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1568 * Reserve space for 2 NOOPs at the end of each request to be
1569 * used as a workaround for not being allowed to do lite
1570 * restore with HEAD==TAIL (WaIdleLiteRestore).
1573 static int gen8_emit_request(struct drm_i915_gem_request *request)
1575 struct intel_ring *ring = request->ring;
1578 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1582 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1583 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1585 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1586 intel_ring_emit(ring,
1587 intel_hws_seqno_address(request->engine) |
1588 MI_FLUSH_DW_USE_GTT);
1589 intel_ring_emit(ring, 0);
1590 intel_ring_emit(ring, request->fence.seqno);
1591 intel_ring_emit(ring, MI_USER_INTERRUPT);
1592 intel_ring_emit(ring, MI_NOOP);
1593 return intel_logical_ring_advance(request);
1596 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1598 struct intel_ring *ring = request->ring;
1601 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1605 /* We're using qword write, seqno should be aligned to 8 bytes. */
1606 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1608 /* w/a for post sync ops following a GPGPU operation we
1609 * need a prior CS_STALL, which is emitted by the flush
1610 * following the batch.
1612 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1613 intel_ring_emit(ring,
1614 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1615 PIPE_CONTROL_CS_STALL |
1616 PIPE_CONTROL_QW_WRITE));
1617 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1618 intel_ring_emit(ring, 0);
1619 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1620 /* We're thrashing one dword of HWS. */
1621 intel_ring_emit(ring, 0);
1622 intel_ring_emit(ring, MI_USER_INTERRUPT);
1623 intel_ring_emit(ring, MI_NOOP);
1624 return intel_logical_ring_advance(request);
1627 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1631 ret = intel_logical_ring_workarounds_emit(req);
1635 ret = intel_rcs_context_init_mocs(req);
1637 * Failing to program the MOCS is non-fatal.The system will not
1638 * run at peak performance. So generate an error and carry on.
1641 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1643 return i915_gem_render_state_init(req);
1647 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1648 * @engine: Engine Command Streamer.
1650 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1652 struct drm_i915_private *dev_priv;
1654 if (!intel_engine_initialized(engine))
1658 * Tasklet cannot be active at this point due intel_mark_active/idle
1659 * so this is just for documentation.
1661 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1662 tasklet_kill(&engine->irq_tasklet);
1664 dev_priv = engine->i915;
1666 if (engine->buffer) {
1667 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1670 if (engine->cleanup)
1671 engine->cleanup(engine);
1673 intel_engine_cleanup_common(engine);
1675 if (engine->status_page.vma) {
1676 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1677 engine->status_page.vma = NULL;
1679 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1681 lrc_destroy_wa_ctx_obj(engine);
1682 engine->i915 = NULL;
1685 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1687 struct intel_engine_cs *engine;
1689 for_each_engine(engine, dev_priv)
1690 engine->submit_request = execlists_submit_request;
1694 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1696 /* Default vfuncs which can be overriden by each engine. */
1697 engine->init_hw = gen8_init_common_ring;
1698 engine->reset_hw = reset_common_ring;
1699 engine->emit_flush = gen8_emit_flush;
1700 engine->emit_request = gen8_emit_request;
1701 engine->submit_request = execlists_submit_request;
1703 engine->irq_enable = gen8_logical_ring_enable_irq;
1704 engine->irq_disable = gen8_logical_ring_disable_irq;
1705 engine->emit_bb_start = gen8_emit_bb_start;
1706 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1707 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1711 logical_ring_default_irqs(struct intel_engine_cs *engine)
1713 unsigned shift = engine->irq_shift;
1714 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1715 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1719 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1721 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1724 /* The HWSP is part of the default context object in LRC mode. */
1725 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1727 return PTR_ERR(hws);
1729 engine->status_page.page_addr = hws + hws_offset;
1730 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1731 engine->status_page.vma = vma;
1737 logical_ring_setup(struct intel_engine_cs *engine)
1739 struct drm_i915_private *dev_priv = engine->i915;
1740 enum forcewake_domains fw_domains;
1742 intel_engine_setup_common(engine);
1744 /* Intentionally left blank. */
1745 engine->buffer = NULL;
1747 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1751 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1752 RING_CONTEXT_STATUS_PTR(engine),
1753 FW_REG_READ | FW_REG_WRITE);
1755 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1756 RING_CONTEXT_STATUS_BUF_BASE(engine),
1759 engine->fw_domains = fw_domains;
1761 tasklet_init(&engine->irq_tasklet,
1762 intel_lrc_irq_handler, (unsigned long)engine);
1764 logical_ring_init_platform_invariants(engine);
1765 logical_ring_default_vfuncs(engine);
1766 logical_ring_default_irqs(engine);
1770 logical_ring_init(struct intel_engine_cs *engine)
1772 struct i915_gem_context *dctx = engine->i915->kernel_context;
1775 ret = intel_engine_init_common(engine);
1779 ret = execlists_context_deferred_alloc(dctx, engine);
1783 /* As this is the default context, always pin it */
1784 ret = intel_lr_context_pin(dctx, engine);
1786 DRM_ERROR("Failed to pin context for %s: %d\n",
1791 /* And setup the hardware status page. */
1792 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1794 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1801 intel_logical_ring_cleanup(engine);
1805 int logical_render_ring_init(struct intel_engine_cs *engine)
1807 struct drm_i915_private *dev_priv = engine->i915;
1810 logical_ring_setup(engine);
1812 if (HAS_L3_DPF(dev_priv))
1813 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1815 /* Override some for render ring. */
1816 if (INTEL_GEN(dev_priv) >= 9)
1817 engine->init_hw = gen9_init_render_ring;
1819 engine->init_hw = gen8_init_render_ring;
1820 engine->init_context = gen8_init_rcs_context;
1821 engine->emit_flush = gen8_emit_flush_render;
1822 engine->emit_request = gen8_emit_request_render;
1824 ret = intel_engine_create_scratch(engine, 4096);
1828 ret = intel_init_workaround_bb(engine);
1831 * We continue even if we fail to initialize WA batch
1832 * because we only expect rare glitches but nothing
1833 * critical to prevent us from using GPU
1835 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1839 ret = logical_ring_init(engine);
1841 lrc_destroy_wa_ctx_obj(engine);
1847 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1849 logical_ring_setup(engine);
1851 return logical_ring_init(engine);
1855 make_rpcs(struct drm_i915_private *dev_priv)
1860 * No explicit RPCS request is needed to ensure full
1861 * slice/subslice/EU enablement prior to Gen9.
1863 if (INTEL_GEN(dev_priv) < 9)
1867 * Starting in Gen9, render power gating can leave
1868 * slice/subslice/EU in a partially enabled state. We
1869 * must make an explicit request through RPCS for full
1872 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1873 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1874 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1875 GEN8_RPCS_S_CNT_SHIFT;
1876 rpcs |= GEN8_RPCS_ENABLE;
1879 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1880 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1881 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1882 GEN8_RPCS_SS_CNT_SHIFT;
1883 rpcs |= GEN8_RPCS_ENABLE;
1886 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1887 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1888 GEN8_RPCS_EU_MIN_SHIFT;
1889 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1890 GEN8_RPCS_EU_MAX_SHIFT;
1891 rpcs |= GEN8_RPCS_ENABLE;
1897 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1899 u32 indirect_ctx_offset;
1901 switch (INTEL_GEN(engine->i915)) {
1903 MISSING_CASE(INTEL_GEN(engine->i915));
1906 indirect_ctx_offset =
1907 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1910 indirect_ctx_offset =
1911 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1915 return indirect_ctx_offset;
1918 static void execlists_init_reg_state(u32 *reg_state,
1919 struct i915_gem_context *ctx,
1920 struct intel_engine_cs *engine,
1921 struct intel_ring *ring)
1923 struct drm_i915_private *dev_priv = engine->i915;
1924 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1926 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1927 * commands followed by (reg, value) pairs. The values we are setting here are
1928 * only for the first context restore: on a subsequent save, the GPU will
1929 * recreate this batchbuffer with new values (including all the missing
1930 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1931 reg_state[CTX_LRI_HEADER_0] =
1932 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1933 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1934 RING_CONTEXT_CONTROL(engine),
1935 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1936 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1937 (HAS_RESOURCE_STREAMER(dev_priv) ?
1938 CTX_CTRL_RS_CTX_ENABLE : 0)));
1939 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1941 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1943 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1944 RING_START(engine->mmio_base), 0);
1945 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1946 RING_CTL(engine->mmio_base),
1947 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1948 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1949 RING_BBADDR_UDW(engine->mmio_base), 0);
1950 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1951 RING_BBADDR(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1953 RING_BBSTATE(engine->mmio_base),
1955 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1956 RING_SBBADDR_UDW(engine->mmio_base), 0);
1957 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1958 RING_SBBADDR(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1960 RING_SBBSTATE(engine->mmio_base), 0);
1961 if (engine->id == RCS) {
1962 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1963 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1964 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1965 RING_INDIRECT_CTX(engine->mmio_base), 0);
1966 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1967 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1968 if (engine->wa_ctx.vma) {
1969 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1970 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1972 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1973 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1974 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1976 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1977 intel_lr_indirect_ctx_offset(engine) << 6;
1979 reg_state[CTX_BB_PER_CTX_PTR+1] =
1980 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1984 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1985 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1986 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1987 /* PDP values well be assigned later if needed */
1988 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1990 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1992 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1994 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1996 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1998 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2000 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2002 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2005 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2006 /* 64b PPGTT (48bit canonical)
2007 * PDP0_DESCRIPTOR contains the base address to PML4 and
2008 * other PDP Descriptors are ignored.
2010 ASSIGN_CTX_PML4(ppgtt, reg_state);
2013 * PDP*_DESCRIPTOR contains the base address of space supported.
2014 * With dynamic page allocation, PDPs may not be allocated at
2015 * this point. Point the unallocated PDPs to the scratch page
2017 execlists_update_context_pdps(ppgtt, reg_state);
2020 if (engine->id == RCS) {
2021 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2022 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2023 make_rpcs(dev_priv));
2028 populate_lr_context(struct i915_gem_context *ctx,
2029 struct drm_i915_gem_object *ctx_obj,
2030 struct intel_engine_cs *engine,
2031 struct intel_ring *ring)
2036 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2038 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2042 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2043 if (IS_ERR(vaddr)) {
2044 ret = PTR_ERR(vaddr);
2045 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2048 ctx_obj->dirty = true;
2050 /* The second page of the context object contains some fields which must
2051 * be set up prior to the first execution. */
2053 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2056 i915_gem_object_unpin_map(ctx_obj);
2062 * intel_lr_context_size() - return the size of the context for an engine
2063 * @engine: which engine to find the context size for
2065 * Each engine may require a different amount of space for a context image,
2066 * so when allocating (or copying) an image, this function can be used to
2067 * find the right size for the specific engine.
2069 * Return: size (in bytes) of an engine-specific context image
2071 * Note: this size includes the HWSP, which is part of the context image
2072 * in LRC mode, but does not include the "shared data page" used with
2073 * GuC submission. The caller should account for this if using the GuC.
2075 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2079 WARN_ON(INTEL_GEN(engine->i915) < 8);
2081 switch (engine->id) {
2083 if (INTEL_GEN(engine->i915) >= 9)
2084 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2086 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2092 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2099 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2100 struct intel_engine_cs *engine)
2102 struct drm_i915_gem_object *ctx_obj;
2103 struct intel_context *ce = &ctx->engine[engine->id];
2104 struct i915_vma *vma;
2105 uint32_t context_size;
2106 struct intel_ring *ring;
2111 context_size = round_up(intel_lr_context_size(engine), 4096);
2113 /* One extra page as the sharing data between driver and GuC */
2114 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2116 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2117 if (IS_ERR(ctx_obj)) {
2118 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2119 return PTR_ERR(ctx_obj);
2122 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2125 goto error_deref_obj;
2128 ring = intel_engine_create_ring(engine, ctx->ring_size);
2130 ret = PTR_ERR(ring);
2131 goto error_deref_obj;
2134 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2136 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2137 goto error_ring_free;
2142 ce->initialised = engine->init_context == NULL;
2147 intel_ring_free(ring);
2149 i915_gem_object_put(ctx_obj);
2153 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2155 struct intel_engine_cs *engine;
2156 struct i915_gem_context *ctx;
2158 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2159 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2160 * that stored in context. As we only write new commands from
2161 * ce->ring->tail onwards, everything before that is junk. If the GPU
2162 * starts reading from its RING_HEAD from the context, it may try to
2163 * execute that junk and die.
2165 * So to avoid that we reset the context images upon resume. For
2166 * simplicity, we just zero everything out.
2168 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2169 for_each_engine(engine, dev_priv) {
2170 struct intel_context *ce = &ctx->engine[engine->id];
2176 reg = i915_gem_object_pin_map(ce->state->obj,
2178 if (WARN_ON(IS_ERR(reg)))
2181 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2182 reg[CTX_RING_HEAD+1] = 0;
2183 reg[CTX_RING_TAIL+1] = 0;
2185 ce->state->obj->dirty = true;
2186 i915_gem_object_unpin_map(ce->state->obj);
2188 ce->ring->head = ce->ring->tail = 0;
2189 ce->ring->last_retired_head = -1;
2190 intel_ring_update_space(ce->ring);